
27 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A General Evolutionary Framework for different classes of Critical Node Problems

Published version:

DOI:10.1016/j.engappai.2016.06.010

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1583153 since 2016-11-14T17:33:05Z

This is an author version of the contribution published on:

R. Aringhieri, A. Grosso, P. Hosteins and R. Scatamacchia.

A general Evolutionary Framework for different classes of Critical Node
Problems.

Engineering Applications of Artificial Intelligence, 55: 128–145, 2016.
Available online 7 July 2016.

DOI: 10.1016/j.engappai.2016.06.010

When citing, please refer to the published version available at:

http://www.sciencedirect.com/science/article/pii/S0952197616301191

http://www.sciencedirect.com/science/article/pii/S0952197616301191

A General Evolutionary Framework for different classes

of Critical Node Problems

Roberto Aringhieria, Andrea Grossoa, Pierre Hosteinsa,∗, Rosario
Scatamacchiab

aUniversità degli Studi di Torino
Dipartimento di Informatica

Corso Svizzera, 185 - 10149 Torino, Italy
bPolitecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24 - 10129 Torino, Italy

Abstract

We design a flexible Evolutionary Framework for solving several classes of
the Critical Node Problem (CNP), i.e. the maximal fragmentation of a graph
through node deletion, given a measure of connectivity. The algorithm uses
greedy rules in order to lead the search towards good quality solutions dur-
ing reproduction and mutation phases. Such rules, which are only partially
reported in the literature, are generalised and adapted to the six different
formulations of the CNP considered along the paper. The link between solu-
tions of different CNP formulations is investigated, both quantitatively and
qualitatively. Furthermore, we provide a comparison with best known results
when those are available in literature, that confirms the good overall quality
of our solutions.

Keywords: Evolutionary algorithm, Critical Node Problem, graph
fragmentation, greedy rules, connectivity measures.

∗Corresponding author
Email addresses: roberto.aringhieri@unito.it (Roberto Aringhieri),

andrea.grosso@unito.it (Andrea Grosso), hosteins@di.unito.it (Pierre Hosteins),
rosario.scatamacchia@polito.it (Rosario Scatamacchia)

Preprint submitted to Elsevier July 1, 2016

1. Introduction

The Critical Node Problem (CNP) is a class of Interdiction Network Prob-
lems (Wollmer, 1964; Wood, 1993) that focuses on maximally fragmenting a
graph G(V,E) by deleting a set S ⊂ V of its nodes (and all incident edges
on such nodes). This problem is of interest in a wide range of possible sit-
uations, including the identification of key players in a social network (Bor-
gatti, 2006), transportation networks’ vulnerability (Jenelius et al., 2006),
power grid construction and vulnerability (Salmerón et al., 2004), homeland
security (Brown et al., 2006), telecommunications (Alevras et al., 1997) or
epidemic control (Zhou et al., 2006) and immunisation strategies (Arulselvan
et al., 2009; Cohen et al., 2003; Ventresca, 2012). A possible application to
computational biology, through the example of protein-protein interaction
networks, has been suggested in Boginski and Commander (2009).

Each domain of application usually defines a specific version of the prob-
lem through the use of a particular connectivity measure. Moreover, solving
real graphs with up to thousands of nodes often calls for the use of an effi-
cient heuristic algorithm. The contribution of the approach advocated here
is twofold: on one hand, it provides a global and flexible framework that
allows us to deal with different fragmentation measures. On the other hand,
it can find good quality solutions with limited costs in terms of algorithmic
implementation and computational effort. To the best of the authors’ knowl-
edge, this is the first attempt to develop a general tool for tackling different
classes of the CNP.

We will represent a solution by the set of its deleted nodes S. The degree
of fragmentation of the induced graph G[V \ S] needs to be measured by a
given connectivity metric. We will consider only undirected graphs and we
denote the set of maximal connected components as H and the cardinality
of the said components as |h| for h ∈ H.

Many connectivity measures can be devised according to the type of ap-
plication desired. We will concentrate on the measures that take into account
the number of remaining connected components and their cardinality after
the deletion of set S, which is generally enough to determine which nodes
are still able to interact in the remaining network. These measures are de-
fined as (i) pair-wise connectivity, i.e. the number of pair of nodes connected
by a path inside the graph, (ii) the size of the largest connected component
and (iii) the number of connected components. The value of these three
measures for a solution set S will be expressed, respectively, through the

2

following mathematical functions:

f(S) = |{i, j ∈ V \ S : i and j connected by a path in G[V \ S]}|, (1)

C(S) = max{|h|, h ∈ H(G[V \ S])}, (2)

H(S) = |H(G[V \ S])|. (3)

Pair-wise connectivity f(S) can alternatively be expressed in terms of the

cardinality of the maximal connected components: f(S) =
∑

h∈H
|h|(|h|−1)

2
.

Even though these measures are all different and can lead to very different
optimal solutions, as explicitly demonstrated in Shen and Smith (2012), they
are not generally unrelated. For example the ideal situation for minimising
the pair-wise connectivity is to obtain the largest number of connected com-
ponents H(S) with the smallest possible variance in their cardinality. This
implies a minimisation of the size of the largest component. In practice,
this means that disrupting pair-wise connectivity f(S) is a tradeoff between
minimising the cardinality of the largest component C(S) and maximising
the number of connected components H(S). As the nodes are removed or
disabled, we do not count them as single components. An example of the
fragmentation of a small graph is provided in Fig. 1: after the removal of two
nodes (number 1 and 2), the graph is split into two connected components
of five nodes each. This solution corresponds to the optimal solution when
trying to either minimise f(S) and C(S) or maximise H(S) by removing at
most two nodes from the graph, with corresponding values: f({1, 2}) = 20,
C({1, 2}) = 5 and H({1, 2}) = 2.

Figure 1: Example of a small graph (on the left) fragmented into two connected compo-
nents (on the right) after the removal of nodes 1 and 2.

Given a connectivity measure, a CNP solution is defined by the set of
deleted nodes and the value of the connectivity metric for the resulting graph.
Depending on the problem at hand, the selection of the nodes can be per-
formed using two complementary approaches:

3

• the budget constrained formulation: minimise/maximise the connec-
tivity under a budget limitation over S (|S| ≤ K);

• the connectivity constrained formulation: minimise the number of no-
des deleted (|S|) in order to to meet a threshold connectivity value.

For the sake of clarity, we will refer to the problems with the different
connectivity measures f(S), C(S) and H(S) as CNP1, CNP2 and CNP3,
respectively. For each problem, we consider the two variants of the CNP
that arise taking into account both the budget (“a”) and connectivity (“b”)
constrained formulations, that is

• CNP1a: minimise f(S) (pair-wise connectivity) subject to |S| ≤ K.

• CNP1b: minimise |S| such that f(S) ≤ P .

• CNP2a: minimise C(S) (cardinality of the largest connected compo-
nent of G[V \ S]) subject to |S| ≤ K.

• CNP2b: minimise |S| such that C(S) ≤ L (L denotes the cardinality
parameter in accordance with notations in Boginski and Commander
(2009); Arulselvan et al. (2011); Veremyev et al. (2014a)).

• CNP3a: maximise H(S) (number of connected components of G[V \S])
subject to |S| ≤ K.

• CNP3b: minimise |S| such that H(S) ≥ N .

In this paper we will consider the 6 different types of the CNP problem
accordingly to the above taxonomy. Handling each of these formulations
through the use of a single algorithmic framework is not straightforward.
For instance, the VNS algorithm provided in Aringhieri et al. (2016b) for
CNP1a, which provides good results compared to other heuristics for that
problem, is hard to generalise even to the CNP1b. One main reason is the
fact that finding feasible solutions for “b” types of the CNP is potentially very
difficult, posing a relevant challenge for implementing the classical shaking
procedures in a VNS framework and in general for the exploration of the
solution space. Another important difficulty concerns the application of local
search approaches. In order to improve the objective value of an instance of
CNP1b, a local search procedure should involve a swap of a node from V \S
with at least two nodes from S, which would increase the complexity of a

4

move by a factor K/2 compared to the “a” version (more details about local
search procedures for the CNP are provided in Section 3.5). Furthermore,
the development of efficient neighbourhoods is also challenging, as discussed
in Aringhieri et al. (2016b).

We will demonstrate how our Evolutionary Framework (EF) can tackle
any of the six problems above by using tailored reproduction and mutation
operators capable of repairing the solutions through appropriate greedy rules
(preliminary results of such a framework can be found in Aringhieri et al.
(2016a)). Such rules can effectively guide the search through the solution
space, in particular when they are properly combined as pointed out by the
previous work of Addis et al. (2016).

Based on the considerations above, the aim of this work is to provide a
simple and easy to implement algorithmic framework that can tackle many
different versions of the CNP by embedding suitable and efficient greedy
rules.

type “a” type “b”

Greedy algorithms (Arulselvan et al. (2009), Approximation algorithm
CNP1 Ventresca and Aleman (2015a), Addis et al. (2016)) (Dinh et al., 2010)

Simulated Annealing and PBIL (Ventresca, 2012)
VNS and ILS (Aringhieri et al., 2016b)

Greedy and Genetic algorithm
CNP2 - (Boginski and Commander (2009),

Arulselvan et al. (2011))

CNP3 - -

Table 1: Heuristic algorithms from the literature for the six types of the CNP considered
in this work.

Table 1 reports the main heuristic algorithms in the literature for the
different types of the CNP considered. CNP1a has gained more attention,
while there exists a gap in the literature for the other five versions. We
further extend the analysis of the CNP to these versions and propose a set of
benchmark results which may constitute an interesting basis for comparison
for future algorithms.

The paper is organized as follows. Section 2 introduces the greedy rules
adopted as well as some greedy algorithms that will be used for comparison.
Section 3 describes a general evolutionary algorithm for the different types of
the CNP as defined above, embedding the greedy rules defined in Section 2
within the tailored reproduction and mutation operators. Section 4 discusses

5

the results of the evolutionary algorithm over a set of benchmark instances
and investigates the correlation between solutions of the different types of the
CNP. Finally Section 5 provides conclusions and remarks. The remainder of
this section gives a brief overview of the existing literature on the CNP.

A pseudo-approximation algorithm is proposed in Dinh et al. (2010) to
select a set of nodes S whose deletion will lower pair-wise connectivity under
a certain threshold (CNP1b). The minimisation of pair-wise connectivity
through the deletion of K nodes (CNP1a) is investigated in numerous works.
Its NP-completeness is proved in Arulselvan et al. (2009), Di Summa et al.
(2011) and Addis et al. (2013) while Arulselvan et al. (2009) also proposes
a greedy algorithm and an ILP formulation (with O(|V |3) constraints). A
generally more efficient ILP formulation with a potentially non polynomial
number of constraints is presented in Di Summa et al. (2012) while the more
recent work of Veremyev et al. (2014a) proposes an alternative more compact
formulation with only O(|V |2) constraints. Several heuristic algorithms exist,
based on the use of greedy rules (Ventresca and Aleman, 2015a; Addis et al.,
2016) with interesting results or metaheuristic methods, such as Simulated
Annealing and Population Based Incremental Learning (Ventresca, 2012) or
Iterated Local Search and Variable Neighbourhood Search (Aringhieri et al.,
2015, 2016b). Approximation algorithms have also been proposed (Ventresca
and Aleman, 2014a,b) but with limited applicability since they are based on
an ILP formulation with O(|V |3) constraints. Polynomiality of the CNP1a
over trees is established in Di Summa et al. (2011) and extended to graphs
with bounded tree-width (and to the CNP2a and the CNP3a) in Addis et al.
(2013).

