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STRUCTURAL RULES AND RESOURCE CONTROL IN
LOGIC AND COMPUTATION

Abstract.
Control of resources and awareness of their usage has an important role

in logic and lambda calculus as well as in programming languages, com-
piler design and program synthesis. Already Gentzen had the idea to control
the use of formulae in structural rules of the sequent calculus, whereas the
idea to control the use of variables in term calculi goes back to Church’s
λI-calculus.

This work provides an overview of the most important work in the field
of resource control and presents the authors’ contributions in this field.
The journey starts with the Resource control lambda calculus, continues
with its sequent counterpart, the Resource control sequent lambda calculus,
and concludes with computational interpretations of substructural logics, by
presenting a lambda calculus without thinning, corresponding to a variant
of the relevant logic.
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Introduction

The idea to control the use of formulae is present in Gentzen’s sequent calculus’ struc-
tural rules [23], whereas the idea to control the use of variables can be traced back to
Church’s λI-calculus [13]. Nowadays, the notion of resource awareness and control has
an important role both in theoretical and applicative domains, from logic and lambda cal-
culus to programming languages and compiler design. The increased ability to control the
quantity of resources, as well as the order in which they are used, finds its relevance and ap-
plication in many domains: memory management that prevents memory leaking [62], con-
struction of compilers [55] and improvement of multi-core program efficiency for object-
oriented languages [48], to mention some of them.

The control of resources in the λ-calculus is in the focus of our investigation. Control
of resources can be achieved by introducing new operators to the λ-calculus, namely op-
erators of erasure and duplication, which on the logical side correspond to thinning and
contraction rules, respectively. Explicit control of erasure and duplication leads to the de-
composition of reduction steps into more atomic ones, hence it changes the structure of
a program. It is important to control these parts of computation which are usually left
implicit.

2
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Extending the λ-calculus and the sequent λGtz-calculus with explicit erasure and dupli-
cation provides the Curry–Howard correspondence for intuitionistic natural deduction and
sequent calculus with explicit structural rules, as investigated in [41, 42, 30].

In this work we give an overview of the most important work in the field of resource
control and present the authors’ contributions in this field. This is the continuation of the
work on computational interpretations of logics in [31].

Paper overview. In Section 1 we provide some useful background notions on structural
rules in logic (Section 1.1) and summarise the most significant contributions in the field
of resource control (Section 1.2). In Section 2 we start our journey with the presenta-
tion of untyped version of the Resource control lambda calculus λr [28, 24], its syntax
and operational semantics (Section 2.1), followed by its typed versions, both with simple
and intersection types (Section 2.2). We continue with Resource control sequent lambda
calculus λGtz

r [30] in Section 3, a sequent counterpart of the λr-calculus. We again pro-
vide the syntax and operational semantics of its untyped version (Section 3.1), followed
by λGtz

r -calculus with simple and intersection types (Section 3.2). Section 4 deals with
computational interpretations of substructural logics [40] and presents λIr - a calculus
without thinning (Section 4.1) corresponding to a variant of the relevant logic. Finally, we
conclude in Section 5.

1. Background

1.1. Structural rules in logic. In this section we give a brief overview of the formal
systems of natural deduction and sequent calculus, both for intuitionistic and classical
logic, so that the correspondence with the syntax of the calculi presented later is more clear.
We then present the most common structural rules. Only implicational fragments of these
logical systems are in our focus, due to our interest in the computational interpretations of
logics.

1.1.1. Natural deduction: intuitionistic logic and classical logic. We present the fol-
lowing Gentzen’s systems: natural deduction for intuitionistic logic (NJ) and classical
logic (NK), as well as sequent calculus for intuitionistic logic (LJ) and classical logic (LK).
More details can be found in [52].

The set of formulae of implicational fragment of propositional logic is given by the
following abstract syntax:

A = X | A → B

where X denotes an atomic formula and capital Latin letters A,B, . . . denote formulae or
single propositions. Hence, a formula can be either an atomic formula X or implication
A → B. Sequences of formulae, called antecedents and succedents are denoted by capital
Greek letters Γ,∆, . . . and Γ,A stands for Γ∪{A}.

Gentzen’s natural deduction rules for intuitionistic logic NJ and classical logic NK are
given in Figures 1 and 2, respectively. The systems consist of the axiom rule and logical
rules (introduction and elimination rules for each connective, in this case only for impli-
cation). Introduction rules have the connective in the conclusion but not in the premises,
whereas elimination rules have the connective in the premises but not in the conclusion.
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(axiom)
Γ,A ⊢ A

Γ ⊢ A → B Γ ⊢ A
(→ elim)

Γ ⊢ B

Γ,A ⊢ B
(→ intro)

Γ ⊢ A → B

FIGURE 1. NJ: intuitionistic natural deduction

(axiom)
Γ,A ⊢ A,∆

Γ ⊢ A → B,∆ Γ ⊢ A,∆
(→ elim)

Γ ⊢ B,∆

Γ,A ⊢ B,∆
(→ intro)

Γ ⊢ A → B,∆

FIGURE 2. NK: classical natural deduction

1.1.2. Sequent calculus: intuitionistic logic LJ and classical logic LK. As opposed to
natural deduction derivations, sequents in sequent calculus have the following form:

A1, . . . ,An ⊢ B1, . . . ,Bm or Γ ⊢ ∆

which corresponds to the formula

A1 ∧ . . .∧An → B1 ∨ . . .∨Bm.

We can again distinguish axiom rule, logical rules (left and right), and the cut rule. For
each connective, as opposed to introduction and elimination rules characteristic of natural
deduction, here we have left and right logical rules, depending on whether the connective
is introduced in antecedent or succedent. The rules of Gentzen’s sequent calculus intu-
itionistic logic LJ and classical logic LK are given in Figures 3 and 4, respectively. Right
rules in sequent calculus correspond to introduction rules in natural deduction, whereas
left rules correspond to elimination rules.

(axiom)
Γ,A ⊢ A

Γ ⊢ A Γ,B ⊢ C
(→ left)

Γ,A → B ⊢ C

Γ,A ⊢ B
(→ right)

Γ ⊢ A → B

Γ ⊢ A Γ,A ⊢ B
(cut)

Γ ⊢ B

FIGURE 3. LJ: intuitionistic sequent calculus

Notice the presence of the cut rule which is used to simplify and shorten the proofs,
while at the same time not increasing the number of theorems which can be proved. Also,
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(axiom)
Γ,A ⊢ A,∆

Γ ⊢ A,∆ Γ,B ⊢ ∆
(→ left)

Γ,A → B ⊢ ∆

Γ,A ⊢ B,∆
(→ right)

Γ ⊢ A → B,∆

Γ ⊢ A,∆ Γ,A ⊢ ∆
(cut)

Γ ⊢ ∆

FIGURE 4. LK: classical sequent calculus

the cut rule precludes the proofs reconstruction, since it is impossible to know which for-
mula was eliminated using the cut rule. Fortunately, Gentzen’s Cut elimination property
(Hauptsatz) proves that it is possible to leave out the cut rule and still obtain the system
with the same set of derivable statements. Also, a formula is derivable in NJ if and only if
it is derivable in LJ and a formula is derivable in NK if and only if it is derivable in LK.

1.1.3. Structural rules. Structural rules are the inference rules which do not refer to log-
ical connectives, they rather deal with judgements or sequents directly. The most common
structural rules are the following:

• Thinning (or weakening), where either the hypotheses or the conclusion may be
extended with additional formula.

Γ ⊢ ∆
(ThinL)

Γ,A ⊢ ∆
or

Γ ⊢ ∆
(ThinR)

Γ ⊢ A,∆
• Contraction, where two equal (or unifiable) formulae on the same side of a turn-

style may be replaced by a single formula.
Γ,A,A ⊢ ∆

(ContL)
Γ,A ⊢ ∆

or
Γ ⊢ A,A,∆

(ContR)
Γ ⊢ A,∆

• Exchange or permutation, where two formulae on the same side of a turnstile may
be swapped.

