
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Baldoni, Matteo; Baroglio, Cristina; Calvanese, Diego; Micalizio, Roberto;
Montali, Marco. Data and Norm-aware Multiagent Systems for Software
Modularization, in: Proc. of the 4th International Workshop on Engineering
Multi-Agent Systems, EMAS 2016, IFAAMAS, 2016, pp: 23-38.

The publisher's version is available at:
http://www.di.unito.it/~argo/papers/EMAS2016-WorkshopNotes.pdf

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1567283



Data and Norm-aware Multiagent Systems for
Software Modularization

(Position Paper)

Matteo Baldoni1, Cristina Baroglio1, Diego Calvanese2,
Roberto Micalizio1, and Marco Montali2
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Abstract. This work surveys the key proposals to the modularization
of software, and trace them back to the common ground provided by
Meyer’s three forces of computation: processor, object, and action. We
advocate that a paradigm should provide a good balance in exploiting all
such forces, and support this stance by explaining the weaknesses of the
examined proposals. Then, we focus on the agent paradigm because it
emerges as pivotal for the achievement of a good balance. We trace direc-
tions that we think should be followed in order to complete the model,
identifying, in particular, in data-awareness jointly with a norm-based
representation of how data evolution is governed the key advancements
that would bring to fullness the modularization of software.

1 Introduction

Research on agents and multiagent systems introduced many abstractions and
tools to help designing modularized software, e.g., organizations, interaction pro-
tocols, artifacts, norms. This work provides a wide and systematic account of
the major approaches to modularization, that were developed both by research
on multiagent systems and by other research communities, leveraging Meyer’s
three forces of computation [31] as reference dimensions, along which all the
considered proposals are positioned. The aim of this survey is to identify the
lacks of the state of art together with possible directions of research. The paper
is so organized. Section 2 introduces Meyer’s forces of computation. Section 3
shows how functional decomposition, object-orientation, the actor model, busi-
ness processes, artifact-centric approaches can be seen as manifestations of either
the processor force or of the object force. Section 4 explains the strengths and
the lacks of proposals from research area on agents. Section 5 explains the value
of the action force, considered as ancillary by most of the examined approaches.
Section 6 traces as open directions of research data and information-awareness



jointly with an extended norm-based representation that includes rules that gov-
ern the environment. Conclusions end the paper.

2 Meyer’s forces: Processor, Action and Object
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Fig. 1. Meyer’s three forces of computation [31, Chapter 5, page 101].

The goal of software engineering is the production of quality software [31].
Among the desired qualities, correctness is the ability of software products to
perform their tasks as defined by their specification; robustness is the ability to
react appropriately to abnormal conditions; extensibility is the ease of adapting
software products to changes of specification; reusability is the ability of software
elements to serve for the construction of many different applications. In order
for software to show these properties, it is necessary to identify proper modular-
ization mechanisms that allow the programmer to design and develop software
in a systematic way. To evaluate a modularization mechanism, one should not
only consider how easy it is, by adopting it, to obtain a software module from
scratch, but also how easy it is to maintain that software over time. We de-
cided to use Meyer’s forces of computation as a common ground for comparing
the different proposals because they provide a neutral touchstone, unrelated to
any specific programming approach or modularization mechanism. According to
Meyer, three forces are at play when we use software to perform some computa-
tions (see Figure 1): processors, actions, and objects. A processor can be a process
or a thread (in the paper we use both the terms processor and process to refer
to this force); actions are the operations that make the computation; objects are
the data to which actions are applied.

A software system, in order to execute, uses processes to apply certain ac-
tions to certain objects. The form of the actions depends on the considered level



of granularity: they can be instructions of the programming language as well as
they can be major steps of a complex algorithm. Moreover, the form of actions
conditions the way in which processes operate on objects. Some objects are built
by a computation for its own needs and exist only while the computation pro-
ceeds; others (e.g., files or databases) are external and may outlive individual
computations. In the following we analyse the most important proposals con-
cerning software modularization, showing how they (sometimes implicitly) give
more or less strength to Meyer’s forces, and the drawbacks that follow.

3 Processor vs. Object: the big fight

It becomes apparent that processor and object are the two principal forces along
which most approaches to modularization have been developed so far, while the
action force remained subsidiary to one or another.