The CNP2b has been introduced in Boginski and Commander (2009)
and Arulselvan et al. (2011): it seeks the smallest set S inducing a graph
G[V \S] whose largest component is smaller than a given threshold L (C(S) ≤
L). An ILP formulation is given along with a greedy algorithm very similar to
the one of Arulselvan et al. (2009) and a genetic algorithm. A more compact
linear model is proposed in Veremyev et al. (2014a) and polynomiality of the
CNP2b over trees and proper interval graphs is established in Lalou et al.
(2015). The works of Shen and Smith (2012) and Shen et al. (2012) study the
versions where a set of nodes with maximum cardinality |S| ≤ K is deleted
to respectively minimise the size of the largest connected component C(S)
(CNP2a) or maximise the number of connected components H(S) (CNP3a).
Exact algorithms are proposed for both versions, including dynamic program-
ming approaches as well as ILP models. Contrary to the version that consid-

6

ers pair-wise connectivity minimisation, few efficient heuristics to tackle real
world graph instances have been developed in the literature for other connec-
tivity measures. We note that a very general mathematical model for dealing
with Critical Node-Edge Deletion Problems has been proposed in Veremyev
et al. (2014b), providing a linear formulation for any connectivity measure
that uses the number of connected components and their size, with a limited
number of variables and constraints (O(|V |2)). As a side note, it can be ob-
served that formulations CNP2b and CNP3b have strong ties to the Vertex
Separator Problem (Balas and de Souza, 2005), which in its simplest form
seeks to find the smallest possible set of nodes whose removal fragments the
graph in two balanced components. Recent examples of exact and heuristic
approaches for the Vertex Separator Problem can be found in Cavalcante
and de Souza (2011) and Sánchez-Oro et al. (2016).

To summarize, the literature does provide heuristic algorithms able to
tackle real graphs with up to thousands of nodes but only for two out of
the six CNP types defined above (CNP1a, CNP2b). At the same time, the
applicability of the ILP models is in general limited to small graphs. Al-
though we will focus in this paper on the three connectivity metrics detailed
above, we remark that many alternative ways to quantify a graph’s frag-
mentation can be used, for example: the network’s diameter (Albert et al.,
2000), single/multiple-commodity maximum flow or the shortest path be-
tween given source-sink node pairs (Grubesic and Murray, 2006; Matisziw
and Murray, 2009; Cormican et al., 1998; Lim and Smith, 2007; Veremyev
et al., 2015).

2. Greedy Rules and Algorithms

The evolutionary framework we propose relies on the use of suitable
greedy rules with the aim of providing an efficient and flexible tool for dealing
with the different types of CNP. These greedy rules are embedded in the ini-
tialization, reproduction and mutation phases of the evolutionary algorithm.
For each type of CNP, we will discuss two complementary types of greedy
rules that allow us to generate heuristic solutions quickly. These rules are
based on moving a node from the set S of deleted nodes to the remaining
graph V \S, or conversely, from V \S to S, depending on the characteristics
of the current solution. Depending on the CNP version one wants to tackle,
a set of nodes is selected to maximise or minimise a relevant connectivity
criterion and a full greedy procedure is devised using one of these rules for

7

computing a feasible solution. We will adopt here the two greedy approaches
defined in Addis et al. (2016) (referenced there as Greedy1 and Greedy2) as
a basis.

For each CNPnx problem, we propose a greedy rule which identifies nodes
that can be deleted from S while minimally worsening the objective function
— called GR1(S, n, x) — and a second rule that identifies nodes that can
be added to S while maximally improving the objective function — called
GR2(S, n, x). It often happens that a rule is the same for x = a and x = b,
in which case we do not explicitly define it for case x = b. Based on these
rules we can devise two types of greedy algorithm for each version of the
CNP. These algorithms will be referred to as G

(nx)
1 and G

(nx)
2 and will have

the basic structures shown in Algorithms 1, 2, 3 and 4.

Algorithm 1: G
(na)
1

Data: Graph: G, K
Result: S

1 S := Vertex Cover(G);
2 while |S| > K do
3 B := {GR1(S, n, a)};
4 S := S \ {Select(B)};

Algorithm 2: G
(na)
2

Data: Graph: G, K
Result: S

1 S := {∅};
2 while |S| < K do
3 B := {GR2(S, n, a)};
4 S := S ∪ {Select(B)};

Algorithm 3: G
(nb)
1

Data: Graph: G, connectivity parameter P , L or N
Result: S

1 S = Vertex Cover(G);
2 B := {GR1(S, n, b)};
3 u := Select(B);
4 while S \ {u} satisfies the connectivity constraint do
5 S := S \ {u};
6 B := {GR1(S, n, b)};
7 u := Select(B);

The philosophy of Algorithms 1 and 3 is to start from a relaxed solution
where the residual graph that has no induced edges — no pairwise commu-
nication, a maximum component size of 1, and |V | − |S| components — and

8

Algorithm 4: G
(nb)
2

Data: Graph: G, connectivity parameter P , L or N
Result: S

1 S := {∅};
2 B := {GR2(S, n, b)};
3 v := Select(B);
4 while S ∪ {v} violates the connectivity constraint do
5 S := S ∪ {v};
6 B := GR2(S, n, b);
7 v := Select(B);

8 B := {GR1(S, n, b)};
9 u := Select(B);

10 while S \ {u} satisfies the connectivity constraint do
11 S := S \ {u};
12 B := GR1(S, n, b);
13 u := Select(B);

then moving nodes from S back to V \ S so as to keep the connectivity as
close to optimality as possible. While Arulselvan et al. (2009), Boginski and
Commander (2009) and Arulselvan et al. (2011) use a deterministic vertex
cover solution S that is defined from an input node i ∈ V , we use a heuristic
procedure that shuffles the nodes at each run of the algorithm as in Addis
et al. (2016). Likewise, we adopt a different strategy for breaking ties. The
nodes with the best possible impact identified at each iteration are stored
in the set B. While the previous approaches select the first node in the set,
we break ties by selecting at random a node inside B through the function
Select(), as was proposed in Addis et al. (2016).

The philosophy of Algorithms 2 and 4 is to start from the set of nodes
V and move nodes to set S, optimising the connectivity as much as possible
at each step. Note that for G

(nb)
2 , we have to satisfy a constraint on the

connectivity measure itself: it is possible that in trying to cope with such a
constraint we end up moving nodes to S that reveal themselves as unnec-
essary choices once we have reached feasibility, this is why it is wise to use
rule GR1(S, n, b) at the end of the process (i.e. when the solution is feasible)
to reduce |S| as much as possible. The necessity of this additional phase is

9

illustrated on the small graph introduced in Fig. 1: Consider the case of the
CNP3b version with N = 2. Since no single node is an articulation point
(i.e. a node whose removal from the graph splits it in two or more connected
subcomponents), too many nodes could be blindly removed at random over
the whole set V \ S until the number of connected components is at least
two. Nevertheless it is easy to see that just deleting nodes 1 and 2 would pro-
vide an optimal solution. Consider in Fig. 2 a situation where GR2(S, 3, b)
chooses at random nodes 7, 10 and 1 before finally selecting node 2. The use
of GR1(S, 3, b) allows us to reintroduce nodes 7 and 10 in the graph and to
reduce |S| from 4 to 2.

Figure 2: Illustrative example for the CNP3b (with N = 2) where using GR2(S, 3, b) in
the graph in Fig. 1 deletes unnecessary nodes, namely nodes 7 and 10 (on the left). The
sequential use of GR1(S, 3, b) right after reintroduces nodes 7 and 10 in the graph thus
yielding an optimal solution (on the right).

The remainder of the section is devoted to a detailed description of the
greedy rules considered. We adopt the following notation, referring to the
subgraph G[V \ S] induced by a partial solution S. We refer to a connected
component of a graph by considering only its node set h ∈ H. For a node t ∈
V \S, we denote by h(t) the connected component of subgraph G[V \S] that
includes node t; we denote by χ(t) the collection of connected components in
which h(t) decomposes if node t is deleted. For a node t ∈ S, we denote by
h′(t) the connected component to which t belongs in subgraph G[(V \S)∪{t}],
i.e. after node t has been added back to the graph; for a node t ∈ S, we
denote by χ′(t) the set of connected components of G[V \S] that merge into
a single component h′(t) when node t is added back to the graph.

2.1. Greedy rules for the CNP1

We adopt here the greedy rule GR1(S, 1, a) proposed in Arulselvan et al.
(2009) and Addis et al. (2016):

GR1(S, 1, a) := arg min{f(S \ {t})− f(S) : t ∈ S}. (4)

10

An efficient implementation of Greedy Rule 1 looks at all neighbours of the
nodes in S in order to determine the connected components that can be joined
together and the size of the new component. If the connected components of
the residual graph are stored, this requires at most O(|E|) operations; after
the best node has been chosen and added back to V \S, G[V \S] is explored
to update the connected components. The complexity of identifying and/or
merging components does not exceed O(|V |+ |E|).

The second greedy rule, say GR2(S, 1, a), for this problem is logically
defined in a symmetric way:

GR2(S, 1, a) := arg max{f(S)− f(S ∪ {t}) : t ∈ V \ S}. (5)

Greedy Rule 2 can be implemented through a Depth-First Search (DFS)
exploration for each connected component, using rules to track articulation
points and the impact of their removal on the graph. Therefore, it has an
overall complexity of O(|V |+ |E|).

When we want to tackle the CNP1b, where a limit on the maximum pair-
wise connectivity is imposed, the same greedy rules as (4) and (5) can be

used. By using (4) for G
(1b)
1 , we ensure that each node reintroduced will raise

the connectivity by the smallest possible amount, which leaves the potential
for more nodes to be deleted from S until we reach the maximum allowed
connectivity value P . Conversely, by using (5) for G

(1b)
2 , we try to lower the

connectivity as much as possible with each deleted node and reach the value
f(S) ≤ P with the lowest possible value for |S|.

2.2. Greedy rules for the CNP2

There are important differences between the CNP1 and the CNP2: while
moving a node from S to V \S, or vice versa, always has an impact on the pair-
wise connectivity objective (f(S)−f(S∪{v}) > 0 and f(S \{u})−f(S) > 0
for any v ∈ V \ S or u ∈ S respectively), it is no longer the case when one
considers the maximum cardinality of the connected components. In fact, it
is very difficult to recognize what is going to be the largest component in the
final solution by considering one node at a time, especially when a very large
set S is considered. Consequently, one will have to make many choices whose
impact is not quantifiable at the moment they are made. For example the
application of the greedy approach described by Boginski and Commander
(2009) and Arulselvan et al. (2011) for the CNP2b blindly moves nodes from
a vertex cover S of G(V) back to the graph G[V \ S] until it is no longer

11

possible to satisfy the constraint on the maximum cardinality of connected
components. This strategy can be improved by considering an additional
criterion.

For the CNP2a, the logic is similar to the CNP1a: a node t is candidate
to be moved from S to V \S if it will belong to the connected component of
G′ = G[(V \ S) ∪ {t}] that has minimum size.

GR1(S, 2, a) := arg min{|h′(t)| : t ∈ S} (6)

A “symmetric” greedy rule that chooses candidate nodes to be moved
from V \S into S can be devised as follows. We consider only nodes belonging
to connected components of G[V \ S] with maximum cardinality C(S), and
try to minimize the size of the largest resulting component in χ(t).

GR2(S, 2, a) := arg min
{

max{|ω| : ω ∈ χ(t)} : |h(t)| = C(S), t ∈ V \ S
}
.

(7)
When considering the CNP2b, the solutions have to satisfy a constraint L

on the size of each connected component in the residual graph. The greedy
rule (6) can be used equally to define GR1(S, 2, b): as each node which is
removed from S will be integrated into the smallest possible component, we
will avoid the premature reappearance of a component which is much larger
than the others. When such a component exists, it will more frequently
contain a neighbour of any given node u ∈ S: therefore, it could link to other
components more easily and violate the maximum cardinality constraint.
The greedy process could then stop when |S| is still much larger than the
optimal value.

