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Abstract 

The effect of five different storage conditions on the total phenolic content (TPC), the 

antioxidant capacity (AC), the phenolic compound profile, the total amount of quantified phenolics, 

the hexanal content, and the sensory characteristics of hazelnuts of two cultivars (Tonda Gentile 

Trilobata or TGT and Delisava – harvest 2010 and 2011) were investigated for two consecutive 

years. The storage variables were time (0, 4, 8 and 12 months), temperature (ambient temperature, 

refrigeration at 5 °C, or frozen at 25 °C) and O2 availability (ambient air, vacuum or modified 

atmosphere). Comparing the cultivars, Delisava exhibited the highest levels of TCP and AC for 

both harvests and all storage conditions; however, it was characterized by the highest hexanal 

content (more than sixfold higher than TGT). At the end of the storage, the TPC and AC decreased 
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with respect to day 0 in both cultivars, with AC losses ranging between 12% and 35% and TPC 

losses of approximately 15%. However, these parameters were not able to distinguish the storage 

conditions. The hazelnut phenolic compound profiles did not seem to be affected by storage 

techniques in either cultivar; additionally, the sensory analysis panellists were not able to 

discriminate between the storage conditions. Hexanal was confirmed to be a good marker of lipid 

oxidation, and its content generally increased during storage in both cultivars; nevertheless, changes 

were well-controlled by storage conditions where low temperature and reduced oxygen worked 

synergistically. The absence of oxygen seemed to be more relevant with respect to low temperature, 

and a good preservation of raw hazelnut kernels was achieved by storage under vacuum with or 

without preliminary nitrogen flushing. 

 

Keywords: Hazelnut storage, phenolics, antioxidant capacity, hexanal 

 

1. Introduction 

Hazelnuts are popular nuts that are particularly appreciated because of their unique flavour and 

texture. Hazelnuts not only are tasty and nutritious, but their consumption is extensively related to 

beneficial effects on human health (King et al., 2008; Sabaté and Ang, 2009) because of the content 

of monounsaturated fatty acids, phytosterols and other non-nutrient phytochemicals, such as 

polyphenols, that can help to protect heart health and promote consumers’ well-being (Alasalvar 

and Shahidi, 2009; Torabian et al., 2009). However, the health-promoting capacities of hazelnuts 

are dependent on the processing and storage history of the nuts. Hazelnuts are seasonal products; 

therefore, correct storage is fundamental in order to preserve their nutritional components and 

reduce the production of fat oxidation off-flavours (De Santis et al., 2009). Temperature, humidity 

and O2 availability are the most important factors that affect hazelnuts’ storage. To extend the shelf-

life and protect against rancidification processes, hazelnuts must be dried immediately after harvest 

to a kernel moisture content of less than 5% (Richardson, 1988), and the relative humidity during 



storage must never exceed 70% (Tombesi, 1985). Furthermore, controlling the atmospheric 

composition and storage temperature and employing packaging are very important techniques for 

extending the storage time (Lin et al., 2012). 

Because of their very high lipid content (approximately 60%), hazelnuts can be susceptible to 

rancidity. Lipid deterioration during tree nuts storage is well known and has been well studied 

(Shahidi and John, 2013). Most of the papers available in literature are focused on the effect of 

handling (e.g. drying and shelling), processing (e.g. roasting) and storage on the rate of hazelnut 

lipid oxidation, or study the changes of fat content and fatty acid composition of hazelnuts during 

storage (Koyuncu et al., 2005; Koyuncu, 2004). Although it was reported that the acidity and 

peroxide value are powerful in discriminating hazelnut storage stability (Ghirardello et al., 2013), 

the variations in these two parameters are generally low, and the hazelnut lipid fraction can 

maintain the characteristics of freshness and stability for a long time, particularly under cold storage 

conditions. The autoxidation of unsaturated lipids occurs via a self-sustaining free radical 

mechanism that produces hydroperoxides (primary products), which in turn undergo scission to 

form various aldehydes, ketones, alcohols, and hydrocarbons (secondary products) (Kim and Min, 

2008). The presence of secondary lipid oxidation products influences the overall quality of a lipid. 

Hexanal is the main volatile aldehyde that is produced during the oxidation of unsaturated fats 

(Shahidi, 2001), and for this reason, it is a representative marker of the oxidative rancidity as an 

alternative to traditional oxidation indicators (e.g., acidity or peroxide values) and is used to follow 

lipid oxidation in lipid-containing foods. 

As mentioned above, the effect of storage on the lipid oxidation attributes is well documented; 

nevertheless, there is a lack of data concerning the effect of different storage conditions on hazelnut 

antioxidants. In particular, there are limited data on the changes of the phenolic content and 

phenolic profile. In addition to lipids, phenols are also prone to oxidation during storage. Acting as 

antioxidants, phenols can preserve the lipid fraction from rancidity (Shahidi and Naczk, 2004); 



therefore, the study of the effects of particular postharvest conditions on phenolics and their 

antioxidant capacity is of interest. 

The study of the effect of prolonged storage is even more interesting if it is considered that the 

most wide-spread reason for reduction in hazelnut quality is the production of “admixtures”, with 

part of the fresh crops admixed with old nuts (Schäfer et al., 2002).  

In this work, we investigated the changes of hexanal and polyphenolic content and antioxidant 

capacity of two hazelnut cultivars, in shell and shelled, since the results could be useful to optimize 

and/or choose the more efficient storage conditions at industrial scale. A set of five storage 

conditions (including different temperatures in the presence or absence of O2) were investigated for 

up to 12 months. In order to obtain more information in relation to the harvest year, as well as, the 

relationship between this and the cultivars, the study was performed for two consecutive years.   

 

2. Materials and Methods 

2.1. Sample preparation 

Commercial hazelnuts from two cultivars, the Turkish “Delisava” and the Italian “Tonda 

Gentile Trilobata” (TGT), that were harvested in 2010 and 2011 were provided by La Gentile s.r.l. 

(Cortemilia, Cuneo, Italy). The hazelnuts were purchased within one month from the harvest. At the 

first sampling time (day 0), the hazelnuts (three replicates of 2 kg each cv.) were analysed, and the 

data were used as references for all treatments. The hazelnuts were then divided into in-shell and 

shelled (kernels) batches. Delisava hazelnuts were imported in-shell and shelled; for this reason, 

two corresponding references were analysed. The in-shell and shelled (calibrated and selected) 

hazelnuts were packaged in 25-kg bags and stored by Soremartec Italia s.r.l. (Alba, Cuneo, Italy).  

Five different storage conditions, chosen among the most common and innovative storage 

conditions of nuts, typical of industrial storage, were tested: in-shell hazelnuts stored at ambient 

temperature (ranging between 10 and 25 °C) and 60-80% relative humidity (RH) in woven 

polypropylene bags (code AT), kernels cold-stored at 5 °C and 55% RH in woven polypropylene 



bags (code RF), kernels stored at 5 °C in aluminium foil vacuum bags with (code RVN2) or without 

(code RV) a preliminary nitrogen flushing, and kernels stored at 25 °C in vacuum bags (code FZ). 

In the light of the results observed in the first year of the project, storage of kernels at 5 °C in a 

modified atmosphere (1% oxygen, 99% nitrogen) in woven polypropylene bags was introduced in 

the second year of work (code RFN2) in order to shed light on the effect of oxygen. The analyses 

were conducted at 0, 4, 8 and 12 months of storage in each year. At every sampling time, batches of 

approximately 2 kg of kernels were taken for the analyses. The in-shell hazelnuts were manually 

cracked and shelled immediately before sampling.   

 

2.2. Chemicals 

Standards of hexanal, phloridzin, (-)-epigallocatechin, (-)-epigallocatechin 3-gallate,                      

(+)-gallocatechin 3-gallate, (-)-epicatechin 3-gallate, procyanidin B1, procyanidin B2, and 

quercitrin were purchased from Sigma-Aldrich (Milan, Italy); 2,2-diphenyl-1- picrylhydrazyl 

(DPPH), potassium persulfate, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), 

formic acid, 2,2'-azino-bis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS), 

Folin-Ciocalteu reagent, and gallic acid were purchased from Fluka Chemicals (Milan, Italy). 

Acetone, methanol, and n-hexane were of an analytical or higher grade and were purchased from 

Fluka Chemicals. Aqueous solutions were prepared using ultra-pure water produced with a Milli-Q 

System (Millipore, Milan, Italy). 

 

2.3. Extraction of phenolic compounds 

The extraction of phenolic compounds was carried out as reported by El Monfalouti et al. (2012) 

with modifications. Briefly, 2 g of finely ground kernels was placed in a 50-mL centrifuge tube and 

added to 20 mL of a fresh mixture of acetone/water/formic acid (70:29.5:0.5, v/v/v) and phloridzin 

as an internal standard (5000 μg L
-1

 final concentration). The suspension was shaken on a VDRL 

711 orbital shaker (Asal S.r.l., Milan, Italy) at a constant oscillation (1.67 oscillations s
-1

) in the 



dark at room temperature for 3 h. Afterward, the extract was centrifuged (10 min, 10 °C, 733            

rad s
-1

), and the supernatant was collected in an amber vial and frozen at 18 °C. The residue was 

re-extracted for an additional 12 h, and extracts were combined in a 50-mL centrifuge tube. The 

extracts were defatted by washing with n-hexane (3  10 mL in a 50-mL centrifuge tube), and the 

acetone was subsequently evaporated under nitrogen flux with stirring (Glas-Col
®
, Terre Haute, IN, 

USA). The extracts were diluted to 10 mL with a methanol/water/formic acid solution (50:49:1, 

v/v/v); then, the extracts were filtered (0.45 μm) and stored at 18 °C in an amber vial. Every 

sample was prepared in triplicate and was used for the determination of the total phenolic content, 

antioxidant capacity, and chromatographic analysis. 

 

2.4. Total phenolic content (TPC) assay 

The amount of total phenolics was assayed spectrophotometrically by means of the modified 

Folin–Ciocalteu method (Singleton et al., 1999; Singleton and Rossi, 1965). Briefly, 2.5 mL of 

water-diluted Folin-Ciocalteu reagent 1:10 (v/v), 2 mL of 7.5% aqueous sodium carbonate solution, 

and 0.5 mL of phenolic extract were mixed well. After 15 min of heating at 45 °C (Pinelo et al., 

2004), the absorbance was measured at 765 nm with a UV-Visible spectrophotometer (UV-1700 

PharmaSpec, Shimadzu, Milan, Italy). A mixture of solvent and reagents was used as a blank. The 

phenolic content was expressed as g of gallic acid equivalents (GAE) per kg of sample. 

 

2.5. In vitro antioxidant capacity (AC) assays 

To assess the antioxidant capacity of the crude hazelnut extracts, two spectrophotometric 

assays involving chromogen compounds of a radical nature were applied as previously detailed 

(Ghirardello et al., 2013). 

The Trolox equivalent antioxidant capacity (TEAC) was estimated according to the original 

analytical procedure described by Re et al. (1999) with slight modifications. The scavenging effect 

of the ABTS radical cation (ABTS
•+

) was recorded at 734 nm, and the results were expressed as 



millimoles of Trolox equivalents (TE) per kilogram of sample, by means of a dose–response curve 

for Trolox (0–350 μmol). 

The radical scavenging activity (RSA) was measured by the discoloration of the purple-colored 

methanol solution of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (von Gadow et al., 1997) 

recorded at 515 nm. The results were expressed as millimoles of Trolox equivalent (TE) per 

kilogram of sample. 

