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Ab initio simulations of the elastic properties of the silicate garnet grossular-andradite solid solution,
Ca3Fe2−2xAl2x(SiO4)3, are performed, using an all-electron local basis set of Gaussian-type orbitals and
the hybrid B3LYP density functional. The dependence of the bulk modulus (obtained by fitting energy-
volume data to an equation-of-state) on composition x is investigated over the whole range 0 ≤ x ≤ 1. The
bulk modulus is also computed following an independent approach, from elastic tensor calculations: results
almost coincide with those of the equation-of-state scheme, thus confirming the high numerical accuracy of
all the adopted algorithms. Contrary to what previously conjectured from a number of “heterogeneous”
experimental measurements, a rather linear trend is predicted for the bulk modulus as a function of x, up to
20 GPa. The largest deviation from linearity is about 0.5 GPa at ambient conditions; it progressively reduces
to less than 0.2 GPa at P = 20 GPa.

I. INTRODUCTION

The characterization of the deep structure of the Earth
is essentially based on seismic surveys and relies on the
knowledge of the elastic properties of its individual con-
stituents. Silicate garnets are among the most important
rock-forming minerals of the upper mantle and transition
zone, between 400 km and 670 km depth.78

Different compositional models of the mantle have
been proposed, starting from the known elastic be-
havior of various minerals. In particular, Ander-
son and Bass79,80 have proposed a chemically hetero-
geneous model according to which the transition re-
gion is richer in calcium than the upper mantle, con-
taining Ca-bearing silicate garnets, such as grossular,
Ca3Al2(SiO4)3, and andradite, Ca3Fe2(SiO4)3. At geo-
physical conditions, grossular and andradite naturally oc-
cur as a solid solution, grandite Ca3Fe2−2xAl2x(SiO4)3,
displaying a range of compositions x on which its elas-
tic properties certainly depend. By combining the few
available experimental bulk moduli of grandite solid so-
lutions,81–83 a significant deviation from linearity seems
to turn out, as discussed by O’Neill et al.,83 at vari-
ance with the linear composition-modulus trend observed
for the pyrope-almandine-spessartine (pyralspite) series,
(Mg,Fe,Mn)3Al2Si3O12. However, uncertainty and non-
homogeneity of the measurements still leave room for fur-
ther insights.

Some of the present authors have recently demon-
strated that ab initio simulations do represent an effective
and reliable tool for investigating the elastic properties
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(elastic constants, bulk, shear and Young moduli, direc-
tional seismic wave velocities, elastic anisotropy index,
Poisson’s ratio, etc.) of the end-members of this class
of materials at ambient pressure84,85 and at geophysi-
cal pressures up to 60 GPa,86 by comparing with avail-
able experimental data.87–102 Assuming a linear transfer-
ability of the computed ab initio elastic properties from
end-members to solid solutions also provided accurate
estimates for a set of 32 solid solutions of pyralspite,96

whose end-members have bulk moduli relatively close to
one another.87,93,103 The grandite solid solution appears
as a more complex system where relatively large devia-
tions from linearity of its bulk modulus as a function of
chemical composition have been experimentally reported.
As a consequence, the sole theoretical characterization of
the elastic properties of the two end-members seems not
enough, in this case. An explicit treatment of the com-
positional effect on its bulk modulus is required.

In this paper we undertake an explicit ab initio the-
oretical study of the elastic properties of the grandite

solid solution, Ca3Fe2−2xAl2x(SiO4)3, as a function of
its composition x. A structural model which refers to
the 8 available sites for substitution in the end-member
primitive cell is adopted. The whole composition range,
0 ≤ x ≤ 1, is investigated; in particular, apart from
the two end-members, other seven intermediate compo-
sitions are considered (x = 0.125, 0.25, 0.375, 0.5, 0.625,
0.75 and 0.875). Each intermediate composition is rep-
resented by a number of independent atomic configu-
rations efficiently selected through a symmetry-adapted
sampling of the configuration space104 recently developed
by Mustapha et al.105 and D’Arco et al.106

Calculations are performed with the Crystal14 pro-
gram for ab initio quantum chemistry and physics of
the solid state,104,107 which features a general, fully au-



2

tomated procedure for computing elastic properties of
periodic systems of any symmetry.84,108 The fully peri-
odic implementation of the hybrid B3LYP109,110 func-
tional and all-electron Gaussian basis sets are used. The
same computational approach has already been success-
fully applied to the investigation of structural, electronic,
vibrational (Infrared and Raman), magnetic and optical
properties of silicate garnets.111–117

The structure of the paper is as follows: Section II
illustrates the theoretical methodology adopted for the
determination of the equation of state (EOS), the calcu-
lation of the bulk modulus via elastic constants and the
definition of a structural model of the solid solution; com-
putational parameters are given in Section III; calculated
bulk moduli are discussed in Section IV; conclusions are
drawn in Section V.