Adapting greedy rule GR2(S, 2, a) to the connectivity constrained case
is more involved. Deleting a node t belonging to a component h(t) having
maximum size in G[V \ S] is an obvious greedy choice, but we do not want
such a choice to be completely blind with respect to the constraint on the
component size. We formulate the rule GR2(S, 2, b) so that it considers the
decrease of the size of the components:

GR2(S, 2, b) := arg max
{
|h(t)| −max{|ω| : ω ∈ χ(t)} : t ∈ V \ S

}
, (8)

and we break ties with the use of a secondary objective, trying to max-
imise the number of components among those in the collection χ(t) which
will satisfy the size constraint. This secondary objective can be written as:
max{|{ω ∈ χ(t) : |ω| ≤ L}|} where the argument t runs over nodes in V \ S
which provide a maximal objective as defined in Eq. (8).

12

2.3. Greedy rules for the CNP3

When trying to reduce a set S with high cardinality from a CNP3 per-
spective, we wish to maintain the highest possible number of connected com-
ponents while reducing |S|. We introduce a greedy rule that considers a node
t as a candidate to be moved from S to V \ S when that node is adjacent
a minimum collection of connected components χ′(t) that will merge into a
single one. The greedy rule GR1(S, 3, a) is then formulated as:

GR1(S, 3, a) = arg min{|χ′(t)| : t ∈ S} (9)

Whenever a tie arises between several nodes, the node or nodes that inte-
grate into the smaller component is chosen, so as to avoid creating large
components early in the greedy procedure: this is mainly because a large
component will connect more easily to another when other nodes are added
afterwards.

One difficulty in dealing with the CNP3 is due to the fact that starting
from a vertex cover to obtain a graph with no edge does not automatically
provide the most satisfying connectivity. It is possible that another choice
for the initial set S could provide a larger number of nodes in V \S and thus
a larger number of components. Actually for the CNP3a a minimum vertex
cover S with cardinality |S| ≤ K would yield indeed an optimal solution,
with the optimum number of components equal to |V | − |S|. Hence a vertex
cover is not a priori a bad choice for disconnecting the graph, however finding
a minimum vertex cover is very demanding in practice. For the CNP3b, a
minimum vertex cover would provide an upper bound on the value of N (i.e.
the cardinality of a maximum independent set). At the same time, even
a minimum vertex cover is not guaranteed to be optimal for the problem.
It could be possible to move back in the graph one or more of its nodes
(thus lowering the objective function) without violating the constraint on the
number of components. Therefore the choice of the vertex cover as initial
set for the greedy procedure that will use Greedy Rule (9) can already limit
drastically the quality of the solution. Being aware of that situation, we can
anyway devise a greedy procedure as described in Algorithm 1.

The second greedy rule for the CNP3, say GR2(3, a), would consider
moving a node t from V \ S to S if such a move maximised the number of
components |χ(t)| obtained from the fragmentation of the component h(t).

GR2(S, 3, a) := arg max{|χ(t)| : t ∈ V \ S}. (10)

13

Concerning the connectivity constrained version, the CNP3b, we need
to deal with a minimum constraint, which is somewhat different from the
CNP1b and the CNP2b. This means that for using greedy rule (9) we first
need to find a set S such that H(S) ≥ N , which is non-trivial for large N .
However, once such a set S is found, we can use rule GR1(S, 3, a).

3. An Evolutionary Algorithm for the CNP

In this section we present a flexible evolutionary framework that can be
applied to any of the CNP types discussed so far. Although Arulselvan
et al. (2011) have designed a genetic algorithm to deal with the CNP2b, the
features of their algorithm are quite different from the characteristics of our
approach. More specifically, we make use of greedy rules for repair operations
during reproduction and mutation phases. This is one of the key features
of the framework presented in this work as it allows a potential adaptation
of the algorithm to many different types of the CNP in a straightforward
manner. The evolutionary algorithm is presented in Algorithm 5.

Algorithm 5: Genetic Algorithm

Data: Graph: G; Type of the CNP: n (Connectivity Measure: f(S),
C(S) or H(S)) and x (type a: Budget Constrained or type b:
Connectivity Constrained); Constraint parameter: K, P , L or
N ; tmax; N ; α

Result: S∗

1 t←− 0;
2 Initialise(N ,P , S∗, γ, π, α);
3 while t ≤ tmax do
4 P ′ := New Generation(N ,P , γ, n, x);
5 P ′ := Mutate(P ′, π, n, x);
6 P := Ordering(P ,P ′, γ, S∗, n, x);
7 (γ, π) := Update(γ, π, α);
8 t←− cpuTime();

9 S∗ :=Local Search(S∗, n, x);

We adopt the standard algorithmic framework of a Genetic Algorithm
(GA). First we generate a population of solutions, then we mix them to pro-
duce new solutions (reproduction phase) which we randomly perturb (mu-
tation phase). After that we order the old and new solutions according to

14

a fitness function and eventually we create a new population by eliminat-
ing the worst quality solutions. The process is iterated until a time limit is
reached. The best solution is returned after the application of a local search
procedure.

The notation must be understood as follows: P and P ′ are populations
of N individual solutions of the CNP; individual solutions are represented
by the set S of deleted nodes, thus P(′) = {S(′)

i : i ∈ {1, ...,N}}; a parameter
γ is used in the fitness function and its value is set by an input parameter α,
while the parameter π refers to the probability of mutation for each newly
created solution.

The steps of the Evolutionary Algorithm proposed are described in detail
in the following subsections.

3.1. Initialisation

In order to evaluate the solutions we introduce a fitness function:

F (S, γ, S∗, n, x) = z(S, n, x) + γ Σ(S, S∗).

The function Σ(S, S∗) computes the number of nodes in S that are also
present in the best known solution S∗, while z(S, n, x) represents the objec-
tive function of the problem. Using F (S, γ, S∗, n, x) – instead of the objective
function z(S, n, x) – should maintain some diversity among solutions by pe-
nalising those that are too close to the best one, therefore boosting solutions
that depart from the best one while maintaining a competitive objective
function. With the CNP3a, which is a maximisation problem, we replace
function Σ with the Hamming distance between S and the best solution S∗,
i.e. the number of nodes in S not present in S∗, so that solutions with a high
F (S, γ, S∗, 3, a) are favoured.

The parameter γ sets the respective weight of the two terms in the fitness
function. It is initialised at each generation as:

γ = α z(S∗, n, x)/〈Σ(S, S∗)〉P , (11)

where the value α quantifies the importance of each criterion over the other.
The notation 〈•〉P means that the average of a quantity has been computed
over the solutions of population P .

Parameter π is initially set at πmin, that represents the minimal probabil-
ity of mutation for an individual solution. The value of π will be then updated

15

according to the discovery of a new best solution at each new generation (see
Section 3.4).

The initial solutions in P are obtained by the greedy algorithm G
(nx)
1

described in the previous section. Even though this would seem to drastically
reduce the variety of the initial population, initial numerical tests on the
CNP1a instances indicate that the quality of the solutions is improved. In
any case, a degree of variety among the greedy solutions is provided by
the randomly broken ties in the selection of the nodes and by the choice
of an initial vertex cover of the graph. However, given that for very large
graphs (specifically when |V | + |E| becomes large), generating the whole

initial population through the use of greedy G
(nx)
1 can be extremely time

consuming, we devote only a fraction I of the running time to this operation.
Beyond that time, we create the remaining solutions (up to N) by deleting
nodes at random in the graph until we satisfy the particular constraint of
the CNP considered.

3.2. Reproduction

In order to produce a child S ′ from a pair of parents S1 and S2, we need
to state how the information from S1 and S2 will be merged into a single
solution. This is usually done by first merging S1 and S2 inside a single set
S ′ := S1∪S2. For the CNPna where n ∈ {1, 2, 3}, it usually leads to a solution
with too large a set |S ′| ≥ K. For the CNP1b and the CNP2b, it leads to
a solution with a lower connectivity measure f(S) or C(S). The situation
is a bit more complicated for the CNP3b: for example, a node that has no
neighbours in V \ S1 might be part of S2 and a component might be deleted
in the merge, resulting in an overall lower number of connected components.
Should the solution obtained be infeasible, it is then discarded during the
selection process. We can then apply the greedy rule that moves nodes from
S ′ to the remaining graph V \ S ′. This is what is called GR1(S, n, x) in
accordance with the notation in Section 2. As outlined above, a node is
selected at random between all the best nodes found.

From the pseudocode in Algorithm 6, it is evident that we have chosen a
democratic strategy for reproduction, in the sense that the best individuals
are not favoured compared to the worst ones when choosing the parents.
This slows down the uniformisation of the population but guarantees a better
exploration of the solution space. Such a choice is motivated theoretically by
the fact that we have no means to foresee the combinations of nodes that will
disconnect the graph efficiently when deleted together. It is thus interesting

16

to combine some of the worst solutions together in the early stages of the
evolution.

Algorithm 6: New Generation

Data: N , P , γ, n, x
Result: P ′

1 P ′ := {};
2 for i = 1...N do
3 i1 := IntRand({0, ...,N}); i2 := IntRand({0, ...,N} \ {i1});
4 S ′i := Si1 ∪ Si2 ;
5 while |S ′i| can be lowered do
6 u =Select(GR1(S, n, x)); S ′i := S ′i \ {u};
7 P ′ := P ′ ∪ {S ′i};

Note also that the union of several sets Si, i ∈ {1...p}, can be achieved in
much the same way as described above with two parents, using the same rules
to obtain the best possible child S ′. Although this is an interesting possibility,
numerical tests have shown no significant improvement when p ≥ 3.

3.3. Mutation

For each individual of the newborn population, there is a probability of
mutation controlled by π. A random integer number is generated from a uni-
form probability distribution between 1 and 100: if it is smaller than π, the
solution is modified. This is usually done by randomly fixing to ng the num-
ber of genes (meaning the number of nodes belonging to S) to be changed.
The value of ng is chosen between 1 and |S| with a probability distribution
inversely proportional to ng: p(ng) ∝ 1/ng. This choice favours the mutation
of fewer genes so as not to disturb the solution too much while potentially
allowing us to escape the local minimum. After deselecting ng nodes from S,
the solution can be suboptimal: this is the case for the Budget Constrained
versions (CNPna), where usually |S| = K. It is typically infeasible with
Connectivity Constrained (CNPnb) versions, given that a solution is always
obtained through the application of a greedy rule that tries to reduce |S|
as much as possible while remaining feasible. It is then mandatory to add
back nodes to S in order to optimise the connectivity value or to recover
feasibility.

17

In order to do this we can either select nodes at random inside V \ S or
use the greedy rules designed in Section 2, which is the aim of the function
GR2(S, n, x) in the pseudocode of Algorithm 7. This is a crucial step from an
evolutionary computing point of view since choosing to use a greedy rule will
actually narrow the exploration in the space of solutions and prevent the algo-
rithm from converging to the best solution given an infinite computing time.
However, given the combinatorial explosion of the number of solutions with
|S|, we expect that a random selection has very little chances of significantly
improving the solutions within a reasonable time limit. This consideration
seems to hold in practice as evidenced by the numerical tests presented in
Section 4.3. This is the reason why we choose to orient the mutation phase
towards potentially better quality solutions by using GR2(S, n, x) as shown
in the pseudocode of Algorithm 7.

