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Abstract 

A comparative assessment of the accuracy of different quantum mechanical methods for evaluating 

the structure and the cohesive energy of molecular crystals is presented. In particular, we evaluate 

the performance of the semi-empirical HF-3c method in comparison with the B3LYP-D* and the 

Local MP2 (LMP2) methods by means of a fully periodic approach. Three benchmark sets have 

been investigated: X23, G60 and the new K7; for a total of 82 molecular crystals. The original HF-

3c method performs well, but shows a tendency at overbinding molecular crystals, in particular for 

weakly bounded systems. For the X23 set, the mean absolute error for the cohesive energies 

computed with the HF-3c method is comparable to the LMP2 one. A refinement of the HF-3c has 

been attempted by tuning the dispersion term in the HF-3c energy. While the performance on 

cohesive energy prediction slightly worsens, optimized unit cell volumes are in excellent agreement 

with experiment. Overall, the B3LYP-D* method combined with a TZP basis set gives the best 

results. For cost-effective calculations on molecular crystals, we propose to compute cohesive 

energies at the B3LYP-D*/TZP level of theory on the dispersion-scaled HF-3c optimized 

geometries (i.e. B3LYP-D*/TZP//HF-3c(0.27) also dubbed as SP-B3LYP-D*). Beside, for further 

benchmarking on molecular crystals, we propose to combine the three test sets in a new one 

denoted as MC82. 

 

Introduction 
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A molecular crystal may be seen as a periodic supramolecular entity for which all types of 

intermolecular interactions ranging from weak van der Waals forces to strong coordination bonds 

take place to interconnect molecules throughout space. The correct and balanced description of 

intermolecular forces is then crucial for the theoretical prediction of their structure and cohesive 

energy.1–3 In particular, among intermolecular interactions, dispersion forces play a significant role 

in dictating the crystal packing and for crystal structure prediction.4–8 Additionally, they are relevant 

in many chemical phenomena such as surface adsorption, supra-molecular chemistry and 

reactivity.9–11 In last decades, it has become clear that an accurate description of dispersion 

interactions is necessary in order to perform reliable molecular simulations. Therefore, various 

methodologies that explicitly include dispersion forces have been presented during last years. Two 

recent review articles describe their different construction principles.12,13  

In particular, this problem has plagued density functional theory (DFT) approximate methods, so 

that many dispersion-corrected schemes have been developed, such as the vdW-DFs, DFT-D, 

1ePOT and, on a different level, double hybrid DFs (some of these methods are reviewed in Ref 9). 

Among the dispersion-corrected methods, the most widely used are the DFT-D methods that 

employ a semi-classical treatment of dispersion energy. In particular, the D2 correction and its 

recent improved D3 scheme, both proposed by S. Grimme and coworkers, are the most widely 

applied. Some of these methodologies, first employed and tested on molecular benchmark sets, have 

then been transferred to the solid-state. Indeed the D2,14 the D3,8 the XDM17, the MBD18 and other 

methods are now available also for periodic calculations.  

Recently, Sure and Grimme have proposed a robust semi-empirical method based on the Hartree-

Fock (HF) method combined with a minimal basis set and three semi-empirical corrections, denoted 

as the HF-3c method. It has been demonstrated that HF-3c is capable to compute accurate 

interaction energies and geometries for molecular systems.19 So far, the results published for 

molecular crystals did not include unit cell relaxation which is a crucial aspect for crystal structure 

prediction.20,21 

A different, more robust yet computationally demanding approach to take into account dispersion 

forces is that of wavefunction (post-HF) methods. Despite the wide application of post-HF methods 

to molecular systems, their use for solids is still limited. Among post-HF methods, fully periodic 

MP222–24, random phase approximated and coupled cluster CCSD(T) correlation energies have been 

reported.25–27 Nevertheless, only the periodic Local-MP222–24 (LMP2) implementation is today 

efficiently applicable in routine calculations. Interestingly, the LMP2 method22 is also a component 
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of standard double hybrid density functionals and has been successfully applied for few systems.28–

