
12

A Unified Approach to the Performance Analysis of Caching Systems
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We propose a unified methodology to analyze the performance of caches (both isolated and interconnected),
by extending and generalizing a decoupling technique originally known as Che’s approximation, which
provides very accurate results at low computational cost. We consider several caching policies (including
a very attractive one, called k-LRU), taking into account the effects of temporal locality. In the case of
interconnected caches, our approach allows us to do better than the Poisson approximation commonly adopted
in prior work. Our results, validated against simulations and trace-driven experiments, provide interesting
insights into the performance of caching systems.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Distributed Networks;
C.4 [Performance of Systems]: Modeling Techniques

General Terms: Performance

Additional Key Words and Phrases: Caching, content delivery networks, information-centric networking

ACM Reference Format:
Michele Garetto, Emilio Leonardi, and Valentina Martina. 2016. A unified approach to the performance
analysis of caching systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 3, Article 12 (May 2016),
28 pages.
DOI: http://dx.doi.org/10.1145/2896380

1. INTRODUCTION AND PAPER CONTRIBUTIONS

In the past few years, the performance of caching systems, one of the most traditional
and widely investigated topics in computer science, has received a renewed interest
by the networking research community. This revival can be essentially attributed to
the crucial role played by caching in new content distribution systems emerging on
the Internet. Thanks to an impressive proliferation of proxy servers, Content Delivery
Networks (CDN) represent today the standard solution adopted by content providers
to serve large populations of geographically spread users [Jiang et al. 2012]. By caching
contents close to the users, we jointly reduce network traffic and improve user-perceived
experience.

The fundamental role played by caching systems on the Internet goes beyond existing
CDNs, as a consequence of the gradual shift from the traditional host-to-host commu-
nication model to the new host-to-content paradigm. A novel Information-centric Net-
working (ICN) architecture has been proposed for the future Internet to better respond
to the today and future (according to predictions) traffic characteristics [Jacobson et al.
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2009]. In this architecture, caching becomes a ubiquitous functionality available at
each router.

For these reasons, it is of paramount importance to develop efficient tools for the per-
formance analysis of large-scale interconnected caches for content distribution. Eval-
uating the performance of cache networks is hard, considering that the computational
cost to exactly analyze just a single Least Recently Used (LRU) cache grows exponen-
tially with both the cache size and the number of contents [King 1971; Dan and Towsley
1990]. Nevertheless, several approximations have been proposed over the years [Dan
and Towsley 1990; Che et al. 2002; Fricker et al. 2012a; Rosensweig et al. 2010; Gallo
et al. 2012; Bianchi et al. 2013] that can accurately predict cache performance at an
affordable computational cost.

The main drawback of existing analytical techniques is their rather limited scope.
Many techniques target only specific caching policies (mainly LRU and FIFO) under
simplifying traffic conditions (most previous work relies on the Independent Reference
Model [Coffman and Denning 1973]), while the analysis of cache networks has only
recently been attempted (essentially for LRU). See related work in Section 6.

The main contribution of our work is to show that the decoupling principle under-
lying one of the approximations suggested in the past (the so-called Che’s approxi-
mation) has much broader applicability than the particular context in which it was
originally proposed—that is, a single LRU cache under Independent Reference Model
(IRM) traffic—and can actually provide the key to developing a general methodology
to analyze a variety of caching systems.

In particular, in this article, we show how to extend and generalize the decoupling
principle of Che’s approximation along three orthogonal directions: (i) a much larger
set of caching algorithms than those analyzed so far (under Che’s approximation),
implementing different insertion/eviction policies (including a multistage LRU scheme,
LRU with probabilistic insertion, FIFO, and RANDOM); (ii) a more general traffic
model than the traditional IRM, to capture the effects of temporal locality in the
requests arrival process (we consider a general renewal traffic model for all the caching
policies mentioned earlier); (iii) a more accurate technique to analyze interconnected
caches that goes beyond the standard Poisson assumption adopted so far, and permits
also considering smart replication strategies (such as leave-copy-probabilistically and
leave-copy-down).

Although, in this article, we cannot analyze all possible combinations of these ex-
tensions, we provide sufficient evidence that a unified framework for the performance
analysis of caching systems is possible under Che’s approximation at low computa-
tional cost. Our results for the considered systems turn out to be surprisingly good
when compared to simulations (model predictions can hardly be distinguished from
simulation results on almost all plots).

Furthermore, under the small-cache regime (i.e., cache size small with respect to
the content catalogue size), which is of special interest for ICN, our expressions can be
further simplified, leading to simple closed-form formulas for the cache-hit probability,
revealing interesting asymptotic properties of the various caching policies. The insights
gained from our models are also (qualitatively) confirmed by trace-driven experiments.

To the best of our knowledge, we are the first to propose a unified, simple, and flexible
approach that can be used as the basis for a general performance evaluation tool for
caching systems.

This article extends the previous conference version in several respects: (i) our mod-
eling approach has been generalized and successfully applied to cache networks with
general (mesh) topology, (ii) new material concerning the asymptotic behavior of some
of the considered caching policies has been added, and (iii) several parts of have been
modified to improve the overall clarity.
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2. SYSTEM ASSUMPTIONS

2.1. Traffic Model

We first recall the so-called Independent Reference Model (IRM), which is de facto
the standard approach adopted in the literature to characterize the pattern of object
requests arriving at a cache [Coffman and Denning 1973]. The IRM is based on the
following fundamental assumptions: (i) users request items from a fixed catalogue of M
object; and (ii) the probability pm that a request is for object m, 1 ≤ m ≤ M, is constant
(i.e., the object popularity does not vary over time) and independent of all past requests,
generating an i.i.d. sequence of requests.

By construction, the IRM completely ignores all temporal correlations in the se-
quence of requests. In particular, it does not take into account an important feature
often observed in real content request traces, typically referred to as temporal lo-
cality: requests for a given content become denser over short periods of time. The
important role played by temporal locality, especially its beneficial effect on cache per-
formance, is well known in the context of computer memory architecture [Coffman and
Denning 1973] and Web traffic [Fonseca et al. 2003]. Several extensions of IRM have
been proposed to reproduce content temporal locality [Coffman and Denning 1973;
Fonseca et al. 2003; Almeida et al. 1996; Jin and Bestavros 2000; Traverso et al. 2013;
Garetto et al. 2015]. The majority of the proposed approaches [Coffman and Denning
1973; Fonseca et al. 2003; Almeida et al. 1996; Jin and Bestavros 2000; Garetto et al.
2015] share with the IRM the following two assumptions: (i) the content catalog is fixed;
and (ii) the request process for each content is stationary (typically, it is assumed to be
either a renewal process or a semi-Markov-modulated Poisson process). Recently, a new
traffic model, named the Shot Noise Model (SNM), has been proposed [Traverso et al.
2013] as a viable alternative to traditional traffic models to capture macroscopic ef-
fects related to content popularity dynamics. The basic idea of the SNM is to represent
the overall request process as the superposition of a potentially infinite population of
independent inhomogeneous Poisson processes (shots), each referring to an individual
content. The definition of analytical models for the evaluation of cache performance
under the SNM [Traverso et al. 2013; Olmos et al. 2014], however, is significantly
challenging, as discussed in Garetto et al. [2015], especially when non-LRU caches and
networks of caches are analyzed. Moreover, in Garetto et al. [2015], it has been shown
that the performance of caching systems under the SNM traffic model can predicted
with high accuracy by adopting a fixed-size content catalogue, and modeling the ar-
rival process of each content by a renewal process with a specific interrequest time
distribution.

For these reasons, in this article, we will consider the following traffic model, which
generalizes the classical IRM. The request process for every content m is described
by an independent renewal process with assigned interrequest time distribution. Let
FR(m, t) be the cdf of the interrequest time t for object m. The average request rate λm

for content m is then given by λm = 1/
∫ ∞

0 (1−FR(m, t)) dt. Let � = ∑M
m=1 λm be the global

arrival rate of requests. Note that, by adopting an object popularity law analogous to
the one considered by the IRM, we also have that λm = �pm.

In a particular case, our traffic model reduces to the classical IRM when interarrival
request times are independently, exponentially distributed, so that requests for object m
are generated according to a homogeneous Poisson process of rate λm. In the following,
we will refer to our generalized traffic model as renewal traffic.

2.2. Popularity Law

Traffic models such as the IRM (and its generalizations) are commonly used in combi-
nation with a Zipf-like law of object popularity, which is frequently observed in traffic
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Fig. 1. Illustration of the k-LRU policy.

measurements and widely adopted in performance evaluation studies [Breslau et al.
1999; Cha et al. 2009].

In its simplest form, Zipf ’s law states that the probability to request the ith most
popular item is proportional to 1/iα, for which the exponent α depends on the considered
system (especially on the type of objects), and plays a crucial role in the resulting cache
performance [Fricker et al. 2012a]. Estimates of α reported in the literature for various
kinds of systems range between .65 and 1 [Fricker et al. 2012b].

In our work, we will consider a simple Zipf ’s law as the object popularity law, al-
though our results hold in general, that is, for any given distribution of object request
probabilities {pm}m.

