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Harmonic and quasi-harmonic thermal properties of two isostructural simple oxides (periclase, MgO, and
lime, CaO) are computed with ab initio periodic simulations based on the density-functional-theory (DFT).
The more polarizable character of calcium with respect to magnesium cations is found to dramatically affect
the validity domain of the quasi-harmonic approximation that, for thermal structural properties (such as
temperature dependence of volume, V (T ), bulk modulus, K(T ) and thermal expansion coefficient, α(T )),
reduces from [0 K - 1000 K] for MgO to just [0 K - 100 K] for CaO. On the contrary, Thermodynamic
properties (such as entropy, S(T ), and constant-volume specific heat, CV (T )) are described reliably at least
up to 2000 K and quasi-harmonic constant-pressure specific heat, CP (T ) up to about 1000 K in both cases.
The effect of the adopted approximation to the exchange-correlation functional of the DFT is here explicitly
investigated by considering five different expressions of three different classes (local-density approximation,
generalized-gradient approximation and hybrids). Computed harmonic thermodynamic properties are found
to be almost independent of the adopted functional, whereas quasi-harmonic structural properties are largely
affected by the choice of the functional, with differences that increase as the system becomes softer.

Keywords: thermal properties, thermal expansion, quasi-harmonic approximation, thermodynamic properties

I. INTRODUCTION

A wealth of information about the temperature and
pressure dependence of thermodynamic properties of
solids can be extracted from the knowledge of the evolu-
tion of lattice dynamics on expansion and compression.
Theoretical ab initio simulations, based on the widely
used density functional theory (DFT), do represent a
powerful tool for this kind of investigations, allowing for
the simultaneous description of high temperatures and
pressures.1–7

Some thermodynamic properties (such as the temper-
ature dependence of entropy, S(T ), constant-volume spe-
cific heat, CV (T ) and Helmholtz’s free energy, F (T )) can
be effectively computed within a harmonic description of
the lattice potential. Others (such as the thermal expan-
sion, α(T ), the constant-pressure specific heat, CP (T ),
the temperature dependence of the bulk modulus, K(T ),
the simultaneous dependence on temperature and pres-
sure of entropy, S(P, T ) and Helmholtz’s free energy,
F (P, T ), etc.) require to go somehow beyond the har-
monic approximation (HA).8,9 In this respect, the quasi-
harmonic approximation (QHA) provides the simplest
formal frame allowing for their calculation by introducing
an explicit dependence on volume of phonon frequencies
and retaining the harmonic expression for the Helmholtz
free energy.10,11 The validity domain of the QHA (i.e.
the temperature range where it could give a reliable de-
scription of such thermodynamic properties) can hardly
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be expressed as a general function of the Debye tempera-
ture, θD, and melting temperature, TM , of a material; it
rather appears to be related to the chemical nature of the
bond framework of the structure: in general, one might
just expect that the weaker the interatomic interactions,
the softer the phonon modes, the larger the intrinsic an-
harmonic effects and the smaller the validity domain.12

A major practical drawback of DFT is obviously its
non-uniqueness: a huge variety of exchange-correlation
functionals have been proposed, on which most computed
properties dramatically depend. Different classes of func-
tionals are commonly sorted in terms of increasing accu-
racy, for practical purposes, according to John Perdew’s
“Jacob’s ladder” proposal. Local density approxima-
tion (LDA), generalized-gradient approximation (GGA),
meta-GGA, hybrid and double-hybrid approaches con-
stitute the main rungs of such a ladder. In this respect,
the large majority of the quasi-harmonic calculations of
solids reported so far has been performed at the LDA
level.12–18 A few of them reported GGA results.19,20 Only
very recently higher order approximations have been used
in a couple of studies on diamond.2,21 As a consequence,
the effect on computed quasi-harmonic properties of the
adopted DFT approximation still has to be critically ad-
dressed, in particular for ionic materials where it is ex-
pected to be larger than for covalent ones.

A fully automated algorithm, implemented in the
Crystal program, has recently been presented for the
ab initio evaluation of quasi-harmonic properties of
crystals,2 which is here revised and made more stable and
generally applicable. The main element of novelty, in this
respect, is represented by the fitting of individual phonon
frequencies as a function of volume (after having estab-
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lished their continuity on volume by computing scalar
products of the corresponding normal coordinates), from
which all thermodynamic properties can then be easily
derived. Such revised algorithm is applied to the study
of the temperature dependence of a large variety of struc-
tural and thermodynamic properties (entropy, constant-
volume and constant-pressure specific heat, thermal ex-
pansion, bulk modulus, etc.) of two prototypical ionic
crystals such as periclase, MgO, and lime, CaO. Despite
they exhibit the same structure and a similar degree of
ionicity, these two crystals are found to behave quite dif-
ferently as regards the effectiveness of the QHA, due to
the more polarizable character of calcium cations with
respect to magnesium ones.