Γ1,A,B,Γ2 ⊢ ∆
(ExchL)

Γ1,B,A,Γ2 ⊢ ∆
or

Γ ⊢ ∆1,A,B,∆2
(ExchR)

Γ ⊢ ∆1,B,A,∆2

Remark Although the name weakening is now used more frequently, we prefer the
name thinning because Gentzen denoted by weakening slightly different, more strict, struc-
tural rule:

Γ,A ⊢ ∆
(WeakL)

Γ,A,A ⊢ ∆
or

Γ ⊢ A,∆
(WeakR)

Γ ⊢ A,A,∆
Here we presented structural rules for the classical sequent calculus, whereas in the

intuitionistic setting only left rules exist, and ∆ is restricted to a single formula.
It is possible to define several variants of sequent calculi for both intuitionistic and

classical logic, by considering structural rules explicitly in some variants and implicitly in
others. The basic Gentzen’s sequent systems are denoted by G1, G2 and G3. They were



6 SILVIA GHILEZAN, JELENA IVETIĆ, PIERRE LESCANNE AND SILVIA LIKAVEC

formalized by Kleene in [44] and later revisited by Troelstra and Schwichtenberg in [57].
Briefly, the essential difference between G1 and G3 is the presence/absence of the explicit
structural rules. The distinguishing point in the case of G2 is the use of the mix-rule instead
of the more common cut-rule.

Apart from the differences in number and form of rules, these systems also differ in the
treatment of antecedents and succedents Γ, ∆:

• if all three structural rules are explicit, Γ, ∆ are interpreted as lists;
• if exchange rule is implicit, Γ, ∆ are interpreted as multisets;
• if all three structural rules are implicit, Γ, ∆ are interpreted as sets.

Another difference caused by explicit/implicit structural rule of contraction is the style
of presenting the rules with two premises. Context-sharing or additive style corresponds
to systems with implicit contraction (as in the rule (Cut) in Figure 3), whereas context-
splitting or multiplicative style is characteristic for systems with explicit contraction (as in
the rule (Cut) in Figure 5). Finally, explicit/implicit structural rule of thinning determines
the form of axiom rule. Systems with explicit thinning require minimal axiom (as in the
rule (Ax) in Figure 5), whereas a more general form of axiom is characteristic for systems
with implicit thinning (as in the rule (axiom) in Figure 3).

In Figure 5 we present the sequent calculus system whose computational interpretation
will be given in Section 3 of this paper. This system is a variant of the system G1 for
implicative intuitionistic logic, with implicit exchange.

A ⊢ A
(Ax)

Γ,A ⊢ B
Γ ⊢ A → B

(R →)
Γ ⊢ A ∆,B ⊢C
Γ,∆,A → B ⊢C

(L →)

Γ,A,A ⊢ B
Γ,A ⊢ B

(Cont) Γ ⊢ B
Γ,A ⊢ B

(T hin)

Γ ⊢ A ∆,A ⊢ B
Γ,∆ ⊢ B

(Cut)

FIGURE 5. System G1 with implicit exchange

There are also sequent systems in which some of the structural rules are forbidden,
i.e. they are neither explicitly nor implicitly present. They define various substructural
logics [56, 53]. We distinguish the following substructural logics depending on which
structural rules do not hold:

• Relevant logic (also known as relevance or strict logic) was proposed in order
to overcome the paradoxes that existed in the systems with material implication,
which does not require any connection between premises and conclusion. Such
irrelevant implications are discarded by requiring that the variable sharing prin-
ciple between premises and conclusion holds. Proof-theoretically, the notion of



STRUCTURAL RULES AND RESOURCE CONTROL IN LOGIC AND COMPUTATION 7

relevance can be captured by the system of sequent calculus without thinning, or
by natural deduction with tagging (see e.g. [3]).

• Affine logic proof-theoretically corresponds to classical or intuitionistic logic with-
out the structural rule of contraction. Although usually derived from linear logic
by allowing thinning, it was also used in [34] as a foundation of the set-theory in
which Russell’s paradox cannot be derived.

• Linear logic is a substructural logic proposed as a refinement of classical and in-
tuitionistic logic [33]. Proof-theoretically, it corresponds to ordinary logic where
the uses of contraction and thinning are carefully controlled and formulae cannot
always be duplicated or discarded without control. Due to interpretation of formu-
lae as resources instead of traditional classical interpretation as truths, linear logic
found many applications in computer science.

• Ordered logic or non-commutative logic is a logic where neither thinning, nor
contraction, nor exchange are allowed. In the absence of all structural rules, the
order of formulae within context becomes an important feature of the logic. The
most well-known non-commutative logic is Lambek calculus [46], that was pro-
posed in order to model the syntax of natural languages, and as such represents
the foundation of computational linguistics.

Accordingly, in type theory, the type systems designed so that one or more of the struc-
tural properties do not hold are called substructural type systems [62]. We distinguish the
following substructural type systems depending on which properties do not hold:

• Relevant type systems allow exchange and contraction, but not thinning. This
ensures that every variable is used at least once.

• Affine type systems allow exchange and thinning, but not contraction. This ensures
that every variable is used at most once.

• Linear type systems allow exchange but not thinning or contraction. This ensures
that every variable is used exactly once.

• Ordered type systems do not allow any of the structural properties. This ensures
that every variable is used exactly once and that it is used in the order in which it
is introduced.

1.2. Control of resources in computation and concurrency. The idea and need
to control the use of variables in λ-calculus, i.e. in computation, can be traced back to
Church’s λI-calculus proposed in [13]. In this calculus, contrary to the standard λ-calculus
(denoted by Church by λK), the variables bound by λ-abstraction should occur in the body
of the term at least once. Therefore, a void λ-abstraction is not acceptable, and in order to
have the abstraction λx.M the variable x has to occur in M. Chapter 9 in Barendregt [4]
provides a detailed account on λI-calculus.

Klop’s extended λ-calculus [45], based on the ideas of Nederpelt [49], is very simple
and elegant: a redex (λx.M)N, with x not being a free variable of M, reduces to the pair
[M,N], instead of reducing to M. In this way no subterm is discarded, and as a conse-
quence, strong normalisation coincides with weak normalisation, as proved in [45].

Currently, there are several different lines of research in resource aware term calculi.
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Resource aware lambda calculi. An interesting approach to the resource aware lambda
calculus, motivated mostly by the development of the process calculi, was investigated
by Boudol in [10]. Instead of extending the syntax of λ-calculus with explicit resource
operators, Boudol proposed a non-deterministic calculus with a generalised notion of ap-
plication. In his work, a function is applied to a structure called a bag, having the form
(Nm1

1 |...|Nmk
k ) in which Ni, i= 1, ...,k are resources and mi ∈N∪{∞}, i= 1, ...,k are multi-

plicities, representing the maximum possible number of the resource usage. In this frame-
work, the usual application is written as MN∞. The theory was further developed in [11],
connected to linear logic via differential λ-calculus by Ehrhard and Regnier in [16] and
typed with non-idempotent intersection types by Pagani and Ronchi Della Rocha in [50].
An account of this approach is given in [2].

Van Oostrom [59] and later Kesner and Lengrand [41], applying ideas from linear
logic [33], proposed to extend λ-calculus with explicit substitution [41] with operators
to control the use of variables (resources). Their linear λlxr-calculus is an extension of the
λx-calculus [9, 54] with operators for linear substitution, erasure and duplication which
preserves confluence and full composition of explicit substitutions. The simply typed ver-
sion of this calculus corresponds to the intuitionistic fragment of linear logic proof-nets,
according to Curry-Howard correspondence [37], and it enjoys strong normalisation and
subject reduction. This approach was later generalised in Kesner and Renaud’s Prismoid
of Resources [42, 43], a complex system of eight calculi which are obtained by explicit or
implicit management of these three operators.

In the realm of classical logic, resource control for sequent calculus was proposed by
Žunić in [64] and Žunić and Lescanne in [65]. Their ∗X -calculus introduces terms for
explicit erasure and duplication, in the context of explicit substitution. This calculus fea-
tures non-confluence and interface preservation. The first attempt of introducing resource
control in intuitionistic sequent λ-calculus can be found in [30] and we will provide more
details in Section 3.1.

Linear logic. In mathematics, the functions which use each argument exactly once are
called linear functions. In linear logic, introduced by Girard [33], thinning and contrac-
tion rules in the proofs are made explicit, which corresponds to explicit copying and era-
sure operations. Computational interpretations of linear logic originate from the work of
Abramsky [1] and Benton et al. [7].

Substructural type theories. The idea of linear types, stems from Wadler’s work presented
in [60]. The values which have linear types, can be used only once and cannot be duplicated
or destroyed. Hence, there is no need for reference counting or garbage collection. The
values which have non-linear types may have many pointers to them and do require garbage
collection, but enable sharing.

