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Abstract 26 

Marine fungi represent an important but still largely unexplored source of novel and 27 

potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia 28 

isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on 29 

four antibiotic resistant bacterial strains using extracellular and intracellular extracts obtained from 30 

each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of 31 

the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of the 32 

inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary 1H NMR and 33 

TLC analysis. According to the preliminary pharmacologic, spectroscopic/chromatographic results, 34 

extracts of the fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, 35 

classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of 36 

antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed the identification of 37 

the main components of the crude extracts. Several sphingosine bases were identified, including a 38 

compound previously unreported from natural sources, which gave a rationale to the broad 39 

spectrum of antibacterial activity exhibited.  40 

 41 
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Introduction 52 

The worldwide diffusion of antibiotic-resistant microorganisms requires the development of 53 

new, efficient antimicrobial molecules. For more than half a century, the main strategy for obtaining 54 

new antimicrobial agents has consisted of semisynthetic remodeling of natural products. However, 55 

drugs obtained in this way are only temporarily effective against pathogenic microorganisms, which 56 

develop antibiotic resistance [1]. The problem regarding microbial resistance to antibiotics may be 57 

overcome by the discovery of new natural products, which, due to their chemical novelty, could 58 

inhibit unknown single or multiple microbial targets. 59 

The search for natural products of pharmaceutical interest in the marine environment has 60 

been progressing at an unprecedented rate, resulting in the discovery of a number of molecules, 61 

many of which have new carbon skeletons and interesting biological activities [2, 3]. 62 

Among marine microorganisms, fungi play a crucial role, being a reservoir of biologically 63 

active secondary metabolites [4-6]. Recently, several new metabolites from marine fungi have been 64 

reported to display notable antibacterial activities [7-9]. Despite their proven biosynthetic potential, 65 

scientific research has not intensively focused on marine fungi for seeking new drugs [10]. 66 

However, promising fungi are equipped with gene clusters potentially involved in the biosynthesis 67 

of secondary metabolites [11]. Therefore, research into the isolation, identification and 68 

characterization of new fungal strains, capable of producing useful bioactive natural compounds, 69 

should be carried out.  70 

Hence, the aim of this work was to assess the antibacterial potential of nine sterile mycelia isolated 71 

from the green alga Flabellia petiolata collected from the Mediterranean Sea, against some 72 

representative multidrug resistant (MDR) bacteria, relevant in Cystic Fibrosis and nosocomial 73 

infections, and to analyze the chemical profiles of the most active fungal crude extracts74 
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Materials and Methods 75 

Fungal strains 76 

Fungi were isolated and roughly identified from the green alga F. petiolata collected in March 77 

2010 near to Elba Island in the Mediterranean Sea [12], and are preserved at the Mycotheca 78 

Universitatis Taurinensis - MUT (DBIOS - University of Turin). All the selected fungi were 79 

revealed to be sterile mycelia and were identified by molecular analysis (Table 1). 80 

Molecular, Bioinformatics and Phylogenetic analyses 81 

Genomic DNA was extracted using Cetyl Trimethyl Ammonium Bromide (CTAB, 82 

Sigma-Aldrich St. Louis, USA) according to the protocol of Graham et al. [13]. 83 

The nrDNAInternal Transcribed Spacer (ITS) and Large ribosomal SubUnit (LSU) 84 

partial regions were amplified using the universal primers ITS1F/ITS4 (Sigma-Aldrich St. 85 

Louis, USA) and LR0R/LR7, as previously described [14]. 86 

Amplification products were sequenced at Macrogen Europe (The Netherlands). 87 

Sequences were checked and assembled using Sequencher 4.9 software and compared to 88 

those available in the GenBank database using the BLASTn option of the BLAST program 89 

(www.blast.ncbi.nlm.nih.gov) and CBS Mycobank Pairwise Sequence Alignment 90 

(www.mycobank.org). Newly generated sequences were deposited in the GenBank database 91 

and were assigned the accession numbers reported in Table 1.  92 

Phylogenetic analysis was only performed on LSU sequences, as comparable ITS 93 

sequences of fungi studied in this article are rarely found in public databases and/or poorly 94 

informative. LSU sequences were selected for phylogenetic analysis on the basis of BLASTn 95 

and CBS results. Two sequences datasets were composed, following reference [14] for 96 

Pleosporales and reference [15] for Sordariomycetes. 97 

Alignments were generated using MEGA 5.10 [16] and manually refined. 98 

Phylogenetic analyses were performed using both Bayesian Inference (BI; MrBayse3.2.2) 99 
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[17] and Maximum Likelihood (ML; RAxML v.7.3.2) [18] approaches, as previously 100 

described [14]. Bayesian Posterior Probability (BPP) values over 0.6 (with MLB over 50%) 101 

are reported in the resulting trees. 102 

 103 

Fungal growth conditions 104 

Preliminary growth condition tests were performed in order to define the most 105 

effective and appropriate medium to induce the production of bioactive secondary metabolites 106 

in the selected fungal strains. Each fungal strain was inoculated in duplicate by 10 agar plugs 107 

of 5 mm diameter cut from the edge of actively growing culture onto malt extract agar in 150 108 

ml flasks containing 100 ml of three different media: PCB (10 g of crushed potatoes and 10 g 109 

of crushed carrots in 1 L of ddH2O), MeCl (20 g malt extract, 17 g NaCl in 1 L of ddH2O) and 110 