2.3. Policies for Individual Caches

There exists a tremendous number of different policies to manage a single cache, which
differ either for the insertion or for the eviction rule. We will consider the following
algorithms as a representative set of existing policies:

—LFU: The Least Frequently Used (LFU) policy statically stores in the cache the C
most popular contents (assuming that their popularity is known a priori); LFU is
known to provide optimal performance under IRM.

—LRU: Upon arrival of a request, an object not already stored in the cache is inserted
into it. If the cache is full, to make room for a new object, the Least Recently Used
(LRU) item is evicted, that is, the object that has not been requested for the longest
time.

—q-LRU: It differs from LRU for the insertion policy: upon arrival of a request, an
object not already stored in the cache is inserted into it with probability q. The
eviction policy is the same as for LRU.

—FIFO: It differs from LRU for the eviction policy: to make room for a new object, the
item inserted the longest time ago is evicted. Note that this scheme differs from LRU
in this respect: requests finding an object in the cache do not “refresh” the arrival
time associated to it.

—RANDOM: It differs from LRU for the eviction policy: to make room for a new object,
a random item stored in the cache is evicted.

—k-LRU: This strategy provides a clever insertion policy by exploiting the following
idea: before arriving at the (physical) cache that is storing actual objects, indexed by
k, requests have to advance through a chain of k − 1 (virtual) caches put in front of
it, acting as filters, which store only object pointers performing caching operations
on them (see Figure 1). Specifically, upon arrival of a request, a content/pointer can
be stored in cache i > 1 only if its pointer is already stored in cache i − 1 (i.e., the
arrival request has produced a hit in cache i − 1). The eviction policy at all caches is
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LRU. Note that this policy1 can be seen as a generalization of the two-stages policy
proposed in Johnson and Shasha [1994], which they called LRU-2Q.

—k-RANDOM: It works exactly like k-LRU, with the only difference being that the
eviction policy at each cache is RANDOM.

LRU has been widely adopted since it provides good performance while being rea-
sonably simple to implement. RANDOM and FIFO have been considered as viable
alternatives to LRU in the context of ICN, as their hardware implementation in high-
speed routers is even simpler. The q-LRU policy and multistage caching systems similar
to our k-LRU have been proposed in the past to improve the performance of LRU by
means of a better insertion policy. We have chosen q-LRU in light of its simplicity,
and the fact that it can be given an immediate interpretation in terms of probabilistic
replication for cache networks (see next section). The main strength of k-LRU, instead,
resides in the fact that it requires just one traffic-independent parameter2 (the number
of caches k), providing significant improvements over LRU even for very small k (much
of the possible gain is already achieved by k = 2).

2.4. Replication Strategies for Cache Networks

In a system of interconnected caches, requests producing a miss at one cache are
typically forwarded along one or more routes to repositories storing all objects. After
the request eventually hits the target, we need to specify how the object gets replicated
back in the network, in particular, along the route traversed by the request. We will
consider the following mechanisms [Rossini and Rossi 2014]:

—Leave-copy-everywhere (LCE): The object is sent to all caches of the backward
path.

—Leave-copy-probabilistically (LCP): the object is sent with probability q to each
cache of the backward path.

—leave-copy-down (LCD): The object is sent only to the cache preceding the one in
which the object is found (unless the object is found in the first-visited cache).

Note that LCP, combined with standard LRU at all caches, is the same as LCE combined
with q-LRU at all caches.

3. CHE’S APPROXIMATION

We briefly recall Che’s approximation for LRU under the classical IRM [Che et al.
2002]. Consider a cache capable of storing C objects. Let TC(m) be the time needed
before C distinct objects (not including m) are requested by users. Therefore, TC(m)
is the cache eviction time for content m, that is, the time since the last request after
which object mwill be evicted from the cache (if the object is not requested again in the
meantime).

Che’s approximation assumes TC(m) to be a constant independent of the selected
content m. This assumption has been given a theoretical justification recently in Fricker
et al. [2012a], in which it is shown that, under a Zipf-like popularity distribution, the
coefficient of variation of the random variable representing TC(m) tends to vanish as
the cache size grows. Furthermore, the dependence of the eviction time on m becomes

1In the most general case, one could individually specify the size of all caches along the chain. For simplicity,
in this article, we will restrict ourselves to the case in which all caches have the same size (expressed either
in terms of objects or pointers), since numerical explorations suggest that no significant performance gains
can be obtained by tuning the sizes of individual caches.
2More sophisticated insertion policies, such as the persistent-access-caching algorithm [Jelenković and
Radovanović 2008], obtain a filtering effect similar to k-LRU but require more parameters that are not
easy to set, requiring a priori knowledge of the traffic characteristics.
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negligible when the catalogue size is sufficiently large. For completeness, we note that
an indirect proof of Che’s approximation asymptotic validity has been provided earlier
in Jelenković and Kang [2008] for α > 1.

The reason why Che’s approximation greatly simplifies the analysis of caching sys-
tems is because it allows decoupling of the dynamics of different contents: interaction
among the contents is summarized by TC , which acts as a single primitive quantity
representing the response of the cache to an object request.

Thanks to Che’s approximation, we can state in more detail that an object m is in the
cache at time t if and only if a time smaller than TC has elapsed since the last request
for object m, that is, if at least one request for m has arrived in the interval (t − Tc, t].
Under the assumption that requests for object m arrive according to a Poisson process
of rate λm, the time-average probability pin(m) that object m is in the cache is then given
by

pin(m) = 1 − e−λmTc . (1)

As an immediate consequence of PASTA property for Poisson arrivals, observe that
pin(m) also represents, by construction, the hit probability phit(m), that is, the probabil-
ity that a request for object m finds object m in the cache.

Considering a cache of size C, by construction:

C =
∑

m

I{m in cache}.

After averaging both sides, we obtain the following:

C =
∑

m

E
[
I{m in cache}

] =
∑

m

pin(m). (2)

The only unknown quantity in this equality is TC , which can be obtained with arbitrary
precision by a fixed-point procedure. The average hit probability of the cache is

phit =
∑

m

pm phit(m). (3)

4. EXTENSIONS FOR SINGLE CACHE

We will show in the next sections that Che’s idea of summarizing the interaction
among different contents by a single variable (the cache eviction time) provides a
powerful decoupling technique that can also be used to predict cache performance
under renewal traffic as well as to analyze policies other than LRU.

4.1. LRU Under Renewal Traffic

The extension of Che’s approximation to the renewal traffic model is conceptually
simple, although it requires some care. Observe that, under a general request process,
we cannot apply PASTA anymore, identifying pin(m) with phit(m). To compute pin(m),
we can still consider that an object m is in the cache at time t if and only if the last
request arrived in [t − TC, t). This requires that the age since the last request for object
m is smaller than TC :

pin(m) = F̂R(m, TC),

where F̂R(m, t) = λm
∫ t

0 (1 − FR(m, τ )) dτ is the cdf of the age associated to object-m
interrequest time distribution.

On the other hand, when computing phit(m), we implicitly condition on the fact that
a request arrives at time t. Thus, the probability that the previous request occurred
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in [t − TC, t) equals the probability that the last interrequest time does not exceed TC ,
yielding:

phit(m) = FR(m, TC).

4.2. q-LRU under IRM and Renewal Traffic

We now analyze the q-LRU policy (LRU with probabilistic insertion), considering first
the simpler case of IRM traffic. In this case, pin(m) and phit(m) are equal by PASTA.

To compute pin(m), we exploit the following reasoning: an object m is in the cache at
time t provided that (i) the last request arrived at τ ∈ [t − TC, t) and (ii) either at τ−
object m was already in the cache or its insertion was triggered by the request arriving
at τ (with probability q). We obtain the following:

phit(m) = pin(m) = (1 − e−λmTC )[pin(m) + q(1 − pin(m))]. (4)

Solving this expression for pin(m), we get that

phit(m) = pin(m) = q(1 − e−λmTC )
e−λmTC + q(1 − e−λmTC )

. (5)

Under renewal traffic, pin(m) and phit(m) differ by the same token considered for LRU.
Repeating the same arguments as before, we get that

phit(m) = F(m, TC)[phit(m) + q(1 − phit(m))], (6)

which generalizes Equation (4). The age distribution must be used instead to compute
pin(m):

pin(m) = F̂(m, TC)[phit(m) + q(1 − phit(m))]. (7)

Regarding the q-LRU policy, Che’s approximation allows one to establish the follow-
ing interesting property as q → 0, whose proof is reported in Appendix A (IRM case)
and Appendix B (non-IRM case).

THEOREM 4.1. The q-LRU policy tends asymptotically to LFU as the insertion prob-
ability goes to zero both under IRM and under renewal traffic under the following
conditions: for any m1 and m2 with λm1 < λm2 , either limt→∞ 1−F(m1,t)

1−F(m2,t) = ∞ or a T can be
found such that 1 − F(m1, T ) > 0 and 1 − F(m2, T ) = 0.

Remark. Note that this condition is satisfied whenever F(m, t) has an exponential
tail, that is, F(m, t) ≈ e−αmt with parameter αm monotonically dependent on the average
rate λm; instead, it is not satisfied whenever distributions F(m, t) are power-law, that
is, F(m, t) ≈ (αmt)−k.