Walker introduces substructural type systems in [62]. With these type systems it is
possible to control how many times and in which order a data structure or an operation
was used. They are very useful when there is a need to constrain the access to system
resources, such as files, locks and memory, since they provide a sound static mechanism
for tracking state changes and preventing operations on objects in an invalid state. In par-
ticular, he introduces two substructural type systems: linear type system and ordered type
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system. Linear type system enables safe deallocation of data since objects can be used
exactly once. Ordered type system enables managing memory allocated on the stack by
controlling the exchange property.

Resource awareness and linearity for functional calculi. Resource Aware ML (RAML) is
a functional programming language of Hoffman et al. [36] which implements the resource
analysis that automatically computes polynomial resource bounds for first-order functional
programs. Alves et al. [2] give details and main results concerning three notions of linear-
ity for functional calculi: syntactical, operational and denotational [20]. For syntactical
linearity a linear use of variables in terms is required. Operational linearity ensures that
function arguments are not duplicated or erased during the evaluation process. In case of
denotational linearity, all the functions which can be defined in the language have the cor-
responding linear function in a particular model.

Substructural types in concurrency. Several type disciplines for π-calculi have been pro-
posed so far in which linearity plays a key role. The type system of Caires and Pfen-
ning [12] is based on a new interpretation of propositions-as-session types and proofs-as-
processes which ensures session fidelity, absence of deadlocks, and a tight operational cor-
respondence between π-calculus reductions and cut elimination steps. Gay and Vasconcelos[21]
manipulate asynchronous session types by means of the standard structures of a linear type
theory. Wadler [61] relates the two previous approaches.

Mostrous and Vasconcelos [47] relax the condition of linearity to that of affinity, by
which channels exhibit at most the behaviour prescribed by their types. This more liberal
setting allows to incorporate an elegant error handling mechanism which simplifies and
improves related works on exceptions. However, this treatment does not affect the progress
properties of the language, i.e. sessions never get stuck.

Recent developments in this area by Pfenning and Griffith [51] make the usual distinc-
tion between synchronous and asynchronous communication viewed through modal logic.
Polarizing the substructural propositions into positive and negative connectives allows to
elegantly express synchronization in the type itself.

Intersection types for resource control. Intersection types in the presence of resource con-
trol were first introduced by Ghilezan et al. [24]. Later on non-idempotent intersection
types for λlxr-calculus were introduced by Bernadet and Lengrand in [8] and used to prove
the strong normalisation.

2. Resource control lambda calculus

The resource control lambda calculus, λr [28, 24, 27], is an extension of the λ-calculus
[6] with operators that erase and duplicate variables, thus enabling the control of resources
involved in the process of computation. It operationally corresponds to the λcw-calculus,
one of the calculi of Kesner and Renaud’s Prismoid of resources [42, 43].

2.1. Untyped λr-calculus.
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2.1.1. Syntax. There are two ways to define λr-terms. First is to define a larger set of
λr-pre-terms, and then to extract from it the set of λr-terms by imposing restrictions
and conditions considering free variables. This approach was used in [24]. The approach
presented here eliminates the need for auxiliary notion of pre-terms and directly defines
λr-terms and their free variables using mutual recursion1.

Definition 2.1.
(i) The set of λr-terms, denoted by Λr, is defined by inference rules given in Fig-

ure 6.
(ii) The list of free variables of a term M, denoted by Fv[M], is defined by inference

rules given in Figure 7.
(iii) The set of free variables of a term M, denoted by Fv(M), is obtained from the list

Fv[M] by unordering.
(iv) The set of bound variables of a term M, denoted by Bv(M), contains all variables

of M that are not free in it, i.e. Bv(M) =Var(M)rFv(M).

x ∈ Λr
(var)

M ∈ Λr x ∈ Fv(M)

λx.M ∈ Λr
(abs)

M ∈ Λr N ∈ Λr Fv(M)∩Fv(N) = /0
MN ∈ Λr

(app)

M ∈ Λr x /∈ Fv(M)

x⊙M ∈ Λr
(era)

M ∈ Λr x1,x2 ∈ Fv(M) x1 ̸= x2 x /∈ Fv(M)r{x1,x2}
x <x1

x2 M ∈ Λr
(dup)

FIGURE 6. Λr: the set of λr-terms

A λr-term, ranged over by M,N,P, ...,M1, ..., can be a variable from an enumerable
set Λr (ranged over by x,y,z,x1, . . .), an abstraction λx.M, an application MN, an erasure
x⊙M or a duplication x <x1

x2 M. The abstraction λx.M binds the variable x in M. The
duplication x <x1

x2 M binds the variables x1 and x2 in M and introduces a free variable x.
The erasure x⊙M introduces also a free variable x.

Our notion of terms corresponds to the notion of linear terms in [41], since a term is
well-formed in λr if and only if bound variables appear actually in the term and variables
occur at most once. This assumption is not a restriction, since every pure λ-term has
a corresponding λr-term and vice versa, due to the embeddings given in Definition 2.2
and 2.3 and illustrated by Example 2.1.

1We define both lists and sets of free variables, since the notion of a list Fv[M] is used to define the substitution
evaluation in the case of duplication (see Figure 8) where the order of variables needs to be controlled, whereas
in all other situations, where the order of free variables is irrelevant, it is more convenient to work with sets.
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Fv[x] = [x]
Fv[M] = [x1,x2, ...,xm]

Fv[λxi.M] = [x1,x2, ...xi−1,xi+1, ...,xm]

Fv[M] = [x1, ...,xm] Fv[N] = [y1, ...,yn]

Fv[MN] = [x1, ...,xm,y1, ...,yn]

Fv[M] = [x1, ...,xm]

Fv[x⊙M] = [x,x1, ...,xm]

Fv[M] = [x1, ...,xm]

Fv[x <xi
x j M] = [x,x1, ...xi−1,xi+1, ......x j−1,x j+1, ...,xm]

FIGURE 7. List of free variables of a λr-term

Definition 2.2. The mapping [ ]rc : Λ → Λr is defined in the following way:

[x]rc = x

[λx.t]rc =

{
λx.[t]rc, x ∈ Fv(t)
λx.x⊙ [t]rc, x /∈ Fv(t)

[ts]rc =

{
[t]rc[s]rc, Fv(t)∩Fv(s) = /0
x <x1

x2 [t[x1/x]s[x2/x]]rc, x ∈ Fv(t)∩Fv(s)

Definition 2.3. The mapping [ ]r : Λr → Λ is defined in the following way:

[x]r = x

[λx.M]r = λx.[M]r
[M N]r = [M]r [N]r

[x <x1
x2

M]r = [M]r[x/x1][x/x2]

[x⊙M]r = [M]r

Example 2.1. Pure λ-terms λx.y and λx.xx are not λr-terms, whereas [λx.y]rc = λx.(x⊙y)
and [λx.xx]rc = λx.x <x1

x2 (x1x2) are both λr-terms.

(var)
y ∈ Λr x /∈ Fv(y)

(era)
x⊙ y ∈ Λr x ∈ Fv(x⊙ y)

(abs)
λx.x⊙ y ∈ Λr

...

x1x2 ∈ Λr x /∈ Fv(x1x2)r{x1,x2}x1,x2 ∈ Fv(x1x2)
(dup)

x <x1
x2
(x1x2) ∈ Λr x ∈ Fv(x <x1

x2
(x1x2))

(abs)
λx.x <x1

x2
(x1x2) ∈ Λr

2.1.2. Substitution. Tight control of resources also reflects on the treatment of substitu-
tion, which is implicit and linear, because when we substitute N for x in M, we know that
there is exactly one free occurrence of x in M. Here, we only outline our subtle definition
of substitution (see [28] for a detailed account). The concept of substitution is defined via
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an auxiliary calculus λ�
r, whose syntax is equal to the syntax of λr extended with the

substitution operator M[N/x], and whose reduction rules are only the rules of substitution
evaluation, given in Figure 8. We prove that the λ�

r-calculus is terminating, confluent

x[N/x] �−−→ N

(λy.M)[N/x] �−−→ λy.M[N/x], x ̸= y

(MP)[N/x] �−−→ M[N/x]P, x ∈ Fv�(M)

(MP)[N/x] �−−→ MP[N/x], x ∈ Fv�(P)
(y⊙M)[N/x] �−−→ y⊙M[N/x], x ̸= y

(x⊙M)[N/x] �−−→ Fv(N)⊙M

(y <y1
y2 M)[N/x] �−−→ y <y1

y2 M[N/x], x ̸= y

(x <x1
x2 M)[N/x] �−−→ Fv[N]<

Fv[N1]
Fv[N2]

M[N1/x1][N2/x2]

FIGURE 8. Evaluation of the substitution operator in the λ�
r-calculus

and that its normal forms are substitution free, i.e. that they belong to the λr-calculus.
We then define substitution in λr-calculus, denoted by M|||[N///x]|||, as the normal form of
the corresponding λ�

r-term M[N/x]. The normal form exists and is unique due to termi-
nation and confluence. The simultaneous substitution M|||[N1///x1, . . . ,Np///xp]||| is defined as
M|||[N1///x1]|||...|||[Np///xp]|||, provided that Fv(Ni)∩Fv(N j) = /0 for i ̸= j.