WST30 (10 g glucose monohydrate, 5 g soya peptone, 3 g malt extract, 3 g yeast extract, 30 g 111 

NaCl). Flasks were incubated in the dark at 24°C and rotated at 150 rpm. The broth and 112 

mycelium of each strain were collected after 2 and 4 weeks and submitted to an extraction 113 

procedure for the preliminary bio-chemical analysis (see below). The MeCl medium and 4 114 

week-incubation were selected as the best conditions (24°C in the dark). Hence, each fungus 115 

was inoculated (100 agar plugs of 5 mm diameter) in 2 L flasks containing 1.5 L of MeCl, 116 

which was incubated in the dark at 24°C, at 180 rpm for 4 weeks. 117 

Extract preparation 118 

Samples were centrifuged at 11,200 x rcf for 30 min at 4 °C and filtrated in order to 119 

separate the mycelium from the culture broth. Supernatants were extracted with ethyl acetate 120 

(EtOAc) and the resulting extracts were dried-out by using a Rotavapor, weighed, solubilized 121 

in dimethyl sulfoxide (DMSO, 100%) at a final concentration of 100 mg/mL and stored at -122 

20°C. The presence of antimicrobial compounds in the mycelia was also evaluated. In order 123 

to efficiently lyse the cells, different mechanical disruption methods were used in a sequential 124 
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manner. The first step consisted of homogenization with Ultra Turrax T25 (IKA-Werke, 125 

Staufen, Germany).The homogenate was then washed twice with 20 mL of EtOAc to recover 126 

the intracellular extract; in addition, to improve the fungal lysis, mycelia were treated with 127 

liquid nitrogen (15 mL N2/g mycelium). Samples were transferred into a pre-cooled mortar 128 

and minced under liquid nitrogen with a pestle and washed twice with 20 mL of EtOAc. At 129 

the last step, to completely destroy the membrane, all the mycelium was transferred and 130 

processed in a Potter-Elvehjem homogenizer (Sigma-Aldrich, Saint Louis, MO) in the 131 

presence of EtOAc. Subsequently, the powdered mycelium was transferred into a separator 132 

funnel and mixed five times with two volumes of EtOAc. In order to increase the yield of 133 

some extracts, mycelia were further soaked in acetone for 18 hours under agitation. The 134 

whole EtOAc and acetone fractions were collected and dried-out by using a Rotavapor. Final 135 

extracts were weighed, solubilized in DMSO (100%) at a final concentration of 100 mg/mL 136 

and stored at -20°C.  137 

Antimicrobial assay 138 

The extracts produced as such were checked for the ability to inhibit the growth of a 139 

selected panel of human pathogens. An IC50 assay was used to evaluate the concentration of 140 

the extracts at which bacterial target growth was inhibited by 50%. The following multidrug 141 

resistant bacteria were used for the antimicrobial screening: Burkholderia metallica LMG 142 

24068 [19], Pseudomonas aeruginosa PA01 [20], Klebsiella pneumoniae DF12SA [21] and 143 

Staphylococcus aureus 6538P [22]. All bacteria were routinely grown at 37°C in Lysogeny 144 

broth (5 g yeast extract, 10 g sodium chloride, 10 g tryptone in 1 L of ddH2O), with the 145 

exception of S. aureus, which was grown in Mueller Hinton Broth (Applichem, Darmstadt, 146 

Germany). 147 

Extracts were placed into each well of a 96-well microtiter plate at an initial 148 

concentration of 2 mg/mL and serially 2-fold diluted using the appropriate medium. Wells 149 
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containing only DMSO (2% v/v) were used as a control to determine the effect of this solvent 150 

on bacterial growth.  151 

Cells were prepared as follows: a single colony of each pathogenic strain was used to 152 

inoculate 3 mL of liquid medium in a sterile bacteriological tube. After 5-8 h of incubation, 153 

growth was measured by monitoring the absorbance at 600 nm and about 40,000 colony-154 

forming units were dispensed into each well of the prepared plate. Plates were incubated at 155 

37°C for 20 h and growth was measured using a VICTOR X Multilabel Plate Reader 156 

(PerkinElmer, Waltham, MA) by monitoring the absorbance at 600 nm.  157 

Metabolic profiling of crude extracts 158 

All crude extracts were subjected to Thin Layer Chromatography (TLC) analysis and 159 

1H Nuclear Magnetic Resonance (NMR). TLC analysis was carried out on Alugram silica gel 160 

G/UV254 plates with solvent mixture of different polarity using vanillin reagent as revelation 161 

system; 1H NMR analysis were performed with Varian  INOVA  400  MHz instrument,  in  162 

CDCl3 solvent,  at  room temperature with tetramethylsilane (TMS) as internal reference. 163 

Selected extracts were analyzed using a LTQ XL Liquid Chromatography-High Resolution 164 

Mass Spectrometry system (LC-HRMS) (ThermoScientific) equipped with the Accelera 600 165 