4.3. RANDOM and FIFO

The decoupling principle can be easily extended to RANDOM/FIFO caching policies
by reinterpreting TC(m) as the (in general, random) sojourn time of content m in the
cache. In the same spirit of the original Che’s approximation, we assume TC(m) = TC
to be a primitive random variable (not any more a constant) whose distribution does
not depend on m.

Under IRM traffic, the dynamics of each content m in the cache can be described
by an M/G/1/0 queuing model. Observe that object m, when not in the cache, enters it
according to a Poisson arrival process. Then, it stays in the cache for a duration equal
to TC , after which it is evicted independently of the arrival of other requests for content
m during the sojourn time.
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The expression of pin(m) and phit(m) can then be immediately obtained from the
Erlang-B formula (exploiting PASTA):

phit(m) = pin(m) = λmE[TC]/(1 + λmE[TC]).

Note that we still employ Equation (2) to compute E[TC].
As an immediate consequence of Erlang-B insensitivity property to the distribution

of service time, we conclude the following.

PROPOSITION 4.1. Under IRM traffic, the performance of RANDOM and FIFO (in
terms of hit probability) are the same.

This result was originally obtained formally by Gelenbe [1973] using a totally differ-
ent approach that does not resort to Che’s approximation.

Note that, under FIFO policy, we can assume TC to be a constant, in perfect analogy
to LRU. TC is still equal to the time needed to observe the requests for C distinct
objects arriving at the cache. On the other hand, under RANDOM policy, it is natural to
approximate the sojourn time of an object in the cache with an exponential distribution.
Under RANDOM, an object is evicted with probability 1/C upon arrival of each request
for an object that is not in the cache.

Under renewal traffic, the dynamics of each object under FIFO and RANDOM can
be described, respectively, by a G/D/1/0 and a G/M/1/0 queuing model. Observe that,
under general traffic, the performance of FIFO and RANDOM are not necessarily the
same.

We now show how the RANDOM policy can be analyzed, under renewal traffic,
employing basic queuing theory. Probability phit can be obtained as the loss probability
of the G/M/1/0 queue. Simply put, the hit probability phit(m) of a given content m
equals the probability that the content has not been evicted before the arrival of the
next request for content m. Having approximated the sojourn time in the cache by an
exponential distribution, we can easily compute the following:

phit(m) =
∫ ∞

0
e−r/E[TC ] dFR(r) = MR(m,−1/E[TC]),

where MR(m, ·) is the moment generating function of object-m interrequest time.
Probability pin(m) can also be obtained exploiting the fact that the dynamics of a

G/M/1/0 system are described by a process that regenerates at each arrival. On this
process, we can perform a standard cycle analysis as follows (we drop the dependency
of random variables on m to simplify the notation). We denote by Tcycle the duration of
a cycle (which corresponds to an interrequest interval). Observe that, by construction,
the object is surely in the cache at the beginning of a cycle. Let τ be the residual time
spent by the object in the cache, since a cycle has started, and TON be the time spent
by the object in the cache within a cycle.

By definition, TON = min{τ, Tcycle}. Thus, by standard renewal theory, we have
pin(m) = E[TON]/E[Tcycle]. Figure 2 illustrates the two cases that can occur, depend-
ing on whether the object is evicted or not before the arrival of the next request. Now,
we know that E[Tcycle] = 1/λm. For E[TON], we obtain the following:

E[TON] =
∫ ∞

0

(
E[TON · Iτ≤r | Tcycle = r] + E[TON · Iτ>r | Tcycle = r]

)
dFR(r)

=
∫ ∞

0

(∫ r

0

x
E[TC]

e−x/E[TC ] dx + re−r/E[TC ]
)

dFR(r). (8)

In the end, we get that pin(m) = λm E[TC] (1 − MR(m,−1/E[TC])).
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Fig. 2. Illustration of the cycle analysis used for deriving Equation (8). Vertical arrows represent incoming
requests for the content.

4.4. 2-LRU

We now move to the k-LRU strategy, considering first the simple case of k = 2. For
this system, we derive both a rough approximation based on an additional simplifying
assumption (which is later used to analyze the more general k-LRU) and a more refined
model that is based only on Che’s approximation. For both models, we consider either
IRM or renewal traffic.

Let T i
C be the eviction time of cache i. We start observing that meta-cache 1 behaves

exactly like a standard LRU cache, for which we can use previously derived expressions.
Under IRM, pin(m) and phit(m) (which are identical by PASTA) can be approximately
derived by the following argument: object m is found in cache 2 at time t if and only
if the last request arrived in τ ∈ [t − T 2

C , t) and either object m was already in cache 2
at time τ− or it was not in cache 2 at time τ−, but its hash was already stored in
meta-cache 1. Under the additional approximation that the states of meta-cache 1 and
cache 2 are independent at time τ−, we obtain the following:

phit(m) = pin(m) ≈ (
1 − e−λmT 2

C ))[phit(m) + (
1 − e−λmT 1

C
)
(1 − phit(m))

]
. (9)

Observe that the independence assumption between cache 2 and meta-cache 1 is rea-
sonable under the assumption that T 2

C is significantly larger than T 1
C (which is typically

the case when the two caches have the same size). In this case, the states of cache 2 and
meta-cache 1 tend to desynchronize, since a hash is expunged by meta-cache 1 before
the corresponding object is evicted by cache 2, making it possible to find an object in
cache 2 and not in meta-cache 1 (which, otherwise, would not be possible if T 1

C ≥ T 2
C ).

An exact expression for phit(m) (under Che’s approximation) that does not require
any independence assumption can be derived observing that the dynamics of object m
in the system, sampled at request arrivals, can be described by the four-states Discrete
Time Markov Chain (DTMC) represented in Figure 3, in which each state is denoted
by a pair of binary variables indicating the presence of object m in meta-cache 1 and
cache 2, respectively. Solving the DTMC, we get the following:

phit(m) = pin(m) = 1 − (1 + qa)qb

qa + qb
, (10)

with qa = 1 − e−λmT 1
C , qb = e−λmT 2

C and qc = 1 − (qa + qb).
The extension to renewal traffic can be carried out following the same lines as before.

Under the additional independence assumption between the two caches, we obtain the
following:

phit(m) ≈ FR
(
m, T 2

C

)[
phit(m) + FR

(
m, T 1

C

)
(1 − phit(m))

]
pin(m) ≈ F̂R

(
m, T 2

C

)[
phit(m) + FR

(
m, T 1

C

)
(1 − phit(m))

]
.
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Fig. 3. DTMC describing the dynamics of an object in 2-LRU, sampled at request arrival times.

Also, the refined model can be generalized to renewal traffic, observing that object-m
dynamics in the system, sampled at request arrivals (i.e., logically just before a request
arrival), are still described by a Markov Chain with exactly the same structure as in
Figure 3 (only the expressions of transition probabilities change in an obvious way).
Thus, we obtain the following:

phit(m) = 1 − (1 + qa)qb

qa + qb
,

with qa = F(m, T 1
C ) and qb = 1 − F(m, T 2

C ).
To compute pin(m), we can resort to a cycle analysis, whose details are reported in

Appendix C.

4.5. k-LRU

Previous expressions obtained for 2-LRU (under the independence assumption between
caches) can be used to iteratively compute the hit probabilities of all caches in a k-LRU
system. For example, under IRM, we can use Equation (9) to relate the hit probability
of object m in cache i, phit(i, m), to the hit probability phit(i − 1, m) of object m in the
previous cache, obtaining the following:

phit(i, m) = pin(i, m) ≈ (
1 − e−λmT i

C ))[phit(i, m) + (phit(i − 1, m))(1 − phit(i, m))]. (11)

The generalization to renewal traffic is straightforward.
At last, for large k, we can state:

THEOREM 4.2. According to (11) k-LRU tends asymptotically to LFU as k → ∞ under
IRM and renewal traffic, as long as the support of the inter-request time distribution is
unbounded and for any m1 and m2, with λm1 < λm2 , it holds limt→∞ 1−F(m1,t)

1−F(m2,t) > 1.

The proof is reported in Appendix D.

4.6. k-RANDOM

k-RANDOM can be analyzed under Che’s approximation assuming exponential sojourn
times in the caches. As an example, the dynamics of an object in 2-RANDOM (under
IRM traffic) are described by the simple four-states, continuous time Markov chain
depicted in Figure 4. In general, k-RANDOM can be exactly analyzed by solving a
continuous time Markov chain with 2k states. We omit the details of such standard
analysis here.
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Fig. 4. CTMC describing the dynamics of an object in 2-RANDOM. We denoted μ1 = 1/T 1
C , μ2 = 1/T 2

C .