31 

Molecular crystals represents an ideal benchmark to evaluate the accuracy of the theoretical 

prediction of intermolecular forces in solid-state. Computing cohesive energy and optimized cell 

volume of molecular crystals is nowadays affordable for medium-to-large molecular crystals and 

the comparison with experiment is facilitated because of the richness of available data. Recently, 

benchmark sets have indeed been proposed to assess the performance of ab initio methods for 

molecular crystals. For instance, a large body of recent literature exists on the X23 benchmark set, 

for which many computational tools have been tested.15,32,33 This set includes 23 molecular crystals 

ranging from pure dispersion driven to mainly H-bonded systems. Beside the X23, other benchmark 

sets have been compiled like the G60 test set, that contains 60 molecular crystals including also 

computationally challenging systems such as halogenated and nitro compounds. 

In this work, our goal is then to validate different computational methods for computing equilibrium 

cell volumes and cohesive energies of molecular crystals. In particular, we benchmark the accuracy 

of the low-cost empirical corrected HF-3c method and refine it for periodic systems by tuning its 

empirical parameters, as will be detailed in the next section. The hybrid DFT-D functional B3LYP-

D* combined with a large basis set has been adopted as a theoretical reference method. Notably, the 

fully ab initio LMP2 method, employing a polarization augmented double zeta basis set, has been 

tested, in the present work, for the first time on the full X23 set. Furthermore, we propose a new 

methodology for computing fast and accurate molecular crystals properties, that can be applied for 

crystal structure prediction. As validation sets of molecular crystals we refer to the X23 set along 

with the extended G60 test set. In addition, we included a smaller set of seven molecular crystals, 

hereafter denoted as K7, which is proposed here for the first time. 

 

Methodology 
 

Brief review of the HF-3c method 

In this section, we briefly recall the semi-empirical HF-3c method19 investigated in the present 

study. 

The HF-3c method consists in a Hartree-Fock calculation with the minimal quality basis set called 

MINIX and three semi-empirical corrections to the HF energy. The MINIX basis set includes 

different small sets of basis functions for different groups of atoms.19 As a function of the chemical 

element, the valence scaled minimal basis set MINIS,34 the split valence double-zeta basis set SV, 
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SVP,35 and def2-SV(P)36 are employed. The three correction terms are added in order to: (i) include 

long-range London dispersion interactions, (ii) correct for the basis set superposition error (BSSE) 

and (iii) correct for the short range basis set incompleteness (SRB). The first correction term, 

𝐸!"#$
!!(!"), is the semi-classical London dispersion energy from the D3 correction scheme16 and 

applying the Becke-Johnson damping function (BJ),17,37  

  𝐸!"#$
!!(!") =   − !

!
𝑠!

!!!"

!!"
! !   !!!!"

! !  !!
  +   𝑠!

!!!"

!!"
! !   !!!!"

! !  !!
!"#$%
!!!   (1) 

where 𝐶!!" and 𝐶!!" are the dispersion coefficients for each atom pair AB at the 6th and 8th order, 

𝑅!" is their inter-nuclear distance and 𝑠! and 𝑠! are scaling factors. Moreover, the fitting parameter 

𝑅!"!  is defined as !!!"

!!!"
, and the 𝑎! and 𝑎! terms are the cut-off radii. 

The BSSE correction 𝐸!""#
!"#  is evaluated in the geometrical counterpoise correction (gCP) scheme.38  

It consists in a semi-empirical, repulsive pair potential which decays exponentially with the 

interatomic distance RAB 

𝐸!""#
!"# = 𝜎 𝑒!!"##

𝑒𝑥𝑝 −𝛼 𝑅!" !

𝑆!"𝑁!!"#$

!"#$%

!!!

!"#$%

!

 

𝑒!!"##  measures the incompleteness of the atomic target basis set. The potential is normalized by the 

Slater-type overlap SAB, the number of virtual orbitals  𝑁!!"#$, and the empirical parameters α and β. 

The sum over all atoms is then weighted by a global scaling parameter σ. 