Consolidated experimental data are available for the
thermodynamic properties of MgO to compare with.22–24

Many experimental studies have been reported about its
thermal expansion, as well,22–31 both at low and high
temperatures. From a theoretical point of view, some
papers have discussed the thermal expansivity of peri-
clase, both with a simplified Grüneisen32 and a full quasi-
harmonic approach.18,20,33 In particular, Karki et al.18

reported LDA results, up to 3000 K, where a good de-
scription was obtained up to about 700 K. Wu et al.33

reported the LDA thermal expansion of MgO by dis-
cussing a semiempirical anharmonic correction34 to the
free energy that allowed for obtaining a good descrip-
tion of V (T ) up to 3000 K. Oganov and Dorogokupets20

reported GGA results, up to 3000 K, that were systemat-
ically underestimating the experimental thermal expan-
sion, even at very low temperatures. Both studies dis-
cussed a large effect of explicit anharmonic terms above
about 500 K. For CaO, less experimental data are re-
ported in the literature.23,29 To the best of our knowl-
edge, only one theoretical study reported some LDA val-
ues of thermodynamic properties of lime, as computed at
just three temperatures (300, 1000 and 2000 K).12

Both the numerical accuracy of the present implemen-
tation and the validity domain of the QHA are here crit-
ically discussed for the two systems. Special attention
is devoted to the investigation of the effect on computed
quasi-harmonic properties of: i) the size of the supercell
that is used for the lattice dynamical calculation (i.e. the
sampling of the phonon dispersion in the Brillouin zone);
ii) the adopted approximation to the DFT. Five differ-
ent functionals, belonging to three different rungs of “Ja-
cob’s ladder” are explicitly considered: a LDA functional;
three GGA functionals (namely, PBE, BLYP and PW91)
and a global hybrid functional (namely, B3LYP). Given
that the same computational methodology and setup is
used for all of them, merits and limitations of different
classes of functionals can be consistently discussed as re-
gards their description of quasi-harmonic properties.

The structure of the paper is as follows: in Section
II the main expressions of harmonic and quasi-harmonic
properties of solids are recalled; a brief description of
the structure of the revised algorithm used is given in
Section III; computational details are provided in Section

IV; results on computed harmonic and quasi-harmonic
properties of MgO and CaO are presented in Section V;
conclusions are drawn in Section VI.

II. HARMONIC AND QUASI-HARMONIC FORMALISM

The calculation of the harmonic thermodynamic prop-
erties of crystals requires the knowledge of phonon modes
over the complete first Brillouin zone (FBZ) of the sys-
tem; phonons at points different from Γ can be obtained
by building a supercell (SC) of the original unit cell, fol-
lowing a direct-space approach.35–37 The lattice vectors
g =

∑

t lgt at identify the general crystal cell where {at}
are the direct lattice basis vectors, with t = 1, . . . , D
(where D is the dimensionality of the system: 1, 2, 3 for
1D, 2D, 3D periodic systems): within periodic boundary
conditions the integers lgt run from 0 to Lt − 1. The pa-
rameters {Lt} define size and shape of the SC in direct
space. Let us label with G the general super-lattice (i.e.
whose reference cell is the SC) vector and let us introduce
the L =

∏

t Lt Hessian matrices {Hg} whose elements are
Hg

ai,bj = ∂2E/(∂u0
ai∂ug

bj) where atom a is displaced along
the i-th Cartesian direction within the reference cell and
atom b is displaced in cell g, along with all its periodic
images in the crystal (that is in cells g + G). The set of L
Hessian matrices {Hg} can be Fourier transformed into
a set of dynamical matrices

{

Wk
}

each one associated
with a wavevector k =

∑

t (κt/Lt)bt where {bt} are the
reciprocal lattice vectors and the integers κt run from 0
to Lt − 1:

Wk =

L−1
∑

g=0

M− 1
2 HgM− 1

2 exp(ık · g) , (1)

where M is the diagonal matrix with the masses of the
nuclei associated with the 3M atomic coordinates where
M is the number of atoms per cell. The solution is then
obtained through the diagonalization of the L matrices
{

Wk
}

:

(Uk)† Wk Uk = Λk with (Uk)†Uk = I . (2)

The elements of the diagonal Λk matrix provide the
vibrational frequencies, νkp =

√

λkp (atomic units are

adopted), while the columns of the Uk matrix contain
the corresponding normal coordinates. To each k-point
in the first Brillouin zone, 3M harmonic oscillators (i.e.
phonons) are associated which are labeled by a phonon
band index p (p = 1, . . . ,3M) and whose energy levels
are given by the usual harmonic expression:

εp,k
m =

(

m +
1

2

)

ωkp , (3)

where m is an integer and ωkp = 2πνkp.
Let us stress that, given the usual reciprocity between

direct and reciprocal spaces, within the direct space ap-
proach that is used here, the size of the adopted SC cor-
responds to the sampling of the FBZ. Use of the primitive



3

cell would allow for the description of Γ modes only while
a 3×3×3 SC would correspond to a 3×3×3 mesh of k-
points in the FBZ, for instance. Increasing the size of the
SC simply corresponds to increasing the sampling of the
phonon dispersion in the FBZ in reciprocal space. SCs
of different size or shape do generally sample the FBZ
in different k-points; some k-points, of course, can be
sampled by different SCs (the Γ point, for instance, is
sampled by all SCs). In these cases, the high numerical
accuracy of the entire procedure ensures the phonon fre-
quencies which refer to the same k-points to exhibit the
same values when computed with different SCs, within
0.1 cm−1.