4.7. Small-Cache Approximations

Small-cache approximations can be obtained by replacing the expressions of phit(m)
and pin(m) with their truncated Taylor expansion (with respect to TC → 0). This is
especially useful to understand the dependency of pin and phit on the object arrival
rate λm (thus its popularity), obtaining interesting insights into the performance of the
various caching policies. We restrict ourselves to IRM traffic; however, we emphasize
that a similar approach can be generalized to renewal traffic. We obtain the following:

phit(m)= pin(m)≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λmTC − (λmTC )2

2 LRU
λmTC − (λmTC)2 RANDOM/FIFO

qλmTC + q( 1
2 − q)(λmTC)2 q-LRU

(λm)k ∏k
i=1 T i

C k-LRU

Previous expressions permit us immediately to rank the performance of the consid-
ered policies in the small-cache regime. Specifically, better performance is achieved by
caching policy under which phit(m) exhibits stronger dependency on λm. Recall that (un-
der IRM) phit = ∑

m
λm
�

phit(m), while
∑

m phit(m) = ∑
m pin(m) = C. Hence, the stronger

the dependency of phit(m) on λm, the more closely a policy tends to approximate the
behavior of LFU (the optimal policy), which statically places in the cache the C top
popular contents.

Therefore, k-LRU turns out to be the best strategy, since the dependency between
phit(m) and content popularity λm is polynomial of order k ≥ 2, in contrast to other
policies (including q-LRU for fixed q) for which phit(m) depends linearly on λm. The
coefficient of the quadratic term further allows us to rank policies other than k-LRU:
q-LRU is the only policy exhibiting a positive quadratic term (for small q), which makes
the dependency of phit(m) on λm slightly superlinear. At last, LRU slightly outperforms
RANDOM/FIFO because its negative quadratic term has a smaller coefficient.

4.8. Model Validation and Insights

The goal of this section is twofold. First, we wish to validate previously derived analyt-
ical expressions against simulations, showing the surprising accuracy of our approxi-
mate models in all considered cases. Second, we evaluate the impact of system/traffic
parameters on cache performance, obtaining important insights for network design.
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Fig. 5. Hit probability versus cache size for various caching policies under IRM.

Fig. 6. Hit probability vs cache size, for LRU, under different degrees of temporal locality.

Unless otherwise specified, we will always consider a catalogue size of M = 106 and
a Zipf ’s law exponent α = 0.8.

Figure 5 reports the hit probability achieved by the different caching strategies that
we have considered under IRM traffic. Analytical predictions are barely distinguish-
able from simulation results, also for the 3-LRU system, for which our approximation
(Equation (11)) relies on an additional independence assumption among the caches.

As theoretically predicted, q-LRU (k-LRU) approaches LFU as q → 0 (k → ∞).
Interestingly, the introduction of a single meta-cache in front of an LRU cache (2-LRU)
provides huge benefits, getting very close to optimal performance (LFU).

Differences among the hit probability achieved by the various caching policies become
more significant in the small-cache regime (spanning almost 1 order of magnitude). In
this case, insertion policies providing some protection against unpopular objects largely
outperform policies that do not filter any request. Instead, the impact of the eviction
policy appears to be much weaker, with LRU providing moderately better performance
than RANDOM/FIFO.

Figure 6 shows the impact of temporal locality on caching performance: LRU is eval-
uated under renewal traffic in which object interarrival times are distributed according
to a second-order hyperexponential with branches λ1

m = zλm and λ2
m = λm/z (hereinafter,
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Fig. 7. Hit probability versus cache size, for various caching policies, under hyper-10 traffic, in the case of
α = 0.7 (left plot) or α = 1 (right plot).

we will call hyper-z such distribution), so that increasing values of z results in stronger
temporal locality in the request process. We observe that temporal locality can have a
dramatic (beneficial) impact on hit probability; hence, it is crucial to take it into account
while developing analytical models of cache performance.

Figure 6 also shows that LFU is no longer optimal when traffic does not satisfy the
IRM. This is because LFU statically places in the cache the C most popular objects (on
the basis of the average request rate of contents). Hence, the content of the cache is
never adapted to instantaneous traffic conditions, resulting in suboptimal performance.

Figure 7 compares the performance of LFU, LRU, q-LRU and 2-LRU in the case in
which traffic exhibits significant temporal locality (hyper-10). We also change the Zipf ’s
law exponent, considering either α = 0.7 (left plot) or α = 1.0 (right plot).

We observe that q-LRU performs poorly in this case, especially for small values of
q (in sharp contrast to what we have seen under IRM). This is because q-LRU with
very small q tends to behave like LFU (keeping statically in the cache only the objects
with the largest average arrival rate), which turns out to be suboptimal as it does not
benefit from the temporal locality in the request process.

On the contrary, a simple 2-LRU system also provides very good performance in the
presence of strong temporal locality. This is because, while 2-LRU is able to filter out
unpopular contents, its insertion policy is fast enough to locally adapt to short-term
popularity variations induced by temporal locality.

To further validate the design insights gained by our analysis, we have run a trace-
driven experiment, using a real trace of YouTube video requests collected inside the
network of a large Italian ISP, offering Internet access to residential customers. The
trace has been extracted analyzing TCP flows by means of Tstat, an open-source traffic-
monitoring tool developed at Politecnico di Torino [Finamore et al. 2011]. During a
period of 35 days in 2012, from March 20th to April 25th, we recorded in total 3.8M
requests, for 1.76M videos, coming from 31124 distinct IP addresses.

Figure 8 reports the hit probability achieved by different caching schemes3. We
observe that most considerations drawn under synthetic traffic (in particular, the policy
ranking) still hold when the cache is fed by real traffic taken from an operational
network. We summarize the main findings: (i) the insertion policy plays a crucial role
in cache performance, especially in the small-cache regime; (ii) a single meta-cache
(2-LRU system) significantly outperforms the simple LRU and its probabilistic version

3The largest cache size that we could consider was limited by the finite duration of the trace.
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Fig. 8. Hit probability versus cache size for various caching policies under real trace of YouTube video
requests.

(q-LRU), while additional meta-caches provide only minor improvements; and (iii) the
impact of the eviction policy is not significant, especially when caches are small with
respect to the catalogue size.

5. CACHE NETWORKS

In a typical cache network, caches forward their miss stream (i.e., requests that have
not found the target object) to other caches. Let us briefly recall the standard approach
that has been proposed in the literature to analyze this kind of system.

We first introduce some notation. Let phit(i, m) be the hit probability of object m in
cache i, and pin(i, m) be the (time average) probability that object m is in cache i. We
denote by T i

C the eviction time of cache i. Furthermore, let λm(i) be the total average
arrival rate of requests for object m at cache i. This rate can be immediately computed,
provided that we know the hit probability of object m at all caches sending their miss
stream to cache i (see Equation (14)).

Once we know the average arrival rates λm(i), we can simply assume that the arrival
process of requests for each object at any cache is Poisson, and thus independently
solve each cache using its IRM model. A multivariable, fixed-point approach is then
used to solve the entire system (see Rosensweig et al. [2010] for a dissection of the
errors introduced by this technique).

We now explain how Che’s approximation can be exploited to obtain a more accurate
analysis of the cache network under the three replication strategies defined in Sec-
tion 2.4. To describe our improved technique, it is sufficient to consider the simple case
of just two caches (tandem network). The extension of our method to general networks
is straightforward.

We will limit ourselves to the case of networks of LRU caches in which the traffic
produced by the users satisfies the IRM model (i.e., the exogenous process of requests
for each object is Poisson). The general idea is to try to capture (though still in an ap-
proximate way) the existing correlation among the states of neighboring caches, which
is totally neglected under the Poisson approximation. To do so, a different approxima-
tion is needed for each considered replication strategy, as explained in the following
sections.
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5.1. Leave-Copy-Everywhere

Focusing on the basic case of a tandem network, the arrival process of requests for
object m at the first cache is an exogenous Poisson process of rate λm(1). The first cache
(which is not influenced by the second one) can then be solved using the standard IRM
model, giving

phit(1, m) = pin(1, m) = 1 − e−λm(1)T 1
C . (12)

The arrival process of a request for object m at the second cache is not Poisson. It is,
instead, an ON-OFF modulated Poisson process, in which the ON state corresponds to
the situation in which object m is not stored in cache 1, so that requests for this object
are forwarded to cache 2. Instead, no requests for object m can arrive at cache 2 when
m is present at cache 1 (OFF state).

The standard approximation would be to compute the average arrival rate λm(2) =
λm(1)(1 − phit(1, m)) and to apply the IRM model also to the second cache. Can we do
better than this? Actually, yes, at least to compute the hit probability phit(2, m), which
can, in practice, be very different from pin(2, m) since PASTA does not apply.

We observe that a request for m can arrive at time t at cache 2 only if object m is not
stored in cache 1 at t−. This implies that no exogenous requests can have arrived in
the interval [t − T 1

C , t] (otherwise, m would be present in cache 1 at time t); hence, a
fortiori, no requests for m can have arrived at cache 2 in the same interval.

Now, provided that T 2
C > T 1

C , object m is found in cache 2 at time t if and only if at
least one request arrived at cache 2 within the interval [t − T 2

C , t − T 1
C ]. During this

interval, the arrival process at cache 2 is not Poisson (it depends on the unknown state
of cache 1), and we resort to approximating it by a Poisson process with rate λm(2),
obtaining the following:

phit(2, m) ≈ 1 − e−λm(2)(T 2
C −T 1

C ). (13)

Essentially, the improvement with respect to the standard approximation consists of
the term T 2

C − T 1
C in Equation (13), in place of T 2

C . If, instead, T 2
C < T 1

C , we clearly have
phit(2, m) = 0.