 

2.6. HPLC–DAD analysis 

HPLC-DAD analysis was performed by using a Thermo-Finnigan Spectra-System HPLC 

system (Thermo-Finnigan, Waltham, USA) that was equipped with a P2000 binary gradient pump 

system, a SCM 1000 degasser, an AS 3000 automatic injector and a Finnigan Surveyor PDA Plus 

detector (PDA). ChromQuest software (version 5.0) was used for instrument control and UV-data 

collection and processing. The separation was achieved at room temperature (maintained at 22 °C) 

on a C18 RP Lichrospher 250 × 4.6 mm, 5-µm (Merck Millipore, Darmstadt, Germany) column 

that was equipped with a C18 RP Lichrospher 5-µm guard column (Merck Millipore). The mobile 

phase was composed of trifluoroacetic acid/ultrapure water (0.1:99.9, v/v) (solvent A) and methanol 

(solvent B); the flow rate was 0.8 mL min
-1

, and the injection volume was 20 µL. The elution 

program was as follows: 95% A kept in isocratic for 2 min, 80% A in 8 min, 25% A in 55 min kept 

in isocratic for 5 min, 95% A in 3 min kept in isocratic for 5 min. The PDA spectra were recorded 

in full-scan mode over a wavelength (λ) range of 200 to 600 nm, and quantification was performed 

recording the peak area at a maximum λ (λmax) of each compound. The calibration curves were 

constructed by plotting the peak area ratios of each analyte/internal standard vs. analyte 

concentration. Identification was achieved by comparing the retention times and spectra with those 

of authentic standards.  

 

2.7. HS–SPME–GC/qMS analysis 



Hexanal was extracted from raw kernels using the headspace (HS) solid-phase micro-extraction 

technique (SPME) and was analysed by GC–qMS according to a previously reported method 

(Mexis et al., 2009). The SPME fibre, a carboxen/polydimethylsiloxane (CAR/PDMS), 75-μm film 

thickness (Supelco, Bellafonte, PA, USA), was exposed to the headspace of the sample using an 

SPME autosampler (PAL System, Combi PAL, Zwingen, Switzerland). One millilitre of ultrapure 

water, 0.1 g of finely powdered sample, and 10 L of 4-methyl-2-pentanone (internal standard, 

10.84 mg L
-1

) were placed in a 10-mL screw-cap glass vial fitted with silicone-PTFE septum 

(Supelco, Milan, Italy). The sample vials, stirred at 26.18 rad s
-1

, were thermostated at 60 °C for 10 

min; then, the fibre was exposed to the headspace for a sampling period of 10 min (Pastorelli et al., 

2006). The fibre was then removed and immediately inserted into the GC–qMS injector in splitless 

mode at 300 °C for 1 min.  

GC/qMS analysis was performed with a Shimadzu GC-2010 gas chromatograph equipped with 

a Shimadzu QP-2010 Plus quadrupole mass spectrometer (Shimadzu Corporation, Kyoto, Japan) 

and a DB-WAXETR capillary column (30 m × 0.25 mm, 0.25 μm film thickness, J&W Scientific 

Inc., Folsom, CA, USA). The temperature program started at 45 °C and was maintained for 2 min, 

then increased at a rate of 5 °C min
-1

 to 50 °C (held for 1 min), then increased at a rate of 8 °C min
-1

 

to 170 °C, and finally, increased at a rate of 18 °C min
-1

 to 230 °C for 8 min. The carrier gas (He) 

flow rate was 1 mL min
-1

. The injection port temperature was 300 °C, the ion source temperature 

was 240 °C, and the interface temperature was 230 °C. The detection was carried out by electron 

impact mass spectrometry in total ion current (TIC) mode using an ionization energy of 70 eV. The 

mass acquisition range was m/z 30–330. Peak identification of hexanal was performed by 

comparison of the retention time and mass spectra of eluting compound to those of the pure 

standard. The amount of hexanal was performed as a normalized area by the peak area of a selected 

quantifier ion of the volatile metabolite (m/z =56) with respect to the peak area of the selected 

quantifier ion (m/z =85) of the internal standard (4-methyl-2-pentanone). For each run, the precision 



of the method was performed, using both a standard solution of hexanal and internal standard both 

on the performance of the fibres. All analyses were performed in triplicate.  

 

2.8. Sensory analysis 

The sensory evaluation of the samples was performed with a pairing test that allows 

determination of the sensory "proximity" of a set of products (Touraille, 1990). In this case, the aim 

of the test was to determine whether different storage techniques led to different and significantly 

recognizable products. A group of  20 trained panellists (15 male, five female, 25-35 years old) was 

used. Each panellist was simultaneously presented with two sets of samples. Each set was made up 

of all of the products that were coded with different three-digit numbers, and the panellists had to 

match them. Hazelnut samples were furnished in white plastic cups containing 6-7 raw kernels. 

Water was provided for palate cleaning. The testing was carried out in a sensory laboratory that was 

designed in accordance with ISO 8589: 1988. 

 

2.9. Statistical analyses 

Statistical analyses were performed with SPSS software (version 18.0 for Windows, SPSS Inc., 

Chicago, Illinois). For the chemical data, two-way analysis of variance (ANOVA) was performed 

using all factors and their interactions. Intra-storage condition and intra-storage time differences (P 

< 0.05) were analysed using one-way ANOVA (single factor was storage time or storage 

condition), followed by Tukey’s HSD post hoc comparison test at a fixed level of α = 0.05. For the 

sensory analysis, the χ
2
 test was used (α = 0.05). 

 

3. Results 

3.1. Total phenolic content and in vitro antioxidant capacity assays 

The TPC and AC values of hazelnuts (two years, two cultivars) as a function of storage 

condition and storage time are reported in Table 1 and Table 2. For each cultivar, the effects of 



storage condition, storage time and their interaction were all significant. Delisava exhibited higher 

values than TGT (P < 0.001) beginning from day 0.  

Overall, during the first year of storage, the TPC and AC levels decreased significantly between 

0 and 12 months in both cultivars; however, after an initial decrease at 4 months, the values 

increased at 8 months to levels often near those from the beginning. The ranking of the storage 

conditions in order of increasing losses of TPC between the references and the samples at the 12th 

month of storage was AT < RVN2 < RV < FZ < RF in Delisava and FZ < RVN2 < RV < AT < RF 

in TGT (with 18.2, 24.4, 28.7, 40.1, 40.8 and 20.9, 22.0, 30.8, 53.5, 62.8 as the corresponding loss 

percentages). During storage, decreases in both TEAC and RSA values followed a pattern similar to 

that of TPC. Data from the second year of analyses highlighted a significant overall decrease of 

TPC and AC after 4 months of storage for both cultivars, followed by a significant (P < 0.001) 

increase at the 8th month. At the 12th month of storage, the mean value of each parameter increased 

or decreased significantly in different ways; in Delisava extracts, TPC and AC levels were lower or 

near those of the references. TGT had the highest recorded values of TPC and RSA, while TEAC 

was near the value that was assessed at the 8th month. The changes of TPC between the references 

and 12-month-stored samples were sometimes positive. In Delisava extracts, the increase was 28.2 

and 25.1 % in RVN2 and RF, respectively; the decrease was 1.5, 8.3, 20.4 and 43.7 % in RN2, RV, 

FZ and AT, respectively. In TGT extracts, increases of 49.5, 35.7 and 11.4 % were recorded in RF, 

RVN2 and RN2, respectively; a decrease of 1.5, 5.7 and 21.9 % was reported in FZ, AT and RV, 

respectively. Similarly to the first year, the TEAC and RSA parameters followed a pattern that was 

analogous with that of TPC. In particular, after 12 months, the highest values of TEAC and RSA 

were observed for Delisava in RVN2, RF and RN2, and for TGT, the highest TEAC values were 

observed in RF, RVN2 and RFN2 storage methods. 

[Table 1 and Table 2 about here] 

Overall, the values determined for all storage conditions in the first year of analyses were not 

significantly different in either Delisava or TGT extracts. In the second year, significant differences 



(P < 0.05) were highlighted in TGT extracts only for TPC and ranged between 2.85 and 3.85 GAE 

g kg
-1

 in RV and RF, respectively. 

Two-way ANOVA of the two-year data as a whole (Table 3) showed a significant effect (P < 

0.001) of storage time for TPC and AC in both Delisava and TGT cultivars; the storage condition 

effect was not significant. A significant interaction effect was observed (P < 0.001) only for TGT 

samples.  

[Table 3 about here] 

 

3.2. HPLC–DAD analysis 

[Table 4 about here] 

The HPLC analysis of the extracts highlighted the presence of 11 compounds; eight compounds 

were identified by comparison with analytical standards (Table 4). The identified compounds can be 

classified into four groups: benzoic acids (gallic acid), flavanols ((-)-epigallocatechin, (-)-

epigallocatechin 3-gallate, (+)-gallocatechin 3-gallate, (-)-epicatechin 3-gallate), procyanidins 

(procyanidin B1 and procyanidin B2), and flavonols (quercitrin). The compound at Rt 16.62 min 

and λmax 277 nm was tentatively identified as a B-type procyanidin dimer. In addition, two 

unidentified compounds were also detected at Rt 9.8 and 13.1 min, and max 264 and 297, 

respectively. Epigallocatechin 3-gallate was detected only in TGT samples. The phenolic compound 

profiles showed differences between cultivars and years (Supplemental Table 1 and 2). In the first 

year of analysis, the most abundant phenolic compound in Delisava extracts was procyanidin B1, 

followed by epigallocatechin, which showed mean values of 19.62 and 17.08 mg kg
-1

, respectively. 

In the TGT extracts, the order of the same compounds was inverted, with epigallocatechin as the 

most abundant compound (mean value 13.39 mg kg
-1

) followed by procyanidin B1 (mean value 

9.52 mg kg
-1

). In the second year of analysis, epigallocatechin was found to be the most abundant of 

both Delisava and TGT extracts (mean value 11.43 and 11.57 mg kg
-1

, respectively). For both 

cultivars and years, the most stable compound was gallic acid, which ranged between 7.70 and 8.58 



mg kg
-1

 overall. Two-way ANOVAs revealed the significant effects of storage condition, storage 

time and their interaction for every quantified compound (Table 5).  

[Table 5 about here] 

[Supplemental Table 1 and 2] 

The total amount of quantified phenolic compounds is reported in Table 6. In the first year of 

analyses, Delisava extracts were characterized by a higher amount of phenolics than TGT. A 

significant effect of storage time was detected in both cultivars, with an increase in the average 

amount of phenolics after four months of storage. In Delisava, the increase continued until the 

eighth month, and then the amount decreased; at the 12th month (mean value 112.52 mg kg
-1

), the 

amount of phenolics was higher than that at the beginning (mean value 96.78 mg kg
-1

). In TGT, the 

phenolic content decreased at the 8th month and then remained almost unchanged (mean value at 

the 12th month 70.49 mg kg
-1

) and comparable the initial content (mean value 71.15 mg kg
-1

). The 

effect of storage conditions and the interaction effect of storage conditions and storage time were 

also found to be significant. In the second year of analysis, the amount of phenolics in Delisava and 

TGT extracts were quite similar. Two-way ANOVA showed a significant effect of both storage 

conditions and storage time; their interaction was also significant. The amount of phenolics in 

Delisava increased between 0 and 4 months and then decreased. In TGT, the amount of phenolics 

was higher at the beginning and then decreased progressively during the next sampling times.  

The two-year overall data two-way ANOVA (Table 3) showed that the effect of storage 

conditions was not significant, while the storage time effect was significant for both cultivars, with 

P < 0.05 and 0.01 in Delisava and TGT, respectively. The interaction effect was significant only for 

TGT (P < 0.01). 

[Table 6 about here] 

 

3.3. HS–SPME–GC/MS analysis 



The changes in hexanal content (normalized area) are shown in Figure 1 A–D. For each cultivar, 

the effects of storage conditions, storage time and their interaction were all significant, with                

P < 0.001 (the only exception was the effect of storage time for TGT that was analysed in the 

second year, with P < 0.01). The differences between cultivars were significant; Delisava was 

characterized by the highest hexanal values. The formation of secondary oxidation products that 

were most likely a result of the availability of previously shelled Delisava hazelnuts was evident. 