Algorithm 7: Mutate

Data: N , P ′, π, n, x
1 for i = 1...N do
2 if IntRand({1, ..., 100}) ≤ π then
3 ng := IntRand({0, ..., K}, p);
4 for j = 1...ng do
5 m := IntRand({1...|S ′i|}); S ′i := S ′i \ {m};
6 while |S ′i| can be increased do
7 u =Select(GR2(S, n, x)); S ′i := S ′i ∪ {u};

3.4. Ordering and Selection

Populations P and P ′ are then merged together and ordered according
to the fitness function F (S, γ, S∗, n, x) and the best individual is updated
when a better solution is found. For the CNPna (where the number of
deleted nodes is fixed at value K), we try to avoid an excessive convergence
of the population towards the best individual by modifying a solution if it
is found to be similar to another one in the population. Such a solution is
simply modified by exchanging one node between S and V \ S. The best
N solutions are selected inside the merged population and then they replace
the solutions in P .

18

We finally update the value of γ according to Eq. (11) using the newly
computed values for S∗ and 〈Σ(S, S∗)〉P . As concerns π, if a new best solution
has been found, it is set to π := πmin, otherwise it is increased at π :=
min(π + δπ, πmax). This allows us to diversify the solutions more whenever
no improvement of the best solution has been found in the last generations.

3.5. Local Search

At the end of the genetic evolution, a local search is applied to the best
found solution. The mechanism of the local search for the CNP1a is pro-
posed in Arulselvan et al. (2009) and improved in Aringhieri et al. (2016b)
(of which preliminary results were presented in Aringhieri et al. (2015)). We
can basically stay in the feasibility region while optimising the connectivity
measure by simply exchanging a node u ∈ S with a node v ∈ V \S. Two dif-
ferent neighbourhood explorations for this problem are detailed in Aringhieri
et al. (2016b). These neighbourhoods explore two–node exchanges around
the best solution found and are directly adaptable to the CNP2a and the
CNP3a. We use one of these two neighbourhoods to improve the final solu-
tion for the CNPna versions (typically the one that guarantees the smallest
complexity given the value of K compared to |V |, see Aringhieri et al. (2015)
and Aringhieri et al. (2016b) for more details).

The local search for Connectivity Constrained CNPs is slightly more chal-
lenging: to improve a feasible solution, the cardinality of set S must be low-
ered. Maintaining the search as local as possible, this means that a node
v ∈ V \ S must be exchanged with two nodes (u1, u2) ∈ S2 = S × S to
lower the objective by one unit, as was done in Arulselvan et al. (2011) with
exchanges of random nodes v and (u1, u2). We proceed here more systemati-
cally by evaluating the deletion of each node v ∈ V \ S from the graph. The
connected components of the graph are then computed through a DFS and
the connectivity variation for reintroducing each couple (u1, u2) ∈ S2 can
be estimated very quickly by enumerating all the components that would be
merged together. The first improving move is validated in any case and the
local search procedure goes on until no more improving moves are found.
Compared to the neighbourhood search for the CNPna versions, the com-
plexity of each move is multiplied by a factor of K/2 as we have to evaluate
couples (u1, u2) ∈ S2 and not single nodes in S. This makes the local search
much slower for the CNPnb, especially for large graphs.

19

4. Numerical Results

In this section, we will present extensive results over two benchmark sets
of instances to demonstrate the overall quality of the solutions found by our
genetic algorithm. When previous results exist in the literature (i.e. for the
CNP1a), we will compare our results with the best known results, otherwise
we will use the greedy algorithms of Section 2 to show that our algorithmic
framework provides an added value with respect to the independent use of
the greedy procedures.

4.1. Instances and Numerical Setup

The first benchmark set we use is composed of the graphs presented
in Ventresca (2012) and Edalatmanesh (2013) and is called Set 1. For the
CNP1a, many results are available for these graphs (Ventresca, 2012; Edalat-
manesh, 2013; Addis et al., 2016; Aringhieri et al., 2016b) and we will com-
pare them with our results. There are 16 graphs in total belonging to 4
groups with different characteristics. Barabasi-Albert (BA) graphs are scale-
free networks and proved to be the easiest to process while the Watts-Strogatz
(WS) are designed to mimic a small-world structure with a denser structure
and they turn out to be the most challenging to solve. Erdos-Renyi (ER) are
random graphs and Forest-Fire (FF) graphs reproduce the behaviour of how
a fire spreads through a forest, with a scale-free structure like BA graphs but
a densest structure. None of these graphs is expected to reproduce a real
network. However, real networks usually display a mix of the characteristics
of each category. This makes them an interesting benchmark set to deter-
mine the particular characteristics of a generic complex network which are
critical for a given algorithm.

In order to characterise the graphs precisely, Table 2 displays the following
quantities: the number of nodes |V | and edges |E| with the resulting average
degree 〈d〉 = 2 ∗ |E|/|V |; the number of articulation points (AP), as a larger
fraction of APs usually results in a graph which is easier to fragment (espe-
cially with respect to metric H(S)); the value of the clustering coefficient C
which signals the tendency of nodes to cluster together; the average shortest
path length D which indicates the average distance between two nodes taken
at random inside the graph. Finally, we also provide two important quan-
tities for solving the CNP, which are the number of nodes having degree 1,
written |D1| according to the notation of Veremyev et al. (2014a), and the
number of nodes which are neighbours of those in D1, written as |N(D1)|. It

20

has been noted (Shen and Smith, 2012; Veremyev et al., 2014a,b) that nodes
of D1 are always sub-optimal for the CNP, i.e. they will never be found in
an optimal solution since it is more interesting to suppress their neighbours.

The fraction |D1|/|V |, therefore, already gives a hint about the real diffi-
culty of finding a good solution for a given graph. For example, the BA and
FF graphs have a high value for |D1| and the number of APs. These fea-
tures probably explain the relatively low difficulty of solving these instances
exactly through the use of a linear solver, even for graphs with up to 5000
nodes (Aringhieri et al., 2016b). On the contrary, even small dense graphs
with no nodes of degree 1 (e.g. WS250 graph) are in practice intractable when
using a linear formulation of the problem. As for the value of |D1|/|N(D1)|,
which by definition is greater than 1, it tells us on average how many nodes
we will disconnect from the graph by deleting a node of N(D1). A large
value for that parameter should indicate how attractive these nodes will be
for the CNP formulation based on maximising H(S).

Graph |V | |E| 〈d〉 nb AP C D |D1| |N(D1)|
BA500 500 499 1.996 164 0.000 5.663 336 149
BA1000 1,000 999 1.998 324 0.000 6.045 676 290
BA2500 2,500 2,499 1.999 825 0.000 6.901 1,675 729
BA5000 5,000 4,999 2.000 1,672 0.000 8.380 3,328 1475
ER235 235 350 2.979 48 0.006 5.339 39 37
ER466 466 700 3.004 84 0.002 5.974 69 64
ER941 941 1,400 2.976 177 0.005 6.559 147 139
ER2344 2,344 3,500 2.986 419 0.001 7.516 396 354
FF250 250 514 4.112 83 0.276 4.816 57 50
FF500 500 828 3.312 195 0.247 6.026 160 136
FF1000 1,000 1,817 3.634 362 0.216 6.173 280 236
FF2000 2,000 3,413 3.413 725 0.245 7.587 552 477
WS250 250 1,246 9.968 0 0.473 3.327 0 0
WS500 500 1,496 5.984 0 0.420 5.304 0 0
WS1000 1,000 4,996 9.992 0 0.483 4.444 0 0
WS1500 1,500 4,498 5.997 0 0.480 7.554 0 0

Table 2: Benchmark instances of Set 1 (from Ventresca (2012)): main characteristics.

Moreover, the efficiency of our algorithm is evaluated on a second set of

21

instances deriving from real applications. The graphs Bovine, Circuit and
E.Coli are used in Ventresca and Aleman (2014a) and represent respectively
protein interactions for a bovine species (Reimand et al., 2008), an electronic
circuit (Milo et al., 2004) and interactions within bacteria E. Coli (Yang
et al., 2008). USAir97 and HumanDis are used in Edalatmanesh (2013).
The first graph represents the flight connections between major US airports
in 1997 (USAir, 1997). The second graph represents the relation between
genetic disorders. The nodes are the disorders and two nodes are connected
if at least one gene is involved in both of them (Goh et al., 2007). Train-
sRome is presented in Cacchiani et al. (2010) and represents a train network
around the city of Rome with train stations as nodes. EU flights is a net-
work of flight connections between airports in the European Union. There
is a link between two airports if a direct flight was recorded between them
in February or August 2014. The graph openflights is a network of flight
connections in the USA (Opsahl, 2011), while yeast is the graph of the in-
teractions inside the yeast organism S.Cervisiae presented in Yu, H. et al
(2008). It was downloaded from the webpage Yeast (2008). The graphs
Ham1000 to Ham5000 are proposed as graphs with hamiltonian cycles in
TSPLIB (Reinelt, 1991). They are not real graphs but help us diversify
the set. The powergrid network is an electricity distribution network in the
USA used in Watts and Strogatz (1998). OClinks represents the interactions
inside a social network as presented in Opsahl and Panzarasa (2009). The
remaining graphs come from the website Leskovec and Krevl (2014): facebook
is a social network constructed from relations on Facebook while grqc, hepph,
hepth, astroph and condmat represent the interactions between physicists of
a same domain. The interactions are measured on the basis of the publica-
tions on the website www.arxiv.org. The characteristics of these graphs are
displayed in Table 3.

The Hamilton graphs are somewhat different from the real graphs in
the set since they have a much smaller clustering coefficient and none of
them displays any articulation point . On the contrary, graphs representing
flight connections or social interactions have a large clustering coefficient
and usually a high average degree. For the graph of Set 2, the number of
components (written as |H| in our notations) is also reported. The diameter
D is computed for the largest component only. All the graphs of Set 2 are
available in the same format at the following address: http://di.unito.

it/cnp.
The algorithm was programmed in standard C++ and compiled with

22

Graphs |V | |E| 〈d〉 nb AP |H| C D |D1| |N(D1)|
Bovine 121 190 3.140 10 1 0.044 2.861 58 9
Circuit 252 399 3.167 25 1 0.052 5.806 17 17
E.Coli 328 456 2.780 57 1 0.024 4.834 169 52
USAir97 332 2126 12.807 27 1 0.396 2.738 55 26
HumanDis 516 1188 4.605 112 1 0.430 6.509 90 66
TrainsRome 255 272 2.133 79 1 0.018 43.496 4 4
EU flights 1,191 31,610 53.081 109 2 0.402 2.622 178 108
openflights 1,858 13,900 14.962 125 371 0.331 3.151 339 122
yeast 2,018 2,705 2.681 527 185 0.024 5.612 825 442
Ham1000 1,000 1,998 3.996 0 1 0.002 5.424 0 0
Ham2000 2,000 3,996 3.996 0 1 0.000 6.030 0 0
Ham3000a 3,000 5,999 3.999 0 1 0.000 6.365 0 0
Ham3000b 3,000 5,997 3.998 0 1 0.001 6.366 0 0
Ham3000c 3,000 5,996 3.997 0 1 0.001 6.361 0 0
Ham3000d 3,000 5,993 3.995 0 1 0.000 6.365 0 0
Ham3000e 3,000 5,996 3.997 0 1 0.001 6.366 0 0
Ham4000 4,000 7,997 3.999 0 1 0.001 6.621 0 0
Ham5000 5,000 9,999 4.000 0 1 0.000 6.807 0 0
powergrid 4,941 6,594 2.669 1,229 1 0.103 18.989 1,226 923
OClinks 1,899 13,838 14.574 220 4 0.057 3.055 388 218
facebook 4,039 88,234 43.691 11 1 0.519 3.693 75 10
grqc 5,242 14,484 5.526 813 355 0.630 6.049 843 586
hepth 9,877 25,973 5.259 1,584 429 0.284 5.945 1,581 1,189
hepph 12,008 118,489 19.735 1,168 278 0.659 4.673 1,173 872
astroph 18,772 198,050 21.101 1,107 290 0.318 4.194 1,002 802
condmat 23,133 93,439 8.078 2,096 567 0.264 5.352 1,799 1,395

Table 3: Benchmark instances of Set 2: main characteristics.

gcc 4.1.2. All tests were performed on an HP ProLiant DL585 G6 server
with two 2.1 GHz AMD Opteron 8425HE processors and 16 GB of RAM.
The number of individuals in the population N is set to 300 for all the graphs
but the largest graphs of Set 2. For these graphs, a large value of the initial
population N would drastically limit the work of the evolutionary mecha-
nism. Thus, for the graphs facebook, hepth, hepph, astroph and condmat we
set N equal to 200, 200, 150, 100 and 100 respectively.