Note that this reasoning cannot be applied to compute pin(2, m) (which is necessary
to estimate T 2

C ). Thus, we simply express

pin(2, m) ≈ 1 − e−λm(2)T 2
C ,

as in the standard IRM model.
To show the significant gains in terms of accuracy that can be obtained by applying

our simple improved approximation with respect to the Poisson approximation, we
consider a tandem network in which the first cache is fed by IRM traffic with catalogue
size M = 106 and Zipf ’s law exponent α = 0.8. Figure 9 reports both the total hit
probability and the hit probability on the second cache, under the two considered
approximations, against simulation results. We observe that the Poisson approximation
tends to overestimate the total hit probability, essentially as a consequence of a large
overestimate of the hit probability on the second cache. Our improved approximation,
which, recall, essentially leads to substituting T 2

C with T 2
C −T 1

C in the standard formula
to compute the hit probability of the second cache, brings back the analytical prediction
of total hit probability very close to simulation results, thanks to a much better model
of the behavior of the second cache.

5.2. Leave-Copy-Probabilistically

Also in this case, the first cache is not influenced by the second; hence, we can use the
IRM formula of q-LRU (Equation (5)) to analyze its behavior.
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Fig. 9. Comparison between Poisson approximation and our improved approximation in the case of a tandem
network of two LRU caches under IRM traffic.

To evaluate phit(2, m), we observe that a request for content m that arrives at time t
at cache 2 produces a hit if and only if at time t− content m is stored at cache 2 but not
in cache 1. For this to happen, in the case that T 2

C > T 1
C , there are two sufficient and

necessary conditions related to the previous request for m arriving at cache 2: (i) this
request produced a hit at cache 2, or it triggered an insertion here; and (ii) it arrived
at cache 2 either in the interval [t − T 2

C , t − T 1
C ], or in the interval [t − T 1

C , t] without
triggering an insertion in cache 1. We remark that, in contrast to the LCE case, now
it is possible that the previous request arrived in the interval [t − T 1

C , t]: the previous
request can arrive in this interval, produce a miss in cache 1 (thus be forwarded to
cache 2) and not trigger an insertion in cache 1, so that we can really observe another
request arriving at cache 2 at time t. To evaluate the probability of this event, we model
the stream of requests arriving at cache 2 (i.e., producing a miss at cache 1) without
triggering an insertion in cache 1 as a Poisson process with intensity λm(2) · (1 − q). We
obtain the following:

phit(2, m) ≈ [phit(2, m) + q(1 − phit(2, m))] · (
1 − e−λm(2)(T 2

C −T 1
C ) · e−λm(2)(1−q)T 1

C
)
.

In this expression, the first term of the product refers to condition (i), whereas the
second term accounts for condition (ii) going through the complementary event that no
requests arrive at cache 2 either in the interval [t−T 1

C , t] or in the interval [t−T 2
C , t−T 1

C ].
Note that this expression reduces to Equation (13) when q = 1 (i.e., LCE).

If, instead, T 2
C < T 1

C , the formula simplifies to

phit(2, m) ≈ [phit(2, m) + q(1 − phit(2, m))]
(
1 − e−λm(2)(1−q)T 2

C
)
.

To estimate pin(2, m), we resort to the standard Poisson approximation:

pin(2, m) ≈ (
1 − e−λm(2)T 2

C
)
[pin(2, m) + q(1 − pin(2, m))].

5.3. Leave-Copy-Down

This strategy is more complex to analyze, since now the dynamics of cache 1 and cache
2 depend mutually on each other. It is possible to insert a content in cache 1 only when
it is already stored in cache 2. Probability pin(1, m) can be computed considering that
object m is found in cache 1 if and only if the last request arrived in [t−T 1

C , t] and either
(i) it hit the object in cache 1 or (ii) it found the object in cache 2 (and not in cache 1).
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Since PASTA holds, we have that

pin(1, m) ≈ phit(1, m) = [(1 − pin(1, m)) phit(2, m) + pin(1, m)] · (
1 − e−λm(1)TC (1)).

Observe in the previous expression that we have assumed the states of cache 1 and
cache 2 to be independent. On the other hand, similar to what we have done before, we
write

pin(2, m) ≈ (
1 − e−λm(2)T 2

C
)
.

Note that, since pin(1, m) and pin(2, m) are interdependent, a fixed-point iterative pro-
cedure is needed to jointly determine them.

It remains to approximate the hit probability at cache 2. When T 2
C > T 1

C , we write

phit(2, m) ≈ (
1 − e−λm(2)(T 2

C −T 1
C )) e−λm(2)T 1

C + (
1 − e−λm(2)(1−phit(2,m))T 1

C
)
.

Since at time t−, cache 1 does not store the object by construction, either the previous
request arrived in [t−T 2

C , t−T 1
C ] at cache 2 or it arrived in [t−T 1

C , t] (again at cache 2),
but it did not trigger an insertion in cache 1 because object m was not found in cache 2.
As before, we model the stream of requests arriving at cache 2 (i.e., producing a miss
at cache 1) without triggering an insertion in the first cache as a Poisson process with
intensity λm(2) · (1 − phit(2, m)).

Similarly, if T 2
C < T 1

C , then

phit(2, m) ≈ (
1 − e−λm(2)(1−phit(2,m))T 2

C
)
.

5.4. Extension to General Cache Networks

Our approach, which has been described earlier for the simple case of a tandem net-
work, can be easily generalized to any network. We limit ourselves to explaining how
this can be done for the LCE scheme. Let rj,i be the fraction of requests for object m
that are forwarded from cache j to cache i (in the case of a miss in cache j). Observe
that [rj,i] depends on the routing strategy of requests adopted in the network, and can
be considered as a given input to the model.

The average arrival rate of requests for m at i is then

λm(i) =
∑

j

λm( j)(1 − phit( j, m))rj,i, (14)

and we can immediately express the following:

pin(i, m) ≈ 1 − e−λm(i)T i
C ,

resorting to the standard Poisson approximation.
Our refined approach to estimating the hit probability can still be applied to the

computation of the conditional probability phit(i, m | j), which is the probability that
a request for object m hits the object at cache i, given that it has been forwarded by
cache j. This event occurs if and only if either a request arrived at i from j in the
time interval [t − T i

C, t − T j
C ] (provided that T i

C > T j
C ) or at least one request arrived

at i in the interval [t − T i
C, t] from another cache (different from j). Thus, we write the

following:

phit(i, m | j) ≈ 1 − e−Ai, j ,

where

Ai, j = rj,iλm( j)(1 − pin( j, m)) max
(
0, T i

C − T j
C

) +
∑
k�= j

rk,iλm(k)(1 − pin(k, m))T i
C .

The expression for phit(i, m) can then be obtained deconditioning with respect to j.
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Fig. 10. Hit probability versus cache size for various replication strategies in the case of a chain of 6 caches
under IRM traffic. Hit probability of the first cache (left plot) and total hit probability of the network (right
plot).

Now, in case of tree-like networks, previous expressions can be evaluated step-by-
step starting from the leaves and going up toward the root. In the case of general mesh
networks, a global (multivariate) fixed-point procedure is necessary.

5.5. Model Validation and Insights

As before, our aim here is to jointly validate our analytical models against simulation,
while getting interesting insights into system behavior.

Figure 10 compares the performance of the different replication strategies that we
have analyzed, in the case of a chain of 6 identical caches. We have chosen a chain
topology to validate our model, because this topology is known to produce the largest
degree of correlation among caches (thus the maximum deviation from the Poisson
approximation).

We separately show the hit probability on the first cache (left plot) and the hit prob-
ability of the entire cache network (right plot), observing excellent agreement between
analysis and simulation in all cases. We note that LCP significantly outperforms LCE,
as it better exploits the aggregate storage capacity in the network, avoiding the simul-
taneous placement of the object in all caches. Yet, LCD replication strategy performs
even better, thanks to an improved filtering effect (LCD can be regarded as the dual of
k-LRU for cache networks).

Then, we consider a very large topology, comprising 1365 caches, corresponding to a
4-ary regular tree with 6 levels. This topology is extremely expensive (if not impossible)
to simulate, whereas the model can predict its behavior at the same computation cost
of previous chain topology. Figure 11 reports the total hit probability achieved in this
large network for two traffic scenarios (analytical results only).

We again observe the huge gain of LCD with respect to LCE, whereas the benefits of
LCP are not very significant, especially with α = 0.7.

At last, we consider an example of mesh network comprising 9 caches arranged on
a ring topology. Requests can enter the ring at any point, that is, any of the caches
along the ring acts as an ingress cache. Requests are forwarded clockwise along the
ring. However, requests that have traversed 4 caches without hitting the content are
redirected to a remote common repository storing all contents. Figure 12 shows the path
followed by the requests arriving externally at one particular cache (requests entering
the network at the other caches are treated in a similar way). The total external traffic
of incoming requests is uniformly distributed over the 9 caches.
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Fig. 11. Hit probability versus cache size for various replication strategies in the case of a tree topology
with 1365 caches for two traffic scenarios.

Fig. 12. Ring topology of 9 caches. The path followed
by requests entering one particular cache is shown
as a dashed line.