Indeed, the hexanal mean values assessed at day 0 for in-shell and shelled references were 0.077 

and 0.284 normalized area, respectively.  

During the first year of storage, the level of hexanal increased significantly between 0 and 4 months 

in both cultivars. The hexanal content generally decreased at the 8th month to values often near the 

initial values and then remained almost unchanged. A different behaviour was reported for Delisava 

stored using AT and RF methods and TGT stored using the RF method, with an increase in the 

hexanal contents until 12 months of monitored storage. After one year of storage, hazelnuts 

packaged under vacuum conditions (FZ, RV and RN2) had the lowest hexanal contents (mean value 

0.246 and 0.061 normalized area in Delisava and TGT, respectively), while RF samples showed a 

15- and fourfold increase in Delisava and TGT, respectively. Data from the second year confirmed 

the differences between cultivars and the highest hexanal content of Delisava. Changes in hexanal 

content in Delisava samples were similar to those assessed in the first year, but in this case, the 

hexanal values of hazelnuts stored with FR, RV and RVN2 methods were almost unchanged in the 

first sampling time and then increased at the 8th month. The introduction of the new storage 

modality (RN2) allowed an efficient control of the lipid oxidation that resulted in small changes in 

hexanal content during storage (0.261 and 0.258 normalized area in reference and 12 months stored 

samples, respectively). Instead, the behaviour of the TGT samples was changed. With the exception 

of the AT samples, the highest values of hexanal were detected at the 12th month for every storage 

condition. Among low temperature storage conditions, the best performance was that of RN2. 



Two-way ANOVA of the two-year data as a whole (Table 3) showed a significant effect (P < 

0.001) of storage time in both Delisava and TGT cultivars, while a significant effect of storage 

condition was observed only in Delisava; the interaction effect was significant (P < 0.001) in both 

cultivars. Overall, higher values of hexanal were detected at the 12th month and in RF samples. 

[Figure 1 about here] 

 

3.4. Sensory analysis 

The results of sensory evaluations are reported in Table 7. For both cultivars and years of 

analysis, the number of correct matches was low. For Delisava, the correct matches were detected at 

the 8th month only for the FZ samples in both years. This response was confirmed at the 12th 

month of the second year. For TGT, the correct matches were detected for the AT and FZ samples 

in both years with some differences with respect to storage time. In the second year, the AT and FZ 

samples were correctly matched already at the 4th month. The correct responses were also detected 

at the 8th month (for AT samples only) and at the 12th month. The RV and RVN2 samples were 

correctly recognized, but only in the first year of observations. 

 

4. Discussion 

4.1. Total phenolic and antioxidant capacity 

The results showed that changes in TEAC and RSA values followed a pattern similar to that of 

TPC. As reported by Cristopoulos and Tsantili (2011), cultivar, storage time and storage condition 

affected AC similarly to TPC; however, some differences between either TEAC or RSA and TPC 

were observed. Delisava exhibited higher AC and TPC values than TGT during the entire storage 

period and for both examined years. Storage condition trends did not follow similar developments 

over time. In addition, at each sampling time, the differences among storage conditions were often 

significant but did not define a stable pattern. The observed two-year data highlighted the decrease 

in TPC and AC after 12 months of storage and a significant increase in the same parameters at the 



8th month with respect to the beginning. In a previous study (Ghirardello et al., 2013) with 

hazelnuts that were stored for 12 months, an increase in TPC and RSA was recorded between the 

8th and 12th months of storage; however, in this case, at the end of the storage period, both 

parameters decreased with respect to the beginning. With regards to this phenomenon, Bolling et al. 

(2010) suggested that a dynamic process affected the changes in flavonoid and phenolic acid 

contents by an increase in polyphenol extractability, degradation of polymeric polyphenols and, 

consequently, an increase of soluble phenolics or polyphenol synthesis after harvest. In contrast to 

the hypothesis that low temperature and modified atmosphere could effectively prevent the decrease 

in the phenolic content and antioxidant capacity in the long-term storage of nuts, the mean values of 

all assessed parameters were not able to significantly discriminate among the storage conditions; 

however, the effect of storage time was significant.  

 

4.2. Phenolic compounds profile 

Numerous data are available on the phenolic composition of hazelnuts; however, investigations 

are mainly focused on differences resulting from cultivar, origin, and variety of products (hazelnut 

skin, hard shell, tree leaf, green leafy cover and kernel) including fresh, raw and roasted kernels. No 

data are available about the effect of different storage conditions on changes in the phenolic 

compound profiles in long-term stored hazelnuts. According to the assessed TPC, Delisava was 

characterized by a higher total amount of phenolics than TGT; however, the evolution of these two 

parameters over time did not follow the same pattern. Storage affected the concentration of each 

phenolic compound to different degree, and it was very difficult to compare the storage methods. 

Differences could be explained by the different rates of degradation and/or synthesis of each 

phenolic compound. Despite different changes in absolute total phenolic amount, the overall 

relative profiles (individual content/sum) were similar for the majority of compounds in all storage 

conditions and for both harvest years. Therefore, the hazelnuts that were subjected to different 

storage techniques for up to 12 months had similar phenolic profiles. The total amount and profile 



of phenolics, affected by dynamic metabolic processes, were  ineffective to identify the oxidative 

state of the hazelnuts during storage. Nevertheless, the contribution of phenolics as antioxidants in 

long-term stored hazelnuts was confirmed. 

4.3. Hexanal content 

Hexanal, one of the major secondary products that is formed during the oxidation of linoleic or 

other ω-6 fatty acids in lipid-containing foods and its concentration, is directly related to the 

development of oxidative off-flavour (tallowy and green leafy flavour). This compound has a low 

retronasal odour threshold in oil (75 µg kg
-1

) (Aparicio and Luna, 2002; Belitz et al., 2009) and, 

together with propanal, is considered an indicator of the stability of food lipids (Shahidi and 

Wanasundara, 2008). In hazelnuts, hexanal was found to be useful for detecting the first stage in the 

oxidative process; nevertheless, data on the hexanal content of hazelnuts during storage are still 

scarce.  

The initial hexanal content of fresh raw hazelnuts are generally rather low and increases as a 

result of ageing and processing.  The obtained results show that barriers against oxygen and low 

temperature additively prevented the lipid oxidation in long-term stored hazelnuts. The control of 

the external activators of the lipid autoxidation, namely high temperatures and O2, played a key role 

in preventing lipid degradation. Low temperatures can act by retarding the metabolic reaction 

involved (the initiation of the free radical chain reaction), while reduced availability of O2 by 

delaying the formation of the peroxyl-fatty acid radicals. The partial effectiveness of shells as an O2 

barrier is well documented, particularly for TGT. For Delisava, this effect was also evident at the 

beginning, when in shelled hazelnuts a small but measurable degree of oxidation was already in 

progress. On the contrary, the comparison of the data in Figure 1 leads to the conclusion that as the 

O2 barrier decreased (RF method), the efficacy of low temperature also decreased. In agreement 

with the results of De Santis et al. (2009), in most cases, the vacuum-stored samples showed the 

best protection from lipid oxidation. In the second year of analysis, the introduction of a new 



storage modality (RFN2 method) confirmed the tendency, with a better performance of refrigeration 

in the presence of a very low O2 concentration.     

The behaviour of the TGT cultivar during two years of observations was less uniform than that 

of Delisava, but it is interesting to note that TGT was characterized by a much lower hexanal 

content; therefore, the ranges of variability for the two cultivars were very different. This was not 

surprising; indeed, it is reported that the concentration of hexanal in nuts is affected by numerous 

factors including kernel maturity, fat content, and variety (Lee et al., 2014). 

 

4.4. Sensory evaluation 

Based on the results reported in Table 7, there was no significant evidence that the storage 

conditions, even if prolonged, produced sensory changes. Only for the FZ and AT methods were 

correct matches possible, especially with long-term storage. Overall, contrary to what is observed 

about hexanal content, TGT seemed to be more affected by storage conditions. Although attempts 

to relate sensory data to volatile compounds have been frequently reported in literature, often those 

associations have not been shown to be conclusive. Multiple volatiles are responsible for a flavour 

sensation and although it is possible to pair some volatile compounds with some aroma or flavour 

sensations, this does not always happen (Chambers and Koppel, 2013).  

 

5. Conclusions 

All assessed parameters highlighted differences between the cultivars; furthermore, these 

seemed to be more relevant than that resulting from harvest year. Delisava was characterized by the 

highest levels of TPC and AC; nevertheless, it seemed to be less stable in terms of lipid oxidation 

and it was distinguished by the highest hexanal content. The hexanal content was confirmed to be a 

good indicator to monitor the oxidative state of hazelnut lipids. 



The results clearly showed good preservation of raw hazelnut kernels under vacuum with or 

without nitrogen. The absence of oxygen seemed to be more relevant than low temperature to 

reduce lipid oxidation, and its positive effect was confirmed.  

The hazelnut phenolic profiles did not seem to be affected by storage techniques, and all 

assessed parameters were generally more affected by storage time than by storage conditions. It was 

not possible to discriminate the storage conditions by sensory analysis, and there were no 

correlations between sensory results and fat oxidation. 

Cultivar and harvest year seemed to be involved in changing the compositional characteristics 

of hazelnuts during storage. Initial levels of antioxidants and markers of lipid oxidation along with 

their changes during storage should be considered for the choice of the cultivar and its ideal storage 

condition. 

Other studies on storage conditions with an emphasis on packaging as a barrier to O2 are 

necessary because these materials can be used to prevent lipid oxidation of hazelnuts and as an 

alternative to more expensive storage at low temperature. The use of eco-friendly food packaging as 

a barrier against oxygen, starting from the nut shells, could be taken into account for a sustainable 

food production system.    
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Table 1  

Total phenolic content (TPC), Trolox equivalent antioxidant capacity (TEAC) and  radical 

scavenging activity (RSA) of the hazelnuts during the first storage test. IS: in-shell hazelnuts; S: 

shelled hazelnuts (kernels); AT: stored at ambient temperature (60-80% RH); RF: refrigerated at 5 

°C and 55% RH; RVN2 and RV: refrigerated under vacuum with or without preliminary nitrogen 

flushing; RFN2: refrigerated under nitrogen (5 °C, 55% RH - 1% O2, 99% N2); FZ: stored at 25 °C 

under vacuum. 