The overall vibrational canonical partition function of
a crystal, Qvib(T ), at a given temperature T , can be
expressed as follows:

Qvib(T ) =
L−1
∑

k=0

3M
∑

p=1

∞
∑

m=0

exp

[

−
εp,k

m

kB T

]

, (4)

where kB is Boltzmann’s constant. According to stan-
dard statistical mechanics, thermodynamic properties of
crystalline materials such as entropy, S(T ), and ther-
mal contribution to the internal energy, E(T ), can be
expressed as:

S(T ) = kBT

(

∂ log(Qvib)

∂T

)

+ kB log(Qvib) , (5)

E(T ) = kBT 2

(

∂ log(Qvib)

∂T

)

. (6)

From the above expression for E(T ), the constant-volume
specific heat, CV (T ), can also be computed according
to CV (T ) = ∂E(T )/∂T . By casting equation (4) into
equations (5) and (6) one gets the following harmonic
expressions:

S(T ) = kB

∑

kp











~ωkp

T

(

e
~ω

kp

kB T − 1

) − log(1 − e
−

~ω
kp

kBT )











(7)

E(T ) =
∑

kp

~ωkp





1

2
+

1

e
~ω

kp
kB T − 1



 (8)

CV (T ) =
∑

kp

(~ωkp)
2

kBT 2

e
~ω

kp
kBT

(

e
~ω

kp
kBT − 1

)2 (9)

An explicit harmonic expression of Helmholtz’s free en-
ergy, F (T ), can also be derived (see below). The HA
has successfully been applied to the study of spectro-
scopic and some thermodynamic properties of many crys-
tals due to its simplicity and predictive power.38–40 How-
ever, the limitations of the HA are well-known: zero ther-
mal expansion, temperature independence of elastic con-
stants and bulk modulus, equality of constant-pressure

and constant-volume specific heats, infinite thermal con-
ductivity and phonon lifetimes, etc.8,9 The simplest way
for correcting most of the above mentioned deficiencies of
the HA is represented by the QHA, according to which,
the Helmholtz free energy of a crystal is written retain-
ing the same harmonic expression41 but introducing an
explicit dependence of vibration phonon frequencies on
volume:10,11

FQHA(T, V ) = U0(V ) + FQHA
vib (T, V ) , (10)

where U0(V ) is the zero-temperature internal energy of
the crystal without any vibrational contribution (a quan-
tity commonly accessible to standard ab initio simu-
lations via volume-constrained geometry optimizations)
and the vibrational part reads:

FQHA
vib (T, V ) =EZP

0 (V )+kBT
∑

kp

[

ln

(

1 − e
−

~ω
kp(V )

kB T

)

]

,

(11)
where EZP

0 (V ) =
∑

kp ~ωkp(V )/2 is the zero-point en-
ergy of the system. The equilibrium volume at a
given temperature T , V (T ), is obtained by minimizing
FQHA(V ; T ) with respect to volume V , keeping T as a
fixed parameter. A volumetric thermal expansion coeffi-
cient αV (T ) can be defined as:

αV (T ) =
1

V (T )

(

∂V (T )

∂T

)

P=0

. (12)

For cubic crystals, a linear thermal expansion coefficient
αl(T ) is commonly considered which is simply αl(T ) =
αV (T )/3. The temperature-dependent bulk modulus of
the system, K(T ), can be obtained as an isothermal sec-
ond derivative of equation (10) with respect to the vol-
ume:

K(T ) = V (T )

(

∂2FQHA(V ; T )

∂V 2

)

T

. (13)

From the knowledge of V (T ), α(T ) and K(T ), the dif-
ference between constant-pressure and constant-volume
specific heats can also be computed at each temperature
as:42

CP (T ) − CV (T ) = α2
V (T )K(T )V (T )T . (14)

III. THE REVISED ALGORITHM

A fully-automated algorithm, implemented in a devel-
opment version of the Crystal14 program,43,44 has re-
cently been presented for the calculation of all the har-
monic and quasi-harmonic properties introduced in Sec-
tion II which was based on the fitting of Helmholtz’s free
energy, FQHA(V ; T ), as a function of volume. A more
accurate and general revised version of such algorithm is
presented here which relies on the direct fitting of indi-
vidual phonon frequencies, ωkp(V ), versus volume. Once
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phonon frequencies are known continuously as a function
of volume, all other properties can be analytically de-
rived through the expressions reported in the previous
section. In order to uniquely determine the continuity
of phonon frequencies among different volumes, correctly
accounting for possible crossings, scalar products of the
corresponding normal modes are performed; only modes
belonging to the same irreducible representation are com-
pared. The definition of both the explored volume range
and the number of considered volumes has changed in
order to make it as black-box as possible.