Functional Decomposition. The top-down functional decomposition is probably
the earliest approach to building modularized software; it relies on a model that
puts at the center the notion of process; namely, the implementation of a given
function is based only on a set of actions made of instructions, provided by the
programming language at hand, possibly in combination with previously defined
functions [31]. Top-down functional decomposition builds a system by stepwise
refinement, starting with the definition of its abstract function. Each refinement
step decreases the abstraction of the specification. With reference to Figure 1,
the approach disregards objects/data, just considered as data structures that are
instrumental to the function specification and internal to processes. Actions are
defined only in terms of the instructions provided by the programming language
and of other functions built on top of them (subroutines), into which a process is
structured. All in all, this approach is intuitive and suitable to the development
of individual algorithms, in turn aimed at solving some specific task, but does not
scale up equally well when data are shared among concurrent processes because
it lacks abstractions to explicitly account for such data and their corresponding
management mechanisms.

Object-Orientation. The Object-Oriented approach to modularization results
from an effort aimed at showing the limits of the functional approach [31]. Ob-
jects (data) often have a life on their own, independent from the processes that
use them. Objects become, then, the fundamental notion of the model. They
provide the actions by which (and only by which) it is possible to operate on
them (data operations). This approach, however, disregards processes and their
modularization both internally and externally to objects. Internally, because ob-
jects provide actions but have a static nature, and are inherently passive: actions
are invoked on objects, but the decision of which operations to invoke so as to
evolve such objects is taken by external processes. This also implies that there is
no decoupling between the use of an object and the management of that object.



Externally, because the model does not supply conceptual notions for compos-
ing the actions provided by objects into processes, and there is no conceptual
support to the specification of tasks, in particular when concurrency is involved.

Actor Model, Active Objects. The key concept in the actor model [28] (to which
active objects are largely inspired) is that everything is an actor. Interaction
between actors occurs only through direct asynchronous message passing, with
no restriction on the order in which messages are received. An actor is a compu-
tational entity that, in response to an incoming message, can: (1) send a finite
number of messages to other actors; (2) create a finite number of new actors;
(3) designate the behavior to be used in response to the next incoming message.
These three steps can be executed in any order, possibly in parallel. Recipients
of messages are identified by opaque addresses. Interestingly, in [28] Hewitt et
al. state that “We use the ACTOR metaphor to emphasize the inseparability
of control and data flow in our model. Data structures, functions, semaphores,
monitors, [. . . ] and data bases can all be shown to be special cases of actors.
All of the above are objects with certain useful modes of behavior.” The actor
model decouples the sender of a message from the communications sent, and this
makes it possible to tackle asynchronous communication and to define control
structures as patterns of passing messages.

Many authors, such as [32, 44, 35], noted that the actor model does not ad-
dress the issue of coordination. Coordination requires the possibility for an actor
to have expectations on another actor’s behavior, but the mere asynchronous
message passing gives no means to foresee how a message receiver will behave.
For example, in the object-paradigm methods return the computed results to
their callers. In the actor model this is not granted because this simple pattern
requires the exchange of two messages; however, no way for specifying patterns
of message exchanges between actors is provided. The lack of such mechanisms
hinders the verification of properties of a system of interacting actors. Similar
problems are well-known also in the area that studies enterprise application inte-
gration [1] and service-oriented computing [43], that can be considered as heirs of
the actor model and where once again interaction relies on asynchronous message
passing. There are in the literature proposals to overcome these limits. For in-
stance for what concerns the actor model. [35] proposes to use Scribble protocols
and their relation to finite state machines for specification and runtime verifi-
cation of actor interactions. Instead, in the case of service-oriented approaches,
there are proposals of languages that allow capturing complex business processes
as service compositions, either in the form of orchestrations (e.g. BPEL) or of
choreographies (e.g. WS-CDL).

The above problem can better be understood by referring to Meyer’s forces.
The actor model supports the realization of object/data management processes
(these are the internal behaviors of the actors, that rule how the actor evolves),
but it does not support the design and the modularization of processes that per-
form the object use, which would be external to the actors. As a consequence,
generalizing what [15] states about service-oriented approaches, the modular-
ization supplied by the actor model, while favoring component reuse, does not



address the need of connecting the data to the organizational processes: data
remains hidden inside systems.