2.1.3. Operational semantics. The operational semantics of λr is defined by a reduction
relation →, given in Figure 9. In the λr-calculus, one works modulo structural equiva-
lence ≡λr , defined as the smallest equivalence that satisfies the axioms given in Figure 10
and closed under α-conversion.

(β) (λx.M)N → M|||[N///x]|||
(γ1) x <x1

x2 (λy.M) → λy.x <x1
x2 M

(γ2) x <x1
x2 (MN) → (x <x1

x2 M)N, if x1,x2 ̸∈ Fv(N)
(γ3) x <x1

x2 (MN) → M(x <x1
x2 N), if x1,x2 ̸∈ Fv(M)

(ω1) λx.(y⊙M) → y⊙ (λx.M), x ̸= y
(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1
x2 (y⊙M) → y⊙ (x <x1

x2 M), y ̸= x1,x2
(γω2) x <x1

x2 (x1 ⊙M) → M|||[x///x2]|||

FIGURE 9. Reduction rules

The reduction rules are divided into four groups. The main computational step is β-
reduction. (γ) reductions perform propagation of duplications into the expression, whereas
(ω) reductions extract erasures out of expressions. This discipline allows us to optimise the
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(ε1) x⊙ (y⊙M) ≡λr y⊙ (x⊙M)

(ε2) x <x1
x2 M ≡λr x <x2

x1 M
(ε3) x <y

z (y <u
v M) ≡λr x <y

u (y <z
v M)

(ε4) x <x1
x2 (y <

y1
y2 M) ≡λr y <y1

y2 (x <
x1
x2 M), x ̸= y1,y2, y ̸= x1,x2

FIGURE 10. Structural equivalence

computation by delaying duplication of terms on the one hand, and by performing erasure
of terms as soon as possible on the other. Finally, the rules in the (γω) group explain the
interaction between the explicit resource operators that are of different nature. Notice that
in the rule (γω2) the substitution in Λr is actually a syntactic variable replacement, i.e.,
renaming. Reduction rules are sound and preserve free variables during computation.

2.2. Typed λr-calculus.

2.2.1. Simple types for λr-calculus. Simple types, given by the syntax

α ::= p | α → α

where p ranges over a denumerable set of type atoms, can be assigned to λr-terms by
rules from Figure 11. The system is syntax directed and the rules are context-splitting, i.e.
multiplicative, which is a property characteristic for logical systems with explicit structural
rules. In the obtained system λr →, erasure is explicitly controlled by the choice of
the axiom, whereas the control of the duplication is managed by implementing context-
splitting style, i.e. by requiring that Γ,∆ represents disjoint union of the two bases, defined
in the standard way.

x : α ⊢ x : α (Ax)

Γ,x : α ⊢ M : β
Γ ⊢ λx.M : α → β

(→I)
Γ ⊢ M : α → β ∆ ⊢ N : α

Γ,∆ ⊢ MN : β
(→E)

Γ,x : α,y : α ⊢ M : β
Γ,z : α ⊢ z <x

y M : β
(Cont) Γ ⊢ M : α

Γ,x : β ⊢ x⊙M : α
(T hin)

FIGURE 11. λr →: λr-calculus with simple types

From the logical point of view, the obtained system λr → corresponds to intuition-
istic natural deduction with explicit structural rules, the system that, to the best of our
knowledge, has not been studied yet. As is the case with the λ-calculus [6], this system is
too restrictive and does not characterise all strongly normalising λr-terms. For example,
λx.x <y

z yz is a normal form of the λr-calculus that cannot be typed in λr →. Moreover,
the duplication operator seems to be naturally connected to intersection of types, following
the intuition that it should be possible to contract two variables of different types, say x of
type α and y of type β, but then the resulting variable should preserve only information
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shared by both x and y, i.e. it should be of type α∩β. In order to provide a type assignment
system that characterises the set of strongly normalising λr-terms and fits better with the
resource control operators, particularly with duplication, we introduce intersection types
to λr-calculus.

2.2.2. Intersection types for λr-calculus. The λr-calculus with intersection types was
initially proposed by Ghilezan et al. in [24] as an auxiliary system in which its sequent
counterpart λGtz

r ∩ could be translated in order to prove the strong normalisation. Here
we introduce an intersection type assignment λr∩ system which assigns strict types to
λr-terms. Strict types were proposed in [58] and used in [19] for characterisation of
strong normalisation in λGtz-calculus. See also [25] for intersection types in the presence
of explicit substitution and resource control and [29].

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ
Types α ::= ∩n

i σi

where p ranges over a denumerable set of type atoms and

∩n
i σi =

{
σ1 ∩ . . .∩σn for n > 0

⊤ for n = 0

⊤ being the neutral element for the intersection operator, i.e. σ∩⊤= σ.
We denote strict types by σ,τ,υ..., types by α,β,γ... and the set of all types by Types.

The set of strict types is a subset of Types, because each strict type σ can be written in the
form ∩1

i σi. The intersection operator is commutative and associative and intersection has
priority over arrow.

A basic type assignment (declaration), basis and basis extension are defined in the usual
way, so we only give the definition of bases intersection Γ⊓∆ and of Γ⊤:

Γ⊓∆ = {x : α∩β | x : α ∈ Γ & x : β ∈ ∆ & Dom(Γ) = Dom(∆)}
Γ⊤ = {x : ⊤ | x ∈ Dom(Γ)}.

Notice that bases intersection is defined only for bases with equal domains, and that the
basis Γ⊤ represents the neutral element for the bases intersection since Γ⊤ ⊓∆ = ∆ for
arbitrary bases Γ and ∆ that can be intersected.

The type assignment system λr∩ is given in Figure 12.

x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ M : σ
Γ ⊢ λx.M : α → σ

(→I)
Γ ⊢ M : ∩n

i τi → σ ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Γ,x : α,y : β ⊢ M : σ
Γ,z : α∩β ⊢ z <x

y M : σ
(Cont) Γ ⊢ M : σ

Γ,x : ⊤ ⊢ x⊙M : σ
(T hin)

FIGURE 12. λr∩: λr-calculus with intersection types
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The system λr∩ is characterised by the following properties:

- It is syntax directed, i.e. there is exactly one type assignment rule for each syntac-
tic category of λr-terms. Therefore, there are no separate rules for the intersec-
tion introduction and for intersection elimination, contrary to the original way of
introducing intersection types to the λ-calculus, proposed by Coppo and Dezani-
Ciancaglini in [14]. The intersection is incorporated into already existing rules of
the simply-typed system λr →.

- It assigns strict types to λr-terms. Indeed, while non-restricted types can be as-
signed to variables on the left-hand side of sequents (for instance, in the rules
(→I) or (Cont)), only strict types are assigned to λr-terms on the right-hand side
of sequents.

- The form of the axiom (Ax) (x : σ ⊢ x : σ instead of usual Γ,x : σ ⊢ x : σ) ensures
that in a typeable term each free variable appears at least once.

- The context-splitting rule (→E) ensures that in a typeable term each free variable
appears not more than once.

Assume that we implement these properties in the type system containing only rules
(Ax), (→E) and (→I), then the combinators K = λxy.x and W−1 = λxy.xyy would not
be typeable. This motivates and justifies the introduction of the operators of erasure and
duplication and the corresponding typing rules (T hin) and (Cont), which further maintain
the explicit control of resources and enable the typing of K and W−1, namely of their
corresponding λr-terms λxy.y⊙ x and λxy.y <

y1
y2 xy1y2, respectively. Let us mention that

on the logical side, structural rules of thinning and contraction are present in Gentzen’s
original formulation of LJ, Intuitionistic Sequent Calculus, but not in NJ, Intuitionistic
Natural Deduction [22, 23]. Here instead, the presence of the typing rules (T hin) and
(Cont) completely maintains the explicit control of resources in λr.