II. THEORETICAL METHOD

A. Equations of State

An approach that is commonly adopted for comput-
ing the bulk modulus of a crystalline material is via so-
called Equations of State (EOS). A “cold” EOS is an
energy-volume (or pressure-volume) relation which de-
scribes the behavior of a solid under compression and
expansion, at T = 0 K, that is the case of standard ab

initio simulations. Universal, i.e. not specific of partic-
ular materials, EOS are usually expressed as analytical
functions of a limited set of parameters (equilibrium en-
ergy E0, equilibrium volume V0, equilibrium bulk mod-
ulus K0 = −V ∂P/∂V and pressure derivative of equi-
librium bulk modulus K ′

0 = ∂K0/∂P ) for ease of inter-
polation, extrapolation and differentiation, and are quite
used in solid state physics and geophysics.118,119

Energy-volume data are numerically fitted to the an-
alytical E(V ) functional form of the EOS. From P =
−∂E/∂V , the P -V connection is established. In princi-
ple, an advantage of this approach would be the pos-
sibility of predicting the high-pressure behavior of a
solid from low-pressure or even equilibrium properties:
the explicit dependence of the bulk modulus on vol-
ume (or pressure from P -V ), is then given by K(V ) =
V ∂2E/∂V 2.

A number of universal EOS have been proposed so
far.118,120–125 All of them are phenomenological and
can behave quite differently from each other as re-
gards extrapolation at high pressure. Comprehensive
reviews and comparisons of different EOS are available
in the literature.126–130 Four EOS are currently imple-
mented in the Crystal14 program: the original third-
order Murnaghan’s,120 the third-order Birch’s,121,122 the
logarithmic Poirier-Tarantola’s,125 and the exponential
Vinet’s.123

B. Elastic Constants and Related Properties

The elements of the fourth-rank elastic tensor C for
3D systems are usually defined as second energy density
derivatives with respect to pairs of deformations:131

Cvu =
1

V

∂2E

∂ηv∂ηu

∣

∣

∣

∣

∣

0

, (1)

where η is the symmetric second-rank pure strain ten-
sor and Voigt’s notation is used according to which
v, u = 1, . . . , 6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 =
xz, 6 = xy). The elastic C tensor exhibits, in general, 21
independent elements that reduce to 3 (i.e. C11, C12 and
C44) for crystals with cubic symmetry, as in the case of
silicate garnet end-members. Tensor S ≡ C

−1 is the so-
called compliance tensor. A fully-automated and general
procedure for computing elastic tensors under pressure,
photoelastic constants and seismic velocities of crystals
of any symmetry has recently been implemented in the
Crystal program.84,86,132–138

Elastic properties of isotropic polycrystalline aggre-
gates can be computed from the elastic and compliance
constants defined above via the Voigt-Reuss-Hill averag-
ing scheme.139 For crystals of any symmetry, an average
bulk modulus K = 1/2[KV +KR] can be defined between
Voigt upper bound

KV =
1

9
[C11 + C22 + C33 + 2(C12 + C13 + C23)] ,

and Reuss lower bound

KR = [S11 + S22 + S33 + 2(S12 + S13 + S23)]
−1 .

For cubic crystals, these two bounds coincide and the
bulk modulus K simply reduces to:

K =
1

3
(C11 + 2C12) . (2)

C. Structural Model for Solid Solution

Reference is made to the primitive unit cell of the
end-members (cubic space group G ≡ Ia3d), which
counts |G| = 48 symmetry operators and 4 formula
units Ca3Y2(SiO4)3. The structure displays dodecahe-
dral (Ca), tetrahedral (Si) and octahedral (Y) crystallo-
graphic sites. There are 8 Y sites involved for substitu-
tions. Solid solutions are obtained from andradite by pro-
gressively replacing Fe3+ with Al3+ cations. Apart from
the two end-members, andradite (x = 0) and grossular
(x = 1), other seven compositions are explicitly consid-
ered: x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75 and 0.875.