Business Processes. Business processes have been increasingly adopted by en-
terprises and organizations to conceptually describe their dynamics, and those
of the socio-technical systems they live in. Modern enterprises [14] are complex,
distributed, and aleatory systems: complex and distributed because they involve
offices, activities, actors, resources, often heterogeneous and geographically dis-
tributed; aleatory because they are affected by unpredictable events like new
laws, market trends, but also resignations, incidents, and so on. In this light,
business processes help to create an explicit representation of how an enterprise
works towards the accomplishments of its tasks and goals. More specifically, a
business process describes how a set of interrelated activities can lead to a precise
and measurable result (a product or a service) in response to an external event
(e.g., a new order) [47]. Business processes developed for understanding how an
enterprise work can then be refined and used as the basis for developing soft-
ware systems that the enterprise will adopt to concretely support the execution
of its procedures [14, 25]. In this light, business processes become workflows that
connect and coordinate different people, offices, organizations, and software in
a compound flow of execution [1]. Among the main advantages of this process-
centric view, the fact that it enables analysis of an enterprise functioning, it
enables comparison of business processes, it enables the study of compliance to
norms (e.g. [27]), and also to identify critical points like bottlenecks by way of
simulations (e.g., see iGrafx Process3 for Six Sigma). The adoption of a service-
oriented approach and of web services helps implementing workflows that span
across multiple organizations, whose infrastructures may well be heterogeneous
and little integrated [1, 43].

On the negative side, business processes, by being an expression of the process
force, show the same limits of the functional decomposition approach. Specifi-
cally, they are typically represented in an activity-centric way, i.e., by empha-
sizing which flows of activities are acceptable, without providing adequate ab-
stractions to capture the data that are manipulated along such flows. Data are
subsidiary to processes.

Artifact-centric Process Management. The artifact-centric approach [7, 20, 15]
counterposes a data-centric vision to the activity-centric vision described above.
Artifacts are concrete, identifiable, self-describing chunks of information, the ba-
sic building blocks by which business models and operations are described. They
are business-relevant objects that are created and evolve as they pass through
business operations. They include an information model of the data, and a lifecy-
cle model, that contains the key states through which the data evolve, together
with their transitions (triggered by the execution of corresponding tasks). A
change to an artifact can trigger changes to other artifacts, possibly of a differ-
ent type. The lifecycle model is not only used at runtime to track the evolution

3 http://www.igrafx.com/.



of artifacts, but also at design time to understand who is responsible of which
transitions.

On the negative side, like in the case of the actor model, business artifacts
disregard the design and the modularization of those processes that operate on
them. Moreover, verification problems are much harder to tackle than in the
case where only the control-flow perspective is considered. In fact, the explicit
presence of data, together with the possibility of incorporating new data from
the external environment, makes these systems infinite-state in general [15].

4 Towards Reconciliation: Agents and the A&A
meta-model

In [40, 49], agents are defined as entities that observe their environment and
act upon it so as to achieve their own goals. Two fundamental characteristics
of agents are autonomy and situatedness. Agents are autonomous in the sense
that they have a sense-plan-act deliberative cycle, which gives them control of
their internal state and behavior; autonomy, in turn, implies proactivity, i.e.,
the ability of an agent to take action towards the achievement of its (delegated)
objectives, without being solicited to do so. Agents are situated because they
can sense, perceive, and manipulate the environment in which operate. The en-
vironment could be physical or virtual, and is understood by agents in terms
of (relevant) data. From a programming perspective, it is natural to compare
agents to objects. Agent-oriented programming was introduced by Shoham as
“a specialization of object-oriented programming” [41]. The difference between
agents and static objects is clear. Citing Wooldridge [49, Section 2.2]: (1) ob-
jects do not have control over their own behavior4, (2) objects do not exhibit
flexibility in their behavior, and (3) in standard object models there is a single
thread of control, while agents are inherently multi-threaded. Similar comments
are reported also by other authors, like Jennings [29]. However, when compar-
ing agents to actors, the behavioral dimension is not sufficient: [49, page 30]
reduces the difference between agents and active objects, which encompass an
own thread of control, to the fact that “active objects are essentially agents that
do not necessarily have the ability to exhibit flexible autonomous behavior”. In
order to understand the difference between the agent paradigm and objects it
is necessary to rely on both the abstractions introduced by the agent paradigm,
that are that of agent and that of environment [48]. Such a dichotomy does
not find correspondence in the other models and gives a first-class role to both
Meyer’s process and object force (see Figure 2). Processes realize algorithms
aimed at achieving objectives, and this is exactly the gist of the agent abstrac-
tion and the rationale behind its proactivity: agents exploit their deliberative
cycle (as control flow), possibly together with the key abstractions of belief, de-
sire, and intention (as logic), so as to realize algorithms, i.e., processes, for acting

4 This is summarized by the well-known motto “Objects do it for free; agents do it
because they want it”.



in their environment to pursue their goals5. Contrariwise, active objects and ac-
tors do not have goals nor purposes, even though their specification includes a
process. As we said, they are a manifestation of the object force. In the agent
paradigm the manifestation of the object force is the environment abstraction.
The environment does not exhibit the kind of autonomy explained for agents
even when its definition includes a process. Its being reactive rather than active
makes the environment more similar to an actor whose behavior is triggered by
the messages it receives, that are all served indistinctly.