Let us briefly sketch the structure of the new algo-
rithm. For more details one should refer to the ex-
tended description of Ref. 2. The starting structure
of the system is fully-optimized using analytical energy
gradients with respect to both atomic positions and lat-
tice parameters so as to determine the zero tempera-
ture equilibrium volume, V0 (zero-point motion effects
are neglected at this stage).45–47 A volume range is de-
fined from a -s% compression to a +2s% expansion with
respect to V0, where NV equidistant volumes are con-
sidered (possible values for NV are 4, 7 and 13, corre-
sponding to equidistances of s%, s/2% and s/4%, re-
spectively). At each volume, the structure is fully re-
laxed via a V -constrained geometry optimization48 and
phonon frequencies are computed.49,50 Once all volumes
have been considered, the continuity of phonon frequen-
cies on volume is determined before individually fitting
them as a function of volume with polynomial functions
of different orders, up to third order. From fitted frequen-
cies, at any considered temperature, T , the Helmholtz
free energy is evaluated through equations (10) and (11)
at several volumes, minimized for determining the corre-
sponding equilibrium volume, V (T ) and fitted for getting
K(T ) from its second derivative. By fitting V (T ) data
to a polynomial function and by taking its temperature
derivative, the thermal expansion coefficient αV (T ) of
equation (12) can then be computed numerically.

The only algorithm-specific parameters whose effect on
computed properties should be discussed (even though
default values are provided for all of them in the imple-
mentation in the Crystal program) are: i) the size of
the adopted SC; ii) the amplitude of the step, s; iii) the
number of volumes, NV and iv) the order of the poly-
nomial fitting function for the frequencies. The effect on
computed quasi-harmonic properties of these parameters
will be discussed in Section V. In particular, we will
see how quasi-harmonic quantities converge much faster
than harmonic ones, in terms of SC size, thus making this
kind of studies definitely affordable from a computational
point of view.

IV. COMPUTATIONAL SETUP

All calculations are performed with a development ver-
sion of the Crystal14 program which works within peri-
odic boundary conditions and adopts localized Gaussian-

type function basis sets (BS). All-electron BSs have been
used of triple-zeta valence quality, augmented with po-
larization functions. For MgO, the TZVP basis from Ref.
51 has been used. For CaO, the corresponding BS was
found to describe too poorly the valence part of the sys-
tem: starting from it, two extra-polarization functions
of d-type have been added for Ca (for a total of three d
functions of exponents 2.5, 0.79 and 0.25 a.u.) and one
extra d-type function for O (for a total of 2 d functions
of exponents 1.2 and 0.25 a.u.).

As implemented in the Crystal program, infinite
Coulomb and exchange sums are truncated according to
five thresholds (here set to 8 8 8 8 16).43 Numerical inte-
gration techniques are used for the evaluation of the DFT
exchange-correlation contribution (see the XXLGRID key-
word in the Crystal User’s Manual).43 The convergence
of the self-consistent-field (SCF) step of the calculation
is governed by a threshold on energy of 10−10 hartree for
geometry optimizations and phonon frequency calcula-
tions. The two tolerances governing the bipolar approx-
imation of Coulomb and exchange integrals are here set
to 22 and 18, respectively (see keyword BIPOLAR).43 A
sub-lattice is defined for sampling the reciprocal space
with a shrinking factor of 8, for SCs containing 2 and 4
atoms, that is progressively reduced as the size of the SC
increases: it becomes 6 for SCs with 8 and 16 atoms, 4
for SCs containing 24, 54 and 64 atoms and 2 for SCs
with 128 and 216 atoms.

Five different functionals of the DFT are con-
sidered: a local-density approximation, LDA, the
Perdew-Burke-Ernzerhof, PBE,52 the Perdew-Wang
1991, PW91,53 and the Becke-Lee-Yang-Parr, BLYP,54,55

generalized-gradient functionals and the hybrid Becke-
three parameters-Lee-Yang-Parr, B3LYP,56 functional
with 20% of exact Hartree-Fock exchange.

V. RESULTS AND DISCUSSION

A. Periclase MgO

Before discussing how the adopted DFT functional af-
fects computed quasi-harmonic properties (temperature
evolution of volume, bulk modulus, constant-pressure
specific heat) of MgO and comparing them with avail-
able experimental data, the effect of the main parame-
ters of the algorithm introduced in Section III has to be
carefully checked. The most critical among them is the
size of the SC (i.e. size of the mesh of k-points in the
FBZ) used to describe the lattice dynamics of the system
(i.e. to compute the phonon frequencies which are then
used to build all the thermodynamic functions). In a
previous study, where the same computational approach
was applied to characterize the thermal expansion of dia-
mond up to 1600 K and 20 GPa, it was shown that a SC
containing at least 64 atoms was necessary to converge
the description of αV (T ).2 Surprisingly enough, in the
present case, we find something rather different: in or-
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FIG. 1. Thermal expansion coefficient, αV (T ), of MgO, per-
iclase, as a function of temperature. Experimental data are
from Ganesan30 (solid squares), Anderson et al.24 (solid cir-
cles) and White and Anderson31 (solid triangles). Computed
quasi-harmonic values, at PBE level of theory, are reported
as continuous lines of increasing thickness as a function of the
size of the adopted supercells (SC). Curves are reported for
SCs containing 2, 4, 8, 16, 24, 54 and 64 atoms. NV = 7 and
s = 6.