For each composition x, nAl = 8x aluminum atoms are
present that correspond to 8!/[nAl!(8 − nAl)!] different
substitutional configurations, i.e. cation distributions
among the Y sites. Altogether, the configurations sum up
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to 256 over the whole range of compositions. Following
the symmetry analysis recently proposed by Mustapha
et al.,105 these configurations can be partitioned into 23
distinct symmetry independent classes (SIC). Each class
L consists of ML ≡ Mx

l
= |G|/|HL| configurations that

belong to a symmetry subgroup of order |HL| of the aris-
totype symmetry, where l is a relative index of the classes
within a given composition x.

Since all the configurations of a given SIC are equiva-
lent to each other, the number of calculations to be ac-
tually performed reduces to one per SIC, that is, to a
total of 23. ML can then be interpreted as the multi-
plicity of class L. Only the highest spin ferromagnetic
configurations will be considered, as the difference be-
tween ferromagnetic and anti-ferromagnetic energies was
shown to be extremely small.140

A list of all the configurations studied, along with their
symmetry and multiplicity, is given in Table I. The two
end-members are described by a single cubic class with
ML = 1. Compositions x = 0.125 and x = 0.875 can
be described by a single trigonal class (L = 2 and L =
22, respectively) with ML = 8 equivalent atomic config-
urations. For describing compositions x = 0.25 and x =
0.75, three classes are required, one of trigonal symmetry
with a multiplicity of 4 and two of monoclinic symmetry
with a multiplicity of 12. Three classes are also required
for modeling the x = 0.375 and x = 0.625 compositions:
one trigonal and two triclinic with multiplicities of 8 and
24, respectively. The middle composition x = 0.5 is rep-
resented by seven classes: one cubic, one orthorhombic,
one tetragonal, one trigonal, two monoclinic, and one tri-
clinic, which, in Table I, are sorted in terms of decreasing
symmetry and increasing multiplicity.

III. COMPUTATIONAL DETAILS

Calculations are performed with the Crystal14

program.104 The B3LYP one-electron Hamiltonian is
adopted, which contains a hybrid Hartree-Fock/Density-
Functional exchange-correlation term. The valence open-
shell of Fe3+ (d5) requires a spin-polarized solution. All-
electron atom-centered Gaussian-type-function (GTF)
basis sets are adopted. Oxygen, silicon, aluminum
and calcium atoms are described in order by (8s)-
(411sp)-(1d), (8s)-(6311sp)-(1d), (8s)-(611sp)-(1d) and
(8s)-(6511sp)-(21d) contractions of primitive GTFs. For
iron, a (8s)-(64111sp)-(411d) contraction of GTFs is
used, augmented with a further f -type polarization func-
tion as reported into details in previous works.112,113,141

In Crystal, the truncation of infinite lattice sums is
controlled by five thresholds, which are set to 7, 7, 7, 8,
16.107 Reciprocal space is sampled according to a sub-
lattice with shrinking factor 2, which corresponds to a
number of irreducible k-points in the first Brillouin zone
between 3 and 8, depending on the symmetry of the con-
figuration. The DFT exchange-correlation contribution
is evaluated by numerical integration over the cell vol-

TABLE I. The 23 symmetry independent classes of atomic
configurations used to model the grandite solid solution at
nine compositions x are listed and labeled with the absolute
index L and a relative index l within each composition. The
symmetry of the corresponding lattice and multiplicity of each
class are also reported.

x L l Lattice ML ≡ M
x

l

0. 1 1 Cubic 1
0.125 2 1 Trigonal 8

3 1 Trigonal 4
0.25 4 2 Monoclinic 12

5 3 Monoclinic 12
6 1 Trigonal 8

0.375 7 2 Triclinic 24
8 3 Triclinic 24
9 1 Cubic 2

10 2 Orthorhombic 6
11 3 Tetragonal 6

0.5 12 4 Trigonal 8
13 5 Monoclinic 12
14 6 Monoclinic 12
15 7 Triclinic 24
16 1 Trigonal 8

0.625 17 2 Triclinic 24
18 3 Triclinic 24
19 1 Trigonal 4

0.75 20 2 Monoclinic 12
21 3 Monoclinic 12

0.875 22 1 Trigonal 8
1. 23 1 Cubic 1

ume: radial and angular points of the atomic grid are
generated through Gauss-Legendre and Lebedev quadra-
ture schemes, using an accurate predefined pruned grid
(keyword XLGRID). The convergence threshold on energy
for the self-consistent-field (SCF) step of the calculations
is set to 10−9 hartree.