Most of the research in multiagent systems typically focuses on the abstrac-
tion of agent only, completely abstracting away from the notion of environment.
Proposals like [23, 48] overcome this limit by introducing first-class abstractions
for the environment, to be captured alongside agents themselves. In particular,
[48] states that “the environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the interaction
among agents and the access to resources.” This proposal brought to important
evolutions like the A&A meta-model [36] and its implementation CArtAgO [38].

Since in the agent paradigm each agent is an independent locus of control,
coordination means become essential towards regulating the overall behavior of
the system. As it is well underlined in [29], the agent-based model allows to
naturally tackle the issue of coordination by introducing the concepts of inter-
action protocol [18], and that of norm [26, 46]. These concepts are at the heart
of the design of multiagent systems. The deliberative cycle of agents is affected
by the norms and by the obligations these norms generate as a consequence of
the agents’ actions. Each agents is free to adapt its behavior to (local or coor-
dination) changing conditions, e.g., by re-ranking its goals based on the context
or by adopting new goals.

Institutions and organizations set the ground for coordination and coopera-
tion among agents. Intuitively, an institution is an organizational structure for
coordinating the activities of multiple interacting agents, that typically embod-
ies some rules (norms) that govern participation and interaction. In general, an
organization adds to this societal dimension a set of organizational goals, and
powers to create institutional facts or to modify the norms and obligations of the
normative system [8]. Agents, playing one or more roles, must accomplish the
organizational goals respecting the norms. Institutions and organizations are,
thus, a way to realize functional decomposition in an agent setting.

5 The Rise of the Action Force

Actions are the capabilities agents have to modify their environment. The pro-
cess force is mapped onto a cycle in which the agent observes the world (updating
its beliefs), deliberates which intentions to achieve, plans how to achieve them,
and finally executes the plan [12]. Beliefs and intentions are those components of
the process abstraction that create a bridge respectively towards the object/data

5 Summarizing, objects “do it” for free because they are data, agents are processes
and “do it” because it is functional to their objectives.



force (i.e., the environment) and the action force. Beliefs concern the environ-
ment. Intentions lead to action [49], meaning that if an agent has an intention,
then the expectation is that it will make a reasonable attempt to achieve it. In
this sense, intentions play a central role in the selectin and the execution of ac-
tion. Consequently, instead of being subordinate to the process force the action
force is put in relation to it by means of intentions. This is a difference with
respect to functional decomposition, where actions are produced by refining a
given goal through a top-down strategy.

A fundamental step towards raising the value of the action force is brought by
normative multiagent systems [30, 9], which take inspiration from mechanisms
that are typical of human communities, and have been widely studied in the
research area on multiagent systems. According to [9] a normative multiagent
system is: “a multiagent system together with normative systems in which agents
on the one hand can decide whether to follow the explicitly represented norms,
and on the other the normative systems specify how and in which extent the
agents can modify the norms”. Initially the focus was posed mainly on regula-
tive norms that, through obligations, permissions, and prohibitions, specify the
patterns of actions and interactions agents should adhere to, even though de-
viations can still occur and have to be properly considered [30]. More recently,
regulative norms have been combined with constitutive norms [8, 17, 21], which
support the creation of institutional realities by defining institutional actions
that make sense only within the institutions they belong to. A typical exam-
ple is that of “raising a hand”, which counts as “make a bid” in the context
of an auction. Institutional actions allow agents to operate within an institu-
tion. Citing [21], the impact on the agent’s deliberative cycle is that agents can
“reason about the social consequences of their actions”. In this light, going back
to Meyer’s forces, if agents are abstractions for processes and environments for
objects, then norms are abstractions of the action force (see Figure 2) because
norms model actions and, thus, condition the way in which processes operate on
objects. In fact, norms specify either institutional actions, or the conditions for
the use of such actions, consequently regulating the acceptable behavior of the
agents in a system. This view is also supported by the fact that norms concern
“doing the right thing” rather than “doing what leads to a goal” [46].