Fig. 13. Performance of LCE and LCP (with q = 0.5
or q = 0.25) in the ring topology. Comparison be-
tween analysis and simulation.

Figure 13 compares the performance of LCE and LCP (with either q = 0.5 or q = 0.25)
in the considered mesh network, showing the global hit probability achieved by the
caching system. Here, we have chosen the usual setting of M = 106 and α = 0.8. We
have not considered in this scenario the LCD replication strategy, which is primarily
meant for hierarchical (tree-like) caching systems and whose performance on general
networks with cyclic topology are typically worse than LCP [Rossini and Rossi 2014].

Observe that, also in the more challenging case of cache networks including cycles,
the application of our model leads to significantly accurate predictions of the hit-
probability. We wish to recall that networks that do not have feed-forward topology
cannot be analyzed with existing techniques, such as that proposed in Fofack et al.
[2014b].

6. RELATED WORK

The literature on caching systems is vast; thus, we limit ourselves to mentioning
the papers more closely related to our work, mainly with a modeling focus. The first
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attempts to characterize the performance of simple caching systems date back to the
early 1970s [King 1971; Gelenbe 1973]. King [1971] has shown that the computational
complexity of an exact model of a single LRU or FIFO cache grows exponentially with
both the cache size C and the catalogue size M. In Gelenbe [1973], it was proven that
FIFO and RANDOM replacement policies achieve exactly the same hit probability
under IRM traffic. Given that an exact characterization of most caching policies is
prohibitive, approximated methodologies for the analysis of these systems have been
proposed over the years [Dan and Towsley 1990; Che et al. 2002]. Dan and Towsley
[1990] propose an approximate technique with complexity O(CM) for the estimation
of the hit probability in an LRU cache under IRM. This technique can be extended
to FIFO caches as well, although, in this case, the asymptotic complexity cannot be
precisely determined due to the iterative nature of the model solution. A different
approximation for LRU caches under IRM was originally proposed by Che et al. [2002].
This approximation constitutes the starting point of our work, and is explained in
detail in Section 3.

Another thread of works (Jelenković [1999], Jelenković and Radovanović [2003,
2004], and Jelenković and Squillante [2006]) has focused on the asymptotic charac-
terization of the hit probability in LRU caches when the catalog size and cache size
jointly scale to infinite. In particular, Jelenković [1999] provides a closed-form expres-
sion for the asymptotic hit probability in a large LRU cache under IRM traffic with
Zipf ’s exponent α > 1. Later works [Jelenković and Radovanović 2003, 2004] have
shown that LRU, in the asymptotic regime, exhibits an insensitivity property to traffic
temporal locality. Jelenković and Squillante [2006] established the precise conditions
on the scaling of parameters under which the insensitivity property holds. More re-
cently, Jelenković and Radovanović [2008] proposed the “persistent-access-caching”
(PAC) scheme, showing that it provides nearly optimal asymptotic performance under
IRM with Zipf ’s exponent α > 1. We emphasize that the idea behind the PAC scheme
shares some similarities with the k-LRU scheme proposed in this work: under both
schemes, an insertion policy is added to LRU to prevent unpopular contents from en-
tering the cache. However, the configuration of PAC is harder, as it requires setting
several parameters. The k-LRU scheme, instead, is simpler and self-adapting. Other
generalizations/extensions of LRU—known as LRU-2Q, LRU-k, and LRFU—have been
proposed in Johnson and Shasha [1994], O’Neil et al. [1993], and Lee et al. [2001], re-
spectively. LRU-2Q is essentially equivalent to k-LRU in the case of k = 2. Both LRU-k
and LRFU, instead, subsume either LRU or LFU by making the choice of the content
to be evicted dependent on the pattern of last k observed content requests. k-LRU is
somehow complementary to both LRU-k and LRFU, since it enhances only the insertion
policy of the classical LRU by restricting access to the cache only to those contents that
are sufficiently popular, while preserving the simplicity of LRU eviction.

In the last few years, cache systems have attracted renewed interest in the context
of ICN. In Psaras et al. [2011], a Markovian approach has been proposed to approxi-
mate the hit probability in LRU caches under IRM. The proposed method, however, is
based on Markovian assumptions and cannot be easily extended to non-IRM traffic. In
Carofiglio et al. [2011], the approach of Jelenković [1999] has been extended to analyze
the chunkization effect on cache performance in an ICN context. An asymptotic char-
acterization (for large caches) of the hit probability achieved by the RANDOM policy is
provided in Gallo et al. [2012]. The trade-off between recency and frequency in LRFU
has been studied in Li et al. [2012].

Fricker et al. [2012a] provide a theoretical justification to Che’s approximation for
LRU, and introduce a first attempt to apply Che’s approach to non-LRU caches, con-
sidering the RANDOM policy under IRM. We emphasize that the approach proposed
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in Fricker et al. [2012a] to analyze RANDOM differs substantially from ours, being
significantly more complex and hardly extendable to non-IRM traffic. Last, we wish to
mention that Che’s approximation for LRU has been very recently [Bianchi et al. 2013]
extended to non-IRM traffic in special cases, adopting a dual approach with respect to
ours.

With respect to all of these works, the goal of our article is different in tha her
we show that the decoupling principle underlying Che’s approximation is much more
general and flexible than originally thought, and can be successfully applied to a broad
set of caching policies under different traffic conditions within a unified framework.

For what concerns cache networks, we mention Rosensweig et al. [2013], Rosensweig
et al. [2010], and Gallo et al. [2012]. Rosensweig et al. [2013] explores ergodicity condi-
tions for arbitrary (mesh) networks. The models in Rosensweig et al. [2010] and Gallo
et al. [2012] rely on the independence assumption among caches, assuming that re-
quests arriving at each cache satisfy the IRM assumptions. In contrast, we propose
a methodology to capture the existing correlation among the states of neighboring
caches in a computationally efficient manner, considerably improving the accuracy of
analytical predictions. Our approach also permits analyzing cache networks adopting
tightly coordinated replication strategies such as LCD. Note that cache networks im-
plementing LCD have been previously considered in Laoutaris et al. [2006] for the
special case of tandem topologies. Our methodology provides a significantly simpler
and higher scalable alternative to the approach devised in Laoutaris et al. [2006], by
capturing in a simple yet effective way existing correlations between caches’ states,
while reducing the number of parameters that must be estimated through fixed-point
procedure.

Finally an alternative approach to ours has been recently proposed (Fofack et al.
[2014b], Fofack [2014], and Fofack et al. [2014a]) for cache networks with feed-forward
topology implementing TTL-based eviction policies. This approach, which can be used
to analyze the performance of LRU, RANDOM, and FIFO under Che’s approximation,
essentially consists of characterizing the interrequest process arriving at noningress
caches through a two-step- procedure: (i) the miss stream of (ingress) caches is exactly
characterized as a renewal process with given distribution; and (ii) by exploiting known
results on the superposition of independent renewal processes, the exact interrequest
time distribution at noningress caches is obtained. Observe, however, that the request
process at noningress caches is, in general, nonrenewable (since the superposition of
independent renewal processes is not guaranteed to be renewable). Thus, while the
procedure proposed in Fofack et al. [2014b] is exact for a network of TTL caches with
linear topology, it can be applied to a network of caches with tree structure only by
approximating the request processes at noningress caches with renewal processes.
Recently, a nice refinement of the approach followed by Fofack et al. [2014b] has been
proposed in Berger et al. [2014], in which it has shown that the miss stream of TTL-
based caches is a Markovian arrival process (MAP), provided that the request process
is MAP. In light of the fact that the superposition of independent MAPs is also a
MAP, Berger et al. [2014] have derived an exact analytical method for the analysis of
feed-forward networks of TTL caches under MAP traffic.

Although the approach in Fofack et al. [2014b] and Berger et al. [2014] is very
elegant, and can be potentially extended to renewal traffic, it suffers from the following
two limitations: (i) it becomes computationally very intensive when applied to large
networks; and (ii) it can be hardly generalized to general mesh networks (nonfeed-
forward). Our approach is somehow complementary to the one followed by Fofack et al.
[2014b] and Berger et al. [2014] since, while it applies only to IRM traffic, it is much
more scalable and readily applicable to networks with general topology.
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7. CONCLUSIONS

The main goal of this article was to show that a variety of caching systems (both
isolated and interconnected caches), operating under various insertion/eviction policies
and traffic conditions, can be accurately analyzed within a unified framework based
on a fairly general decoupling principle extending the original Che’s approximation.
We have also shown that many properties of cache systems can be obtained within
our framework in a simple and elegant way, including asymptotic results that would
otherwise require significant efforts to be established. From the point of view of system
design, our study has revealed the superiority of the k-LRU policy in terms of both
simplicity and performance gains. Still many extensions and refinements are possible,
especially for cache networks under general traffic.