For the CNP1a, to make a useful comparison with previous results from Ven-
tresca (2012) and Aringhieri et al. (2016b), the total running times (in sec-
onds) for the instances of Set 1 are the same as in Aringhieri et al. (2016b).
The total running times are also different for the instances of Set 2 since the

23

size of the graphs varies greatly. The same time limits are also used for all
other versions of the CNP. These time limits are reported in the column time
of tables 4 and 5.

The fraction of the total running time devoted to compute the initial
solutions (through algorithm Gnx

1) is fixed to I = 0.1. This is usually enough
for the graphs of Set 1 and the majority of the graphs in Set 2. Finally, 5%
of the total running time is reserved to the local search phase at the end of
the evolution process.

As far as the other numerical parameters are concerned, we chose the
following values after preliminary computational tests: α = 0.2, πmin = 5,
πmax = 50 and δπ = 5. An indicative study of the stability of the results over
Set 1 with different parameters is provided in subsection 4.3. This tuning
test validates our final choice of the parameters for the instances considered.

4.2. Solutions for benchmark sets S1 and S2

For the CNP1a, the performances of our algorithm can be compared with
several competing algorithms1. The results on Set 1 are very satisfactory.
The best known results in column BK of Table 4 come from the metaheuris-
tics of Aringhieri et al. (2016b) (some numerical results, however, have been
updated after an improved implementation of the algorithms. The results
are taken from http://di.unito.it/cnp). Not only does our Genetic Al-
gorithm find the optimal value for half of the graphs, it also yields six new
best known results, with remarkable results for the WS graphs which are
very hard to solve. Our algorithm has an average gap to the best known
values of 0.5%. This makes the Genetic Algorithm much more robust than
any of the 30 VNS and ILS algorithms from Aringhieri et al. (2016b). The
best one of these algorithms has an average gap to the best known values of
7.5%.

This robustness of the quality of the solutions is also validated on Set 2.
The GA finds the best solution in 17 out of 26 instances and the second best
result in 5 other cases (Table 5). On these instances, the competitors are
a VNS and an ILS algorithm with a proven efficiency from Aringhieri et al.
(2016b), and the two constructive, greedy-like algorithms from Addis et al.

1While our manuscript was under review, we have been made aware of other competing
algorithms from the works of Pullan (2015) and Purevsuren et al. (2016). While it is
difficult to compare them with our results since the running times are different, our results
are competitive with theirs and provide a higher robustness on WattsStrogatz graphs.

24

graph K time BK GA graph K time BK GA

BA500 50 3,780 195 195 FF250 50 2,640 194 194
BA1000 75 7,920 559 558 FF500 110 6,690 257 257
BA2500 100 10,000 3,704 3,704 FF1000 150 10,000 1,260 1,260
BA5000 150 10,000 10,196 10,196 FF2000 200 10,000 4,549 4,546

ER235 50 2,250 295 295 WS250 70 4,050 3,241 3,240
ER466 80 5,490 1,542 1,560 WS500 125 7,890 2,130 2,199
ER941 140 10,000 5,198 5,120 WS1000 200 10,000 115,914 113,638
ER2344 200 10,000 997,839 1,039,254 WS1500 265 10,000 13,792 13,662

Table 4: Results for the genetic algorithm on the graphs of Set 1 for the CNP1a, with
existing best known heuristic results in the literature (Aringhieri et al., 2016b) (updated
at http://di.unito.it/cnp) for comparison. The total running time (column denoted
by “time”) is set according to the one chosen in Aringhieri et al. (2016b). It is expressed
in seconds. K represents the number of deleted nodes. Optimal results are in italic and
new best known results from the GA are in bold font.

(2016). These results seem to suggest that the GA is less competitive for very
dense graphs with a large average degree 〈d〉. Nevertheless it still performs
well for some dense graphs like hepph and the results on large graphs such
as condmat are also striking. It is interesting that even when we discard
the Hamilton graphs which are not real graphs, the GA still finds more best
solutions than any other competitor. As concerns the average gap to the best
solutions, once again the GA outperforms the competitors with an average
gap of 2.2%. The closest competitor is the ILS with a value of 6.8%.

For other types of the CNP, we can only compare with the simple greedy
algorithms described in Section 2. They are used in a multi-start manner
until the total time used for the GA is exhausted. The results for the CNP1b,
the CNP2a, the CNP2b, the CNP3a and the CNP3b are displayed for both
Set 1 and Set 2 in Tables A.9 – A.13. We report these tables in Appendix
A for readability purposes. We usually run first the CNPna versions with
the values of K reported in Tables 4 and 5. The values of the connectivity
parameter for the CNPnb versions are similar to the results obtained for the
CNPna formulation. This allows us to control the validity of the solutions
found.

It is interesting to note that in a few instances the b version of the algo-
rithm reaches better solutions than its a counterpart. For example for the
CNP2b (Table A.11), a solution with |S| = 162 and a connectivity value
(maximum cardinality of the connected components) equal to 488 is found

25

graph K time VNS-I-N1-FC ILS-N1-FC Greedy3d Greedy4d GA

Bovine 3 100 268 268 268 268 268
Circuit 25 150 2,101 2,117 2,099 2,100 2,099
E.Coli 15 200 806 806 806 834 806
USAir97 33 300 5,444 4,442 4,442 4,726 4,336
HumanDis 52 300 1,115 1,115 1,115 1,115 1,115
TrainsRome 26 300 920 934 921 936 928
EU flights 119 2500 356,631 357,486 349,927 350,757 351,610
openflights 186 4000 31,620 28,671 29,624 29,552 28,834
yeast 202 3000 1,421 1,434 1,416 1,415 1,414
Ham1000 100 1000 332,286 344,509 338,574 336,866 328,817
Ham2000 200 2000 1,309,063 1,417,341 1,372,109 1,367,779 1,315,198
Ham3000a 300 3000 3,058,656 3,235,069 3,087,215 3,100,938 3,005,183
Ham3000b 300 3000 3,121,639 3,260,886 3,096,420 3,100,748 2,993,393
Ham3000c 300 3000 3,079,570 3,237,528 3,094,459 3,097,451 2,975,213
Ham3000d 300 3000 3,027,839 3,242,622 3,090,753 3,100,216 2,988,605
Ham3000e 300 3000 3,031,975 3,280,762 3,095,793 3,113,514 3,001,078
Ham4000 400 3000 5,498,097 5,877,896 5,534,254 5,530,402 5,403,572
Ham5000 500 3000 8,889,904 9,212,984 8,657,681 8,653,358 8,411,789
powergrid 494 3000 16,099 16,533 16,373 16,406 16,254
OClinks 190 3000 623,366 625,671 614,504 614,546 620,020
facebook 404 3000 865,115 420,334 608,487 856,642 561,111
grqc 524 3500 13,751 13,817 13,787 13,825 13,736
hepth 988 8000 114,933 123,138 232,021 326,281 114,382
hepph 1201 10000 10,989,642 11,759,201 10,305,849 10,162,995 7,336,826
astroph 1877 13000 65,937,108 65,822,942 54,713,053 54,517,114 58,045,178
condmat 2313 16000 6,121,430 2,298,596 11,771,033 11,758,662 2,612,548

Table 5: Results for the genetic algorithm on the graphs of Set 2 for the CNP1a, with
results from competing algorithms from Addis et al. (2016); Aringhieri et al. (2016b) for
comparison. K represents the number of deleted nodes. The total running time (column
denoted by “time”) for each instance (and algorithm) is expressed in seconds. The same
time limits are used again in all other numerical experiments concerning Set 2.

for the graph WS1000. The CNP2a formulation of the algorithm only found
a solution with |S| = 200 and connectivity value equal to 507, which is dom-
inated by the first solution. The advantage of our flexible framework is the
possibility of running the “dual” version of the algorithm once a first result is
obtained, adapting the constraint parameter to the first result, and checking
whether a better solution can be found. In the previous example, if we take
the solution of the CNP2b version and apply the greedy rule GR2(2, b) until
|S| = 200, we find a new solution for the CNP2a variant with C(S) = 450.
Thus, for the graph WS1000 we can get a reduction of 11.2% with respect
to the previous solution computed.

26

Overall, the Genetic Algorithm compares very favourably to the greedy
algorithms. Our algorithm outperforms the greedy procedures in all the
instances but one. The improvements of the GA are more relevant for diffi-
cult graphs without articulation points like the WattsStrogatz and Hamilton
graphs, as well as for some large or dense graphs of the condmat or facebook
instances.

instance Min Max Average Dispersion Dispersion/Average

WS250 (CNP1a) 3186 3678 3314.15 91.10 2.75%
WS1000 (CNP1a) 106902 162573 125947.20 12261.88 9.74%
USAir97 (CNP1a) 4336 4336 4336 0 0.00%
WS1000 (CNP2a) 340 526 432.51 55.60 12.86%
WS250 (CNP3a) 9 16 12.56 1.6812 13.39%
Circuit (CNP1b) 25 26 25.33 0.4702 1.86%
Trains (CNP2b) 27 29 28.09 0.5118 1.82%
ER466 (CNP3b) 79 80 79.37 0.4828 0.61%

Table 6: Results of the GA over 100 runs for different instances and CNP formulations.
Minimum, maximum and average results as well as the total and relative dispersion are
reported.

Given the stochastic nature of our algorithm, it is important to assess
the stability of the results obtained. Since it is very time consuming to
perform this task for all instances presented, we computed the dispersion
of the results obtained over a hundred runs for only a few select instances.
Table 6 indicates the minimum, maximum and average results, as well as the
total and relative dispersion, over 8 instances. The total time for each run is
limited to (|V | + |E|)/3 seconds since this value is often sufficient to obtain
good quality solutions. These partial results reveal a reasonable stability of
the solutions, even though the relative dispersion can be up to 13% in the
most difficult instances. The quality of the results for the CNP1a seems to
be quite robust, especially if we consider that the average results for very
hard to solve graphs (like WS250 and WS1000) are not far from the best
known results.

4.3. Sensitivity to the parameters of the algorithm

In order to provide further insights on the robustness of our algorithm and
on our choice of the numerical values of the parameters, we will illustrate the
variation of the results (on average) for the CNP1a when these parameters

27

are varied. First, the graphs in Figure 3 illustrate the variation of the pa-
rameters α, N , the number of parents and the parameters πmin and δπ. More
precisely, we tested different values taking πmin = δπ and πmax = 10πmin.
When a parameter is varied, the other parameters are kept fixed to the val-
ues indicated in subsection 4.1. To characterize the quality of each set of
parameters, we computed the average gap to the values in Table 4 over all
instances of Set 1.

-0.005
 0

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sensitivity to alpha (CNP1a)

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035

 50 100 150 200 250 300 350 400 450 500

sensitivity to N (CNP1a)

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 2 2.5 3 3.5 4 4.5 5

sens. to num. of parents (CNP1a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 1.5 2 2.5 3 3.5 4 4.5 5

sensitivity to pi (CNP1a)

Figure 3: Sensitivity to the parameters α, N , the number of parents, with πmin = δπ =
πmax/10 (from left to right and from top to bottom). The plotted quantity is the average
gap to the values in Table 4 over all instances of Set 1 and for the CNP1a.