6 Data and Norm Awareness

The difficulty of engineering multiagent systems lies in the fact that the envi-
ronment includes a process but such process is typically not represented in a
way that can be reasoned about. Not only the environment should be given in
terms of a data information model, specifying the structure of the information,
and a data lifecycle, specifying data state transitions, (data awareness) but the
two should be explicitly represented and accessible to the agents in their delib-
erative cycle. To this aim, such an explicit representation should constitute a
body of norms, which describe how data evolution is governed, allowing agents
to reason about the consequences of their actions and to have expectations about
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the evolution of the environment (norm awareness). Only a holistic, data- and
norm-aware view would allow agents to reason and to have expectations on the
evolution of the whole system, autonomously deciding the course of actions to
apply.

Such a holistic solution where constitutive norms are used to specify both
agent actions and data operations, and where regulative norms are used to cre-
ate expectations on the overall evolution of the system (agents behavior and
environment evolution) is, however, still missing. Object-Orientation associates
operations to data; the set of executable operations can sometimes change along
time depending on an object’s lifecycle, but the paradigm did not push the study
towards a normative representation. Similarly, while business artifacts provide
both a rich description of their data and their lifecycle, they do not provide any
link to a corresponding normative understanding, thus making impossible for the
agents to leverage this knowledge for reasoning about how to act. Artifacts in
the A&A model are radically different from the business artifacts because they
do not come with an explicit information model for data, and they do not ex-
pose their lifecycle. Consequently, this lifecycle information cannot be exploited
at design time, nor at runtime to reason about which actions should be taken
towards the achievement of the agent goals.

A data- and norm-aware perspective would also bring advantages from a soft-
ware engineering perspective, mainly residing in an increased decoupling among
the agent system components, in a way that resembles what happens with busi-
ness artifacts [20]. This is due to the fact that, at design time, norms would
provide a programming interface between agents and their environment, given
in terms of those state changes that are relevant in the environment.

6.1 A data-centric Approach to Interaction

A first step in the direction of having data and norm awareness is provided by the
JaCaMo+ platform [3], which allows Jason agents [11] to engage commitment-
based interactions [42], in turn reified as CArtAgO [37] artifacts. JaCaMo+
artifacts implement the social state of the interaction and provide the roles that
are then enacted by the agents. The explicit representation of the social state
enables the realization of a data-aware approach, where the data are the events
occurring in the social state, while commitments provide the information nec-
essary to agents in their interaction. Both agents and artifacts, encoding social
states, are first-class elements in the design of the multiagent system. A commit-
ment C(x, y, s, u) captures that agent x (debtor) commits to agent y (creditor)
to bring about the consequent condition u when the antecedent condition s
holds. Antecedent and consequent conditions are conjunctions or disjunctions
of events and commitments. Besides having an information model commitments
have a lifecycle [45] that can be captured by a set of norms [22]. A commit-
ment is null right before being created; active when it is created. Active has
substates: conditional (as long as the antecedent condition did not occur), and
detached (when the antecedent condition occurred, the debtor is engaged in the
consequent condition of the commitment). An active commitment can become:



pending if suspended; satisfied, if the engagement is accomplished; expired, if
it will not be necessary to accomplish the consequent condition; terminated if
the commitment is canceled when conditional or released when active; and fi-
nally, violated when its antecedent has been satisfied, but its consequent will
be forever false, or it is canceled when detached (the debtor will be considered
liable for the violation). Commitments in JaCaMo+ belong to the social state
and are shared by the interacting agents as resources. So, they are information,
that is created and evolves along the interaction with event occurrence, and that
contributes to the specification of the environment in which the agents operate.
In this light, the social state can be seen as a special kind of business artifact
in the sense of [7, 20, 15]. JaCaMo+ allows specifying agent programs as Jason
plans, whose triggering events amount to the change of the state of some com-
mitment [2]. Suppose, to make an example, that the commitment goes to the
state “detached” and that this event triggers a plan in the agent which is the
debtor of that commitment: the connection between the commitment and the
associated plan is not only causal (event triggers plan), but rather the plan is
explicitly attached to the commitment, in the sense that its aim is to satisfy the
consequent condition of the commitment (norm-awareness).