Pump and Accelera Auto Sampler system. A volume of 10 µl of sample was injected at a 166 

concentration of 10 mg/mL in methanol. The mixture was separated on a Phenomenex LUNA 167 

C8 (150 X 2.1 mm, 5 µm particle size) column at a flow rate of 200 µL/min, using an 168 

acetonitrile-water gradient. Mobile phase A was 90% H2O 10% acetonitrile (ACN) 0.1% 169 

formic acid (FA) and mobile phase B was 10% H2O 90% ACN 0.1% FA; the gradient started 170 

at 10% B up to 90% B in 70 min, was kept at 90% of B for 10 min before the re-equilibration 171 

step. The mass spectrometer operated in positive electrospray ionization (ESI) mode, at 4 kV 172 

capillary voltage and 280°C. The calibration procedure was carried out using 173 

ThermoScientific positive calibration solution composed of caffeine, MRFA and Ultramark. 174 
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All spectra were acquired in the m/z range from 280 to 700 u.m.a., setting resolution at 175 

30,000; MSMS spectra were acquired in an opportune m/z range using 35 of collision energy. 176 

Thermo Scientific software Xcalibur was used to obtain molecular formulas. The Molecular 177 

Formulas (MF) deduced by High-Resolution Electrospray Ionization Mass Spectrometry 178 

(HRESIMS) were checked by available data banks [23-25] and, in the case of alternative 179 

structures, they were discriminated by MSnanalysis using the data available in the literature 180 

[26] or ex-novo analysis, and then by checking diagnostic signals in the 1H NMR spectrum of 181 

the crude extracts. 182 

Results  183 

Phylogeny and taxonomic identification of the fungal isolates  184 

The molecular and phylogenetic analysis revealed that strains MUT 4859, MUT 4860, 185 

MUT 4883, MUT 4886, and MUT 4966 belong to the order Pleosporales (Dothideomycetes 186 

class). In particular, MUT 4860 was identified as Massarina sp. and MUT 4883 as 187 

Biatriospora sp., both clustering in the Biatriosporaceae family, while MUT 4859, MUT 4886 188 

and MUT 4966 were identified at the family level (Roussoellaceae, Supplementary materials 189 

Fig. S1) [27].  190 

MUT 4861, MUT 4865, and MUT 4885 belonged to the Sordariomycetes class; 191 

specifically, MUT 4865 belonged to Beauveria bassiana, while MUT 4861 and MUT 4885 192 

clustered within the Microascaceae family (Supplementary materials Fig. S2).  193 

Finally, MUT 4979 was identified as Knufia petricola (syn. Sarcinomyces petricola, 194 

Incertae sedis, Chaetothyriales, Eurotiomycetes) by both ITS and LSU sequences (homology 195 

percentage = 99%). 196 

Antimicrobial activity 197 

In order to select the best growth medium for producing the antimicrobial compounds, 198 

preliminary extractions and antimicrobial assays were performed on small-scale cultures of 199 
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fungi grown in MeCl, PCB and WST30. These analyses demonstrated that fungi grown in 200 

MeCl exhibited the highest degree of antimicrobial activity (Supplementary materials Table 201 

S1). This medium was therefore selected for further experiments. Moreover, the antimicrobial 202 

potentials of the extracellular and intracellular extracts were compared; results revealed that 203 

the latter exhibited the highest yield and activity (Supplementary materials Table S2). 204 

Starting from these preliminary results, extracts obtained from mycelium lysates were 205 

used for the antimicrobial screening, targeting a panel of MDR human pathogens. The 206 

antimicrobial activity displayed by the different fungal strains against the four MDR bacteria 207 

is reported in Table 2 as IC50 values. The resistance of each strain to Ampicillin, 208 

Chloramphenicol, Kanamycin, Tetracycline and Trimethoprim was confirmed and IC50 values 209 

are reported in Table S3 (Supplementary materials). 210 

Extracts produced from strains MUT 4861, MUT 4865, and MUT 4979 resulted as 211 

being the most active and promising ones. In particular, MUT 4861 was able to strongly 212 

inhibit B. metallica (IC50 0.5-0.25 mg/mL) and S. aureus, and was the only one to show, by 213 

both EtOAc and acetone extracts, an inhibitory effect against P. aeruginosa. Both extracts 214 

from MUT 4865 were able to inhibit B. metallica and S. aureus (IC50 0.5-0.25) and the 215 

EtOAc extracts also showed inhibition against K. pneumoniae. No effects were observed 216 

against P. aeruginosa. The extract from MUT 4979 showed antimicrobial activity against 217 

three out of the four pathogens (IC50 1.0-0.25), with the exception of K. pneumoniae. Extracts 218 

of MUT 4859, 4860, and 4966 only showed a significant activity against B. metallica and S. 219 

aureus, which were the most sensitive bacterial strains to the fungal extracts. MUT 4883, 220 