The plots seem to validate our choice of the parameters. However, the
algorithm seems relatively insensitive to their numerical values. The average
gap does not exceed 4%. The value of the probability of mutation has the
smallest influence. All in all, we can observe that large values of α, which
favour solutions that are very different from the best one, disturb too much
the selection process. Therefore, it is better to adopt for the parameter α
a small, albeit non-zero value. In the same way, merging more than two
solutions to create a new solution does not provide any improvement. The
sensitivity to the size of the population is more chaotic. We have seen that

28

it should be adapted to the size of the graph. Nevertheless, the value N =
300 turns out to be a good option also for the majority of the instances in
Set 2 and for other versions of the CNP. There are other choices that can
impact our numerical results. Choosing random solutions to populate the
first generation, for example, would increase the average gap by 2.7% for the
instances of Set 1 and deteriorate some of our results on Set 2. Repairing the
mutated solutions through random moves instead of using the greedy rules
from Section 2 would raise the gap by 1.6%. Adopting a different probability
distribution for choosing the number of nodes to mutate has a very little
impact on the final results (< 0.5%). Finally, implementing a probability
distribution for selecting the potential parents, that is inversely proportional
to the fitness function of the parents, actually would increase the average
gap by 4.6%. This confirms that a democratic strategy for the selection of
parents allows the algorithm to explore the solution space more efficiently.

4.4. Pareto analysis of sample graphs

As outlined above, a solution for the CNP is driven by two quantities: the
cardinality of the solution set S and the value of the connectivity measure.
This leads to two complementary formulations that we called types a and
b. A full understanding of the vulnerability of a graph requires a study of
the disruption of the connectivity for all possible values of |S|. This analysis
is similar to a Pareto study for a bi-objective optimisation problem, using
an ε-constrained technique. Considering a CNPna formulation, it amounts
to raising parameter K = |S| by one unit and reoptimising the problem.
Conversely, in a CNPnb version the connectivity value is fixed to its initial
value when the graph is untouched. After that, the connectivity value is
slowly lowered or increased according to the type of connectivity n.

This is a very time consuming process, thus we will present such a study
for only a few small graphs from Set 1 and Set 2. We report both the
Pareto surfaces found for the a and b versions of the problem. Only the non-
dominated solutions are considered, namely, with respect to these solutions,
no other solution has a lower number of nodes and a better objective function.
The solutions are plotted in the |S|-connectivity plane in Figure 4 for the
CNP1, Figure 5 for the CNP2 and Figure 6 for the CNP3. The first two sets of
figures already suggest a certain correlation between solutions of the CNP1a
and the CNP2a. The connectivity first diminishes with the increase of |S| at
a speed that depends on the density of the articulations points in the graph.
For the graph WS250, which has not articulation points, the connectivity

29

decreases more slowly in the first part of the curve. When enough nodes
are deleted, the giant component can be fragmented more efficiently. This
seems to occur when |S| is between 40 and 50. In this zone the graph is
more challenging to solve since the choice of the nodes will greatly influence
the variation of the connectivity. Such a trend in the connectivity reductions
can also be spotted for the graph Circuit. The graphs that have a large
fraction of articulation points and nodes with degree one, like FF250, exhibit
a very fast reduction of the connectivity value with small values of |S| before
stalling. These curves generally indicate at which value of |S| we start having
a diminishing return on the reduction of connectivity. Obtaining the Pareto
front for the b versions is usually more time consuming, particularly for the
CNP1. The results are very similar between a and b versions for the graphs
FF250 and USAir97. The Pareto front for the CNPnb versions is slightly
better for the graph WS250.

The curves for the CNP3a are necessarily different in shape since the
problem is a maximisation problem. The curves are more regular and almost
linear in several cases. The difficulty of fragmenting the graph WS250 is
again visible, since in some cases we have to add up to five nodes to S
to create a new independent connected component in the graph. When
|S| is large enough and the graph is sufficiently sparse, the increase in the
number of connected components we can obtain by raising |S| by one starts
to grow. This feature is somewhat opposed to what happens for the pair-wise
connectivity minimisation. These observations are a first hint that the CNP3
has peculiarities that make it different from the CNP1 and the CNP2.

Furthermore, we provide an analysis of the number of nodes present in a
solution with K deleted nodes, that are not present in the solution with K−1
deleted nodes (for the CNPna formulations). This is a way of understanding
whether a good solution with |S| = K + 1 can be obtained simply from
a solution with |S| = K (using for example the greedy rules detailed in
Section 2). Table 7 displays the average results over K for the previous
3 instances plus the graphs BA500, ER235 and Circuit. The values of K
range from 1 to the value for which the graph is completely fragmented.
A straightforward deduction of a CNP solution using smaller solutions of
the same problem formulation can rarely work in practice, except for graphs
that have a tree structure like the graph BA500. Surprisingly, the second best
graph with less differences among the solutions would seem to be the graph
USAir97, although it shares many characteristics with the graph WS250,
such as a high average degree 〈d〉, a large clustering coefficient C and a

30

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120 140

FF250 (CNP1a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120 140

FF250 (CNP1b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140 160 180 200

WS250 (CNP1a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140 160 180 200

WS250 (CNP1b)

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 20 40 60 80 100 120 140 160

USAir97 (CNP1a)

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 20 40 60 80 100 120 140 160

USAir97 (CNP1b)

Figure 4: Pareto solutions for the CNP1, for graphs FF250, WS250, USAir97 (from top
to bottom) and for versions a and b (from left to right). The x axis represents the number
of nodes in the solution (|S|) while the y axis is the pair-wise connectivity value (f(S)).

small parameter D. We take this as a clue that the information given by
the average degree, clustering coefficient and average shortest paths length is
only partial for characterising a CNP instance. We can observe that USAir97
presents a much larger dispersion in the degree of the nodes. This feature
could lead to a different graph structure and CNP solutions.

31

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

FF250 (CNP2a)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

FF250 (CNP2b)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

WS250 (CNP2a)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

WS250 (CNP2b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160

USAir97 (CNP2a)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160

USAir97 (CNP2b)

Figure 5: Pareto solutions for the CNP2, for graphs FF250, WS250, USAir97 (from top to
bottom) and for versions a and b (from left to right). The x axis represents the number of
nodes in the solution (|S|) while the y axis is the maximum cardinality of the connected
components (C(S)).

4.5. Compatibility of the solutions of different CNP versions

The optimal solutions for the different versions of the CNP will not be the
same in general. At the same time, they have a certain level of correlation.
Ventresca and Aleman (2015b) highlighted this aspect for the CNP1a and
the CNP2a. The study of some of the smaller graphs in the last section also
suggests the presence of such a correlation. Therefore, it is interesting to
investigate how much the solutions of different CNP versions usually differ.

32

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90

FF250 (CNP3a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90

FF250 (CNP3b)

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

WS250 (CNP3a)

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

WS250 (CNP3b)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 20 40 60 80 100 120

USAir97 (CNP3a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 20 40 60 80 100 120

USAir97 (CNP3b)

Figure 6: Pareto solutions for the CNP3, for graphs FF250, WS250 and USAir97 (from
top to bottom) for versions a and b (from left to right). The x axis represents the number
of nodes in the solution (|S|) while the y axis is the number of connected components
(H(S)).

It is also appealing to try to characterise the nodes that are favoured in a
CNP variant and disfavoured in other versions of the problem.

This could allow us to take a solution for a specific connectivity measure
and quickly transform it into a good quality solution for another CNP ver-
sion. Since these solutions were computed heuristically, such a study cannot
pretend to characterise the differences between different CNP formulations
in absolute terms. However, it can give us some hints about how the dif-

33

BA500 ER235 FF250 WS250 Circuit USAir97

CNP1a 2.122 5.632 7.373 21.959 7.008 5.953
CNP2a 1.230 9.588 4.230 31.675 10.640 6.047
CNP3a 1.000 6.527 4.506 28.565 10.911 3.573

Table 7: Average number of nodes present in a solution with |S| = K that are not present
in the solution with |S| = K − 1, for six small instances and all three versions of the
CNPna.

ferent versions of our algorithm relate to each other. In addition, given the
good results obtained against the competitors, we can reasonably hope that
our solutions provide an indication about the general properties of the CNP
problems treated here.

We provide an analysis of the solutions of the Budget Constrained CNPna
versions, since they are the easiest to compare as they share the same value
of |S|. For each solution of a CNPna problem, we can easily compute and
compare the value of all three connectivity functions f(S), C(S) and H(S).
Table 8 displays the results on a subset of the graphs from Set 1 and Set 2. A
preliminary conclusion that can be drawn is that in some cases our approach
for the CNP2a is outperformed by the solutions obtained for the CNP1a
(graphs EU flights and Ham5000). This result can be linked to our choice of
the greedy rules. However, it is evident from these results that the solutions
of the CNP1a and the CNP2a have similar characteristics. The values of
f(S) and C(S) are relatively close. Instead, those connectivity values in the
CNP3a tend to show an increase by 20% or even more.

We broadened the analysis to the whole Set 1 and Set 2 (a total of 42
instances from which 17 are real instances). In the last row of Table 8, we
provide the number of instances for which the solutions of each CNPna prob-
lem reached the best overall value of f(S), C(S) and H(S). Our preliminary
analysis is confirmed, in the sense that algorithms for the CNP1a and the
CNP3a do a very good job concerning their own connectivity measure. For
the CNP2a, our genetic algorithm does not find the best value in 25% of the
instances. This is interesting since, in our framework, the algorithm for the
CNP1a guarantees on average to find a good solution with respect to the
CNP2a connectivity measure. This could be due to the fact that the size of
all components are taken into account in the CNP1a. Lifting the degenera-
cies by exploiting this information could provide a better guide through the

34

CNP1a CNP2a CNP3a
graph f(S) C(S) H(S) f(S) C(S) H(S) f(S) C(S) H(S)

BA5000 10,196 14 1,931 10,263 13 1,902 13,119 37 1,999
ER2344 1,039,254 1434 126 114,2031 1,412 99 1,412,231 1,681 336
FF2000 4,546 12 452 4,865 11 425 9,445 55 498
WS1500 13,662 33 56 14,533 30 52 54,545 301 73
TrainsRome 928 15 28 990 11 25 1,821 42 31
EU flights 351,610 839 199 358,312 847 207 364,240 854 211
yeast 1,414 7 1,033 1,475 6 1,025 1,542 15 1,050
Ham5000 8,411,789 4,099 20 8,561,041 4,138 60 9,178,493 4,285 196
powergrid 16,254 20 964 17,713 17 921 1,505,833 1,721 1,228
facebook 561,111 722 141 648,971 442 109 1,125,806 1,062 361
hepth 114,382 91 1,649 125,794 66 1,599 8,864,918 4,210 2,566

total wins 41 16 3 2 31 1 1 2 42

Table 8: Value of the three connectivity metrics of the solutions for all the CNPna on a
subset of instances of Set 1 and Set 2. Values of parameter K = |S| are the same as in the
previous tables. Best results between all three algorithms are in bold font. The last row
displays the number of instances for which the solutions of each CNPna found the best
f(S), C(S) and H(S), over all instances of Set 1 and Set 2.

solution space in the CNP2a variant.
Let us try to characterise the solutions of the different CNPna. We start

by counting the proportion of nodes that are common among them. For the
sake of simplicity, we only provide the average values over all 42 instances.
The proportion of nodes common to the CNP1a and the CNP2a solutions
is 62.8% on average. The proportion goes down to 50.8% and 49.9% when
the CNP3a solutions are compared with the solutions of the CNP1a and
the CNP2a respectively. The total proportion of the nodes shared by the
three types of solutions is only 41.7%, suggesting a high variability in their
overall structure. We computed the average proportion of articulation points
selected by the individual solutions in each instance (we limited the analysis
to the instances that contain APs). The solutions of the CNP1a and the
CNP2a only select 32.3% and 31.8% of the APs, while the solutions of the
CNP3a incorporate 44.2% of all APs. The difference is even larger when
the proportion of nodes from N(D1) is considered. This value goes up to
47.9% for the CNP3a while it is equal to 32.5% and 32.3% for the CNP1a
and CNP2a.