Equilibrium and strained configurations are optimized
calculating analytical energy gradients with respect to
both atomic coordinates and unit-cell parameters or
atomic coordinates only.142–144 A quasi-Newtonian tech-
nique is used, combined with the BFGS algorithm for
Hessian updating.145–148 Convergence is checked on both
gradient components and nuclear displacements; the cor-
responding tolerances on their root mean square are cho-
sen to be 10 times more severe than the default values
for simple optimizations: 0.00003 a.u. and 0.00012 a.u.,
respectively.

As regards EOS calculations, five hydrostatic compres-
sions (up to 14 % in volume) and five hydrostatic expan-
sions (up to 8 % in volume) are applied to each configura-
tion and a constant-volume optimization is performed at
each step. Energy-volume data are then fitted to a third-
order Birch-Murnaghan EOS121,122 for the determination
of the corresponding bulk modulus, KEOS.

For the elastic constants calculation, two strained
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configurations are considered for each symmetry-
independent strain (two for cubic and six for triclinic
crystals), with a dimensionless strain amplitude of 0.01.

IV. RESULTS AND DISCUSSION

Before illustrating our theoretical results on the elastic
behavior of the grossular-andradite solid solution series,
let us summarize the main findings of previous studies. In
Figure 1, we collect the outcomes of experimental mea-
surements on the evolution of the bulk modulus K of
grandite as a function of composition x. Available experi-
mental data are represented by solid symbols.81,82,149–153

Two values are reported at x ≈ 1, which represent
the grossular end-member (natural single crystal sam-
ples pure to 97 % and 99 %, respectively): an ultrasonic
measurement by Halleck149 (triangle) provided K =
171.4 ± 1.7 GPa, and a Brillouin scattering experiment
performed by Bass151 (square) yielded K = 168.4 ± 0.7
GPa. As regards andradite, two values are reported as
determined by Brillouin spectroscopy: K = 157± 2 GPa
by Bass82 (circle) and K = 154.5 ± 0.6 GPa by Jiang et

al.153 (inverted triangle). Let us stress that, even for the
two end-members, different experimental determinations
of their bulk moduli can hardly be considered compati-
ble with each other on the grounds of the corresponding
uncertainties (see the error bars reported in Figure 1).
Experimental uncertainties become even larger for most
of the intermediate compositions, as we shall discuss be-
low.

The main experimental investigation of the elastic
properties of intermediate compositions of the grandite
solid solution has been performed by Babuska et al. in
197881 by means of the rectangular parallelepiped reso-
nance method. They analyzed four specimens of three
different composition: Gr79.9An14.2, Gr76.1An22.1, and
An70.4Gr22.2. The corresponding bulk moduli are rep-
resented as rhombi in Figure 1. The three grossular-
rich samples provide K in the range 161-164 GPa. The
andradite-rich sample showed a bulk modulus of 147.3±
3.4 GPa. More recently, in 2004, Jiang et al.152 per-
formed Brillouin spectroscopy on a grossular-rich garnet
of composition Gr87An9Py2Al2 (Py stands for pyrope, Al
for almandine), for which they obtained K = 165.8± 0.5
GPa (pentagon).

The dashed line in Figure 1 represents the bulk modu-
lus trend as a function of composition x which was pro-
posed by O’Neill et al.83 in 1989, on the grounds of avail-
able experimental data at that time. Nowadays, having
at hand also more recent determinations of K, we can
see how the proposed pronounced deviation from linear-
ity is mainly dominated by the sole value at about x =
0.22. The solid line in the figure represents our theoret-
ical results, to be discussed into detail in what follows,
which clearly shows a quasi-linear behavior of the elastic
response of the grandite solid solution as a function of its
chemical composition.