der to converge the description of all the quasi-harmonic
properties in the whole temperature range [0 K - 2000 K]
for both MgO and CaO, a SC containing just 8 atoms
is enough. These findings have a great computational
relevance as, along with other evidences to be discussed
below, they imply that a full quasi-harmonic character-
ization of this family of ionic systems can be performed
routinely at the ab initio level without prohibitive costs.
The effect of the SC size on the computed thermal ex-
pansion coefficient of MgO, at PBE level, is reported in
Figure 1, where αV (T ) is reported as a function of tem-
perature, up to 2000 K. Computed quasi-harmonic values
are reported as continuous lines of increasing thickness
as a function of the size of the adopted SC. Curves are
reported for SCs containing 2, 4, 8, 16, 24, 54 and 64
atoms. The figure shows that the primitive cell (con-
taining 2 atoms) is inadequate to describe αV (T ); a SC
containing 4 atoms significantly ameliorates the descrip-
tion, still not being at convergence, while SCs containing
8 or more atoms provide exactly the same description.
As we shall discuss below, much larger SCs are needed
to converge individual harmonic thermodynamic proper-
ties such as entropy and constant-volume specific heat.

In Figure 1, three experimental datasets are also re-
ported: by Ganesan30 (solid squares), Anderson et al.24

(solid circles) and White and Anderson31 (solid trian-
gles). By comparing converged theoretical results with
experimental determinations we note that: i) for tem-
peratures up to about 1000 K, the quasi-harmonic de-
scription of the thermal expansion of MgO is in remark-
able agreement with the experiment; ii) above about 1000

TABLE I. Effect of NV and s on the computed thermal ex-
pansion coefficient, αV (T ), of MgO at selected temperatures
(data in 10−5 K−1). When NV is explored, s is set to 6,
whereas when s is explored, NV is kept to 7. Calculations
performed at PBE level on a SC with 16 atoms.

T NV s

4 7 13 3 4 5 6 7

100 0.68 0.66 0.66 0.67 0.66 0.67 0.66 0.67

200 2.28 2.28 2.28 2.30 2.29 2.29 2.28 2.28

400 3.57 3.59 3.59 3.61 3.59 3.59 3.59 3.57

600 4.04 4.05 4.06 4.10 4.08 4.08 4.05 4.02

800 4.34 4.37 4.37 4.44 4.42 4.39 4.37 4.33

1000 4.64 4.65 4.66 4.80 4.75 4.69 4.65 4.61

1200 4.94 4.96 4.97 5.16 5.13 5.00 4.96 4.92

1400 5.34 5.33 5.33 - 5.60 5.41 5.33 5.29

1600 5.84 5.82 5.83 - - 5.92 5.82 5.76

1900 6.97 6.85 6.88 - - - 6.85 6.78

K, while experimental data increase linearly, the QHA
starts deviating from linearity and progressively diverges
as temperature increases. The validity domain of the
QHA for MgO appears to be limited to the [0 K - 1000 K]
temperature range. Above 1000 K, neglected explicit an-
harmonic terms of the lattice potential play a significant
role in making the thermal expansion coefficient diverge.
This issue has been addressed in several studies: Karki
et al. (2000) reported QHA results of αV (T ) that start
diverging from molecular dynamics anharmonic ones57

at about 700 K;18 in 2003, Oganov and Dorogokupets
used QHA and a quadratic anharmonic approximation
of the free energy and reported significant deviations be-
tween the two starting at about 500 K;20 in 2009, Wu
and Wentzcovitch reported QHA results compared with
semiempirical anharmonic ones where the two determina-
tions of αV (T ) deviate from each other above about 800
K.34 All these studies discussed the decrease of intrinsic
anharmonic terms as a function of pressure; in particular,
anharmonic effects are shown to become negligible up to
3000 K for pressures above about 50-60 GPa.18,20,34,57

The key part of the algorithm sketched in Section III
consists in computing and fitting phonon frequencies as
a function of volume. Polynomials of different order are
used for the fitting. As a measure of the goodness-of-
fit, we consider mode specific, R2

p, and average over all

modes, R
2
, coefficients of determinations (the closer to

1, the better the fitting).58 For MgO, we find overall R
2

coefficients of 0.992033, 0.999850 and 0.999999 for first-
, second- and third-order polynomials, respectively. A
cubic polynomial is then found to describe very accu-
rately the evolution on volume of all phonon frequencies
and is used for all calculations. A linear fitting, that
would somehow correspond to the well-known Grüneisen
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approximation, gives a poor description of the volume
dependence of phonon frequencies: in particular, indi-
vidual R2

p coefficients of the six softest frequencies (p =
1, . . . , 6) would be as low as 0.974165 (to be compared
with 0.999995 from a cubic fitting).