4885 and 4886 extracts were the weakest strains showing no significant effects against the 221 

target bacteria. Acetone extracts showed similar antimicrobial activity compared to EtOAc 222 

extracts. The only exception was MUT 4861, of which the acetone extract was more active 223 

than the EtOAc extract. 224 
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Overall, the most promising strains were MUT 4865, 4979 and 4861,which exhibited 225 

the highest degree of antibacterial activity. 226 

Secondary Metabolite Analyses 227 

Based on the results of the preliminary pharmacologic, spectroscopic and 228 

chromatographic screening, the extracts of MUT 4865 and MUT4861 were selected for the 229 

chemical profiling and were analyzed by LC-HRMS. Other strains did not produce detectable 230 

amounts of secondary metabolites under cultivation conditions and, therefore, revealing their 231 

potential of secondary metabolite production will require further investigation. 232 

Beauveria bassiana MUT 4865: both acetone and EtOAc extracts were subjected to 233 

HRESIMS analysis (Fig. 1A). Compound 1 analyzed for C22H43O2N by HRMS analysis 234 

(calculated for C22H43NO2Na: 376.3192, found [M + Na]+: 376.3195). In the MS2 spectrum 235 

(Supplementary materials Fig. S3), the sequential loss of one ammonia and two neutral water 236 

molecules indicated the presence of one amino and two hydroxyl groups. The planar structure 237 

of this compound was deduced from the analysis of the MS3 spectrum, which showed a 238 

fragmentation pattern compatible with the localization of the two double bonds at the unusual 239 

positions of 6 and 17, revealing that it corresponded to the long chain sphingadienine (Fig. 2). 240 

Therefore a 1,3-dihydroxy-2-amino-6,17-docosadiene structure was tentatively proposed. 241 

Assignment of the relative configuration of the two contiguous stereogenic centers, as well as 242 

of the two double bonds would require isolation of the compound from a large-scale 243 

cultivation batch of the fungal strain. 244 

As shown in Fig. 1B, the acetone extract did not contain a detectable amount of 245 

compound 1, whereas some sphingosine compounds were detected, such as phytosphingosine 246 

(2), dihydrosphingosine (3) and phytoceramide C2 (4). The MS2 pattern analysis (Table 3 and 247 

Supplementary materials Fig. S4-S6) leads to a straightforward assignment of a planar 248 

structure to these compounds. 249 
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Compound 5, which was present in both EtOAc and acetone extracts, was tentatively 250 

identified as aphidicolin; compound 6 was tentatively identified as fusoxysporone and 251 

compound 7, a minor component of the EtOAc extract, was identified as bis (2-ethylhexyl) 252 

hexanedioic acid. 253 

Microascacea sp.2 MUT 4861: the EtOAc extract contained a very complex mixture 254 

of lipid and polysaccharide components, evidenced by 1H NMR analysis, which, however, did 255 

not allow its de-replication by HRESIMS. Conversely, the main components of the acetone 256 

extract were identified. For this fungal strain, two polar components were revealed to be 257 

sphingoid bases. 258 

In addition to phytosphingosine (2), an "unusual" sphingoid base with a molecular 259 

formula C19H39NO3 was detected. The MS2 spectrum (Supplementary materials Fig. S10) 260 

showed fragmentation peaks resulting in the sequential loss of three water molecules, whereas 261 

no ammonia elimination was measured. This finding could suggest the involvement of a 262 

nitrogen atom in an azetidine ring, as in isomeric penaresidins A and B. 263 

Although the fragmentation pattern observed in the MS3 spectrum (Supplementary 264 

materials Fig. S11) is compatible with these structures, no ambiguous information relative to 265 

the position of the hydroxyl groups, of the methyl branching, or even on the nature of 266 

unsaturation, can be drawn. 267 

Finally, Scopularide A (8) [28] was identified by MF analysis and by diagnostic MS2 268 

fragmentations (Table 4 and Supplementary materials Fig. S9). 269 

Discussion 270 

In this study, the green marine alga F. petiolata was chosen as a source of promising 271 

marine fungi since it has been previously demonstrated that fungi isolated from marine algae 272 

showed strong antimicrobial activity against several human pathogenic bacteria [29], 273 

probably deriving from the ability to protect their algal host from external threats [30]. 274 
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Identifying new fungal strains could lead to the discovery of new and unusual compounds, 275 

which can be utilized for biotechnological and pharmaceutical applications. 276 

The first step of this work was the phylogenetic affiliation of fungal strains, which was 277 

carried out according to molecular and phylogenetic analysis. Massarina sp. (MUT 4860) and 278 

Biatriospora sp. (MUT 4883) clustered in the Biatriosporaceae family, which accommodate 279 

genera that have often been collected from a range of both terrestrial and aquatic hosts, and 280 

are commonly found in decaying submerged intertidal mangrove wood [27]. Recently, it has 281 

been demonstrated that a strain identified as Biatriospora sp. is an efficient producer of 282 

secondary metabolites, in particular naphthoquinone derivatives [31]. 283 

MUT 4859, MUT 4886 and MUT 4966 clustered in the Roussoellaceae family, which 284 

includes species of saprobic fungi isolated from decaying bamboo culms or palm fronds [32]. 285 