FIG. 1. Variation of the bulk modulus K of the grandite
solid solution Ca3Fe2−2xAl2x(SiO4)3 as a function of com-
position x. The solid line shows the quasi-linear trend of
our calculated values, whereas the dashed curve is drawn to
provide an approximate fit to the experimental data, as sug-
gested by O’Neill et al.83 Experimental data are from Hal-
leck149 (Gr97.4, triangle), Babuska et al.81 (intermediate com-
positions, rhombi), Bass82 (An96Gr3.7Py0.3, circle), Bass151

(Gr99.2, square), Jiang et al.152 (Gr87An9Py2Al2, pentagon)
and Jiang et al.153 (Gr2An98, triangle). Here, Gr stands for
grossular, An for andradite, Py for pyrope, and Al for alman-
dine. When available, error bars are also shown.

For each composition x and each symmetry indepen-
dent class, we have computed the equation of state of
a representative atomic configuration, according to the
procedure described in Section III. The calculated bulk
moduli KEOS are reported in Table II. As regards the two
end-members, computed values are found to be in agree-
ment with experimental data within 1 % for grossular
and 3 % for andradite.

The numerical accuracy of the EOS determinations
of the bulk moduli is checked by comparison with the
analytical bulk moduli KV , KR and K calculated from
the elastic tensor C of equation (1), according to Voigt-
Reuss-Hill averaging scheme. These three elastic deter-
minations of the bulk modulus are also reported in Table
II. The following considerations can be made: i) the
agreement between K and KEOS is excellent (within 0.9
%) in the whole composition range, which confirms the
extremely high numerical accuracy of all the algorithms
involved; ii) the values of KEOS obtained for polymor-
phic classes are very close to one another, with differences
never larger than 0.1 %; iii) KV and KR essentially co-
incide with each other within any class, regardless of the
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TABLE II. For each symmetry independent class, labeled by
the absolute index L and relative index l within each compo-
sition x, the bulk modulus K (GPa) is reported as computed
with an EOS approach, KEOS, and from the elastic constants
following Voigt’s, KV , Reuss’s, KR, and Hill’s, K, prescrip-
tions. ∆E = E

x

l −E
x

min (in mHa) is the difference between the
energy of configuration l at composition x, E

x

l , and the energy
of the most stable configuration with the same composition,
E

x

min.
a

x L l ∆E KEOS KV KR K

0. 1 1 - 150.0 149.7 149.7 149.7
0.125 2 1 - 151.9 150.8 150.8 150.8

3 1 2.335 153.9 153.6 153.6 153.6
0.25 4 2 1.634 154.0 153.2 153.2 153.2

5 3 - 153.9 153.8 153.8 153.8
6 1 3.002 156.0 156.3 156.3 156.3

0.375 7 2 1.721 156.0 154.6 154.6 154.6
8 3 - 156.0 155.1 155.1 155.1
9 1 5.925 158.3 157.8 157.8 157.8

10 2 3.053 158.1 157.4 157.4 157.4
11 3 - 158.1 157.6 157.6 157.6

0.5 12 4 1.267 158.2 157.2 157.2 157.2
13 5 1.541 158.1 158.2 158.1 158.2
14 6 1.946 158.1 158.0 157.9 158.0
15 7 3.289 158.2 157.3 157.3 157.3
16 1 3.259 160.3 160.1 160.1 160.1

0.625 17 2 1.382 160.3 160.2 160.2 160.2
18 3 - 160.3 159.3 159.3 159.3
19 1 2.131 162.4 162.6 162.6 162.6

0.75 20 2 1.954 162.6 162.5 162.5 162.5
21 3 - 162.6 161.8 161.7 161.8

0.875 22 1 - 164.9 163.9 163.9 163.9
1. 23 1 - 167.3 167.1 167.1 167.1

a
E

0.0
min = −25329.246886 Ha, E

0.125
min = −24308.149454 Ha,

E
0.25
min = −23287.054557 Ha, E

0.5
min = −22265.958966 Ha,

E
0.375
min = −21244.865171 Ha, E

0.625
min = −20223.769247 Ha,

E
0.75
min = −19202.676027 Ha, E

0.875
min = −18181.582403 Ha,

E
1.0
min = −17160.490459 Ha

specific symmetry of the corresponding lattice. Since KV

and KR are expected to coincide only for cubic systems,
their equality appears consistent with the pseudo-cubic
metric attributed to grandite solid solutions by both ex-
perimental and theoretical investigations. Details about
the minimum energy structures of the different classes,
as obtained with B3LYP geometry optimizations, are re-
ported in Ref. 154. All the calculated cells are pseudo-
cubic, with the three lattice parameters differing from
each other by less than 0.01 Å, and angles that deviate
by less than 0.4◦ from right angles.