As introduced in Section III, two critical algorithm-
specific parameters to be investigated are: i) the range
of explored volumes, defined in terms of step s and ii)
the number of volumes, NV , at which phonon frequencies
are explicitly computed. A given step s defines a volume
range from a minimum, V s

min (-s% of V0), to a maximum,
V s

max (+2s% of V0), where V0 is the equilibrium volume
obtained with a standard geometry optimization. Be-
fore discussing their effect on computed quantities, let us
stress that, for sake of numerical accuracy, we decided to
use the present scheme just by interpolating computed
phonon frequencies within the explored volume inter-
val and not by extrapolating beyond it. It follows that
the definition of s determines the maximum temperature
T s

max that can be explored such that V (T s
max) ≡ V s

max.

In Table I, we report the computed thermal expansion
coefficient, αV (T ) of MgO at selected temperatures, as
obtained by using a different number of volumes (NV =
4, 7 or 13) in a fixed range s = 6 and, conversely, as
obtained by using always 7 volumes (i.e. NV = 7) but
exploring different ranges (s = 3, 4, 5, 6 and 7). It turns
out that computed values are almost completely indepen-
dent of NV for all considered temperatures. This finding
has, again, a great computational impact as it implies,
along with previous findings on the SC size, that very
simple (i.e. not particularly costly) calculations are re-
quired for obtaining the full quasi-harmonic description
of this class of systems: just 4 phonon frequency calcu-
lations of a SC containing 8 atoms. Also the effect of s
is rather small, particularly so when temperatures close
to the maximum one, T s

max, are not considered and even
more when temperatures below 1000 K are analyzed (i.e.
those within the validity domain of QHA). In the Table,
dashes refer to temperatures beyond T s

max for different
steps s.

The effect of the adopted DFT functional on computed
quasi-harmonic properties (such as the temperature evo-
lution of volume, thermal expansion coefficient and bulk
modulus) is analyzed in Figure 2 up to 1000 K. As shown
before, indeed, above that temperature QHA determina-
tions are no longer reliable. Five different functionals,
belonging to three rungs of “Jacob’s ladder”, are con-
sidered: LDA, PBE, BLYP, PW91 and B3LYP. Let us
stress that such a homogeneous and rigorous compari-
son (i.e. at the same computational conditions) is here
addressed for the first time for ionic compounds. One
of us recently reported a similar comparison for a fully-
covalent system as diamond.2 In the upper panel of the
figure, the volume of the primitive cell is reported as a
function of temperature. Experimental data, given as
solid symbols, are by Anderson et al.24 (circles), Fiquet
et al.28 (squares) and Dubrovinsky and Saxena25 (tri-
angles). The thermal expansion coefficient, αV (T ), is re-

FIG. 2. Quasi-harmonic properties of MgO as a function of
temperature, as computed with five different functionals of
the DFT. Upper panel: volume, referring to the primitive cell
(the conventional lattice parameter is given by a = (4V )1/3);
experimental data by Anderson et al.24 (solid circles), Fiquet
et al.28 (solid squares) and Dubrovinsky and Saxena25 (solid
triangles). Middle panel: thermal expansion coefficient; ex-
perimental data by Ganesan30 (solid squares), Anderson et

al.24 (solid circles) and White and Anderson31 (solid trian-
gles). Lower panel: bulk modulus; experimental data by An-
derson et al.24 (solid circles) and Anderson and Isaak59 (solid
squares).

ported in the middle panel. Experimental determinations
by Ganesan30 (squares), Anderson et al.24 (circles) and
White and Anderson31 (triangles) are also reported. The
lower panel shows the computed bulk modulus, K(T ) as
compared with experiments by Anderson et al.24 (circles)
and Anderson and Isaak59 (squares).

Several considerations can be made from inspection of
Figure 2: i) different functionals provide rather different
values of the equilibrium volume of periclase (with dif-
ferences among them as large as 8%) and none of them
gets closer than 2% to the experimental values; ii) LDA
underestimates the volume, hybrid and GGA function-
als overestimate it, more so for the latter; iii) PBE and
PW91 give a very similar description to each other for
all properties; iv) as regards the thermal expansion coef-
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ficient, LDA is found to systematically underestimate it
in the whole temperature range, PBE, PW91 and B3LYP
provide results in close agreement with experimental data
while BLYP overestimates it; v) different functionals pro-
vide very different descriptions of the equilibrium bulk
modulus of MgO, with differences among them as large
as 15%: LDA and BLYP largely overestimate and under-
estimate it, respectively, while B3LYP gives an excellent
description of K; vi) B3LYP also nicely describes the
temperature dependence of K(T ), better than PBE and
PW91 whose slope is too low.

Let us stress that while different functionals do pro-
vide very different values of equilibrium volume and bulk
modulus, their quasi-harmonic description of the depen-
dence on temperature of such properties is quite similar
in all cases. This behavior can be traced back to their
description of the phonon frequencies of the system. Dif-
ferent functionals do provide different values of the fre-
quencies, with differences as large as 5%, but a very sim-
ilar description of their volume dependence, which is the
fundamental aspect within the QHA.