Beauveria bassiana (MUT 4865) is a marine isolate of well-known 286 

enthomopathogenic fungus, commonly isolated from decaying arthropods or from plant tissue 287 

as an endophyte [33]. 288 

On the basis of molecular and phylogenetic data, MUT 4861 and MUT 4885 could be 289 

considered as putative new species and even new genera of the Microascales, a small order of 290 

primarily saprobic fungi in soil, rotting vegetation and dung. Some species of this order are 291 

responsible for plant diseases, while other members cause human diseases [34]. 292 

Knufia petricola (MUT 4979) is an algicolous strain of microcolonial fungus with a 293 

meristematic-black yeast morphology, which has only been previously found on stone 294 

substrates, such as unlichenized fungus with its natural ecological niche [35]. To the best of 295 

our knowledge, this is the first report of the presence of this species in a marine environment. 296 

As the antimicrobial activity of these algicolous fungi on MDR bacteria (according to 297 

the results of the bioassay tests) were in agreement with the known antimicrobial potential of 298 

marine fungi, further investigations are certainly recommended, also considering the value of 299 
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producing antimicrobial compounds from new taxonomic entities that have never been 300 

previously explored. 301 

The most promising fungal strains were MUT 4865, 4979 and 4861, which exhibited 302 

the highest degree of antibacterial activity. MUT 4865, identified as B. bassiana, 303 

representatives of which are well-known producers of insecticidals and antimicrobials [36], 304 

showed a strong activity against all the pathogens tested. For K. petricola (MUT 4979), this is 305 

the first report of an antimicrobial activity exhibited by the fungal extracts from this species. 306 

Further studies are necessary, considering that the class this organism belongs to 307 

(Eurotiomycetes) includes several species (e.g. Aspergillus spp., Paecilomyces spp., 308 

Penicillum spp.) that have been reported to be a source of many antimicrobial metabolites [37, 309 

38].  310 

Finally, MUT 4861 is of special interest due to the fact that it is presumed to belong to 311 

a new species of Microascaceae, a family that includes a number of fungi capable of 312 

producing several antimicrobial secondary metabolites [37, 38]. 313 

The chemical profiling of the most active crude extracts have highlighted the presence 314 

of chemically diverse metabolites. In particular, both strains were found to contain sphingoid 315 

bases. Diverse variants of the long chain bases sphingosine and phytosphingosine have been 316 

reported from marine organisms, especially sponges and tunicates [39, 40], but to the best of 317 

our knowledge, this is the first report of sphingosine-free bases from marine fungi. 318 

In particular, the long chain sphingadienine 2-aminodocosa-6,17-dien-1,3-diol has 319 

never been described as a free base or as a component of polar lipids from natural sources. 320 

The related docosa-4,15-sphingadienine and 4-hydroxy-docosa-15-sphingenine have been 321 

reported as components in sphingophosphonolipids from the marine gastropod Turbo 322 

cornutus [41]. Noteworthy, recent years have witnessed an ever-increasing interest towards 323 

the so-called “sphingoid bases” for their role in the regulation of physiological and 324 
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pathological conditions [42]. In particular, a recent study [43] revealed that sphingoid long-325 

chain bases displayed antibacterial activity against a broad spectrum of pathogenic bacteria, 326 

including Pseudomonas aeruginosa, Acinetobacter baumannii, Haemophilus influenzae, 327 

Moraxella catarrhalis and even Burkholderia cepacia, at nanomolar-to-low micromolar 328 

concentrations. Therefore, even though we cannot exclude, a priori, the possibility that the 329 

antimicrobial activity could rely on the combination of different molecules, compound 1, and 330 

co-occurring sphingosines 2, 3 and 4, previously reported as common components of fungal 331 

membrane sphingolipids [44], may be responsible for the antimicrobial effects exhibited by 332 

MUT 4865 crude extracts towards the pathogenic bacteria investigated so far. However, tests 333 

with the purified compound will be necessary to validate this hypothesis.  334 

Regarding the other tentatively identified components of MUT 4865 extracts, 335 

aphidilcolin is a tetracyclic diterpene with known antiviral and antimitotic properties, first 336 

isolated from the fungus Cephalosporum aphidicola [45]. Fusoxysporone, is a viscidane-type 337 

diterpene first isolated from Fusarium oxysporum [46], and is also found as a component of 338 

the cytotoxic extracts of a Penicillium strain isolated from bivalve mollusks [47]. To the best 339 

of our knowledge, no biological activities have been described for this compound, so far. 340 

Compound 7, identified as bis (2-ethylhexyl) hexanedioic acid, is known as plasticizer 341 

[48] and described as a component of cyanobacteria, Antarctic [49] and terrestrial [50] strains 342 

of Streptomyces, and of a tropical plant [51]. 343 

Sphingosine-related compounds were also detected in the EtOAc extract of 344 

Microascacea sp.2 MUT 4861, which also contains a member of the class of so-called 345 

anhydrophytosphingosines, in particular the detected compound is isomeric with azetidine-346 

derived penaresidins A and B, which were first isolated from the marine sponge Penares sp. 347 

[52].  348 

Conversely, compound 8 is a cyclodepsipeptide scopularide A, a molecule with 349 
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antiproliferative activity, previously isolated from a marine strain of the fungus 350 

Scopulariopsis brevicaulis [28], belonging to the same Microascaceae family assigned to 351 