The previous results are confirmed by the analysis of the nodes that are
exclusive to each type of solution. The nodes that are only present in the
CNP3a solutions are composed of 42.0% of nodes from N(D1). For the

35

solutions of the CNP1a and the CNP2a, the percentage is equal to 17.2%
and 17.0% respectively. This confirms our first intuition that the articula-
tion points, in particular those belonging to N(D1), are extremely attractive
for the solutions of the CNP3a. At the same time, the articulation points
seem to be less crucial to the design of the solutions of the CNP1a and the
CNP2a. There is a simple possible explanation of this general behaviour. In
the CNP3a, only the number of connected components matters while their
cardinality is not relevant. On the contrary, in the CNP1a and CNP2a the
largest component influences greatly the objective function value. However,
since the minimal number of components in a graph G[V \ S] is bounded
by d|V |/C(S)e, reducing efficiently C(S) requires to fragment the graph into
a large number of components. Therefore, the CNP1a and CNP2a need to
take into account both C(S) and H(S).

It is very difficult to detect the characteristics of the nodes that are more
suitable for one type of connectivity measure rather than for the others.
Ventresca and Aleman (2015b) and Aringhieri et al. (2016b) outlined that
the use of the betweenness centrality values does help in searching for a good
quality solution for the CNP1a. We computed the betweenness centrality
values of the nodes in each graph and we looked for the proportion of the
nodes in each solution that are part of the K nodes with the highest centrality
value. We found that 51.4% and 50.4% of the nodes in the solutions of the
CNP1a and the CNP2a belong to the set of nodes with the highest centrality
values. This percentage goes down to 45.1% for the CNP3a. Therefore, on
average, only one half of the K nodes with the highest betweenness centrality
are part of a complete solution. This underlines a complexity of the CNP that
is hardly reducible to characteristics of the single nodes like the centrality
values. As a final remark, we stress that an intrinsic difficulty of the CNP
is to identify sets of nodes capable of fragmenting the graph only when they
are deleted together. Such “articulation sets”, also called “node cuts” or
“node separators”, are extremely difficult to spot right away and cannot be
determined considering the node-dependent quantities alone.

5. Conclusions

We presented a general Evolutionary Framework to solve a general prob-
lem known as the Critical Node Problem. Our framework is based on a simple
genetic algorithm structure that makes use of appropriate greedy rules to re-
pair and correct the solutions during the reproduction and mutation phases.

36

The proposed hybrid heuristic is quickly adaptable to several formulations of
the problem since only the criteria for the greedy rules have to be redesigned
and implemented for a new formulation. We outlined new greedy rules (when
needed) and presented numerical results for six formulations of the problem,
including “dual” formulations which involve the same connectivity measure.

Our results compare favourably to the best known results. This sug-
gests the good quality of the solutions found and above all their robustness.
Benchmark results for all versions of the problem are provided. They may
constitute an interesting basis for future comparison especially for the vari-
ants of the CNP where efficient metaheuristics were not available up to now.
We also tested our approach on a new set of benchmark instances with real
graphs. By comparing solutions of different types of the CNP, we could con-
firm intrinsic differences of their structure for connectivity measures that use
global features of the fragmented graphs (number of connected components
and their cardinalities). It would be very interesting to investigate the ap-
plication of this algorithmic framework to real problems linked to the CNP,
such as vaccination problems or the analysis of biological networks, by ex-
ploiting the flexibility of our Evolutionary Framework. Such problems often
require the ability to deal with oriented or weighted graphs. These features
would slow down all existing efficient heuristic algorithms for the CNP. It
would be appealing to devise effective procedures for tackling these aspects
computationally in a reasonable time.

Acknowledgments. The authors would like to thank Valentina Cacchiani,
Francesca Cordero, Guglielmo Guastalla and Mario Ventresca for provid-
ing or indicating useful real graphs of interest for this work. We would also
like to thank two anonymous referees for their invaluable help in improving
the overall clarity and consistency of the paper. This work was supported
by a Google Focused Grant on Mathematical Programming, project “Exact
and Heuristic Algorithms for Detecting Critical Nodes in Graphs”.

References

Addis, B., Aringhieri, R., Grosso, A., Hosteins, P., 2016. Hybrid Constructive
Heuristics for the Critical Node Problem. Annals of Operations Research
238 (1), 637–649.

Addis, B., Di Summa, M., Grosso, A., 2013. Removing critical nodes from

37

a graph: complexity results and polynomial algorithms for the case of
bounded treewidth. Discrete Applied Mathematics 161, 2349–2360.

Albert, R., Jeong, H., Barabási, A. L., 2000. Error and attack tolerance of
complex networks. Nature 406, 378–382.

Alevras, D., Grötschel, M., Wessäly, R., 1997. Capacity and survivabil-
ity models for telecommunication networks. Tech. rep., in Proceedings of
EURO/INFORMS Meeting.

Aringhieri, R., Grosso, A., Hosteins, P., 2016a. A genetic algorithm for a
class of Critical Node Problems. Electronic Notes in Discrete Mathematics
52, 359–366, proceedings of the INOC2015 conference.

Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R., 2015. VNS solu-
tions for the critical node problem. Electronic Notes in Discrete Mathe-
matics 47, 37–44, Proceedings of the VNS’14 conference.

Aringhieri, R., Grosso, A., Hosteins, P., Scatamacchia, R., 2016b. Local
search metaheuristics for the critical node problem. Networks 67, 209–221.

Arulselvan, A., Commander, C. W., Elefteriadou, L., Pardalos, P. M., 2009.
Detecting critical nodes in sparse graphs. Computers & Operations Re-
search 36, 2193–2200.

Arulselvan, A., Commander, C. W., Shylo, O., Pardalos, P. M., 2011.
Cardinality-constrained critical node detection problem. In: Gülpnar, N.,
Harrison, P., Rüstem, B. (Eds.), Performance Models and Risk Manage-
ment in Communications Systems. Vol. 46 of Springer Optimization and
Its Applications. Springer New York, pp. 79–91.
URL http://dx.doi.org/10.1007/978-1-4419-0534-5_4

Balas, E., de Souza, C., 2005. The vertex separator problem: a polyhedral
investigation. Mathematical Programming 103, 583–608.

Boginski, V., Commander, C. W., 2009. Identifying critical nodes in protein-
protein interaction networks. In: Butenko, S., Chaovalitwongse, W. A.,
Pardalos, P. M. (Eds.), Clustering Challenges in Biological Networks.
World Scientific Publishing, pp. 153–168.

38

Borgatti, S. P., 2006. Identifying sets of key players in a social network.
Computational and Mathematical Organization 12, 21–34.

Brown, G., Carlyle, M., Salmerón, J., Wood, K., 2006. Defending critical
infrastructure. Interfaces 36 (6), 530–544.

Cacchiani, V., Caprara, A., Toth, P., 2010. Scheduling extra freight trains
on railway networks. Transportation Research Part B 44, 215–231.

Cavalcante, V. F., de Souza, C. C., 2011. Exact algorithms for the vertex
separator problem in graphs. Networks 57, 212–230.

Cohen, R., Ben-Avraham, D., Havlin, S., 2003. Efficient immunization strate-
gies for computer networks and populations. Physical Review Letters 91,
247901–247905.

Cormican, K. J., Morton, D. P., Wood, R. K., 1998. Stochastic network
interdiction. Operations Research 46, 184–197.

Di Summa, M., Grosso, A., Locatelli, M., 2011. The critical node problem
over trees. Computers and Operations Research 38, 1766–1774.

Di Summa, M., Grosso, A., Locatelli, M., 2012. Branch and cut algorithms for
detecting critical nodes in undirected graphs. Computational Optimization
and Applications 53, 649–680.

Dinh, T. N., Xuan, Y., Thai, M. T., Park, E. K., Znati, T., 2010. On approx-
imation of new optimization methods for assessing network vulnerability.
In: Proceedings of the 29th IEEE Conference on Computer Communica-
tions (INFOCOM). pp. 105–118.

Edalatmanesh, M., 2013. Heuristics for the critical node detection problem in
large complex networks. Ph.D. thesis, Faculty of Mathematics and Science,
Brock University, St. Catharines, Ontario.

Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., Barabasi, A. L.,
2007. The human disease network. Proceedings of the National Academy
of Sciences of the United States of America 104, 8685–8690.

Grubesic, T. H., Murray, A. T., 2006. Vital nodes, interconnected infras-
tructures, and the geographies of network survivability. Ann Association
American Geographers 96, 64–83.

39

Jenelius, E., Petersen, T., Mattsson, L.-G., 2006. Importance and exposure
in road network vulnerability analysis. Transportation Research Part A:
Policy and Practice 40 (7), 537 – 560.

Lalou, M., Tahraoui, M. A., Kheddouci, H., 2015. Component-cardinality-
constrained critical node problem in graphs. Discrete Applied Mathemat-
ics.
URL http://dx.doi.org/10.1016/j.dam.2015.01.043

Leskovec, J., Krevl, A., Jun. 2014. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data.

Lim, C., Smith, J. C., 2007. Algorithms for discrete and continuous multi-
commodity flow network interdiction problems. IIE Transactions 39, 15–26.

Matisziw, T. C., Murray, A. T., 2009. Modeling s-t path availability to sup-
port disaster vulnerability assessment of network infrastructure. Comput-
ers & Operations Research 36, 16–26.

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I.,
et al, 2004. Superfamilies of evolved and designed networks. Science 303,
1538–42.

Opsahl, T., 2011. Why anchorage is not (that) important: Binary ties and
sample selection. http://wp.me/poFcY-Vw.

Opsahl, T., Panzarasa, P., 2009. Clustering in weighted networks. Social
Networks 32, 155–163.

Pullan, W., 2015. Heuristic identification of critical nodes in sparse real-world
graphs. Journal of Heuristics 21, 577–598.

Purevsuren, D., Cui, G., Win, N., Wang, X., 2016. Heuristic algorithm for
identifying critical nodes in graphs. Advances in Computer Science: an
International Journal 5.

Reimand, J., Tooming, L., Peterson, H., Adler, P., Vilo, J., 2008. Mining
heterogeneous biological networks for gene modules with functional signif-
icance. Nucleic Acids Research 36, W452–9.

Reinelt, G., 1991. TSPLIB–a traveling salesman problem library. ORSA
Journal on Computing 3, 376–384.

40

Salmerón, J., Wood, K., Baldick, R., 2004. Analysis of electric grid security
under terrorist threat. IEEE Trans Power Syst 19, 905–912.

Sánchez-Oro, J., Mladenović, N., Duarte, A., 2016. General variable neigh-
borhood search for computing graph separators. Optimization Letters. In
Press.

Shen, S., Smith, J. C., 2012. Polynomial-time algorithms for solving a class of
critical node problems on trees and series-parallel graphs. Networks 60 (2),
103–119.

Shen, S., Smith, J. C., Goli, R., 2012. Exact interdiction models and algo-
rithms for disconnecting networks via node deletions. Discrete Optimiza-
tion 9, 172–88.

USAir, 1997. Computational analysis of social and organiza-
tional systems. The USAir97 network. Freely available at http:

//www.casos.cs.cmu.edu/computational_tools/datasets/external/

USAir97/index11.php.

Ventresca, M., 2012. Global search algorithms using a combinatorial
unranking-based problem representation for the critical node detection
problem. Computers & Operations Research 39, 2763–2775.

Ventresca, M., Aleman, D., 2014a. A derandomized approximation algorithm
for the critical node detection problem. Computers and Operations Re-
search 43, 261–270.