By comparing present results with those reported in a
couple of previous studies where the effect of DFT func-
tionals on computed thermal expansion of diamond2 and
bulk copper19 has been discussed homogeneously, some
general conclusions can be drawn: i) the softer the mate-
rial, the larger the deviations of αV (T ) among different
classes of functionals (at 1000 K, the maximum devia-
tion was reported to be about 9% for diamond, is about
25% for MgO and was reported to be about 36% for
bulk copper); ii) LDA tends to systematically underes-
timate the volume, overestimate the bulk modulus and
underestimate the thermal expansion; iii) hybrid B3LYP
and GGA PBE functionals provide a reliable descrip-
tion of most quasi-harmonic properties. This rationaliza-
tion makes questionable some of the previously reported
quasi-harmonic characterizations of αV (T ) of MgO, as re-
gards the effect of the adopted functional: Karki et al.,18

indeed, reported LDA results perfectly matching experi-
mental values and Oganov and Dorogokupets20 discussed
a significant underestimation by a GGA functional.

In Figure 3, we report computed thermodynamic prop-
erties of MgO as a function of temperature, up to 2000 K:
entropy, S(T ), constant-volume, CV (T ), and constant-
pressure, CP (T ), specific heats. All calculations are here
performed at PBE level of theory; we will explicitly dis-
cuss the effect of the adopted functional on such proper-
ties in Section VB for CaO. Both entropy and constant-
volume specific heat can be derived from harmonic cal-
culations via expressions (7) and (9). Their convergence
with respect to the size of the adopted SC has to be ex-
plicitly investigated. Experimental data from Chopelas22

(solid circles) and Robie et al.23 (empty circles) are re-
ported for comparison. In the figure, we report theoreti-
cal determinations obtained with SCs of increasing size,
containing 2, 4, 8, 24, 64, 128 and 216 atoms. CV (T )
is shown to converge with a 64 atom SC while entropy,
as generally happens, shows a slower convergence and

FIG. 3. Entropy (lower panel) and specific heat (upper panel)
of MgO, periclase, as a function of temperature. Entropy, S,
and constant-volume specific heat, CV , are computed with
harmonic expressions (7) and (9) with SCs of increasing size
(continuous lines of increasing thickness) containing 2, 4, 8,
24, 64, 128 and 216 atoms. CP (dashed line) is obtained by
adding on top of the converged CV the CP − CV difference
computed with expression (14) using quasi-harmonic quanti-
ties. Experimental data are from Chopelas22 (solid circles)
and Robie et al.23 (empty circles). All calculations performed
at PBE level.

requires a 128 atom SC. The constant-pressure specific
heat can be obtained by adding on top of the converged
CV the CP − CV difference, computed with expression
(14) using all the quasi-harmonic quantities of Figure 2.
Constant-volume and constant-pressure specific heats co-
incide at low temperatures and start deviating from one
another at about 300 K. Within the validity domain of
the QHA (up to about 1000 K), the computed CP (T ) is
in remarkable agreement with experimental data by Ro-
bie et al.23 (empty circles); above that temperature, it
starts deviating, as expected from Figure 1.

B. Lime CaO

Calcium oxide has the same structure of MgO, the cal-
cium cation being more polarizable than the magnesium
one as it belongs to the fourth, instead of the third, row
of the periodic table. As we will discuss below, this dif-



8

FIG. 4. Quasi-harmonic properties of CaO as a function of
temperature, as computed with five different functionals of
the DFT. Upper panel: volume, referring to the primitive cell;
experimental data by Anderson et al.24 (solid circles) and Fi-
quet et al.28 (solid squares and triangles). Middle panel: ther-
mal expansion coefficient; experimental data by Anderson et

al.24 (solid circles). Lower panel: bulk modulus; experimen-
tal data by Anderson et al.24 (solid circles) and Anderson and
Isaak59 (solid squares). Previous theoretical results, at LDA
level, by Karki and Wentzcovitch12 are reported as empty
circles.

ference has a huge impact on the validity domain of the
QHA for the two cases. The effect on computed quasi-
harmonic properties of the size of the adopted SC, the
number of explored volumes, NV , and the utilized step,
s, has carefully been checked also in the case of CaO.
In this respect, we find a very similar behavior to what
discussed for MgO: a SC containing 8 atoms and just 4
volumes are sufficient to obtain converged results in the
[0 K - 2000 K] temperature range.

The temperature dependence, up to 1200 K, of the
equilibrium volume, V (T ), thermal expansion coefficient,
αV (T ), and bulk modulus, K(T ), of CaO is reported in
the three panels of Figure 4, as computed with the same
five functionals of the DFT already discussed for MgO
and as compared with available experimental data. As
regards the relative performance of the five functionals,
most of the considerations done for MgO also apply to

FIG. 5. Entropy (lower panel) and specific heat (upper panel)
of CaO, lime, as a function of temperature, as computed
with five different functionals of the DFT. Entropy, S, and
constant-volume specific heat, CV , are computed with har-
monic expressions (7) and (9) with a SC containing 128 atoms.
CP is obtained by adding on top of CV the CP − CV dif-
ference computed with expression (14) using quasi-harmonic
quantities. Experimental data are from Robie et al.23 (solid
circles). Previous theoretical results, at LDA level, by Karki
and Wentzcovitch12 are reported as empty circles at 300, 1000
and 2000 K.