In the proposed system, intersection types occur only in two inference rules. In the rule
(Cont) the intersection type is created, this being the only place where this happens. This is
justified because it corresponds to the duplication of a variable. In other words, the control
of the duplication of variables entails the control of the introduction of intersections in
building the type of the term in question. In the rule (→E), intersection appears on the
right hand side of the turnstyle ⊢ which corresponds to the usage of the intersection type
after it has been created by the rule (Cont) or by the rule (T hin) if n = 0.

Note that ∆0 in the rule (→E) is needed only when n = 0 to ensure that N has a type, i.e.
that N is strongly normalising. In the rule (T hin) the choice of the type of x is ⊤, since this
corresponds to a variable which does not occur anywhere in M. Rules (Ax) and (→I) are
the same as in the simply typed λ-calculus. Notice however that the type of the variable in
(Ax) is a strict type.

Roles of the variables. In λr, there are three kinds of variables according to the way they
are introduced, and each of them receives a specific type:

• variables as placeholders have a strict type (rule (Ax)),
• variables resulting from a duplication have an intersection type (rule (Cont)),
• variables resulting from an erasure have the type ⊤ (rule (Thin)).
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The following examples from [28] in which variables change their role during the com-
putation process emphasise the sensitivity of the system λr∩ w.r.t. the role of a variable
in a term. When the role of a variable changes, its type in the type derivation changes as
well, so that the correspondence between particular roles and types is preserved.

Example 2.2. A variable as a “placeholder” becomes an “eraser” variable: this is the case
with the variable z in (λx.x⊙ y)z, because

(λx.x⊙ y)z →β (x⊙ y)|||[z///x]||| , (x⊙ y)[z/x] ↓�= z⊙ y.
Since z : ⊤,y : σ ⊢ z⊙ y : σ, we want to show that z : ⊤,y : σ ⊢ (λx.x⊙ y)z : σ.
Indeed:

(Ax)
y : σ ⊢ y : σ

(Weak)
x : ⊤,y : σ ⊢ x⊙ y : σ

(→I)
y : σ ⊢ λx.x⊙ y : ⊤→ σ

(Ax)
z : τ ⊢ z : τ

(→E).
z : ⊤,y : σ ⊢ (λx.x⊙ y)z : σ

In the rule (→E), we have n= 0, ∆0 = z : τ and ∆⊤
0 = z :⊤. Thus, in the previous derivation,

the variable z changed its type from a strict type to ⊤, in accordance with the change of its
role in the bigger term.

Example 2.3. A variable as a “placeholder” becomes a “duplicator” variable: this is the
case with the variable v in (λx.x <y

z yz)v, because

(λx.x <y
z yz)v →β (x <y

z yz)|||[v///x]||| , (x <y
z yz)[v/x] ↓�=

= Fv[v]<Fv[v1]
Fv[v2]

(yz)[v1/y][v2/z] ↓�= v <v1
v2 v1v2.

Since v : (τ → σ)∩ τ ⊢ v <v1
v2 v1v2 : σ, we want to show that

v : (τ → σ)∩ τ ⊢ (λx.x <y
z yz)v : σ.

Indeed:
...

(→I)
⊢ λx.x <y

z yz : ((τ → σ)∩ τ)→ σ
(Ax)

v : τ ⊢ v : τ
(Ax)

v : τ → σ ⊢ v : τ → σ
(→E).

v : (τ → σ)∩ τ ⊢ (λx.x <y
z yz)v : σ

In the rule (→E), we have n = 2, therefore ∆0 ⊢ N : τ0 can be one of the two existing typing
judgements, for instance v : τ ⊢ v : τ. In this case ∆⊤

0 disappears in the conclusion, because
∆⊤

0 ⊓∆1 ⊓∆2 = v : ⊤⊓ v : τ → σ⊓ v : τ = v : ⊤∩ (τ → σ)∩ τ = v : (τ → σ)∩ τ. Again, we
see that the type of the variable v changed from strict type to (intersection) type.

Example 2.4. An “eraser” variable becomes a “duplicator” variable: this is the case with
the variable u in (λx.x <y

z yz)(u⊙ v), because

(λx.x <y
z yz)(u⊙ v) →β (x <y

z yz)|||[u⊙ v///x]|||
, (x <y

z yz)[u⊙ v/x] ↓�
= Fv[u⊙ v]<Fv[u1⊙v1]

Fv[u2⊙v2]
(yz)[u1 ⊙ v1/y][u2 ⊙ v2/z] ↓�

= u <u1
u2

v <v1
v2
(u1 ⊙ v1)(u2 ⊙ v2).
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The situation here is slightly different. Fresh variables u1 and u2 are obtained from u
using the substitution in Λr . The variable u is introduced by thinning, so its type is ⊤.
Substitution in Λr does not change the types, therefore both u1 and u2 have the type ⊤.
Finally, u in the resulting term is obtained by contracting u1 and u2, therefore its type is
⊤∩⊤=⊤. Thus we have an interesting situation - the role of the variable u changes from
“eraser” to “duplicator”, but its type remains ⊤.

However, this paradox (if any) is only apparent, as well as the change of the role. Un-
like the previous three examples, in which we obtained normal forms, in this case the
computation can continue:

u <u1
u2

v <v1
v2
(u1 ⊙ v1)(u2 ⊙ v2) →(ω2+ε4) v <v1

v2
u <u1

u2
u1 ⊙ v1(u2 ⊙ v2)

→γω2 v <v1
v2

v1((u2 ⊙ v2))|||[u///u2]|||
= v <v1

v2
v1(u⊙ v2).

So, we see that the actual role of the variable u in the obtained normal form, is “eraser”, as
indicated by its type ⊤.

To conclude the analysis, we point out the following key points:
• The type assignment system λr∩ is constructed in such way that the type of a

variable always indicates its actual role in the term. Due to this, we claim that the
system λr∩ fits naturally to the resource control calculus λr.

• Switching between roles is not reversible: once a variable is meant to be erased,
it cannot be turned back to some other role. Moreover, the information about its
former role cannot be reconstructed from the type.

The main result involving the system λr∩ is the complete characterisation of strong
normalisation in the λr-calculus by means of typeability, stated by the following theorem,
proved in [28] (see also [32]).

Theorem 2.1. In the λr-calculus, a term is strongly normalising if and only if it is typeable
in the system λr∩.

3. Resource control sequent lambda calculus

3.1. Untyped λGtz
r -calculus. The resource control lambda Gentzen calculus λGtz

r is de-
rived from Espı́rito Santo’s λGtz-calculus introduced in [17] (more precisely from its con-
fluent sub-calculus λGtz

V , proposed in [38]) by adding the explicit operators for erasure and
duplication to both terms and contexts. On the other hand, it can be seen as a sequent
counterpart of the λr-calculus. The first variant of this calculus was proposed in [30]2.

The main difference between computational interpretations of natural deduction and se-
quent calculus is that besides terms, the syntax of sequent term calculi contains a syntactic
category of contexts. As pointed out by Espı́rito Santo in [18], the computational meaning
of the contexts is a prescription of what to do next with an expression which is plugged
into it.

There are two kinds of contexts: a selection x̂.t that means “substitute for x in t”, and
a linear left introduction t :: k that means “apply to t and proceed according to k”. Since

2Where it was named linear lambda Gentzen calculus and denoted by ℓλGtz
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an application also represents a plugging of a term t into a context k, it is in this calculus
of the form tk, which is another major difference with respect to the ordinary λ-calculus,
in which application is of the form tt, i.e. the application of a term to a term. In the
presence of resource control operators, there are two additional kinds of contexts, namely
duplication on contexts x <

y
z k and erasure on contexts x⊙ k. Although there is no real

difference between the resource operators on terms and on contexts, these categories need
to be separated for technical reasons.

If one uses the usual analogy with the function theory, contexts could be roughly un-
derstood as lists of arguments (i.e. terms). A list is constructed starting from a term by
selecting a variable in that term. A new element could be added to the list using concate-
nation, performed via the t :: k operator. There are no context variables - the trivial context
is x̂.x, which corresponds to an empty list [ ].