Ventresca, M., Aleman, D., 2015a. Efficiently identifying critical nodes in
large complex networks. Computational Social Networks 2 (6).

Ventresca, M., Aleman, D., 2015b. Network robustness versus multi-strategy
sequential attack. Journal of Complex Networks 3, 126–146.

Ventresca, M., Aleman, D. M., 2014b. A region growing algorithm for de-
tecting critical nodes. In: COCOA’14. pp. 593–602.

Veremyev, A., Boginski, V., Pasiliao, E., 2014a. Exact identification of criti-
cal nodes in sparse networks via new compact formulations. Optimization
Letters 8, 1245–1259.

41

Veremyev, A., Prokopyev, O. A., Pasiliao, E. L., 2014b. An integer pro-
gramming framework for critical elements detection in graphs. Journal of
Combinatorial Optimization 28, 233–273.

Veremyev, A., Prokopyev, O. A., Pasiliao, E. L., 2015. Critical nodes for
distance-based connectivity and related problems in graphs. Networks 66,
170–195.

Watts, D. J., Strogatz, S. H., 1998. Collective dynamics of small-world net-
works. Nature 393, 400–442.

Wollmer, R., 1964. Removing arcs from a network. Operations Research 12,
934–940.

Wood, R. K., 1993. Deterministic network interdiction. Mathematical and
Computer Modelling 17, 1–18.

Yang, R., Huang, L., Lai, Y., 2008. Selectivity-based spreading dynamics on
complex networks. Physical Review E 78.

Yeast, 2008. Yeast interaction network. http://interactome.dfci.

harvard.edu/S_cerevisiae/index.php?page=download.

Yu, H. et al, 2008. High-quality binary protein interaction map of the yeast
interactome network. Science 322.

Zhou, T., Fu, Z. Q., Wang, B. H., 2006. Epidemic dynamics on complex
networks. Progress in Natural Sciences 16, 452–457.

42

Appendix A. Numerical results for the different versions of the
CNP

We present here the numerical results for the following versions of the
CNP: CNP1b, CNP2a, CNP2b, CNP3a and CNP3b on Sets 1 and 2 in Ta-
bles A.9 to A.13.

graph P G
(1b)
1 G

(1b)
2 GA graph P G

(1b)
1 G

(1b)
2 GA

BA500 200 50 50 50 FF250 200 50 51 50
BA1000 550 76 76 76 FF500 300 106 104 103
BA2500 3,700 102 101 101 FF1000 1,250 154 157 151
BA5000 10,000 157 153 153 FF2000 4,500 208 207 202
ER235 300 52 52 51 WS250 3,000 77 86 72
ER466 1,500 84 89 82 WS500 2,000 142 156 129
ER941 5,000 148 162 142 WS1000 115,000 259 423 194
ER2344 1,000,000 248 263 209 WS1500 14,000 330 375 266

Bovine 270 3 3 3 Ham3000c 3,000,000 504 439 301
Circuit 2,100 26 28 26 Ham3000d 3,000,000 498 436 300
E.Coli 800 16 16 16 Ham3000e 3,000,000 505 434 304
USAir97 4,000 34 41 34 Ham4000 5,500,000 632 557 382
HumanDis 1,100 53 53 53 Ham5000 8,500,000 813 720 498
TrainsRome 1,000 26 26 25 powergrid 16,000 525 535 499
EU flights 350,000 136 124 120 OClinks 615,000 203 197 193
openflights 30,000 197 200 185 facebook 420,000 634 1,203 465
yeast 1,400 207 211 204 grqc 13,800 538 576 524
Ham1000 328,000 159 145 100 hepth 115,000 1046 1,221 994
Ham2000 1,300,000 351 303 208 hepph 7,500,000 1478 1,594 1,339
Ham3000a 3,000,000 503 438 302 astroph 55,000,000 3225 2,732 1,870
Ham3000b 3,000,000 506 436 305 condmat 2,600,000 2487 3,483 2,460

Table A.9: Results for the genetic algorithm on the graphs of Set 1 and Set 2 for the

CNP1b, with results from greedy algorithms G
(1b)
1 and G

(1b)
2 for comparison. P repre-

sents the maximum pair-wise connectivity of the solution. Best results between all three
algorithms are in bold font.

43

graph K G
(2a)
1 G

(2a)
2 GA graph K G

(2a)
1 G

(2a)
2 GA

BA500 50 4 4 4 FF250 50 5 6 5
BA1000 75 5 5 5 FF500 110 4 4 4
BA2500 100 11 11 10 FF1000 150 7 8 7
BA5000 150 14 14 13 FF2000 200 12 12 12
ER235 50 7 26 7 WS250 70 58 170 41
ER466 80 18 197 14 WS500 125 24 315 15
ER941 140 35 453 23 WS1000 200 475 792 507
ER2344 200 1,870 1,638 1,412 WS1500 265 128 1,161 30

Bovine 3 16 16 16 Ham3000c 300 2,650 2,643 2,444
Circuit 25 30 93 27 Ham3000d 300 2,651 2,639 2,441
E.Coli 15 21 21 19 Ham3000e 300 2,656 2,644 2,453
USAir97 33 73 111 69 Ham4000 400 3,549 3,528 3,292
HumanDis 52 10 11 10 Ham5000 500 4,437 4,418 4,138
TrainsRome 26 12 17 11 powergrid 494 18 23 17
EU flights 119 868 847 847 OClinks 190 1,143 1,125 1,118
openflights 186 178 272 141 facebook 404 470 1,683 442
yeast 202 6 6 6 grqc 524 18 504 18
Ham1000 100 867 875 806 hepth 988 124 3,589 66
Ham2000 200 1,758 1,758 1,613 hepph 1,201 8,181 6,384 3,600
Ham3000a 300 2,649 2,639 2,457 astroph 1,877 13,835 12,112 11,947
Ham3000b 300 2,657 2,646 2,444 condmat 2,313 6,042 10,810 513

Table A.10: Results for the genetic algorithm on the graphs of Set 1 and Set 2 for the

CNP2a, with results from greedy algorithms G
(2a)
1 and G

(2a)
2 for comparison. K repre-

sents the number of deleted nodes. Best results between all three algorithms are in bold
font.

44

graph L G
(2b)
1 G

(2b)
2 GA graph L G

(2b)
1 G

(2b)
2 GA

BA500 4 47 47 47 FF250 5 48 49 48
BA1000 5 61 61 61 FF500 4 102 102 100
BA2500 10 101 100 100 FF1000 7 145 145 142
BA5000 13 154 151 149 FF2000 12 191 187 182
ER235 7 49 50 47 WS250 40 79 80 73
ER466 14 86 85 81 WS500 15 145 144 126
ER941 25 149 152 139 WS1000 500 195 418 162
ER2344 1,400 252 270 204 WS1500 30 339 332 278

Bovine 15 4 4 4 Ham3000c 2,500 446 404 276
Circuit 30 25 26 24 Ham3000d 2,500 452 402 276
E.Coli 20 16 15 15 Ham3000e 2,500 455 403 280
USAir97 70 34 40 33 Ham4000 3,300 651 571 398
HumanDis 10 51 50 49 Ham5000 4,200 745 662 458
TrainsRome 10 30 31 28 powergrid 20 449 440 428
EU flights 850 127 118 113 OClinks 1,100 209 200 197
openflights 140 194 206 184 facebook 450 472 821 324
yeast 6 202 199 195 grqc 20 497 501 480
Ham1000 800 172 151 103 hepth 70 1,040 1,042 981
Ham2000 1,600 362 313 221 hepph 3,600 1,416 1,572 1,228
Ham3000a 2,500 448 402 279 astroph 12,000 3,284 1,769 1,322
Ham3000b 2,500 456 401 279 condmat 500 2,506 2,651 2,506

Table A.11: Results for the genetic algorithm on the graphs of Set 1 and Set 2 for the

CNP2b, with results from greedy algorithms G
(2b)
1 and G

(2b)
2 for comparison. L represents

the maximum allowed cardinality of connected components. Best results between all three
algorithms are in bold font.

45

graph K G
(3a)
1 G

(3a)
2 GA graph K G

(3a)
1 G

(3a)
2 GA

BA500 50 313 313 313 FF250 50 92 92 92
BA1000 75 590 590 590 FF500 110 214 214 215
BA2500 100 1,129 1,129 1,129 FF1000 150 337 334 340
BA5000 150 1,998 1,999 1,999 FF2000 200 491 497 498
ER235 50 67 65 68 WS250 70 7 4 15
ER466 80 99 105 110 WS500 125 25 18 44
ER941 140 181 190 206 WS1000 200 9 4 41
ER2344 200 286 309 336 WS1500 265 17 19 73

Bovine 3 77 77 77 Ham3000c 300 20 57 127
Circuit 25 30 29 31 Ham3000d 300 17 56 132
E.Coli 15 169 168 169 Ham3000e 300 16 55 131
USAir97 33 103 104 104 Ham4000 400 16 69 166
HumanDis 52 147 148 148 Ham5000 500 18 81 196
TrainsRome 26 30 31 31 powergrid 494 1,161 1,225 1,228
EU flights 119 203 211 211 OClinks 190 544 545 554
openflights 186 1,101 1,105 1,109 facebook 404 229 256 361
yeast 202 1,049 1,049 1,050 grqc 524 1,499 1,511 1,539
Ham1000 100 17 28 52 hepth 988 2,452 2,465 2,566
Ham2000 200 17 41 87 hepph 1,201 2,304 2,272 2,441
Ham3000a 300 18 57 132 astroph 1,877 2,373 2,728 2,740
Ham3000b 300 15 57 125 condmat 2,313 4,369 4,358 4,709

Table A.12: Results for the genetic algorithm on the graphs of Set 1 and Set 2 for the

CNP3a, with results from greedy algorithms G
(3a)
1 and G

(3a)
2 for comparison. K repre-

sents the number of deleted nodes. Best results between all three algorithms are in bold
font.

46

graph N G
(3b)
1 G

(3b)
2 GA graph N G

(3b)
1 G

(3b)
2 GA

BA500 300 44 44 44 FF250 90 48 48 48
BA1000 600 80 80 80 FF500 215 111 111 110
BA2500 1,100 93 93 93 FF1000 340 152 154 150
BA5000 2,000 151 151 151 FF2000 500 205 202 201
ER235 70 52 55 52 WS250 15 102 67 62
ER466 110 91 84 79 WS500 45 157 131 118
ER941 200 157 149 134 WS1000 40 379 233 174
ER2344 350 274 235 209 WS1500 70 356 236 216

Bovine 80 4 4 4 Ham3000c 130 757 300 267
Circuit 30 25 26 24 Ham3000d 130 744 298 269
E.Coli 170 16 16 16 Ham3000e 130 773 299 273
USAir97 100 31 30 30 Ham4000 170 1,051 399 382
HumanDis 150 54 53 53 Ham5000 200 1,302 482 463
TrainsRome 30 26 25 25 powergrid 1,200 516 481 481
EU flights 200 114 108 108 OClinks 550 196 193 187
openflights 1,100 186 183 180 facebook 350 1344 394 387
yeast 1,050 203 203 202 grqc 1,500 523 514 496
Ham1000 50 221 103 94 hepth 2,500 1,021 1013 943
Ham2000 90 493 201 178 hepph 2,400 1,275 1,306 1,177
Ham3000a 130 748 302 270 astroph 2,700 2,370 1,840 1,834
Ham3000b 130 770 301 273 condmat 4,700 2,599 2,594 2,317

Table A.13: Results for the genetic algorithm on the graphs of Set 1 and Set 2 for the

CNP3b, with results from greedy algorithmsG
(3b)
1 andG

(3b)
2 for comparison. N represents

the minimum allowed number of connected components. Best results between all three
algorithms are in bold font.

47