    Day 0 4th month 8th month 12th month P
†
sc Pst Psc  Pst 

Delisava                               

  
TPC (GAE, g kg-1) *** *** *** 

IS AT 5.43 ± 0.11a 4.13 ± 1.27ab 5.21 ± 0.10a 4.44 ± 0.26b 

   S RF 5.73 ± 0.04bB 3.81 ± 0.49aA 5.11 ± 0.09aB 3.40 ± 0.15aA 

   S FZ 5.73 ± 0.04bB 5.03 ± 0.40abB 5.60 ± 0.04bC 3.44 ± 0.07aA 

   S RV 5.73 ± 0.04bC 4.96 ± 0.62abBC 4.87 ± 0.14aAB 4.09 ± 0.15bA 

   S RVN2  5.73 ± 0.04bC 5.92 ± 0.17bC 5.09 ± 0.21aB 4.33 ± 0.12bA 

   
                 

  

TEAC (TE, mmol kg-1) *** *** *** 

IS AT 38.20 ± 0.81 29.01 ± 8.69a 34.59 ± 1.27 29.92 ± 1.25c 

   S RF 41.26 ± 1.80C 26.75 ± 3.70aAB 32.66 ± 3.54B 21.86 ± 0.98aA 

   S FZ 41.26 ± 1.80B 36.51 ± 3.58abB 34.31 ± 4.75B 22.06 ± 0.15aA 

   S RV 41.26 ± 1.80C 33.81 ± 3.43abB 32.37 ± 1.17B 26.60 ± 0.77bA 

   S RVN2  41.26 ± 1.80C 43.01 ± 2.06bC 36.00 ± 1.54B 29.40 ± 1.36cA 

   
                 

  

RSA (TE, mmol kg-1) *** *** *** 

IS AT 20.65 ± 0.77a 17.32 ± 4.61 23.32 ± 0.66a 17.13 ± 1.20b 

   S RF 22.53 ± 0.65bC 17.28 ± 1.69B 24.60 ± 0.74aC 13.59 ± 0.54aA 

   S FZ 22.53 ± 0.65bB 21.20 ± 0.74B 28.41 ± 1.14bC 13.96 ± 0.34aA 

   S RV 22.53 ± 0.65bB 20.72 ± 1.51B 22.82 ± 1.06aB 16.25 ± 0.44bA 

   S RVN2  22.53 ± 0.65bB 23.31 ± 0.43B 24.03 ± 0.93aB 17.16 ± 1.14bA 

   
                 TGT               

  
TPC (GAE, g kg-1) *** *** *** 

IS AT 3.94 ± 0.13B 3.92 ± 0.75cB 4.28 ± 0.13bB 1.83 ± 0.04aA 

   S RF 3.94 ± 0.13C 3.90 ± 0.24cC 3.39 ± 0.23aB 1.47 ± 0.04aA 

   S FZ 3.94 ± 0.13B 2.44 ± 0.19abA 3.04 ± 0.49aA 3.12 ± 0.29bA 

   S RV 3.94 ± 0.13B 3.17 ± 0.28bcA 3.34 ± 0.38aAB 2.73 ± 0.13bA 

   S RVN2  3.94 ± 0.13C 1.58 ± 0.36aA 2.96 ± 0.08aB 3.07 ± 0.12bB 

   
                 

  

TEAC (TE, mmol kg-1) *** *** *** 

IS AT 27.61 ± 0.73B 21.42 ± 7.44bB 28.67 ± 1.28bB 11.22 ± 0.53aA 

   S RF 27.61 ± 0.73C 22.25 ± 2.49bB 22.99 ± 2.04abB 8.13 ± 1.08aA 

   S FZ 27.61 ± 0.73B 14.66 ± 3.51abA 20.94 ± 3.96aAB 20.14 ± 2.56bAB 

   S RV 27.61 ± 0.73C 19.12 ± 2.07abAB 22.34 ± 2.55abB 17.31 ± 0.74bA 

   S RVN2  27.61 ± 0.73C 8.46 ± 2.06aA 19.82 ± 0.51aB 20.08 ± 1.18bB 

   
                 

  

RSA (TE, mmol kg-1) *** *** *** 

IS AT 17.17 ± 0.11B 17.36 ± 3.11cB 22.31 ± 0.40bC 8.40 ± 0.24bA 

   S RF 17.17 ± 0.11B 17.75 ± 1.61cB 16.83 ± 0.38aB 5.93 ± 0.31aA 

   S FZ 17.17 ± 0.11B 11.93 ± 0.82abA 15.33 ± 2.96aAB 14.36 ± 1.68cAB 

   S RV 17.17 ± 0.11B 13.94 ± 0.92bcA 16.90 ± 1.70aB 12.55 ± 0.51cA 

   S RVN2  17.17 ± 0.11C 7.13 ± 2.00aA 14.91 ± 0.92aBC 13.97 ± 0.39cB       



Data were expressed as mean ± SD (n = 3). Values in the column with different lowercase letters were 

significantly different at P < 0.05. Values in the row with different capital letters were significantly different 

at P < 0.05.  

GAE: gallic acid equivalent; TE: Trolox equivalent. 
†
Probabilities of the effects:

 
P-level calculated for samples from different storage condition (Psc), P-level 

calculated for samples from different storage time (Pst), P-level calculated from storage condition (Psc) × 

storage time (Pst). 

*** Significant at P < 0.001. 

 

Table 2 

Total phenolic content (TPC), Trolox equivalent antioxidant capacity (TEAC) and  radical 

scavenging activity (RSA) of the hazelnuts during the second storage test. IS: in-shell hazelnuts; S: 

shelled hazelnuts (kernels); AT: stored at ambient temperature (60-80% RH); RF: refrigerated at 5 

°C and 55% RH; RVN2 and RV: refrigerated under vacuum with or without preliminary nitrogen 

flushing; RFN2: refrigerated under nitrogen (5 °C, 55% RH - 1% O2, 99% N2); FZ: stored at 25 °C 

under vacuum. 

    Day 0 4th month 8th month 12th month P
†
sc Pst Psc  Pst 

Delisava                               

  
TPC (GAE, g kg-1) *** *** *** 

IS AT 9.50 ± 2.41B 6.03 ± 1.00AB 8.90 ± 0.86bAB 5.35 ± 1.23aA 

   S RF 7.14 ± 0.24B 4.00 ± 1.47A 10.76 ± 0.14cC 8.93 ± 0.42bBC 

   S RFN2  7.14 ± 0.24BC 5.24 ± 0.36A 8.05 ± 0.16bC 7.03 ± 0.53abB       

S FZ 7.14 ± 0.24 5.21 ± 1.81 5.49 ± 0.45a 5.68 ± 0.91a 

   S RV 7.14 ± 0.24B 4.94 ± 0.34A 9.06 ± 0.57bC 6.55 ± 0.86aB 

   S RVN2  7.14 ± 0.24AB 6.21 ± 1.67A 9.18 ± 0.58bB 9.15 ± 0.78bB 

   
                 

  

TEAC (TE, mmol kg-1) *** *** *** 

IS AT 52.25 ± 6.89B 39.53 ± 5.44AB 51.76 ± 1.95bcB 30.27 ± 11.21A 

   S RF 49.78 ± 1.48B 20.01 ± 9.39A 55.20 ± 1.23cB 46.27 ± 1.43B 

   S RFN2  49.78 ± 1.48B 35.48 ± 1.38A 49.15 ± 0.66bB 37.04 ± 3.45A       

S FZ 49.78 ± 1.48B 34.90 ± 11.93AB 33.58 ± 2.02aAB 29.20 ± 5.98A 

   S RV 49.78 ± 1.48B 33.05 ± 2.50A 52.45 ± 1.86bcB 36.11 ± 9.37A 

   S RVN2  49.78 ± 1.48AB 38.39 ± 9.80A 53.02 ± 1.54bcB 47.49 ± 3.10AB 

   
                 

  

RSA (TE, mmol kg-1) *** *** *** 

IS AT 30.36 ± 4.80B 24.78 ± 2.11AB 27.57 ± 0.80bcB 21.69 ± 2.56aA 

   S RF 27.26 ± 0.55B 17.28 ± 5.38A 29.86 ± 0.79cB 29.64 ± 0.29cB 

   S RFN2  27.26 ± 0.55B 22.17 ± 0.76A 26.67 ± 0.27bB 27.43 ± 0.70bcB       

S FZ 27.26 ± 0.55 21.66 ± 5.52 21.20 ± 1.46a 24.92 ± 1.78ab 

   S RV 27.26 ± 0.55BC 21.70 ± 1.12A 28.19 ± 0.89bcC 24.87 ± 1.68abB 

   S RVN2  27.26 ± 0.55AB 24.51 ± 3.47A 28.63 ± 0.62bcAB 30.12 ± 0.83cB 

   
                 TGT               

  
TPC (GAE, g kg-1) *** *** *** 

IS AT 3.33 ± 0.17 2.89 ± 0.21b 2.82 ± 0.38ab 3.14 ± 0.11b 

   S RF 3.33 ± 0.17A 3.31 ± 0.28bA 3.80 ± 0.21bcA 4.98 ± 0.05eB 

   S RFN2  3.33 ± 0.17B 1.58 ± 0.55aA 3.35 ± 0.12abcB 3.71 ± 0.00cB       

S FZ 3.33 ± 0.17B 2.38 ± 0.42abA 2.64 ± 0.40abAB 3.28 ± 0.12bB 

   S RV 3.33 ± 0.17 3.05 ± 0.33b 2.41 ± 0.79a 2.60 ± 0.26a 

   S RVN2  3.33 ± 0.17B 1.44 ± 0.40aA 4.05 ± .030cC 4.52 ± 0.05dC 

   
                 

  

TEAC (TE, mmol kg-1) ** ** *** 



IS AT 22.64 ± 0.45C 19.44 ± 1.35bBC 17.32 ± 2.85abAB 14.54 ± 1.10bA 

   S RF 22.64 ± 0.45B 18.65 ± 1.38bA 24.93 ± 1.46bB 24.03 ± 0.52eB 

   S RFN2  22.64 ± 0.45B 9.86 ± 4.27aA 19.87 ± 1.84abB 17.80 ± 0.39cB       

S FZ 22.64 ± 0.45B 15.14 ± 3.05abA 15.98 ± 2.89aA 14.08 ± 1.11bA 

   S RV 22.64 ± 0.45B 20.56 ± 2.63bB 14.66 ± 5.87aAB 11.51 ± 1.40aB 

   S RVN2  22.64 ± 0.45B 8.94 ± 2.67bA 25.38 ± 2.47bB 21.07 ± 0.59dB 

   
                 

  

RSA (TE, mmol kg-1) ** ** *** 

IS AT 14.97 ± 0.47 12.86 ± 1.00b 12.48 ± 1.41a 14.76 ± 0.86ab 

   S RF 14.97 ± 0.47A 15.22 ± 1.19bAB 17.28 ± 1.44cB 21.68 ± 0.33dC 

   S RFN2  14.97 ± 0.47B 5.31 ± 3.32aA 15.31 ± 0.63abcB 17.22 ± 0.14cB       

S FZ 14.97 ± 0.47B 10.23 ± 2.45abA 12.67 ± 1.70abAB 16.01 ± 0.2bcB 

   S RV 14.97 ± 0.47 13.72 ± 1.89b 11.01 ± 3.08a 13.34 ± 1.08a 

   S RVN2  14.97 ± 0.47AB 4.46 ± 2.00aA 17.17 ± 0.60bcAB 20.15 ± 0.60dB       

Data were expressed as mean ± SD (n = 3). Values in the column with different lowercase letters were 

significantly different at P < 0.05. Values in the row with different capital letters were significantly different 

at P < 0.05.  

GAE: gallic acid equivalent; TE: Trolox equivalent. 
†
Probabilities of the effects:

 
P-level calculated for samples from different storage condition (Psc). P-level 

calculated for samples from different storage time (Pst). P-level calculated from storage condition (Psc) × 

storage time (Pst). 

**  Significant at P < 0.01. 

*** Significant at P < 0.001. 

 

Table 3 

Probabilities of the effects of storage condition (Psc), storage time (Pst) and their interactions on total 

phenol content (TPC), Trolox equivalent antioxidant capacity (TEAC), radical scavenging activity 

(RSA), total amount of phenolics, and hexanal content assessed in hazelnut kernels stored under 

various conditions (two-year data as a whole). 

 

TPC   TEAC   RSA   

Total 

Phenolics   Hexanal 

 

Delisava TGT 

 

Delisava TGT 

 

Delisava TGT 

 

Delisava TGT 

 

Delisava TGT 

Psc NS NS   * NS   NS NS   NS NS   *** NS 

Pst *** *** 
 

*** *** 
 

*** *** 
 

* *** 
 

*** *** 

Psc  Pst NS *** 
 

NS *** 
 

NS *** 
 

NS ** 
 

*** *** 

NS not significant 

*  Significant at P < 0.05. 

**  Significant at P < 0.01. 

*** Significant at P < 0.001. 

 

 

 

 

 

 

 



Table 4 

Retention time (Rt), detection wavelength (λ max), calibration curve, investigated linear range, 

determination coefficient (R
2
), linear range, LOD and LOQ of the phenolic compound standards. 