A Boltzmann average bulk modulus, Kx
av, may be de-

fined for any composition x:

Kx

av
=

∑

l

Px

l
Kx

l
, (3)

FIG. 2. Deviation from linearity (∆K in GPa) of the Boltz-
mann average bulk modulus of grandite, calculated via the
EOS approach, as a function of chemical composition x and
pressure. Temperature T is fixed at 298 K.

where

Px

l
=

Mx

l
exp

(

−
∆E

x

l

kBT

)

∑

l
Mx

l
exp

(

−
∆Ex

l

kBT

) (4)

is the probability of finding the l-th class of composition x
at temperature T . In the expression above, ∆Ex

l
= Ex

l
−

Ex

min is the difference between the energy of configuration
l at composition x and the energy of the most stable
configuration with the same chemical composition. These
energy differences are reported in Table II, along with
the energies of the most stable configurations per each
composition x.

The average bulk moduli for all the considered compo-
sitions x have been computed at T = 298 K via equations
(3) and (4), and reported, as a continuous line, in Figure
1 where they are compared with the available experimen-
tal data discussed at the beginning of this section. On
the scale of that figure, as anticipated before, computed
values show an almost linear behavior as a function of
the chemical composition of the grandite solid solution.

A closer look at the computed data reveals that the
dependence of the grandite bulk modulus on chemical
composition is not perfectly linear. In Figure 2, we report
the deviation from linearity of the average bulk modulus,
∆Kav, as a function of x. At zero pressure, a maximum
deviation of about -0.5 GPa is observed at x = 0.5.

The EOS approach that we have followed allows to
compute the bulk modulus also under increasing hydro-
static pressure. In this respect, an EOS could be used
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in two quite different modes: i) to extrapolate at high
pressure from small compression data or ii) to interpolate
from large compression data. As we recently discussed,86

mode i) is extremely sensitive to the particular analytical
expression adopted for the EOS whereas mode ii) is al-
most independent of the specific expression of the EOS.
In this study we use the latter approach by explicitly
computing the energy of each configuration up to vol-
ume compressions of 14 %, which roughly correspond to
P = 25 GPa. The deviation from linearity of the bulk
modulus, as evaluated at about 7 GPa, 15 GPa and 20
GPa, is shown in the figure. It can be seen that the max-
imum deviation decreases as a function of pressure from
about -0.5 GPa at zero pressure to about -0.35 GPa at
7 GPa, -0.23 GPa at 15 GPa and -0.15 GPa at 20 GPa
of pressure. Within the explored pressure interval, the
deviation from linearity of the bulk modulus decreases
as pressure increases.

V. CONCLUDING REMARKS

Periodic B3LYP quantum-chemical simulations have
been performed on the elastic properties of the grandite
solid solution, Ca3Fe2−2xAl2x(SiO4)3, at various compo-
sitions x in the whole range 0 ≤ x ≤ 1. The bulk modulus
of 23 symmetry-independent atomic configurations has
been computed following two independent approaches:
from the elastic tensor and from fitting energy-volume
data to the Birch-Murnaghan equation-of-state. Dis-
crepancies between the two schemes are negligible, thus
demonstrating high numerical accuracy and consistency
of the algorithms involved.

While “heterogeneous” experimental measurements
were suggesting a pronounced non-linear trend of the
bulk modulus of the solid solution as a function of its
chemical composition (with a maximum deviation of
about 7 GPa), the present theoretical results reveal a
quasi-linear behavior. A slight deviation from linearity
is reported at low pressure, with a maximum value of
0.5 GPa, which is then further reduced under increasing
pressure, up to 20 GPa.

The present findings contribute to the definition of a
homogeneous frame according to which all the solid so-
lutions of the most abundant silicate garnets (pyralspite
and grandite) exhibit linear elastic properties as a func-
tion of their chemical composition. Linearity of pyral-
spite is well-known since long whereas the presumed non-
linearity of the grandite system has been here demon-
strated to be an artifact of heterogeneous experimental
measurements.
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R. Dovesi, J. Chem. Phys. 138, 054906 (2013).

133V. Lacivita, A. Erba, Y. Noël, R. Orlando, Ph. D’Arco, and
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lando, Phys. Rev. B 89, 045103 (2014).
138K. E. El-Kelany, A. Erba, P. Carbonnière, and M. Rérat, J.
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