APPENDIX

A. PROOF OF Q-LRU → LFU: IRM CASE

We first prove that limq→0 TC = +∞. Consider function f (TC, q) �
∑

m pin(m). From
Equation (2), f (TC, q) ≡ C. Recalling Equation (5), we have that

f (TC, q) =
∑

m

q(1 − e−λmTC )
e−λmTC + q(1 − e−λmTC )

,

where previous sum extends over all contents in the catalog (which is assumed to be of
finite size M). Deriving this formula, we obtain the following:

fq � ∂ f
∂q

=
∑

m

(1 − x)(x + q(1 − x)) − q(1 − x)2

(x + q(1 − x))2

∣∣∣∣
x=e−λmTC

=
∑

m

(1 − x)x
(x + q(1 − x))2

∣∣∣∣
x=e−λmTC

> 0

(15)
and

fTC � ∂ f
∂TC

= ∂ f
∂x

∣∣∣∣
x=e−λmTC

∂e−λmTC

∂TC
=

∑
m

∂

(
q(1 − x)

x + q(1 − x)

)
/∂x

∣∣∣∣
x=e−λmTC

(−λme−λmTC
)

=
∑

m

−q(x + q(1 − x)) − q(1 − x)(1 − q)
(x + q(1 − x))2

∣∣∣∣
x=e−λmTC

(−λme−λmTC
)

=
∑

m

qλme−λmTC

(e−λmTC + q(1 − e−λmTC ))2 > 0. (16)

By the implicit function theorem, we have that

∂TC

∂q
= − fq(TC, q)

fTC (TC, q)
< 0.

We can conclude that TC is a decreasing function with respect to q; thus, we have that
the limit limq→0 TC exists and equals supq TC . We prove now that this limit is equal to
infinity. We define TC,sup � supqTC(q) = limq→0 TC , and we suppose, by contradiction,
that this is a finite quantity. In this case, we would have that

lim
q→0

f (TC, q) = lim
q→0

∑
m

pin(m) = lim
q→0

∑
m

q(1 − e−λmTC )
e−λmTC + q(1 − e−λmTC )

= 0,

in contrast with the fact that the previous sum is equal to C, by definition. Thus,
TC,sup � limq→0 TC(q) = +∞. We prove now that TC(q) asymptotically behaves as
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c log 1
q for some c > 0 as q → 0. We can write the following:

lim
q→0

∑
m

pin(m)

= lim
q→0

∑
m

q(1 − e−λmTC ))
e−λmTC + q(1 − e−λmTC )

= lim
q→0

∑
m

q + o(q)
e−λmTC + q + o(q)

= lim
q→0

∑
m

1 + o(1)
1 + e−λmTC /q + o(1)

= lim
q→0

∑
m

1 + o(1)
1 + e−(λmTC−log(1/q)) + o(1)

(17)

We note that, if TC
log(1/q)) becomes arbitrarily large as q → 0, every term in Equation (17)

tends to 1, and the sum would be equal to the number of contents, whereas we know
that it has to be equal to C. If, on the other hand, TC

log(1/q)) becomes arbitrarily small as
q → 0, every term in the sum in Equation (17) would tend to 0. We can thus conclude
that TC

log(1/q) is bounded away from both 0 and infinite.

Thus, assuming for the moment that limq→0
TC

log(1/q)) exists, it must necessarily be
equal to c > 0. Now, by setting λ∗ = 1/c, we have that

lim
q→0

pin(m) = lim
q→0

1 + o(1)

q
λm
λ∗ −1 + 1 + o(1)

=
{

1 if λm ≥ λ∗

0 if λm < λ∗.

Note that the previous argument still holds when limq→0
TC

log(1/q)) does not exist, provided
that the following condition is met: (i) no λm can be found, with λ∗ < λm ≤ �∗, such that
0 < lim infq→0

TC
log(1/q)) = 1

�∗ < lim supq→0
TC

log(1/q)) = 1
λm

< ∞.

Last, we show, by contradiction, that either limq→0
TC

log(1/q)) exists or condition (i)
is met. Assume that there is an m such that λ∗ ≤ λm < �∗. Then, denoting with
I{A} the indicator function associated to the event {A}, by construction, it must be
both

∑
m I{λm≥λ∗} = C and

∑
m I{λm≥�∗} = C. Thus,

∑
m I{λm≥λ∗} = ∑

m I{λm≥�∗}, which is in
contradiction with the assumption.

B. PROOF OF Q-LRU → LFU: GENERAL CASE

To simplify the proof, we assume the support of the interrequest time pdf to be simply
connected. Consequently, F(m, y) (F̂(m, y)) is a strictly increasing function with respect
to variable x (y) on its relevant range, that is, for any x such that 0 < F(m, x) < 1 (∀ y s.t.
0 < F̂(m, y) < 1). First, we consider the case in which F(m, x) (F̂(m, y)) has an infinite
support for any m. In this case, we first prove that limq→0 TC = +∞. Consider function
f (TC, q) �

∑
m pin(m). From Equation (2), f (TC, q) ≡ C. Recalling Equations (7) and

(6), we have that

phit(m) = qF(m, TC)
1 − F(m, TC)(1 − q)
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and

pin(m) = F̂(m, TC)[phit(m) + q(1 − phit(m))]

= F̂(m, TC)
[

qF(m, TC)
1 − F(m, TC)(1 − q)

+ q
(

1 − qF(m, TC)
1 − F(m, TC)(1 − q)

)]

= F̂(m, TC)
q

1 − F(m, TC)(1 − q)
. (18)

Thus,

f (TC, q) =
∑

m

F̂(m, TC)
q

1 − F(m, TC)(1 − q)
.

Deriving this formula, we obtain the following:

fq � ∂ f
∂q

=
∑

m

F̂(m, TC)
1 − F(m, TC)(1 − q) − qF(m, TC)

[1 − F(m, TC)(1 − q)]2

=
∑

m

F̂(m, TC)
1 − F(m, TC)

[1 − F(m, TC)(1 − q)]2 > 0

and

fTC � ∂ f
∂TC

=
∑

m

∂ F̂(m, TC)
∂TC

[
q

1 − F(m, TC)(1 − q)

]
+ F̂(m, TC)

∂

∂TC

q
1 − F(m, TC)(1 − q)

=
∑

m

∂ F̂(m, TC)
∂TC

[
q

1 − F(m, TC)(1 − q)

]

+ F̂(m, TC)
q(1 − q)

[1 − F(m, TC)(1 − q)]2

∂F(m, TC)
∂TC

> 0,

since both F̂(m, TC) and F(m, TC) are increasing with TC .
By the implicit function theorem, we have that

∂TC

∂q
= − fq(TC, q)

fTC (TC, q)
< 0.

We can conclude that TC is a decreasing function with respect to q; thus, we have that
the limit limq→0 TC exists and equals supq TC . We now prove that this limit is equal to
infinity. We define TC,sup � supqTC(q) = limq→0 TC , and we suppose, by contradiction,
that this is a finite quantity. In this case, we would have that

lim
q→0

f (TC, q) = lim
q→0

∑
m

pin(m) = lim
q→0

∑
m

F̂(m, TC)
q

1 − F(m, TC)(1 − q)
= 0,

in contrast with the fact that the previous sum is equal to C, by definition. Thus, since
limq→0 TC(q) = +∞ we have that

lim
q→0

pin(m) = lim
q→0

∑
m

F̂(m, TC)
1

[1 − F(m, TC)(1 − q)]/q
. (19)

Now, observe that, if 1−F(m, TC) = o(q), the previous limit becomes equal to 1, whereas,
if 1 − F(m, TC) = ω(q), the limit is equal to 0.

Then, with similar arguments as for the exponential case, under our assumptions
(i.e., the fact that we assume limt→∞ 1−F(m1,t)

1−F(m2,t) = ∞ whenever λm1 < λm2 ), we can easily
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Fig. 14. Hit probability versus insertion probability of q-LRU, for different interrequest time distributions,
fixed cache size equal to 10,000, α = 0.7.

show that there necessarily exists some m0 such that 1−F(m, TC) = o(q) for m < m0 and
1 − F(m, TC) = ω(q) for m > m0. Observe that, by hypothesis, the asymptotic behavior
of 1 − F(m, TC) as TC → ∞ depends on m (i.e., on arrival rates λms, which are assumed
to be different for different m).

Figure 14 provides a numerical confirmation of our theoretical predictions (see also
Remark after Theorem 4.1), plotting the hit probability as a function of the inser-
tion probability of q-LRU under different interrequest time distributions: exponential,
hyper-10, Pareto (with exponent γ = 2). This experiment suggests that both the expo-
nential and hyper-10 curves approach LFU as q → 0, while the curve corresponding to
the Pareto case tends to a different limit.

The case in which F(m, TC) has a bounded support for some mcan be treated similarly.
However, if the number of contents with finite support exceeds C, TC does not tend
anymore to ∞. Observe that, from Equation (19), we can deduce that every content
whose interrequest time has a maximum value, which is smaller that TC,sup, will be
necessarily found in the cache with a probability tending to 1 when q → 0, while every
other content will be found with a probability tending to 0. Thus, since by construction
we have

∑
m Pin(m) = C, only C contents can have maximum interrequest time smaller

than TC,sup. This concludes the proof.