  

Rt 

(min) 

λ max 

(nm) 
Calibration curve R2 

Linear range 

(mg L-1) 

LOD              

(mg L-1) 

LOQ                

(mg L-1) 

Gallic acid 10.7 270 y=0.7528x-0.4147 1.0000 1-10 0.007 0.050 

Procyanidin B1 17.4 277 y=0.1379x-0.0997 0.9889 2-30 0.515 1.694 

(-)-Epigallocatechin 20.0 280 y=0.8515x-0.7002 0.9983 10-100 0.075 0.250 

Procyanidin B2 21.6 277 y=0.2330x-0.1352 0.9998 2-10 0.100 0.200 

(-)-Epigallocatechin 3-gallate 24.9 280 y=0.0849x-0.0499 0.9995 0.5-2 0.144 0.500 

(+)-Gallocatechin 3-gallate 28.1 280 y=1.2287x-0.6064 0.9952 5-10 0.008 0.026 

(-)-Epicatechin 3-gallate 30.7 280 y=0.1303x-0.0396 0.9984 0.5-2 0.150 0.500 

Phloridzin (IS) 40.4 283 y=0.6625x-0.3226 1.0000 2-10 0.006 0.020 

Quercitrin 44.7 350 y=0.2861x-0.1677 0.9995 2-10 0.093 0.356 

IS: internal standard. 

 

Table 5 

Probabilities of the effects of storage condition (Psc), storage time (Pst) and their interactions on 

phenolic compounds detected in two-year stored hazelnuts. 

 1th year Phenolic compound P
†
sc Pst Psc  Pst  2nd year Phenolic compound Psc Pst Psc  Pst 

Delisava Non identified molecule n. 1  ** *** *** Delisava Non identified molecule n. 1  *** *** *** 

 
Gallic acid  *** *** *** 

 
Gallic acid  *** *** *** 

 
Non identified molecule n. 2 NS *** ** 

 
Non identified molecule n. 2 *** *** *** 

 
B-type procyanidin dimer *** *** *** 

 
B-type procyanidin dimers *** *** *** 

 
Procyanidin B1  *** *** *** 

 
Procyanidin B1  *** *** *** 

 

(-)-Epigallocatechin  NS ** NS 

 

(-)-Epigallocatechin  NS *** *** 

 

Procyanidin B2  ** *** *** 

 

Procyanidin B2  ** *** * 

 

(-)-Epigallocatechin 3-gallate  ** *** * 

 

(-)-Epigallocatechin 3-gallate  Occasionally detected 

 

(+)-Gallocatechin 3-gallate  NS *** *** 

 

(+)-Gallocatechin 3-gallate  *** *** *** 

 

Quercitrin  * *** *** 

 

Quercitrin  *** *** *** 

 
    

 

  

   TGT Non identified molecule n. 1  *** *** ** TGT Non identified molecule n. 1  NS *** *** 

 
Gallic acid  *** *** *** 

 
Gallic acid  ** *** *** 

 
Non identified molecule n. 2 ** NS *** 

 
Non identified molecule n. 2 *** *** *** 

 
B-type procyanidin dimer *** *** *** 

 
B-type procyanidin dimers *** *** *** 

 
Procyanidin B1  *** *** *** 

 
Procyanidin B1  * *** *** 

 

(-)-Epigallocatechin  * *** ** 

 

(-)-Epigallocatechin  *** *** *** 

 

Procyanidin B2  NS *** NS 

 

Procyanidin B2  ** *** *** 

 

(-)-Epigallocatechin 3-gallate  Occasionally detected 

 

(-)-Epigallocatechin 3-gallate  Not detected 

 

(+)-Gallocatechin 3-gallate  NS *** *** 

 

(+)-Gallocatechin 3-gallate  ** *** *** 

 

(-)-Epicatechin 3-gallate * *** *** 

 

(-)-Epicatechin 3-gallate ** *** *** 

  Quercitrin  *** *** ***   Quercitrin  *** *** *** 

NS not significant 

*  Significant at P < 0.05. 

**  Significant at P < 0.01. 

*** Significant at P < 0.001. 

 



Table 6 

Total amount of phenolics of the hazelnuts during the two years of testing. IS: in-shell hazelnuts; S: 

shelled hazelnuts (kernels); AT: stored at ambient temperature (60-80% RH); RF: refrigerated at 5 

°C and 55% RH; RVN2 and RV: refrigerated under vacuum with or without preliminary nitrogen 

flushing; RFN2: refrigerated under nitrogen (5 °C, 55% RH - 1% O2, 99% N2); FZ: stored at 25 °C 

under vacuum. 

    Day 0 4th month 8th month 12th month P
†
sc Pst Psc  Pst 

Delisava - 1th year Total amount of phenolics (mg kg-1) *** *** *** 

IS AT 107.03 ± 0.93A 115.41 ± 12.36aAB 130.92 ± 0.06dC 124.22 ± 3.85cBC 

   S RF 94.22 ± 7.85A 104.70 ± 8.65aAB 124.37 ± 1.25cC 106.09 ± 0.29aB 

   S FZ 94.22 ± 7.85A 120.68 ± 5.48aB 141.33 ± 3.98eC 103.14 ± 2.18aA 

   S RV 94.22 ± 7.85A 120.94 ± 9.33aB 102.84 ± 0.81aA 115.71 ± 5.17bB 

   S RVN2  94.22 ± 7.85A 137.27 ± 3.25bC 114.40 ± 4.22bB 113.46 ± 4.38bB 

       
    

TGT - 1th year Total amount of phenolics (mg kg-1) ** *** *** 

IS AT 71.15 ± 2.45B 80.74 ± 5.40abC 75.23 ± 4.96bBC 61.47 ± 1.22aA 

   S RF 71.15 ± 2.45B 81.42 ± 3.01abC 75.24 ± 3.25bAB 66.79 ± 2.04bA 

   S FZ 71.15 ± 2.45A 85.53 ± 3.35bB 67.65 ± 2.17aA 71.07 ± 2.25cA 

   S RV 71.15 ± 2.45A 81.61 ± 3.37abB 71.52 ± 1.32abA 80.19 ± 188dB 

   S RVN2  71.15 ± 2.45AB 75.04 ± 4.76aB 66.34 ± 3.74aA 72.95 ± 1.86cAB 

                                     

Delisava - 2nd year Total amount of phenolics (mg kg-1) *** *** *** 

IS AT 73.02 ± 1.51C 76.96 ± 2.81aC 58.57 ± 4.12aA 68.08 ± 0.32B 

   S RF 72.07 ± 1.51C 80.79 ± 2.63aD 62.38 ± 1.4abA 67.06 ± 2.15B 

   S RFN2  72.07 ± 1.51C 78.19 ± 0.20aD 60.30 ± 0.82aA 64.34 ± 2.60B       

S FZ 72.07 ± 1.51A 82.28 ± 4.47aB 67.33 ± 0.87bA 66.55 ± 4.30A 

   S RV 72.07 ± 1.51B 81.14 ± 3.84aC 62.41 ± 2.57abA 64.57 ± 2.78A 

   S RVN2  72.07 ± 1.51A 91.98 ± 6.09bB 66.92 ± 3.79bA 64.89 ± 4.36A 

       
    

TGT - 2nd year Total amount of phenolics (mg kg-1) ** *** *** 

IS AT 89.82 ± 1.78C 83.45 ± 2.87bcBC 73.19 ± 9.79abAB 64.75 ± 3.90aA 

   S RF 89.82 ± 1.78B 79.76 ± 0.95bA 74.66 ± 2.62abA 75.54 ± 4.87bA 

   S RFN2  89.82 ± 1.78B 86.15 ± 0.68cB 62.48 ± 1.72aA 60.73 ± 3.04aA       

S FZ 89.82 ± 1.78C 80.69 ± 1.89bcB 69.62 ± 6.58abA 74.47 ± 2.33bAB 

   S RV 89.82 ± 1.78C 86.84 ± 2.80cC 65.98 ± 2.97aA 78.56 ± 2.40bB 

   S RVN2  89.82 ± 1.78C 66.23 ± 6.18aA 77.93 ± 3.26bB 74.04 ± 2.80bB       

Data were expressed as mean ± SD (n = 3). Values in the column with different lowercase letters were 

significantly different at P < 0.05. Values in the row with different capital letters were significantly different 

at P < 0.05.  
†
Probabilities of the effects:

 
P-level calculated for samples from different storage condition (Psc). P-level 

calculated for samples from different storage time (Pst). P-level calculated from storage condition (Psc) × 

storage time (Pst). 

**  Significant at P < 0.01. 

*** Significant at P < 0.001. 

 

 

 



 

 

Fig. 1. Change in the hexanal content (mean value; n = 3) of hazelnuts during the first (A–Delisava; B–TGT) and second (C–Delisava; D–TGT) years of storage.
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Table 7  

Results of χ
2
 test performed on sensory analysis results obtained at four, eight and 12 months of 

storage for the two years of testing. IS: in-shell hazelnuts; S: shelled hazelnuts (kernels); AT: stored 

at ambient temperature (60-80% RH); RF: refrigerated at 5 °C and 55% RH; RVN2 and RV: 

refrigerated under vacuum with or without preliminary nitrogen flushing; RFN2: refrigerated under 

nitrogen (5 °C, 55% RH - 1% O2, 99% N2); FZ: stored at 25 °C under vacuum. 

    4th month 8th month 12th month 

    1st year 2nd year 1st year 2nd year 1st year 2nd year 

Delisava 
      

IS AT - - - - - + 

S RF - - - - - - 

S RFN2   
- 

 
- 

 
- 

S FZ - - + + - + 

S RV - - + - - - 

S RVN2  - - - - - - 

TGT 
      

IS AT - + + + - + 

S RF - - + - - - 

S RFN2   
- 

 
- 

 
- 

S FZ - + + - + + 

S RV - - + - + - 

S RVN2  - - + - + - 

+: indicates correct match at P < 0.05 . 

-: indicates no correct match at P < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 1 
Amount of phenolics of the hazelnuts during the first storage test. IS: in-shell hazelnuts; S: shelled 

hazelnuts (kernel); AT: stored at ambient temperature (60–80% RH); RF: refrigerated at 5 °C and 

55% RH; RVN2 and RV: refrigerated under vacuum with or wit-out preliminary nitrogen flushing; 

FZ: stored at 25 °C under vacuum. 