The 𝐸!"# is included for rectifying the covalent bond length that is systematically overestimated for 

electronegative elements when HF with MINIX basis set is used, due to the small size of the basis 

set. 

The corrected total energy, HF-3c, is then calculated as 

  𝐸!"!!"!!! = 𝐸!"!
!"/!"#"$ + 𝐸!"#$

!!(!")+  𝐸!""#
!"# +   𝐸!"# (2) 

 

Despite its semi-empirical character, the method presents several advantages: (i) it is very fast due 

to minimal basis, (ii) it provides on average correct bond length, (iii) it is self-interaction error free 

and (iv) it is purely analytical (grid free) thus leading to noise free derivatives. However, no 

Coulomb correlation is included thus leading to limited applicability for electronically complicated 

systems and the too small basis set could be not enough to describe anionic systems. 

Nevertheless, we pursued to improve the performance of the HF-3c method by scaling the 𝐸!"#$
!!(!") 

and the   𝐸!""#
!"#   contributions in eq. 2. In the first case, the s6 term was kept fixed to unity to enforce 
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the correct asymptotic limit of the leading term in the − !
!!"
! − !

!!"
! … dispersion energy series, 

whereas the s8 term was reduced by a factor of 0.7, 0.5 and 0.27 (see eq. 1). In the second case, an 

overall scaling term σ of 1.23 was applied. Experimental values for graphite exfoliation energy and 

interlayer distance were used as reference values to scale the s8 factor in the dispersion term, while 

the gCP scaling factor was obtained through a best fit of the counterpoise corrected curve. Further 

details of the fitting procedure are reported in the supporting information. No attempts were pursued 

to modify the short-range term that is not expected to influence intermolecular 

interactions. Geometry optimizations were re-run for both the molecules and the crystals with 

scaled parameters.  

 

Computational details 

All HF-3c calculations were performed with a development version of the CRYSTAL14 code.19,39 

For comparison, we also run calculations with the dispersion corrected B3LYP-D* hybrid 

functional40–42 by using the TZP basis set devised by Ahlrichs and co-workers.35 As a further 

validation, we also tested the B3LYP functional in combination with the D3 correction both without 

and with the Axilrod–Teller–Muto (ATM)-three-body-term43,44 (D3ABC).16  

In addition, we performed wavefunction based ab initio calculations employing the second order 

Møller-Plesset perturbation theory (MP2)45 as implemented in the CRYSCOR code.22 Here, a 

development version of the code has been used which employs Orbital-Specific Virtuals (OSV) 46,47 

for the definition of the virtual space. A 6-31G basis set plus polarization functions and augmented 

with diffuse polarization functions (hereafter denoted as p-aug-6-31G(d,p)) has been adopted. See 

SI for further details. 

The visualization of structures was done with MOLDRAW version 2.0.48 Images were produced 

with VMD version 1.9.2.beta1.49 

 

Computational parameters for geometry optimization and vibrational frequency calculation 

An unconstrained relaxation of both atomic coordinates and cell parameters was performed for all 

considered set of molecular crystals by keeping the symmetry of the system. Atomic positions and 

cell vectors were optimized using the analytical gradient method. The Hessian was upgraded with 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.50–52 Tolerances for the maximum 

allowed gradient and the maximum atomic displacement for convergence were kept at the default 
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values (0.00045 Ha·bohr-1 and 0.00030 Bohr, respectively). For the vibrational frequency 

calculations, the mass-weighted force-constant matrix was computed at the Γ point by numerical 

derivative of the analytic nuclear gradients. A value of 0.003 Å was chosen as the displacement of 

each atomic coordinate and the tolerance for the SCF cycle convergence was tightened from 10-7 to 

10-11 Ha. Values of the tolerances that control the Coulomb and exchange series in periodic 

systems53 are reported in Table S1 and S2 of the SI. The Γ-centered k-point grid is generated via the 

Monkhorst−Pack scheme54 with a system dependent number of k points. More details on the 

number of k points used in the calculations are reported in Table S1 of the SI. The eigenvalue level-

shifting technique was used to lock the system in a non-conducting state,53 with level shifter set to 