CaO: i) LDA underestimates the volume and the ther-
mal expansion while it overestimates the bulk modulus;
ii) PBE and PW91 provide a very similar description of
all quantities; iii) different functionals give very different
descriptions of the equilibrium volume of CaO (with dis-
crepancies up to 10% at zero temperature) and none of
them provides a value close to the experiment.

At variance with MgO, however, as soon as the temper-
ature dependence of these properties is considered, a se-
vere inadequacy of the QHA can be observed in this case,
even at very low temperatures. The equilibrium volume
increases too rapidly with temperature for all functionals
but LDA. As a consequence, the thermal expansion co-
efficient is systematically overestimated, even at temper-
atures well-below 300 K, by all those functionals (GGA
and hybrids) that were giving a reliable description for
MgO up to 1000 K. The dependence on temperature of
the bulk modulus is also significantly wrong as it de-
creases with a much larger slope than expected from the
experiments. These evidences are consistent with the few
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data reported in the only previous theoretical investiga-
tion on thermal properties of CaO: LDA data by Karki
and Wentzcovitch12 are reported in Figure 4 as empty
circles.

As a rule of thumb, we find that the validity domain
of the QHA is related to the hardness of the system and,
consequently, somehow related to the extent of the max-
imum deviation among computed αV (T ) with different
functionals: the softer the material, the larger the devi-
ation, the less extended the validity domain. At 1000 K,
the maximum deviation (between LDA and BLYP, in this
case) is about 60% for CaO. It was just 25% for MgO.
In the case of CaO, the validity domain of the QHA can
be approximately estimated to be restricted to the tiny
[0 K - 100 K] temperature range.

Let us now discuss some thermodynamic properties of
CaO: both harmonic, as entropy and constant-volume
specific heat, and quasi-harmonic, as constant-pressure
specific heat. A SC containing 128 atoms is enough for
converging the harmonic values, as for MgO. In Figure 5,
we report such properties as a function of temperature,
up to 2000 K, as computed with the five different func-
tionals of the DFT. Experimental data for entropy, S(T ),
and constant-pressure specific heat, CP (T ), are reported,
from Robie et al.,23 as solid circles. Previous theoret-
ical determinations, as obtained at LDA level by Karki
and Wentzcovitch12 at three different temperatures (300,
1000 and 2000 K) are reported as empty circles. The ef-
fect of the adopted functional is seen to be extremely
small on computed harmonic properties, slightly larger
on the entropy than on CV for which the five different
lines in the upper panel appear almost indistinguishable.
As expected from the larger differences among function-
als in the description of the quasi-harmonic properties of
CaO (see again Figure 4), the effect of the adopted func-
tional is more pronounced on CP : a quasi-harmonic prop-
erty computed according to equation (14). Surprisingly
enough, given the overall bad description of all quasi-
harmonic properties by all functionals even at very low
temperatures, CP (T ) is seen to be described reasonably
well by all functionals (a bit less so by LDA), up to about
1000 K. This reasonable behavior is certainly due to some
compensations between over- and under-estimations of
V (T ), αV (T ) and K(T ), which, however, we hesitate to
call fortuitous due to the fact that it systematically ap-
pears with all the different functionals.

VI. CONCLUSIONS

The temperature dependence of a number of proper-
ties, both harmonic (entropy and constant-volume spe-
cific heat) and quasi-harmonic (volume, bulk modulus,
constant-pressure specific heat) have been computed at
the ab initio level of theory for two similar crystals: MgO
and CaO. The harmonic description of the equilibrium
lattice potential is found to give satisfactory results up
to al least 2000 K in both cases. On the contrary, a very

different behavior of the quasi-harmonic approximation
is observed for the two cases: it accurately describes ther-
mal structural effects up to about 1000 K for MgO while
it fails even at very low temperatures (above about 100
K) for CaO, due to the more polarizable nature of cal-
cium cations which softens the structure and increases
intrinsic anharmonic effects.

The effect of the adopted exchange-correlation func-
tional of the DFT on computed quasi-harmonic proper-
ties has often been overlooked. In this respect, most of
the previous calculations were performed at LDA level.
Such an effect has here been explicitly investigated by
considering five different functionals, belonging to three
different rungs of the “Jacob’s ladder”. Some general
conclusions:

• Harmonic thermodynamic properties are essen-
tially independent of the particular approximation
used for the exchange-correlation functional;

• Structural quasi-harmonic properties are much
more affected by the choice of the DFT functional,
LDA systematically providing the lowest thermal
expansion among them and generally underesti-
mating it with respect to the experimental one;

• The softer the material, the larger the differences
of the computed thermal expansion among different
functionals: at 1000 K, for instance, the maximum
difference on the thermal expansion coefficient is
9% for diamond2 (with a bulk modulus at ambi-
ent conditions of 442 GPa), becomes 25% for MgO
(bulk modulus of 162 GPa), further increases to
36% for bulk copper19 (bulk modulus of 140 GPa)
and up to 60% for CaO (with a bulk modulus of
111 GPa);

• The quasi-harmonic constant-pressure specific heat
is found to be less affected by the adopted function-
als than its structural counterparts (volume and
bulk modulus).
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