3.1.1. Syntax. As in the case of the λr-calculus, there are two approaches to syntax.
Here, we choose to define λGtz

r -expressions via an auxiliary syntactic category of pre-
expressions. The abstract syntax of λGtz

r pre-expressions is the following:

Pre-values F ::= x |λx. f |x⊙ f |x <x1
x2 f

Pre-terms f ::= F | f c
Pre-contexts c ::= x̂. f | f :: c |x⊙ c |x <x1

x2 c

where x ranges over a denumerable set of term variables.
A pre-value can be a variable, an abstraction, a thinning or a duplication; a pre-term is

either a value or a cut (an application). A pre-context is one of the following: a selection, a
context constructor (usually called “cons”), a thinning on pre-context or a duplication on a
pre-context. Pre-terms and pre-contexts are together referred to as the pre-expressions and
will be ranged over by E. Pre-contexts x⊙c and x <x1

x2 c behave exactly as the correspond-
ing pre-terms x⊙ f and x <x1

x2 f in the untyped calculus, so they will mostly not be treated
separately.

Definition 3.1.
(i) The list of free variables of a pre-expression E, denoted by Fv[E], is defined as

follows (where l,m denotes the list obtained by the concatenation of the two lists l
and m and lrx denotes the list obtained by removing all occurrences of an element
x from the list l):

Fv[x] = x;
Fv[λx. f ] = Fv[ f ]r x;
Fv[ f c] = Fv[ f ],Fv[c];
Fv[x̂. f ] = Fv[ f ]r x;
Fv[ f :: c] = Fv[ f ],Fv[c];
Fv[x⊙E] = x,Fv[E];
Fv[x <x1

x2 E] = x,((Fv[E]r x1)r x2).

(ii) The set of free variables of a pre-expression E, denoted by Fv(E), is extracted
from the list Fv[E], by un-ordering the list and removing multiple occurrences of
each variable, if any.
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(iii) The set of bound variables of a pre-expression E, denoted by Bv(E), contains all
variables that exist in E, but are not free in it.

For example, let E ≡ z⊙ u <x1
x2 x(z :: x2 :: x1 :: ŷ.y). Then Fv[E] = z,u,x,z, Fv(E) =

{x,u,z} and Bv(E) = {x1,x2,y}.
Now, using the notion of the set of free variables, we are able to extract the set of

λGtz
r -expressions (namely values, terms and contexts) starting from the set of λGtz

r pre-
expressions. The set of λGtz

r -expressions ΛGtz
r = VGtz

r ∪TGtz
r ∪CGtz

r , where VGtz
r denotes

the set of λGtz
r -values, TGtz

r denotes the set of λGtz
r -terms and CGtz

r denotes the set of λGtz
r -

contexts.

Definition 3.2. The set of λGtz
r -expressions denoted by ΛGtz

r , is a subset of the set of pre-
expressions, defined in Figure 13.

x ∈ VGtz
r

f ∈ TGtz
r x ∈ Fv( f )

λx. f ∈ VGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv( f )∩Fv(c) = /0

f c ∈ TGtz
r

F ∈ VGtz
r

F ∈ TGtz
r

f ∈ TGtz
r x ∈ Fv( f )

x̂. f ∈ CGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv( f )∩Fv(c) = /0

f :: c ∈ CGtz
r

f ∈ TGtz
r x /∈ Fv( f )

x⊙ f ∈ VGtz
r

c ∈ CGtz
r x /∈ Fv(c)

x⊙ c ∈ CGtz
r

f ∈ TGtz
r x1 ̸= x2 x1,x2 ∈ Fv( f ) x /∈ Fv( f )r{x1,x2}

x <x1
x2 f ∈ VGtz

r

c ∈ CGtz
r x1 ̸= x2 x1,x2 ∈ Fv(c) x /∈ Fv(c)r{x1,x2}

x <x1
x2 c ∈ CGtz

r

FIGURE 13. ΛGtz
r : λGtz

r -expressions

In the rest of the chapter, we will use the notation T,T ′,T1... for values; t,u,v... for
terms; k,k′,k1... for contexts and e,e′,e1... for expressions.

Informally, we say that an expression is a pre-expression in which in every sub-expression
every free variable occurs exactly once, and every binder binds (exactly one occurrence of)
a free variable. When restricted to terms, this notion corresponds to the notion of linear
terms in [41]. However, this assumption is not a restriction, since every λGtz-expression
has a corresponding λGtz

r -expression.
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Definition 3.3. Mapping [ ]rc : ΛGtz → ΛGtz
r is defined in the following way:

[x]rc = x

[λx.t]rc =

{
λx.[t]rc, x ∈ Fv(t)
λx.x⊙ [t]rc, x /∈ Fv(t)

[x̂.t]rc =

{
x̂.[t]rc, x ∈ Fv(t)
x̂.x⊙ [t]rc, x /∈ Fv(t)

[tk]rc =

{
[t]rc[k]rc, Fv(t)∩Fv(k) = /0
x <x1

x2 [t[x1/x]k[x2/x]]rc, x ∈ Fv(t)∩Fv(k)

[t :: k]rc =

{
[t]rc :: [k]rc, Fv(t)∩Fv(k) = /0
x <x1

x2 [t[x1/x] :: k[x2/x]]rc, x ∈ Fv(t)∩Fv(k)

The correspondence between λGtz-expressions and λGtz
r -expressions is illustrated by the

following example. Pre-expressions E1 ≡ λx.y, E2 ≡ x̂.y and E3 ≡ λx.x(x :: ŷ.y) are λGtz-
expressions, but are not λGtz

r -expressions. The reason is the presence of void abstraction or
selection in E1 and E2, and two occurrences of the free variable x in the sub-expression of
E3. On the other hand, λx.x⊙ y, x̂.x⊙ y and λx.x <x1

x2 x1(x2 :: ŷ.y) are their corresponding
λGtz
r -expressions.

3.1.2. Operational semantics. Reduction system of the λGtz
r -calculus is a mixture of the

reduction systems of the λGtz
V -calculus, that reflects the cut-elimination process, and of

the λr-calculus, that optimises the usage of resource control operators. There are four
groups of reductions in the λGtz

r -calculus - (β), (σ), (π) and (µ) from λGtz
V , (γ1)− (γ6)

that propagate duplication, (ω1)− (ω6) for erasure extraction, and finally (γω1),(γω2) for
resource operators interaction. Only the rules that differ from the rules given in Figure 9
are given in Figure 143.

(β) (λx.t)(u :: k) → u(x̂.tk)
(σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ4) x <x1
x2 (ŷ.t) → ŷ.(x <x1

x2 t)
(γ5) x <x1

x2 (t :: k) → (x <x1
x2 t) :: k, if x1,x2 /∈ Fv(k)

(γ6) x <x1
x2 (t :: k) → t :: (x <x1

x2 k), if x1,x2 /∈ Fv(t)

(ω4) x̂.(y⊙ t) → y⊙ (x̂.t), x ̸= y
(ω5) (x⊙ t) :: k → x⊙ (t :: k)
(ω6) t :: (x⊙ k) → x⊙ (t :: k)

FIGURE 14. Reduction rules of the λGtz
r -calculus

3Therefore rules (γ1)− (γ3), (ω1)− (ω3), (γω1) and (γω2) are omitted because they look the same, except
for the fact that terms are denoted differently, and that (γω1) and (γω2) hold for all λGtz

r -expressions, not only for
terms.
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As in the λGtz-calculus, reductions (π) and (σ) are executed via meta-operators. The
meta-operator for appending two contexts, k@k′, from the rule (π) is now defined by:

(x̂.t)@k′ , x̂.tk′ (t :: k)@k′ , t :: (k@k′)
(x⊙ k)@k′ , x⊙ (k@k′) (x <x1

x2 k)@k′ , x <x1
x2 (k@k′).

The meta operator [ / ], representing the implicit substitution of free variables, is treated
similarly as in the λr-calculus, i.e. an auxiliary calculus with explicit substitution is de-
fined and implicit substitution represents its normal form. However, it should be empha-
sized that the substitution is here introduced in the (σ) reduction: T (x̂.v)→ v[T/x], which
means that we always substitute a value T for a variable, therefore this calculus supports
the call-by-value computational strategy. Also, there are more rules for substitution evalu-
ation in the auxiliary calculus, which is a consequence of more complex syntax. These are
new rules for evaluating substitution on contexts 4:

(ŷ.t)[T/x] �−−→ ŷ.t[T/x], x ̸= y

(t :: k)[T/x] �−−→ t[T/x] :: k, x /∈ Fv(k)

(t :: k)[T/x] �−−→ t :: k[T/x], x /∈ Fv(t)

Besides reductions, operational semantics of the λGtz
r -calculus contains also the con-

gruence relation defined by the equivalencies obtained from those given in Figure 10 by
replacing λr-term notation M for λGtz

r -expression notation e.
Notice that because we work only with the λGtz

r -expressions, i.e. well-formed expres-
sions, no variable is lost during the computation, therefore preservation of free variables
holds.