MUT 4861. 352 

In conclusion, nine selected strains isolated from the green alga F. petiolata were 353 

chosen as a promising source of antimicrobial compounds. All fungal strains demonstrated 354 

interesting antimicrobial activity against four human pathogenic MDR bacteria. Crude 355 

extracts of three of the selected fungal strains, preserved at the MUT collection as MUT 4865, 356 

MUT 4979 and MUT 4861, were able to strongly inhibit the entire panel of pathogens. The 357 

chemical profiling of the antibacterial extracts from B. bassiana, MUT 4865, and 358 

Microascacea sp.2, MUT 4861, by LC HRMS allowed identification of the main components 359 

of the crude extracts. No detectable amounts of peptide mycotoxins, such as beauvericin or 360 

enniatins, known for their antimicrobial and anti-tumor activities [53], were detected. 361 

Isolation of several sphingosine bases, including compound 1, previously unreported from 362 

natural sources, gave a rationale to the broad spectrum of antibacterial activity exhibited by 363 

the crude extract of this fungal strain. Further experiments aimed at the isolation of pure 364 

compounds and determination of their biological activity are currently underway. 365 
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Legends to figures 521 
 522 

Fig. 1. ESI positive mode base peak chromatograms of the active samples MUT 4865 EtOAc 523 

extract (panel A), Acetone extract (panel B) and MUT 4861 Acetone extract (panel C). 524 

Numbers above the peaks identify the metabolites listed in Tables 2 and 3. 525 

 526 

Fig. 2. MS3 ESI positive mode spectrum of the precursor ion at m/z 359.30 derived from 527 

MSMS at m/z 376.31 and its proposed fragmentation. 528 

 529 

Fig. 3. Chemical structures of secondary metabolites (1-8) identified by LC-HRMS in the 530 

bioactive extracts of Beauveria bassiana MUT 4865 and MUT 4861. 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 
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Table 1. MUT code, taxonomic assessment of sterile mycelia isolated from F. petiolata and 550 

GenBank accesion numbers. 551 

 552 

 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 

MUT 
Code 

Fungal taxa 
GenBank accession 

number ITS and 
LSU 

4883 Biatriospora sp. 
KR014352 
KP671728 

4865 Beauveria bassiana (Bals.-Criv.) Vuill. 
KR014380 
KP671729 

4860 Massarina sp. 
KR014362 
KP671730 

4885 Microascacea sp. 1 
KR014356 
KP671717 

4861 Microascacea sp. 2 
KR014360 
KP671746 

4859 Roussoellacea sp. 1 
KR014355 
KP671716 

4886 Roussoellacea sp. 2 
KR014358 
KP671720 

4966 Roussoellacea sp. 3 
KR014366 
KP671740 

4979 
Knufia petricola (U. Wollenzien & de Hoog) Gorbushina & 
Gueidan 

KR014376 
KP671749 
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Table 2. Antimicrobial activity of the fungal intracellular extracts vs four bacterial strains 569 

belonging to different species. The data are reported as capacity to inhibit the microorganisms 570 

growth in more than 50% (IC50).  Growth in the presence of 2% DMSO was considered as 571 

100% growth. ND: Not detected. 572 

 573 

 574 

 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 

Fungi 
IC50 (mg/mL) 

B. metallica LMG 
24068    

P. aeruginosa 
PA01                    

K. Pneumoniae 
DF12SA                

S. aureus 6538P                     MUT 
CODE 

 Ethyl 
acetate 

Acetone 
Ethyl 

acetate 
Acetone 

Ethyl 
acetate 

Acetone 
Ethyl 

acetate 
Acetone 

 
4859 0.5 - 0.25  > 2.0 > 2.0 > 2.0 > 2.0 > 2.0 1.0 - 0.5  > 2.0 
4860 0.5 - 0.25 0.5 - 0.25 > 2.0 > 2.0 > 2.0 > 2.0 2.0 - 1.0 > 2.0 
4861 0.5 - 0.25 0.5 - 0.25 2.0 - 1.0 1.0 - 0.5  > 2.0 2.0 - 1.0 1.0 - 0.5 ND 

4865 0.5 - 0.25 0.5 - 0.25 > 2.0 > 2.0 1.0 - 0.5 > 2.0 0.5 - 0.25 0.5 - 0.25 

4979 1.0 - 0.5  ND 1.0 - 0.5  ND > 2.0 ND 0.5 - 0.25 ND 
4966 1.0 - 0.5 ND > 2.0 ND > 2.0 ND 1.0 - 0.5  ND 
4885 2.0 - 1.0 ND > 2.0 ND > 2.0 ND 2.0 - 1.0 ND 
4886 2.0 - 1.0 ND > 2.0 ND > 2.0 ND 2.0 - 1.0 ND 
4883 2.0 - 1.0 ND 2.0 - 1.0 ND > 2.0 ND 2.0 - 1.0 ND 



 

 

26 

Table 3. Annotated peaks observed in the chromatograms of the EtOAc and Acetone extracts 592 
of Beauveria bassiana  MUT 4865 593 
 594 

RT 
(min) 