 

    Day 0 4th month 8th month 12th month Relative profilea                  

Delisava     

  
Non identified molecule n. 1 (g kg-1) 

 
IS AT 4.40 ± 0.13A 8.77 ± 2.95abB 5.53 ± 1.38aA 7.46 ± 0.36AB 0.05 

S RF 4.70 ± 0.99A 7.67 ± 1.80abB 
 

nd 
 

8.47 ± 1.89B 0.06 

S FZ 4.70 ± 0.99A 5.90 ± 0.93aA 12.76 ± 5.78bB 7.77 ± 0.04AB 0.07 

S RV 4.70 ± 0.99A 7.09 ± 0.80abA 
 

nd 
 

10.34 ± 2.60B 0.07 

S RVN2  4.70 ± 0.99A 9.88 ± 0.80bB 
 

nd 
 

5.78 ± 0.51A 0.06 

               
  

Gallic acid (g kg-1)   

IS AT 8.14 ± 0.06A 8.10 ± 0.30abA 8.45 ± 0.06bB 9.22 ± 0.09bC 0.07 

S RF 7.37 ± 0.49A 8.01 ± 0.68abAB 8.32 ± 0.21bB 8.74 ± 0.16abB 0.08 

S FZ 7.37 ± 0.49A 8.30 ± 0.04bBC 8.46 ± 0.15bC 7.85 ± 0.09aAB 0.07 

S RV 7.37 ± 0.49A 8.10 ± 0.16abB 7.01 ± 0.08aA 9.03 ± 0.03bC 0.07 

S RVN2  7.37 ± 0.49AB 7.42 ± 0.19aAB 7.15 ± 0.15aA 7.94 ± 0.30aB 0.07 

               

  

Non identified molecule n. 2 (g kg-1)   

IS AT 5.55 ± 0.05B 5.53 ± 0.16B 5.35 ± 0.01bA 6.15 ± 0.02dC 0.05 

S RF 5.49 ± 0.49 5.69 ± 0.55 5.45 ± 0.07b 5.44 ± 0.07b 0.05 

S FZ 5.49 ± 0.49 5.60 ± 0.06 5.46 ± 0.09b 5.15 ± 0.05a 0.05 

S RV 5.49 ± 0.49B 6.07 ± 0.08C 4.85 ± 0.08aA 5.79 ± 0.05cBC 0.05 

S RVN2  5.49 ± 0.49AB 5.94 ± 0.19B 5.32 ± 0.15bA 5.43 ± 0.17bAB 0.05 

               

  

B-type procyanidin dimers  (g kg-1)   

IS AT 26.00 ± 1.03A 27.66 ± 6.88abA 36.45 ± 0.50cB 30.78 ± 1.92cAB 0.25 

S RF 24.81 ± 2.97A 21.66 ± 2.18aA 36.13 ± 0.18cB 21.43 ± 0.38aA 0.24 

S FZ 24.81 ± 2.97B 31.56 ± 1.94bcC 40.10 ± 0.69dD 20.49 ± 1.07aA 0.25 

S RV 24.81 ± 2.97AB 31.82 ± 4.63bcB 26.31 ± 1.55aAB 26.64 ± 1.55bAB 0.24 

S RVN2  24.81 ± 2.97A 36.90 ± 1.86cC 32.46 ± 1.27bB 27.32 ± 1.92bA 0.26 

               

  

Procyanidin B1 (g kg-1)   

IS AT 22.51 ± 0.43 20.63 ± 4.34ab 25.12 ± 0.54b 23.40 ± 1.48c 0.19 

S RF 10.49 ± 1.03A 17.17 ± 1.56aB 25.62 ± 0.86bC 17.78 ± 0.03aB 0.17 

S FZ 10.49 ± 1.03A 21.81 ± 1.48abC 25.58 ± 1.22bD 16.54 ± 0.63aB 0.16 

S RV 10.49 ± 1.03A 23.08 ± 2.90bcC 19.73 ± 0.76aB 19.65 ± 0.99bB 0.17 

S RVN2  10.49 ± 1.03A 27.04 ± 1.18cD 24.09 ± 1.06bC 20.74 ± 0.95bB 0.18 

               

  

(-)-Epigallocatechin (g kg-1)   

IS AT 15.36 ± 0.19A 17.56 ± 0.34abB 17.73 ± 0.25bB 18.01 ± 0.20cB 0.14 

S RF 16.53 ± 1.84 16.59 ± 1.58a 17.90 ± 0.24b 17.45 ± 0.28bc 0.16 

S FZ 16.53 ± 1.84 17.44 ± 0.33ab 17.73 ± 0.46b 16.86 ± 0.25ab 0.15 

S RV 16.53 ± 1.84 17.25 ± 0.35ab 16.51 ± 0.40a 16.56 ± 0.46a 0.15 

S RVN2  16.53 ± 1.84A 18.67 ± 0.50bB 16.33 ± 0.49aA 17.62 ± 0.49cAB 0.15 

               

  

Procyanidin B2 (g kg-1)   

IS AT 7.18 ± 0.51B 6.08 ± 0.23aA 7.53 ± 0.07cB 7.15 ± 0.09bB 0.06 

S RF 7.22 ± 0.39B 6.11 ± 0.39aA 7.01 ± 0.13bB 6.89 ± 0.25abB 0.06 

S FZ 7.22 ± 0.39B 6.38 ± 0.19abA 5.96 ± 0.09aA 7.68 ± 0.11cC 0.06 

S RV 7.22 ± 0.39B 5.99 ± 0.23aA 6.11 ± 0.45aA 6.54 ± 0.43aAB 0.06 

S RVN2  7.22 ± 0.39B 6.69 ± 0.34bB 6.00 ± 0.24aA 7.25 ± 0.27bcB 0.06 

               

  

(-)-Epigallocatechin 3-gallate (g kg-1)   



IS AT 4.96 ± 0.40A 5.84 ± 0.02abB 7.42 ± 0.06bC 5.97 ± 0.36B 0.05 

S RF 4.96 ± 0.34A 6.07 ± 0.72abB 6.53 ± 0.39aB 5.77 ± 0.18AB 0.05 

S FZ 4.96 ± 0.34A 6.48 ± 0.79abB 7.43 ± 0.33bB 6.53 ± 0.33B 0.06 

S RV 4.96 ± 0.34A 5.66 ± 0.05aAB 6.07 ± 0.39aB 5.98 ± 0.66B 0.05 

S RVN2  4.96 ± 0.34A 6.68 ± 0.43bB 6.26 ± 0.69aB 6.48 ± 0.33B 0.05 

               

  

(+)-Gallocatechin 3-gallate (g kg-1)   

IS AT 4.40 ± 0.03A 8.71 ± 0.26aB 9.68 ± 0.08bD 9.24 ± 0.04cC 0.07 

S RF 4.43 ± 0.14A 9.41 ± 0.75abC 9.64 ± 0.34abC 8.15 ± 0.22aB 0.07 

S FZ 4.43 ± 0.14A 9.45 ± 0.39abC 9.68 ± 0.40bC 8.52 ± 0.15abB 0.07 

S RV 4.43 ± 0.14A 8.74 ± 0.18aB 9.13 ± 0.13aB 8.88 ± 0.18bcB 0.07 

S RVN2  4.43 ± 0.14A 9.92 ± 0.26bD 9.17 ± 0.30aC 8.39 ± 0.42aB 0.07 

               

  

Quercitrin (g kg-1)   

IS AT 8.53 ± 0.44C 6.51 ± 0.87aA 7.66 ± 0.35abBC 6.84 ± 0.24cAB 0.06 

S RF 8.22 ± 0.53B 6.34 ± 0.41aA 7.77 ± 0.13bB 5.98 ± 0.13aA 0.07 

S FZ 8.22 ± 0.53B 7.76 ± 0.39bB 8.18 ± 0.46bB 5.76 ± 0.12aA 0.07 

S RV 8.22 ± 0.53B 7.15 ± 0.72abA 7.12 ± 0.08aA 6.30 ± 0.15bA 0.07 

S RVN2  8.22 ± 0.53B 8.13 ± 0.53bB 7.62 ± 0.27abB 6.51 ± 0.17bA 0.07 

TGT           

  
Non identified molecule n. 1 (g kg-1) 

 
IS AT 3.95 ± 0.09A 11.35 ± 1.84C 

 
nd 

 
6.74 ± 0.68B 0.13 

S RF 3.95 ± 0.09A 11.33 ± 1.57C 5.83 ± 0.95bA 8.10 ± 0.82B 0.13 

S FZ 3.95 ± 0.09A 11.17 ± 0.74C 
 

nd 
 

7.20 ± 2.23B 0.13 

S RV 3.95 ± 0.09A 15.27 ± 2.40C 7.67 ± 1.27bB 8.17 ± 1.65B 0.14 

S RVN2  3.95 ± 0.09A 11.96 ± 3.64C 3.04 ± 2.98aA 6.03 ± 1.86B 0.11 

               
  

Gallic acid (g kg-1)   

IS AT 7.91 ± 0.45B 6.69 ± 0.46aA 7.41 ± 0.44aAB 7.04 ± 0.15aA 0.13 

S RF 7.91 ± 0.45B 6.36 ± 0.25aA 7.71 ± 0.33abB 9.02 ± 0.37dC 0.13 

S FZ 7.91 ± 0.45AB 7.71 ± 0.14bA 8.30 ± 0.32bBC 8.58 ± 0.15cC 0.14 

S RV 7.91 ± 0.45B 6.54 ± 0.57aA 8.00 ± 0.02abB 7.82 ± 0.02bB 0.12 

S RVN2  7.91 ± 0.45B 6.51 ± 0.04aA 8.24 ± 0.31bBC 8.49 ± 0.12cC 0.14 

               
  

Non identified molecule n. 2 (g kg-1) 
 

IS AT 4.65 ± 0.17AB 4.99 ± 0.33cBC 5.10 ± 0.26cC 4.54 ± 0.04aA 0.07 

S RF 4.65 ± 0.17 4.68 ± 0.07bc 4.92 ± 0.29bc 4.77 ± 0.10b 0.06 

S FZ 4.65 ± 0.17AB 4.85 ± 0.11cB 4.60 ± 0.12abA 4.48 ± 0.08aA 0.06 

S RV 4.65 ± 0.17BC 4.29 ± 0.02aA 4.59 ± 0.05abB 4.78 ± 0.05bC 0.06 

S RVN2  4.65 ± 0.17AB 4.46 ± 0.15abA 4.48 ± 0.05aA 4.81 ± 0.09bB 0.06 

               

  

B-type procyanidin dimers  (g kg-1)   

IS AT 7.93 ± 1.58 8.15 ± 1.04b 9.00 ± 0.90b 
 

nd 
 

0.15 

S RF 7.93 ± 1.58 9.43 ± 0.30c 8.33 ± 0.59ab 
 

nd 
 

0.15 

S FZ 7.93 ± 1.58AB 6.41 ± 0.31aA 8.30 ± 0.57abB 7.99 ± 0.18bAB 0.13 

S RV 7.93 ± 1.58AB 8.23 ± 0.54bB 7.54 ± 0.59aAB 6.33 ± 0.13aA 0.12 

S RVN2  7.93 ± 1.58B 5.64 ± 0.63aA 7.50 ± 0.22aB 8.28 ± 0.79bB 0.13 

               

  

Procyanidin B1 (g kg-1)   

IS AT 10.04 ± 1.24B 11.39 ± 1.43bBC 12.46 ± 0.81cC 7.34 ± 0.15aA 0.18 

S RF 10.04 ± 1.24B 11.36 ± 0.31bC 9.83 ± 0.39bB 7.62 ± 0.25aA 0.17 

S FZ 10.04 ± 1.24B 8.39 ± 0.58aA 10.03 ± 0.61bB 9.70 ± 0.25cAB 0.16 

S RV 10.04 ± 1.24B 7.90 ± 0.17aA 8.27 ± 0.48aA 9.16 ± 0.37bAB 0.15 

S RVN2  10.04 ± 1.24B 6.94 ± 0.78aA 9.84 ± 0.32bB 9.87 ± 0.22cB 0.16 

               

  

(-)-Epigallocatechin (g kg-1)   

IS AT 12.78 ± 0.42 13.17 ± 1.18 13.18 ± 1.04 13.77 ± 0.35ab 0.24 

S RF 12.78 ± 0.42A 13.17 ± 0.49A 13.45 ± 0.52A 15.54 ± 0.36dB 0.24 



S FZ 12.78 ± 0.42 13.48 ± 0.33 13.02 ± 0.37 13.19 ± 0.29a 0.22 

S RV 12.78 ± 0.42A 13.85 ± 0.08B 12.84 ± 0.14A 14.09 ± 0.22bcB 0.22 

S RVN2  12.78 ± 0.42A 13.33 ± 0.09AB 13.37 ± 0.13B 14.42 ± 0.38cC 0.24 

               

  

Procyanidin B2 (g kg-1)   