While the representation of commitments in the JaCaMo+ platform is pro-
positional, the Cupid language [19] provides a more sophisticate and informa-
tion-centric representation that distinguishes between a schema (what occurs
in a specification) and its instances (what transpires and is represented in a
database), reserving the term commitment only for schemas. This avoids the
inadequacy of first-order in representing commitment instances by relying on
relational database queries. The advantages, brought to the analysis of proper-
ties, of a data-aware approach are proved in DACMAS [34], which incorporates
commitment-based MASs but in a data-aware context. In general, in presence
of data transition systems become typically infinite-state [15]. On the one hand,
this is due to the fact that there is no bound on the number of tuples that can
be added to database relations as the computation goes on. On the other hand,
even when the number of tuples does not exceed a certain threshold, it is possi-
ble to populate them using infinitely many different data objects. Interestingly,
when a DACMAS is state-bounded, i.e., the number of data that are simultane-
ously present at each moment in time is bounded, verification of rich temporal
properties becomes decidable. Notably, this shows that, by suitably controlling
how data are evolved in the system, it is possible to make agents data-aware
without compromising their reasoning capabilities [6, 34].

7 Conclusion

Section 2 introduced properties that characterize quality software. Let us see
how the rereading of Meyer’s forces, that is depicted in Figure 2, impacts on the
desired qualities of software. Robustness is the ability to react appropriately to
abnormal conditions. The view of the action force as captured by norms allows
agents to reason on the lifecycle of data in the environment, thus adding to the



already available capability of reasoning about deviations from agent’s expected
behavior, an enhanced capability of reasoning about abnormal conditions in the
environment and decide how to react to them. So, in principle, the robustness
of the system should be increased. The fact that data structure and lifecycles
are explicitly represented in a way that can be reasoned about makes agents and
their environment more decoupled, avoiding the need of customizing agent pro-
grams depending on the environment. This, in turn, increases both extendibility
and reusability of all the components of the MAS. Last but not the least, data-
awareness joint with a norm-based representation both enables a fully fledged
range of verifications and helps modularizing the verification of properties inside
a MAS, thus enhancing the correctness quality. In particular, if norms allow
both for the specification of the environment and for the specification of action,
it becomes possible to perform the analysis of properties at the level of norms
rather than on the system as a whole. For instance, given a coordination artifact,
it will be possible to verify deadlock freedom on the norms that it encodes and
that represent it. The outcome will hold for any instance of the artifact that
will be created. Of course, for each use it will be necessary to check that the
usage of the artifact, done by a specific agent, conforms to the specification but
this is a much simpler kind of verification [4]. A language for representing norms
that guarantees a priori the decidability of property analysis would be a great
advancement being the tool that agents need to reason and decide which action
to take, thus leveraging their autonomy. JaCaMo [10], simpAL [39], JaCaMo+
[2] are existing platforms for the development of MAS that have the right po-
tential for developing the view depicted in Figure 2. The next step would be the
introduction of information-centric artifacts, whose lifecycle and data evolution
are realized by way of query languages that, as for DACMAS [34], guarantee de-
cidability when certain constraints are met. For commitment-based platforms,
the Cupid [19] language would provide analogous features.

Concerning agent-based design, many proposals are found in the literature
on Agent-Oriented Software Engineering, where agents are used as high-level
software components that are characterized by autonomy and high-level com-
munication, that is based on speech acts. Briefly, SODA [33] is an agent-oriented
methodology for the analysis and design of agent-based systems, adopting a lay-
ering principle and a tabular representation. It focuses on inter-agent issues, like
the engineering of societies and environment for MAS, and relies on a meta-
model that includes both agents and artifacts. GAIA [50] is a methodology
for developing a MAS as an organization. Tropos [13] is a requirements-driven
methodology for developing multiagent systems. The 2CL Methodology [5] is an
extension of [24]. It supports the design of commitment-based business protocols
that include temporal constraints, and allows the verification of properties. New
methodologies, however, are needed to tackle the norm-oriented and data-aware
vision that we have illustrated. CoSE [2] is a commitment-driven methodology
for programming agents.

Finally, [39] explores agent-oriented programming as a general purpose pro-
gramming paradigm. It compares agent-based programming to actor-based pro-



gramming from a qualitative perspective, to explain the maturation process that
lead to the development of the simpAL programming language. The simpAL lan-
guages is grounded on the concepts of agent, artifact, and workspace. A simpAL
program is an organization where agents play roles. A static typing mechanism
is provided to enact compile-time verifications concerning the implementation
and interaction of agents and artifacts. [16] compares Jason, as a representative
of agent programming language, against Erlang and Scala, that are two actor-
oriented programming languages, in a communication benchmark, in order to
verify if actor languages have better performances. The reported quantitative
results (which concern time, memory and core usage), show that despite the fact
that agent programming languages require a significant overhead when used to
develop complex agents, Jason has reasonable performance.
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