MS and MS/MS Suggested MF Proposed structure 

23.20 376.3195 [M+Na]+ (Δppm: 
1.049) 
MS2 (Fig. S3): 359.29, 
341.28; MS3 see Fig. 2 

C22H43 NO2 2-aminodocosa-6,17-dien-1,3-diol 
(1) 

 

28.32 318.30015 (Δppm: -0.379) 
MS2 (Fig. S4) :300.29, 
282.29, 265.33  

C18H39 NO3 2-aminooctadecan-1,3,4-triol 
(4-hydroxysphiganine or 
phytosphingosine) (2) 

29.11 302.30543 (Δppm: 0.245) 
MS2 (Fig. S5): 284.29, 
266.31, 249.26 

C18H39NO2 2-aminooctadecan-1,3-diol 
 (dihydrosphingosine) (3) 

30.03 360.31079 (Δppm: -0,126) 
MS2 (Fig. S6) 
:342.31,324.32, 300.31, 
264.30, 212.19 

C20H41NO4 N-[1,3,4-trihydroxyoctadecan-2-
yl]acetamide  (phytoceramide C2) 
(4) 

45.65 339.25320 (Δppm: - 0.876) C20H34O4 Aphidicolin (5) 
54.04 287.23634 (Δppm: 0.584) 

MS2 (Fig. S7): 269.23, 
203.14, 175.11  

C20H30O Fusoxysporone (6) 

60.38 395.3309 (Δppm: 0.145) C28H42O Ergosta-5,7,22-trien-3-β-ol 
(ergosterol)  

62.89 393.3153 (Δppm: 0.401) C28H40O Ergostane derivative  
66.49 371.31453 (Δppm: -1.056)  

MS2 (Fig. S8): 259.01, 
240.70, 146.9, 128.9, 110.99  

C22H42O4 Bis(2-ethylhexyl) hexanedioic acid 
(7) 

 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
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Table 4. Annotated peaks observed in the chromatograms of the Acetone extract of 606 
Microascacea sp.2 MUT 4861. 607 
 608 
RT 

(min) 
MS and MSn Suggested 

MF 
Proposed structure 

31.52 318.30002 (Δppm -
0.756) 
MS2 (Fig. S4): 300.29, 
282.29, 265.33  

C18H39 NO3 2-amino-octadecane- 1,3,4- triol (4-
hydroxysphiganine or phytosphingosine) 
(2) 

34.29 330.30024 (Δppm -
0.031) 
MS2 (Fig. S10): 
312.26, 294.33, 282.32, 
256.32 
[MS3(@ 294.33)] (Fig. 
S11): 266.33, 168.18, 
154.07, 140.11, 133.01, 
126.0, 111.96, 97.94) 

C19H39NO3  

49.05 672.43291 (Δppm-
0.166) 
MS2 (Fig. S9) 654.5, 
525.3, 507.2, 454.2, 
436.2, 323.1 

C36H57N5O7 Scopularide A (8)  

58.14 409.3101 (Δppm 0) C28H40O2 Ergostane derivative 
59.94 393.3154 (Δppm 0) C28H40O Ergostane derivative 
65.6 395.3307 (Δppm 0) 

 
C28H42O Ergosterol 

73.06 371.31576 (Δppm 0) 
MS2 (Fig. S8): 259.01, 
240.70, 146.9, 128.9, 
110.99 
 

C22H42O4 Bis(2-ethylhexyl) hexanedioic acid (7) 

77.20 377.32019 (Δppm 0) C28H40 Ergosta-3,5,7,9(11),22-pentaene 
 609 
 610 

 611 

 612 

 613 

 614 
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Supporting Information 615 

The antimicrobial potential of algicolous marine fungi for counteracting 616 
multidrug resistant bacteria: phylogenetic diversity and chemical profiling 617 

Giorgio Gnavi, Fortunato Palma Esposito, Carmen Festa, Anna Poli, Pietro Tedesco, Renato Fani, Maria Chiara 618 
Monti, Donatella de Pascale, Maria Valeria D'Auria, Giovanna Cristina Varese 619 

 620 

Legend to Supplementary figures 621 

Fig. S1. Bayesian phylogram of Pleosporales (Dothideomycetes) taxa including the five 622 
fungal isolates (indicated as MUT) based on rDNA large subunit (LSU). Clades 623 
designation and sequences were retrieved from Gnavi et al. [14] and from GenBank. Node 624 
numbers indicate BPP over 0.60; ML bootstrap values are greater than 50%. + = strains 625 
isolated from terrestrial sources; * strains isolated from fresh water environments, mangrove 626 
swamp and salt flats; arrow indicates strains isolated from marine sources. 627 

Fig. S2. Bayesian phylogram of Sordariomycestes taxa including the three fungal 628 
isolates (indicated as MUT) based on rDNA large subunit (LSU). Clades designation and 629 
sequences were retrieved from Gnavi et al. [14] and Tang et al.[15] and from GenBank. Node 630 
numbers indicate BPP over 0.60; ML bootstrap values are greater than 50%. + = strains 631 
isolated from terrestrial sources; * strains isolated from fresh water environments, mangrove 632 
and salt flats; arrow indicates strains isolated from marine sources. 633 