IS AT 4.54 ± 0.03B 4.55 ± 0.15B 5.31 ± 0.68A 
 

nd 
 

0.09 

S RF 4.54 ± 0.03A 4.73 ± 0.09AB 4.89 ± 0.22B 
 

nd 
 

0.08 

S FZ 4.54 ± 0.03AB 4.39 ± 0.19A 4.73 ± 0.15B 
 

nd 
 

0.08 

S RV 4.54 ± 0.03AB 4.21 ± 0.43A 4.69 ± 0.12B 
 

nd 
 

0.07 

S RVN2  4.54 ± 0.03B 4.32 ± 0.10A 5.01 ± 0.18C 
 

nd 
 

0.08 

               

  

(-)-Epigallocatechin 3-gallate (g kg-1)   

IS AT 
 

nd 
  

nd 
 

4.24 ± 0.18 4.34 ± 0.08a 0.08 

S RF 
 

nd 
  

nd 
  

nd 
 

4.30 ± 0.05a 0.07 

S FZ 
 

nd 
 

4.24 ± 0.10A 
 

nd 
 

4.95 ± 0.03cB 0.08 

S RV 
 

nd 
  

nd 
  

nd 
 

4.83 ± 0.04c 0.08 

S RVN2  nd 
  

nd 
  

nd 
 

4.54 ± 0.08b 0.08 

               

  

(+)-Gallocatechin 3-gallate (g kg-1)   

IS AT 6.70 ± 0.43B 7.70 ± 0.56bcC 7.18 ± 0.37bBC 5.93 ± 0.79aA 0.12 

S RF 6.70 ± 0.43B 6.88 ± 0.08abB 6.71 ± 0.07bB 6.25 ± 0.17abA 0.11 

S FZ 6.70 ± 0.43B 6.41 ± 0.14aAB 6.81 ± 0.56bB 5.89 ± 0.20aA 0.11 

S RV 6.70 ± 0.43A 8.17 ± 0.97cB 6.12 ± 0.14aA 6.24 ± 0.14abA 0.11 

S RVN2  6.70 ± 0.43B 6.97 ± 0.12abB 6.07 ± 0.21aA 6.49 ± 0.38bAB 0.12 

               

  

(-)-Epicatechin 3-gallate (g kg-1)   

IS AT 6.57 ± 1.98 6.34 ± 1.02c 5.01 ± 0.25b 
 

nd 
 

0.11 

S RF 6.57 ± 1.98 6.78 ± 0.76c 7.62 ± 0.25d 
 

nd 
 

0.12 

S FZ 6.57 ± 1.98B 5.09 ± 0.38bAB 6.33 ± 0.05cB 3.44 ± 0.16aA 0.09 

S RV 6.57 ± 1.98B 7.14 ± 0.68cB 6.12 ± 0.46cB 3.79 ± 0.07bA 0.10 

S RVN2  6.57 ± 1.98C 3.64 ± 0.35aA 3.45 ± 0.11aA 4.57 ± 0.32cB 0.08 

               

  

Quercitrin (g kg-1)   

IS AT 6.07 ± 0.01A 6.40 ± 0.75aA 6.35 ± 0.36cA 11.76 ± 0.27bB 0.14 

S RF 6.07 ± 0.01AB 6.70 ± 0.23aB 5.94 ± 0.20bcA 11.19 ± 0.59bC 0.13 

S FZ 6.07 ± 0.01A 13.38 ± 1.39cB 5.52 ± 0.41abA 5.64 ± 0.14aA 0.13 

S RV 6.07 ± 0.01A 6.00 ± 0.08aA 5.68 ± 0.33abA 14.98 ± 0.27cB 0.13 

S RVN2  6.07 ± 0.01A 11.26 ± 1.89bB 5.33 ± 0.12aA 5.46 ± 0.13aA 0.12 

Data were expressed as mean ± SD (n = 3). Values in the column with different lowercase letters were 

significantly different at P < 0.05. Values in the row with different capital letters were significantly different 

at P < 0.05.  
a 
Relative profile = individual content/sum (mean value).  

nd = not detected. 

 

 
 

 

 

 

 

 

 



Supplemental Table 2  

Amount of phenolics of the hazelnuts during the second storage test. IS: in-shell hazelnuts; S: 

shelled hazelnuts (kernel); AT: stored at ambient temperature (60–80% RH); RF: refrigerated at 5 

°C and 55% RH; RVN2 and RV: refrigerated under vacuum with or wit-out preliminary nitrogen 

flushing; RFN2: refrigerated under nitrogen (5 °C, 55% RH–1% O2, 99% N2); FZ: stored at 25 °C 

under vacuum. 

 
    Day 0 4th month 8th month 12th month Relative profilea                  

Delisava     

  
Non identified molecule n. 1 (g kg-1) 

 
IS AT 4.65 ± 0.15C 3.90 ± 0.14aB 3.19 ± 0.07bA 3.09 ± 0.09abA 0.05 

S RF 4.26 ± 0.07B 4.28 ± 0.44abB 3.21 ± 0.09bA 3.17 ± 0.15abA 0.05 

S RFN2  4.26 ± 0.07D 4.16 ± 0.04abC 3.06 ± 0.02aA 3.69 ± 0.05bB 0.06 

S FZ 4.26 ± 0.07B 4.57 ± 0.17bC 3.03 ± 0.13aA 3.24 ± 0.14bA 0.05 

S RV 4.26 ± 0.07C 3.91 ± 0.20aB 2.96 ± 0.06aA 2.99 ± 0.04aA 0.05 

S RVN2  4.26 ± 0.07B 4.38 ± 0.14bB 2.92 ± 0.01aA 3.02 ± 0.05aA 0.05 

               
  

Gallic acid (g kg-1)   

IS AT 8.12 ± 0.29AB 10.10 ± 0.83C 7.25 ± 0.24abA 8.82 ± 0.78B 0.12 

S RF 7.95 ± 0.17A 10.75 ± 0.41C 7.37 ± 0.48bA 8.95 ± 0.14B 0.12 

S RFN2  7.95 ± 0.17B 9.89 ± 0.19C 6.65 ± 0.25aA 8.46 ± 0.55B 0.12 

S FZ 7.95 ± 0.17B 10.24 ± 0.16D 7.15 ± 0.15abA 8.75 ± 0.49C 0.12 

S RV 7.95 ± 0.17B 10.50 ± 0.61C 6.73 ± 0.27aA 8.33 ± 0.49B 0.12 

S RVN2  7.95 ± 0.17A 10.59 ± 0.39C 9.13 ± 0.25cB 8.41 ± 0.79AB 0.12 

               

  

Non identified molecule n. 2 (g kg-1)   

IS AT 9.49 ± 0.53C 9.49 ± 0.48abC 5.29 ± 0.19aA 8.07 ± 0.50B 0.12 

S RF 11.96 ± 0.30C 11.24 ± 0.49bB 6.61 ± 0.22bcA 6.97 ± 0.26A 0.13 

S RFN2  11.96 ± 0.30C 10.47 ± 0.57bB 7.43 ± 0.40cA 7.29 ± 0.42A 0.14 

S FZ 11.96 ± 0.30C 11.06 ± 2.05bBC 9.40 ± 0.25dAB 7.90 ± 0.45A 0.14 

S RV 11.96 ± 0.30C 11.13 ± 0.66bC 6.28 ± 0.06bA 7.56 ± 0.87B 0.13 

S RVN2  11.96 ± 0.30C 7.68 ± 0.30aB 6.70 ± 0.30bcA 7.75 ± 0.63B 0.12 

               

  

B-type procyanidin dimers  (g kg-1)   

IS AT 9.16 ± 0.28C 6.49 ± 0.12aA 7.36 ± 0.45bB 6.38 ± 0.03aA 0.11 

S RF 6.77 ± 0.20A 6.97 ± 0.61aAB 7.05 ± 0.29bAB 7.56 ± 0.23bB 0.10 

S RFN2  6.77 ± 0.20B 6.30 ± 0.13aA 6.58 ± 0.16abAB 6.79 ± 0.32abB 0.10 

S FZ 6.77 ± 0.20BC 6.95 ± 0.17aC 5.55 ± 0.23aA 6.32 ± 0.37aB 0.09 

S RV 6.77 ± 0.20AB 7.08 ± 0.44aB 7.69 ± 0.18bC 6.27 ± 0.19aA 0.10 

S RVN2  6.77 ± 0.20A 23.25 ± 4.78bB 7.29 ± 0.44bA 7.71 ± 0.62bA 0.15 

               

  

Procyanidin B1 (g kg-1)   

IS AT 6.63 ± 0.26C 5.56 ± 0.17A 6.11 ± 0.29bB 5.64 ± 0.15aA 0.09 

S RF 5.27 ± 0.07A 5.75 ± 0.34B 6.32 ± 0.14bC 6.61 ± 0.11bC 0.08 

S RFN2  5.27 ± 0.07A 5.21 ± 0.03A 5.95 ± 0.07bB 5.96 ± 0.18abB 0.08 

S FZ 5.27 ± 0.07A 5.55 ± 0.05A 5.12 ± 0.07aA 6.23 ± 0.66abB 0.08 

S RV 5.27 ± 0.07A 5.80 ± 0.25B 6.56 ± 0.19bC 5.62 ± 0.11aB 0.08 

S RVN2  5.27 ± 0.07A 5.49 ± 0.14A 6.35 ± 0.25bB 6.44 ± 0.53bB 0.08 

               

  

(-)-Epigallocatechin (g kg-1)   

IS AT 12.94 ± 0.16B 12.64 ± 0.39bB 8.16 ± 0.53aA 12.24 ± 1.11bB 0.17 

S RF 13.41 ± 0.66B 13.39 ± 0.76bcB 8.72 ± 0.58aA 9.27 ± 0.22aA 0.16 

S RFN2  13.41 ± 0.66C 12.77 ± 0.03bC 8.90 ± 0.04aA 9.72 ± 0.53aB 0.16 

S FZ 13.41 ± 0.66C 12.48 ± 0.04bB 10.34 ± 0.04bA 11.13 ± 0.54bA 0.16 

S RV 13.41 ± 0.66B 13.95 ± 0.65cB 8.87 ± 0.59aA 9.89 ± 0.36aA 0.16 

S RVN2  13.41 ± 0.66C 11.14 ± 0.71aB 11.28 ± 1.46bB 9.37 ± 0.48aA 0.15 

               

  

Procyanidin B2 (g kg-1)   



IS AT 5.38 ± 0.22A 6.01 ± 1.51AB 5.25 ± 0.78A 7.13 ± 0.45bB 0.09 

S RF 5.13 ± 0.10A 5.89 ± 0.52A 5.40 ± 0.75A 7.30 ± 0.51bB 0.08 

S RFN2  5.13 ± 0.10A 6.70 ± 1.00BC 5.84 ± 0.28AB 7.33 ± 0.11bC 0.09 

S FZ 5.13 ± 0.10A 7.00 ± 1.93B 5.59 ± 0.43A 7.49 ± 0.68bB 0.09 

S RV 5.13 ± 0.10A 5.62 ± 0.08A 5.22 ± 1.07A 7.85 ± 0.71bB 0.09 

S RVN2  5.13 ± 0.10AB 5.91 ± 1.03B 4.73 ± 0.28A 4.52 ± 0.51aA 0.07 

               

  

(-)-Epigallocatechin 3-gallate (g kg-1)   

IS AT 
 

nd 
 

6.50 ± 0.57ab 
 

nd 
  

nd 
 

0.09 

S RF 
 

nd 
 

6.61 ± 0.18ab 
 

nd 
  

nd 
 

0.09 

S RFN2    nd   6.60 ± 0.07ab   nd     nd   0.10 

S FZ 
 

nd 
 

7.47 ± 1.30b 7.01 ± 0.19 
 

nd 
 

0.10 

S RV 
 

nd 
 

6.59 ± 0.35ab 
 

nd 
  

nd 
 

0.09 

S RVN2  nd 
 

5.50 ± 0.46a 
 

nd 
  

nd 
 

0.07 

               