3.2. Typed λGtz
r -calculus.

3.2.1. Simple types for λGtz
r -calculus. The type assignment system that assigns simple

types to λGtz
r -expressions, denoted by λGtz

r →, is given in Figure 15. With respect to the
λGtz →, from which it was derived, the system λGtz

r → has four new rules, namely (T hint),
(Contt), (T hink) and (Contk), for assigning types to the expressions containing explicit
operators of erasure and duplication.

On the other hand, the main difference in comparison with the system λr →, given in
Figure 11, is in the structure of typing rules for contexts. These four rules, namely (Sel),
(Cons), (T hink) and (Contk), contain the special place between the symbols ; and ⊢ on the
left-hand side of the sequent, called stoup. Stoup is filled with a selected formula, with
which we continue the computation. For example, in the sequent Γ,x : α;β ⊢ k : γ, formula
β is in the stoup. The stoup was introduced by Girard and used by Herbelin in [35] in
order to obtain a restricted form of the sequent calculus which was isomorphic to natural
deduction.

This system satisfies standard properties, such as type preservation during computation
and strong normalisation of typeable terms. Also, it provides the Curry-Howard corre-
spondence between intuitionistic sequent calculus with explicit structural rules of thinning

4Rules for duplication and erasure on contexts are omitted here because they completely correspond to rules
for duplication and erasure on contexts.
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x : α ⊢ x : α
(Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α → β

(→R)
Γ ⊢ t : α ∆;β ⊢ k : γ
Γ,∆;α → β ⊢ t :: k : γ

(→L)

Γ ⊢ t : α ∆;α ⊢ k : β
Γ,∆ ⊢ tk : β

(Cut)
Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

Γ,x : α,y : α ⊢ t : β
Γ,z : α ⊢ z <x

y t : β
(Contt)

Γ ⊢ t : β
Γ,x : α ⊢ x⊙ t : β

(T hint)

Γ,x : α,y : α;γ ⊢ k : β
Γ,z : α;γ ⊢ z <x

y k : β
(Contk)

Γ;γ ⊢ k : β
Γ,x : α;γ ⊢ x⊙ k : β

(T hink)

FIGURE 15. λGtz
r →: simply typed λGtz

r -calculus

and contraction, and the λGtz
r -calculus. However, for the same reasons as in the case of the

λr-calculus, we introduce intersection types to λGtz
r .

3.2.2. Intersection types for λGtz
r -calculus. The system that assigns a restricted form of

intersection types, namely strict types, to λGtz
r -expressions is called λGtz

r ∩ and is given
in Figure 16. This system essentially represents a sequent counterpart of the system λr∩
from Figure 12, therefore all basic notions are defined in the same way. It may also be con-
sidered as an extension of the strict type assignment system for the λGtz-calculus, proposed
in [19].

This system satisfies the same properties as the system λr∩ such as syntax-directness,
context-splitting i.e. multiplicative style for rules with more than one premise, possibility to
distinct three roles of variables according to assigned type etc. It also provides the complete
characterisation of strongly normalising λGtz

r -expressions, which is proved in [39, 24].

Theorem 3.1. In the λGtz
r -calculus, an expression is strongly normalising if and only if it

is typeable in the system λGtz
r ∩.

4. Computational interpretations of substructural logic

In this section we propose a novel approach to obtaining a computational interpretation
of some substructural logics, starting from an intuitionistic (i.e. constructive) term calculi
with explicit control of resources [40, 26].

As explained in Section 1.1, substructural logics [56] are a wide family of logics ob-
tained by restricting or rejecting some of Gentzen’s structural rules, such as thinning, con-
traction or exchange. From the computational point of view, structural rules of thinning
and contraction are closely related to to the control of available resources (i.e. term vari-
ables), as elaborated previously. Therefore, it is possible to use the resource control lambda
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x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ t : σ
Γ ⊢ λx.t : α → σ

(→R)
Γ,x : α ⊢ t : σ
Γ;α ⊢ x̂.t : σ

(Sel)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩m
j τ j ⊢ k : ρ

Γ⊤
0 ⊓Γ1 ⊓ ...⊓Γn,∆;∩m

j (∩n
i σi → τ j) ⊢ t :: k : ρ

(→L)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩n
i σi ⊢ k : τ

Γ⊤
0 ⊓Γ1 ⊓ ...⊓Γn,∆ ⊢ tk : τ

(Cut)

Γ,x : α,y : β ⊢ t : σ
Γ,z : α∩β ⊢ z <x

y t : σ
(Contt)

Γ ⊢ t : σ
Γ,x : ⊤ ⊢ x⊙ t : σ

(T hint)

Γ,x : α,y : β;γ ⊢ k : σ
Γ,z : α∩β;γ ⊢ z <x

y k : σ
(Contk)

Γ;γ ⊢ k : σ
Γ,x : ⊤;γ ⊢ x⊙ k : σ (T hink)

FIGURE 16. λGtz
r ∩: the λGtz

r -calculus with intersection types

calculus λr (or its sequent counterpart λGtz
r ) as a starting point for obtaining computational

interpretations of implicative fragments of some substructural logics.
This approach is different from the usual approach via linear logic. For instance, if one

excludes the (T hin) rule but preserves the axiom that controls the introduction of variables,
the resulting system would correspond to the logic without thinning and with explicit con-
trol of contraction i.e. to the variant of implicative fragment of relevant logic. Similarly,
if one excludes the (Cont) rule, but preserves context-splitting style of the rest of the sys-
tem, correspondence would be obtained with the variant of the logic without contraction
and with explicit control of thinning i.e. implicative fragment of affine logic. Naturally,
these modifications also require certain restrictions on the syntactic level, changes in the
definition of terms and modifications of operational semantics as well.

The proposed approach is simpler than the standard one, where the starting point is
Girard’s linear logic and its corresponding calculi. Although the proposed systems may be
seen as naive due to the fact that they only correspond to implicative fragments of relevant
and affine logics and therefore are not able to treat characteristic split conjunction and
disjunction connectives, they could be useful as a simple and neat logical foundation for
the design of specific relevant and affine programming languages.

In the sequel, we will illustrate our approach by providing detailed description for one
of the substructural resource control calculi, namely the λIr-calculus, a calculus that cor-
responds to implicative fragment of relevant logic.

4.1. λIr - A calculus without thinning. In order to obtain a term calculus which cor-
responds to the intuitionistic implicative logic without (either explicit or implicit) thinning
according to Curry-Howard correspondence [37], the following steps are employed:
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• the λr-calculus is taken as a starting point;
• the erasure operator is removed from its syntax;
• all the corresponding reduction and equivalence rules are removed;
• but the related constraints in the definition of terms and in the type assignment

rules are kept.

The obtained calculus is the λIr-calculus, corresponding to a variant of the relevant logic.

Syntax and operational semantics of the λIr-calculus. The basic idea in the construc-
tion of the λIr-calculus is that it does not allow void bindings and “useless” variables in
any way. For instance, the term λx.y is a regular term of the λ-calculus. In the resource
control calculus λr it is not a term, but it has a corresponding term λx.x⊙ y, in which
erasure operator adds useless variable x. Therefore, even by looking at a sub-term contain-
ing x one can conclude that its role in the term is different from “regular” variables, like
y. However, although x can be considered “useless” in λx.y and λx.x⊙ y, terms with void
bindings are not useless themselves. Without them, it would not be possible to represent
all computable functions by λ-terms, i.e. λ-calculus would not be Turing complete. For
example, term λx.λy.y is the standard representation of number zero via Church numerals.

However, in some situations it might be useful and important to completely exclude
void abstractions, which is strictly more restrictive than to just explicitly denote them, as
in the λr-calculus. That is a computational motivation for introducing the λIr-calculus, a
strict sub-calculus of both λ and λr calculi.

λIr–terms and lists (respectively sets) of free variables in λIr are mutually recursively
defined.