Fig. S3. MS2 spectrum of compound 1.        634 

Fig. S4. MS2 spectrum of compound 2.        635 

Fig. S5. MS2 spectrum of compound 3.        636 

Fig. S6. MS2 spectrum of compound 4.        637 

Fig. S7. MS2 spectrum of compound 6.        638 

Fig. S8. MS2 spectrum of compound 7.        639 

Fig. S9. MS2 spectrum of compound 8.        640 

Fig. S10. MS2 spectrum of compound with molecular formulaC19H39NO3    641 

Fig. S11. MS3 data of compound with molecular formula C19H39NO3 on the daughter ions of 642 
m/z 330.30. 643 

 644 

 645 

 646 
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Table S1. Selection of the best fungi growth media antimicrobial compounds production.  647 
Table reports the antimicrobial activity as the percentage of inhibition of a selected target 648 
bacterium (Burkholderia metallica LMG 24068) in presence of the fungal extracellular 649 
extracts from the three different growth media. MeCl medium showed the best antimicrobial 650 
activity. ND: Not detected. 651 

 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 

 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 

 
MUT Code 

Growth media 
MeCl WST30 PCB 

4859 55 ± 2.4 38 ± 1.2 ND 
4860 50 ± 1.7 48 ± 2.4 ND 
4861 65 ± 3.5 38 ± 4.5 10 ± 0.6 
4865 60 ±1.0 60 ± 5.7 ND 
4883 25 ± 0.7 ND 20 ± 1.2 
4885 35 ± 1.4 33 ±3.2 25 ± 0.3 
4886 30 ± 0.4 40 ± 4.3 40 ± 0.9 
4966 50 ± 0.8 10 ± 0.2 ND 
4979 62 ± 1.4 45 ± 3.5 38 ± 0.9 
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Table S2. Comparison of the antimicrobial activity between intracellular and 687 
extracellular. extracts. Antimicrobial activity is reported as the percentage of inhibition of 688 
the selected target bacterium (Burkholderia metallica LMG 24068) in presence of 689 
intracellular and extracellular fungal extracts. Intracellular extracts resulted to be the most 690 
active. 691 
 692 

 693 
  694 
 695 
 696 
 697 
 698 
 699 
 700 
 701 
 702 
 703 
 704 

 705 
 706 
 707 
 708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 

 
MUT Code 

 
Intracellular extract 

 
Extracellular extract 

4859 70 ± 3.4 40 ± 3.2 
4860 67 ± 2.1 33 ±1.3  
4861 56 ± 0.9 30 ± 0.5 
4865 60 ± 2.5 32 ± 0.7 
4883 54 ± 3.1 25 ± 0.8 
4885 76 ± 4.3 33 ± 1.2 
4886 60 ± 3.8 10 ± 0.6 
4966 60 ± 2.1 15 ± 1.3 
4979 60 ± 6.5 30 ± 2.1 
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Table S3. Re-assessment of the antibiotic resistance of the four MDR bacterial strains 725 

belonging to different species. The data are reported as capacity to inhibit the 726 

microorganism growth in more than 50% (IC50).   727 

 728 

Antibiotic 
IC50 (mg/mL) 

B. metallica 
LMG 24068                   

P. aeruginosa 
PA01                    

K. pneumoniae 
DF12SA            

S. aureus 
6538P                     

Ampicillin > 0.2 0.025 -0.012 < 0.003 < 0.003 
Chloramphenicol 0.006 - 0.003 0.006 - 0.003 < 0.003 < 0.003 

Kanamicyn 0.006 - 0.003 0.006 - 0.003 < 0.003 < 0.003 
Tetracycline 0.025 -0.012 < 0.003 0.006 - 0.003 < 0.003 

Trimethoprim < 0.003 0.006 - 0.003 < 0.003 < 0.003 
 729 

 730 
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Figure S3. MS2 spectrum of compound 1 

 

 
 

 

Figure S4. MS2 spectrum of compound 2 
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Figure S5. MS2 spectrum of compound 3 

 

 
 

 

Figure S6. MS2 spectrum of compound 4 
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Figure S7. MS2 spectrum of compound 6 

 

 
 

 

Figure S8. MS2 spectrum of compound 7 
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Figure S9. MS2 spectrum of compound 8 

 
 

Figure S10. MS2 spectrum of compound with molecular formula C19H39NO3 

 

  

+ c ESI Full ms2 672.40@cid35.00

200 250 300 350 400 450 500 550 600 650 700 750
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

507.23

436.19

525.29

449.29323.12
454.23

654.48

407.98
350.23284.16 488.31237.13 627.40559.35 671.59 710.75 743.65

+ c ESI Full ms2 330.30@cid35.00 

100 120 140 160 180 200 220 240 260 280 300 320 340
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

312.26

294.33
256.32

282.32
268.28245.16

228.11 330.28

x10

-­‐H2O



Figure S11. MS3 data on the daughter ion of m/z 330.30 

 

 
 

+ c ESI Full ms3 330.30@cid35.00 294.30@cid35.00

80 100 120 140 160 180 200 220 240 260 280 300 320 340
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

266.33

97.94

111.96
94.96

126.00
133.01

140.11 154.07 168.1890.91
276.31182.07 196.29

x10