  

(+)-Gallocatechin 3-gallate (g kg-1)   

IS AT 5.03 ± 0.20A 8.16 ± 0.42C 6.42 ± 0.48aB 9.05 ± 0.15bD 0.10 

S RF 9.78 ± 0.16C 8.37 ± 0.55B 6.91 ± 0.07aA 7.30 ± 0.43aA 0.11 

S RFN2  9.78 ± 0.16C 8.41 ± 0.22B 6.88 ± 0.08aA 6.92 ± 0.13aA 0.12 

S FZ 9.78 ± 0.16B 8.90 ± 1.44AB 7.40 ± 0.43abA 8.05 ± 0.66aA 0.12 

S RV 9.78 ± 0.16B 9.05 ± 0.50B 7.55 ± 0.15bA 7.98 ± 0.76aA 0.12 

S RVN2  9.78 ± 0.16C 9.68 ± 0.58C 7.96 ± 0.34bB 7.05 ± 0.42aA 0.12 

               

  

Quercitrin (g kg-1)   

IS AT 11.62 ± 0.10C 8.11 ± 0.33A 9.54 ± 1.24bB 7.64 ± 0.62aA 0.13 

S RF 7.54 ± 0.20A 7.53 ± 0.65A 10.78 ± 0.57bB 9.94 ± 0.44bB 0.13 

S RFN2  7.54 ± 0.20A 7.69 ± 0.19A 9.04 ± 0.76bB 8.17 ± 0.63aAB 0.12 

S FZ 7.54 ± 0.20AB 8.06 ± 0.54B 6.73 ± 0.31aA 7.45 ± 0.83aAB 0.10 

S RV 7.54 ± 0.20A 7.50 ± 0.74A 10.55 ± 0.58bB 8.08 ± 0.15aA 0.12 

S RVN2  7.54 ± 0.20A 8.36 ± 1.13A 10.56 ± 0.79bB 10.61 ± 0.63bB 0.13 

               TGT           

  
Non identified molecule n. 1 (g kg-1) 

 
IS AT 8.26 ± 1.00C 5.64 ± 0.60bB 4.57 ± 0.42bAB 4.25 ± 0.20aA 0.07 

S RF 8.26 ± 1.00C 5.22 ± 0.28bB 3.98 ± 0.06abA 4.52 ± 0.17aAB 0.07 

S RFN2  8.26 ± 1.00C 5.78 ± 0.41bB 4.25 ± 0.04bA 3.99 ± 0.19aA 0.07 

S FZ 8.26 ± 1.00C 5.73 ± 0.29bB 3.98 ± 0.49abA 4.54 ± 0.31aA 0.07 

S RV 8.26 ± 1.00C 5.44 ± 0.64bB 3.85 ± 0.57abA 4.83 ± 0.84aAB 0.07 

S RVN2  8.26 ± 1.00C 3.91 ± 0.16aA 3.69 ± 0.10aA 6.34 ± 0.71bB 0.07 

               
  

Gallic acid (g kg-1)   

IS AT 8.21 ± 0.39B 12.11 ± 0.38bD 10.16 ± 0.84cC 5.94 ± 0.29A 0.12 

S RF 8.21 ± 0.39AB 9.54 ± 1.42abB 7.26 ± 0.46abA 6.86 ± 0.85A 0.10 

S RFN2  8.21 ± 0.39B 11.16 ± 0.48bC 6.33 ± 0.36aA 6.44 ± 0.12A 0.11 

S FZ 8.21 ± 0.39A 11.05 ± 0.51bB 8.07 ± 0.90abA 7.02 ± 0.76A 0.11 

S RV 8.21 ± 0.39A 12.22 ± 2.99bB 6.62 ± 0.04aA 6.46 ± 0.50A 0.10 

S RVN2  8.21 ± 0.39AB 6.87 ± 0.30aA 8.52 ± 1.21bB 7.07 ± 0.47A 0.10 

               

  

Non identified molecule n. 2 (g kg-1)   

IS AT 12.36 ± 0.40C 9.95 ± 1.03bB 6.91 ± 1.10aA 8.26 ± 0.63bA 0.12 

S RF 12.36 ± 0.40B 12.14 ± 1.89bcB 9.61 ± 0.59bA 9.78 ± 1.69bA 0.14 

S RFN2  12.36 ± 0.40C 10.49 ± 0.42bB 7.72 ± 1.62aA 7.12 ± 0.06abA 0.13 

S FZ 12.36 ± 0.40B 11.78 ± 0.57bcB 10.92 ± 1.60bB 9.08 ± 0.45bA 0.14 

S RV 12.36 ± 0.40C 12.90 ± 1.22cC 9.55 ± 1.06bB 6.41 ± 0.51aA 0.13 

S RVN2  12.36 ± 0.40C 5.87 ± 1.18aA 9.12 ± 0.25bB 8.30 ± 0.52bB 0.12 

               

  

B-type procyanidin dimers  (g kg-1)   

IS AT 9.60 ± 0.31B 10.40 ± 0.86bB 6.46 ± 0.39abA 5.87 ± 0.32aA 0.10 



S RF 9.60 ± 0.31B 8.25 ± 0.85abA 7.52 ± 0.23bA 9.79 ± 0.27cB 0.11 

S RFN2  9.60 ± 0.31B 10.43 ± 1.04bB 5.84 ± 0.31aA 6.15 ± 0.81aA 0.11 

S FZ 9.60 ± 0.31C 9.69 ± 0.17bC 5.82 ± 0.81aA 8.01 ± 0.48bB 0.11 

S RV 9.60 ± 0.31B 10.23 ± 2.31bB 5.65 ± 5.65aA 6.42 ± 0.37aA 0.10 

S RVN2  9.60 ± 0.31B 6.54 ± 0.48aA 10.26 ± 0.91cB 10.04 ± 0.06cB 0.12 

               

  

Procyanidin B1 (g kg-1)   

IS AT 8.65 ± 0.65 8.56 ± 1.09b 7.67 ± 0.83b 7.52 ± 0.55a 0.10 

S RF 8.65 ± 0.65B 7.32 ± 1.10abA 6.22 ± 0.30aA 10.74 ± 0.12cC 0.10 

S RFN2  8.65 ± 0.65B 8.71 ± 0.54bB 5.74 ± 0.16aA 8.11 ± 0.27bB 0.10 

S FZ 8.65 ± 0.65B 8.02 ± 0.27bB 5.48 ± 0.45aA 8.67 ± 0.18bB 0.10 

S RV 8.65 ± 0.65B 8.28 ± 1.08bB 5.59 ± 0.50aA 7.22 ± 0.67aB 0.09 

S RVN2  8.65 ± 0.65B 5.98 ± 0.70aA 9.37 ± 0.24cB 8.83 ± 0.20bB 0.11 

               

  

(-)-Epigallocatechin (g kg-1)   

IS AT 13.70 ± 0.26C 12.08 ± 0.70bB 11.00 ± 1.30bB 9.53 ± 0.12aA 0.15 

S RF 13.70 ± 0.26D 12.73 ± 0.49bC 11.24 ± 0.29bB 9.48 ± 0.70aA 0.15 

S RFN2  13.70 ± 0.26D 12.29 ± 0.43bC 9.19 ± 0.56aB 8.31 ± 0.17aA 0.15 

S FZ 13.70 ± 0.26B 12.89 ± 0.29bB 11.19 ± 0.98bA 9.87 ± 1.04aA 0.15 

S RV 13.70 ± 0.26B 13.60 ± 1.11bB 10.94 ± 0.83bA 12.19 ± 0.31bA 0.16 

S RVN2  13.70 ± 0.26D 8.25 ± 1.05aA 11.17 ± 0.22bC 9.57 ± 0.36aB 0.14 

               

  

Procyanidin B2 (g kg-1)   

IS AT 4.23 ± 0.04A 5.71 ± 1.95bAB 5.21 ± 1.13AB 6.98 ± 0.15bB 0.07 

S RF 4.23 ± 0.04A 5.75 ± 1.17bB 5.76 ± 0.81B 7.85 ± 0.50bC 0.07 

S RFN2  4.23 ± 0.04A 5.95 ± 0.57bB 4.83 ± 0.16A 4.46 ± 0.31aA 0.07 

S FZ 4.23 ± 0.04A 4.21 ± 0.12abA 5.23 ± 0.50B 7.03 ± 0.53bC 0.07 

S RV 4.23 ± 0.04A 4.55 ± 0.32abA 4.78 ± 0.58A 6.75 ± 0.82bB 0.06 

S RVN2  4.23 ± 0.04B 3.44 ± 0.08aA 6.17 ± 0.16C 6.16 ± 0.70bC 0.06 

               

  

(+)-Gallocatechin 3-gallate (g kg-1)   

IS AT 8.30 ± 0.14B 7.44 ± 0.47bcAB 7.76 ± 1.03B 6.41 ± 0.27bA 0.10 

S RF 8.30 ± 0.14C 6.09 ± 0.68abA 7.38 ± 1.01B 6.15 ± 0.43bA 0.09 

S RFN2  8.30 ± 0.14C 8.63 ± 0.31cC 6.33 ± 0.34B 5.27 ± 0.07aA 0.10 

S FZ 8.30 ± 0.14B 7.36 ± 0.95bcAB 7.57 ± 0.53AB 6.62 ± 0.45bA 0.09 

S RV 8.30 ± 0.14B 8.02 ± 1.19cB 8.09 ± 0.66B 4.83 ± 0.09aA 0.09 

S RVN2  8.30 ± 0.14C 4.89 ± 0.21aA 7.44 ± 0.13C 6.16 ± 0.44bB 0.09 

               

  

(-)-Epicatechin 3-gallate (g kg-1)   

IS AT 10.85 ± 0.47B 6.24 ± 2.98abAB 8.07 ± 3.80abAB 5.31 ± 1.69aA 0.10 

S RF 10.85 ± 0.47C 7.54 ± 0.68bB 9.76 ± 1.61bC 5.03 ± 0.73aA 0.10 

S RFN2  10.85 ± 0.47B 7.17 ± 0.92bA 6.47 ± 0.51abA   nd   0.11 

S FZ 10.85 ± 0.47C 4.65 ± 0.53abA 6.35 ± 1.63abA 8.65 ± 0.80bB 0.10 

S RV 10.85 ± 0.47C 5.96 ± 0.98abA 5.56 ± 0.87aA 8.74 ± 0.22bB 0.10 

S RVN2  10.85 ± 0.47C 3.82 ± 0.91aA 6.33 ± 0.76abB 6.36 ± 0.73aB 0.09 

               

  

Quercitrin (g kg-1)   

IS AT 5.68 ± 0.14B 5.31 ± 0.32aB 5.38 ± 0.09aB 4.67 ± 0.18aA 0.07 

S RF 5.68 ± 0.14AB 5.18 ± 0.29aA 5.92 ± 0.18bB 5.33 ± 0.36aA 0.07 

S RFN2  5.68 ± 0.14A 5.53 ± 0.26aA 5.77 ± 0.07bA 10.88 ± 1.34bB 0.09 

S FZ 5.68 ± 0.14B 5.30 ± 0.26aAB 5.01 ± 0.34aA 4.99 ± 0.33aA 0.07 

S RV 5.68 ± 0.14A 5.63 ± 0.57aA 5.35 ± 0.28aA 14.70 ± 2.04cB 0.10 

S RVN2  5.68 ± 0.14A 16.65 ± 1.56bB 5.85 ± 0.24bA 5.19 ± 0.27aA 0.11 

Data were expressed as mean ± SD (n = 3). Values in the column with different lowercase letters were 

significantly different at P < 0.05. Values in the row with different capital letters were significantly different 

at P < 0.05.  
a 
Relative profile = individual content/sum (mean value).  

nd = not detected. 