C. EXACT CALCULATION OF PIN(M ) FOR 2-LRU

For simplicity in this appendix, whenever not strictly necessary, we omit the depen-
dency of variables on m. We define as cycle the time interval between two visits at state
(1, 1) (i.e., the time interval between two requests for object m that bring the system to
state (1, 1)). Observe that, by construction, the cycles are i.i.d. We consider a generic
cycle starting at time t = 0 (thus, by construction, a request for marrives at time t = 0).
Let R1 be the time of the first request for object m after t = 0. We have the following
possibilities:

—R1 ≤ T 1
C : At time R−

1 , the system is still in state (1, 1), and consequently E[Tcycle |
R1 < T 1

C ] = E[R1 | R1 < T 1
C ].

—T 1
C < R1 ≤ T 2

C : In this case, at time t = T 1
C , the system enters state (0, 1), where it is

found at R−
1 ; thus, the request at R1 brings the system again in state (1, 1). In this

case, E[Tcycle | T 1
C < R1 ≤ T 2

C ] = E[R1 | T 1
C < R1 ≤ T 2

C ].
—R1 > T 2

C : In this last case, the analysis is more complicated. At time T 1
C , the system

goes to state (0, 1), and at time T 2
C , it enters state (0, 0). At time t = R1, for effect of
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Fig. 15. Illustration of the cycle analysis used for deriving Equation (20). Vertical arrows represent incoming
requests for the content.

the arrival of the first request, the system enters (1, 0). Now, if the following request
arrives before R1 + T 1

C , the system goes back to state (1, 1) and the cycle terminates.
Otherwise, the system at time R1 + T 1

C enters state (0, 0) again and the following
request brings it to state (1, 0) again. The cycle ends upon the arrival of the first
request for object m that follows the previous one by less than T 1

C . Figure 15 better
illustrates this situation.

Thus, if we denote by Ri the ith interrequest time, and with n ∼ Geom(p1), p1 =
P(R ≤ T 1

C ) = 1 − e−λmT 1
C and p2 = P(R ≤ T 2

C ) = 1 − e−λmT 2
C , we can write the following in

this case:

E[Tcycle | R1 > T 2
C ] = E

[
R1 | R1 > T 2

C

] + E
[
Rn | Rn ≤ T 1

C

] + E

[
n−1∑
i=0

Ri | Ri > T 1
C

]

= E
[
R1 | R1 > T 2

C

] + E
[
Rn | Rn ≤ T 1

C

] + E[n]E
[
Ri | Ri > T 1

C

]
= E

[
R1 | R1 > T 2

C

] + E
[
Rn, Rn ≤ T 1

C

]
P
(
Rn ≤ T 1

C

) + 1 − p1

p1

E
[
Ri, Ri > T 1

C

]
P
(
Ri > T 1

C

)
= E

[
R1 | R1 > T 2

C

] + E
[
Rn, Rn ≤ T 1

C

]
p1

+ 1 − p1

p1

E
[
Ri, Ri > T 1

C

]
1 − p1

= E
[
R | R > T 2

C

] + E[R]
p1

.

Considering the other cases as well, we have that

E[Tcycle] = E
[
R1 | R1 < T 2

C

]
P
(
R1 ≤ T 2

C

) +
(

E
[
R1 | R1 > T 2

C

] + E[R]
p1

)
P
(
R1 > T 2

C

)
= E[R] + E[R]

p1
(1 − p2). (20)

Turning our attention to E[TON], which is the average time within a cycle during which
content m is stored in the second (physical) cache, we have that

E[TON] = E
[

min
(
R1, T 2

C

)] = E
[
R1 | R1 < T 2

C

]
P
(
R1 < T 2

C

) + T 2
C P

(
R1 ≥ T 2

C

)
. (21)

Last, we can obtain pin(m) as

pin(m) = E[TON(m)]
E[Tcycle(m)]

.

D. PROOF OF K-LRU → LFU

For simplicity, we limit ourselves to the IRM traffic model. An analogous result can
be derived under renewal traffic along the same lines. First, we recall that sequence
{T i

C}k
i=1 is increasing. We prove that T ∗

C = supk→∞ T k
C = +∞. Assume, by contradiction,
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that T ∗
C is finite. Now, a necessary condition for content m to be in the cache at time t is

that a request arrived at τ1 ∈ (t − T k
C, t]. This request, in turn, must have necessarily

generated a hit either in cache k or in cache k − 1. Consequently, a previous request
must have arrived at τ2 ∈ (τ1 −T k

C, τ1]. Iterating back, we generate a chain of k requests
for object m requests with interrequest time smaller than T k

C , which is necessary for
object m to be found in cache k at time t. The probability of observing such a chain is
bounded by (1 − e−λmT ∗

C )k; this probability goes to zero when k → ∞, independently on
λm, leading to a contradiction. Recall that, by construction,

∑
pin(m, k) = C. Thus, we

can conclude that limk→∞ TC = +∞. Recalling the expression in Equation (11),

pin(m, i) = (1 − e−λmT i
C ))[pin(m, i) + (pin(m, i − 1))(1 − pin(m, i))],

we can easily prove that (i) pin(m, i) is increasing with respect to λm for any i (by
induction, over i); and (ii) Equation (11), for sufficiently large T i

C , is a contraction
mapping over [ε, 1] for any ε > 0 .

Thus, limk→∞ pin(m, k) exists and it is necessarily the fixed point p∗
in(m) of Equa-

tion (11). The assertion immediately follows, since p∗
in(m) ∈ {0, 1}.

The extension to the non-IRM case, under the assumption that the support of the
interrequest time distribution is unbounded, and that for any m1 and m2, with λm1 < λm2 ,
limt→∞ 1−F(m1,t)

1−F(m2,t) > 1, follows the same lines.
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Predrag R. Jelenković and Xiaozhu Kang. 2008. Characterizing the miss sequence of the LRU
cache. SIGMETRICS Performance Evaluation Review 36, 2, 119–121. DOI:http://dx.doi.org/10.1145/
1453175.1453203
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Wenjie Jiang, Stratis Ioannidis, Laurent Massoulié, and Fabio Picconi. 2012. Orchestrating massively dis-
tributed CDNs. In ACM CoNEXT.

Shudong Jin and A. Bestavros. 2000. Sources and characteristics of web temporal locality. In IEEE
MASCOTS.

Theodore Johnson and Dennis Shasha. 1994. 2Q: A low overhead high performance buffer management
replacement algorithm. In VLDB.

W. F. King. 1971. Analysis of Paging Algorithms. Retrieved March 25, 2016 from http://books.google.
it/books?id=KTvaPgAACAAJ.

Nikolaos Laoutaris, Hao Che, and Ioannis Stavrakakis. 2006. The LCD interconnection of LRU caches and
its analysis. Performance Evaluation 63, 7, 609–634. DOI:http://dx.doi.org/10.1016/j.peva.2005.05.003

D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. 2001. LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE Transactions on Computers
50, 12, 1352–1361. DOI:http://dx.doi.org/10.1109/TC.2001.970573

Zhe Li, G. Simon, and A. Gravey. 2012. Caching policies for in-network caching. In ICCCN.
Felipe Olmos, Bruno Kauffmann, Alain Simonian, and Yannick Carlinet. 2014. Catalog dynamics: Impact of

content publishing and perishing on the performance of a LRU cache. In ITC. IEEE, 1–9.
Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K page replacement algo-

rithm for database disk buffering. In SIGMOD’93. ACM, New York, NY, 297–306. DOI:http://dx.doi.org/
10.1145/170035.170081

Ioannis Psaras, Richard G. Clegg, Raul Landa, WeiKoong Chai, and George Pavlou. 2011. Modelling and
evaluation of CCN-caching trees. In IFIP NETWORKING. Lecture Notes in Computer Science, Vol. 6640.
Springer, Berlin, 78–91.

E. J. Rosensweig, J. Kurose, and D. Towsley. 2010. Approximate models for general cache networks. In
INFOCOM.

E. J. Rosensweig, D. J. Menache, and J. Kurose. 2013. On the steady-state of cache networks. In INFOCOM.
Giuseppe Rossini and Dario Rossi. 2014. Coupling caching and forwarding: Benefits, analysis, and imple-

mentation. In ICN’14. ACM, New York, NY, 127–136. DOI:http://dx.doi.org/10.1145/2660129.2660153
Stefano Traverso, Mohamed Ahmed, Michele Garetto, Paolo Giaccone, Emilio Leonardi, and Saverio

Niccolini. 2013. Temporal locality in today’s content caching: Why it matters and how to model it. SIG-
COMM Computer Communication Review 43, 5, 5–12. DOI:http://dx.doi.org/10.1145/2541468.2541470

Received November 2014; revised September 2015; accepted February 2016

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 3, Article 12, Publication date: May 2016.

http://dx.doi.org/10.1145/2318857.2254810
http://dx.doi.org/10.1145/1453175.1453203
http://dx.doi.org/10.1145/1453175.1453203
http://books.google.it/books?id=KTvaPgAACAAJ
http://books.google.it/books?id=KTvaPgAACAAJ
http://dx.doi.org/10.1016/j.peva.2005.05.003
http://dx.doi.org/10.1109/TC.2001.970573
http://dx.doi.org/10.1145/170035.170081
http://dx.doi.org/10.1145/170035.170081
http://dx.doi.org/10.1145/2660129.2660153
http://dx.doi.org/10.1145/2541468.2541470