Definition 4.1.
(i) The set of λIr-terms, denoted by ΛIr, is defined by inference rules given in

Figure 17.
(ii) The list of free variables of a λIr-term M, denoted by Fv[M], is defined by infer-

ence rules given in Figure 18.
(iii) The set of free variables of a λIr-term M, denoted by Fv(M), is obtained from

the list Fv[M] by unordering.

x ∈ ΛIr
(var)

M ∈ ΛIr x ∈ Fv(M)

λx.M ∈ ΛIr
(abs)

M ∈ ΛIr N ∈ ΛIr Fv(M)∩Fv(N) = /0
MN ∈ ΛIr

(app)

M ∈ ΛIr x1,x2 ∈ Fv(M) x1 ̸= x2 x /∈ Fv(M)r{x1,x2}
x <x1

x2 M ∈ ΛIr
(dup)

FIGURE 17. ΛIr: the set of λIr–terms
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Fv[x] = [x]
Fv[M] = [x1,x2, ...,xm]

Fv[λxi.M] = [x1,x2, ...xi−1,xi+1, ...,xm]

Fv[M] = [x1, ...,xm] Fv[N] = [y1, ...,yn]

Fv[MN] = [x1, ...,xm,y1, ...,yn]

Fv[M] = [x1, ...,xm]

Fv[x <xi
x j M] = [x,x1, ...xi−1,xi+1, ......x j−1,x j+1, ...,xm]

FIGURE 18. Lists of free variables of a λIr-term

In both figures, the only difference w.r.t. the syntax of the λr-calculus is the absence
of items related to erasure rule. λIr-calculus is a strict sub-calculus of the λr-calculus,
hence there are λ-terms and λr-terms that cannot be represented in the λIr-calculus, i.e.
λx.y and z <x

y x. It is easy to see, by inspecting the rules of Figure 17 and Figure 18,
that terms with void bindings cannot be built in λIr. All the rules that introduce binders,
namely (abs) and (dup) have conditions that require presence of free variables (that will
be bound) in the sub-term. Moreover, since erasure operator is not part of the syntax, all
these free variables are “regular” ones, i.e. either introduced by axiom, or by duplication
of two “regular” variables.

Operational semantics of the λIr-calculus represents the part of the operational seman-
tics of the λr-calculus that does not contain erasure operator. More precisely, reduction
rules are (β), (γ1), (γ2) and (γ3) from Figure 9, structural equivalence is generated by the
rules (ε2), (ε3) and (ε4) from Figure 10, and substitution is defined analogously as in the
λr-calculus, via an auxiliary calculus whose syntax is the syntax of λIr extended with an
operator of substitution M[N/x], and whose reduction rules are the rules given in Figure 8
except the two rules that define substitution evaluation in the presence of erasure operator
(fifth and sixth rule from the top).

The λIr-calculus with types. Both simple and intersection types can be introduced to the
λIr-calculus. Two type assignment systems, namely λIr → and λIr∩, are obtained as
simple modifications of the corresponding systems for the λr-calculus: the λr → system
defined in Figure 11 and the λr∩ system defined in Figure 12.

Type assignment system λIr → is presented in Figure 19. It provides Curry-Howard
correspondence between simply typed λIr-calculus and implicative fragment of the rele-
vant logic in the natural deduction format.

It is important to notice that, although (T hin) rule is excluded from λr → in order to
obtain λIr →, due to the absence of erasure operator that corresponds to the structural rule
of thinning at the logical side, the form of the axiom associated with explicit thinning is
preserved. Such choice of the axiom enables tight control of variable declarations in bases
- only declarations of variables that appear as free variables in the typed term are present
in the bases. As expected, this calculus satisfies strong normalisation i.e. all typeable
λIr-terms are terminating, but all terminating terms can not be assigned types. A typical
example is λx.x <y

z yz, λIr-term corresponding to λ-term λx.xx, which is normal form but
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x : α ⊢ x : α
(Ax)

Γ,x : α ⊢ M : β
Γ ⊢ λx.M : α → β

(→I)

Γ ⊢ M : α → β ∆ ⊢ N : α
Γ,∆ ⊢ MN : β

(→E)
Γ,x : α,y : α ⊢ M : β
Γ,z : α ⊢ z <x

y M : β
(Cont)

FIGURE 19. λIr →: λIr-calculus with simple types

cannot be typed by simple types. Also, the rule (Cont) may be considered too restrictive
for requiring that only two variables of the same type can be contracted. Therefore, in
order to capture all strongly normalising terms on one hand, and in order to enable less
restrictive conditions for typing terms involving duplication operator (that corresponds to
explicit contraction) on the other hand, we introduce intersection types to the λIr-calculus.

Type assignment system λIr∩ is given in Figure 20.

x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ M : σ
Γ ⊢ λx.M : α → σ

(→I)

Γ ⊢ M : ∩n
i τi → σ ∆1 ⊢ N : τ1 . . . ∆n ⊢ N : τn

Γ,∆1 ⊓ ...⊓∆n ⊢ MN : σ (→E)
Γ,x : α,y : β ⊢ M : σ

Γ,z : α∩β ⊢ z <x
y M : σ

(Cont)

FIGURE 20. λIr∩: λIr-calculus with intersection types

Definitions of types and associated notions are the same as in the case of the λr-
calculus with intersection types, except for the fact that the type constant ⊤, defined as
zero intersection i.e. ∩n

i σi for n = 0, is not defined here. Type ⊤ was assigned only to vari-
ables introduced by erasure operator, which does not exist in the λIr-calculus. Therefore,
intersection types in the system λIr∩ are defined as ∩n

i σi = σ1 ∩ . . .∩σn for n > 0 where
σi, i ∈ {1, ...,n} are strict types. As a consequence, the neutral element for the intersection
of bases of domain Dom(Γ), namely Γ⊤, is not defined. Hence, the rule (→E) here is
significantly simpler than in the system λr∩. All the other rules of λIr∩ are the same as
the corresponding rules of λr∩5.

It can be proved that a λIr-term is strongly normalising if and only if it is typeable in
the system λIr∩.

5. Conclusion

This work gives an overview of authors’ contributions in the field of resource control.
It covers the work concerning the Resource control lambda calculus λr [28, 24], the Re-
source control sequent lambda calculus λGtz

r [30] and the computational interpretations of
substructural logics, such as λIr - a calculus without thinning.

5Of course, there is no rule that would correspond to the rule (T hin).
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The presence of erasure and duplication operators in term calculi enables the explicit
control of resources, i.e. variables. On the logical side, these operators correspond to the
structural rules of thinning and contraction, respectively. Erasure indicates that a variable
is not present in the term anymore, whereas duplication indicates that a variable will have
two occurrences in the term, each receiving a specific name to preserve the “linearity” of
the term. Indeed, in the spirit of the λI-calculus, in order to control all resources, void
lambda abstractions are not acceptable, Hence, λx.M is well-formed only if the variable x
occurs in M. But if x is not used in the term M, first the erasure must be performed, by
using the expression x⊙M. In this way, the term M does not contain the variable x, but
the term x⊙M does. Similarly, a variable should not occur twice. If nevertheless, two
occurrences of the same variable are needed, it has to be duplicated explicitly, using fresh
names and the operator x <x1

x2 M, called duplication which creates two fresh variables x1
and x2.

For all the calculi we considered both the untyped and typed versions of the calculus,
and in the typed case, we provided an account of type assignment systems with simple
types and with intersection types. In all the cases, the proposed intersection type assign-
ment systems completely characterise the strongly normalising terms of the calculus. No-
tice that the strict control of the way variables are introduced determines the way terms
are typed in a given environment. Basically, in a given environment no irrelevant intersec-
tion types are introduced. Moreover, we showed that intersection types fit naturally with
resource control, because each of three kinds of variables (variables as placeholders, vari-
ables to be duplicated and variables to be erased) is associated to different kind of types.
Therefore, the type of a variable provides an information about its role in the term.

The computational content of substructural logics [56, 53] in natural deduction style
and its relation to substructural type systems [62] is an interesting area of research. The
motivation for these logics comes from philosophy (Relevant Logics), linguistics (Lambek
Calculus) and computing (Linear Logic). Formulae-as-types interpretation of a hierarchy
of substructural logics of Wansing [63] can be embodied in the Resource control lambda
calculus, since the basic idea of resource control is to explicitly handle structural rules,
the control operators could be used to handle the absence of (some) structural rules in
substructural logics such as thinning, weakening, contraction, commutativity, associativity.
Also, intersection types are powerful means for building models of lambda calculus [5, 15]
and could be used for construction of models for substructural type systems.
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