0.6 Ha. To help convergence of the SCF, the Fock/KS matrix at a cycle was mixed with 30% of the 

one of the previous cycle.53 The thresholds ITCOUL and ITEXCH, governing the bipolar 

approximation, were set to 18/14 and 14/10 for the B3LYP/HF-3c simulation, respectively.53 The 

electron density and its gradient were integrated over a pruned grid consisting of 974 angular and 75 

radial points generated through the Gauss–Legendre quadrature and Lebedev schemes.55 

  

Cohesive energy and sublimation enthalpy 

Since the calculation of the cohesive energy, ΔEc, is one of the main target of this work, we briefly 

detail how we compute it and compare it to the experimental sublimation enthalpy. 

The cohesive energy is defined as: 

ΔEc = Ecry/Z − Emol (3) 

where Ecry is the total energy of the crystal unit cell with optimized cell parameters and internal 

coordinates, Z the number of molecules in the unit cell, and Emol is the total energy of the fully 

optimized isolated molecule in the gas phase. 

The DFT and LMP2 computed cohesive energies were corrected for the BSSE by the counterpoise 

method (CPC).56 As shown above, the HF-3c method is inherently BSSE corrected, therefore no 

further correction was included.  

Computed cohesive energies were compared with thermodynamically back-corrected experimental 

sublimation enthalpies. For the X23 set, the back-correction procedure took into account the 

thermal and zero point vibrational energy explicitly by following Reilly and Tkatchenko’s work.33 

For the G60 and K7 sets, the experimental cohesive energies were estimated by subtracting a 

constant factor 2RT to the experimental sublimation enthalpy: 

ΔEexp = ΔHexp − 2RT  (4) 

or 3/2RT for linear molecules. 
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As a further check of the HF-3c method for the X23 set, instead of comparing computed results 

with thermodynamically back-corrected experimental sublimation enthalpies, we directly estimated 

the sublimation enthalpy and compared it to the experimental values.57 To compute it, we used the 

following expression: 

ΔHsub = −ΔEc + ΔEvib + 4RT  (5) 

where the constant term is 7/2 RT for linear molecules and ΔEvib includes both the zero point energy 

(ZPE) and the thermal vibrational energy contributions. This expression is true only when the 

isolated molecule has a well-defined conformation at a given temperature, behaves as an ideal gas 

and no phase transformation occurs between 0 K and T. We calculated the vibrational frequencies 

in the harmonic approximation for the molecule in the crystal and in the gas-phase. To compute the 

thermal vibrational contribution to enthalpy for molecular crystals the Einstein model has been 

applied. In this model, each phonon branch is approximated with a single frequency obtained at the 

Γ point, the acoustic ZPE is neglected and the acoustic thermal energy is evaluated at the high 

temperature limit as 3RT.32  

 

 

Results and discussion 
In the following, we report and discuss the computed properties (i.e. unit cell volume, cohesive 

energy and sublimation enthalpy) for the molecular crystals in three benchmark sets investigated in 

the present work, namely: the X23, the G60 and the K7 sets (see Table S4 for details about crystal 

structures and corresponding experimental data). 

For the following discussion, it is crucial to keep in mind the uncertainties in the reference values. 

Measured sublimation enthalpies are typically accurate within 4.2 kJ/mol58 and a comparison of the 

'2RT correction' with explicitly calculated zero-point vibrational and thermal contributions adds up 

(assuming uncorrelated error sources) to a total uncertainty of about 4.5 kJ/mol. While anharmonic 

effects can in principle lead to an additional systematic error, we expect its overall effect to be 

minor. In contrast, the measured unit cell volumes at finite temperatures (between 10 and 298 K) 

are systematically shifted. As the intermolecular potentials of organic molecules typically exhibit a 

slight asymmetry with smaller curvature at longer distances, most organic crystals expand under 

heating. For small molecules the intermolecular distances have a most pronounced contribution to 

the crystal unit cell and the corresponding thermal expansion of those coordinates translates in 

substantially larger unit cell volumes. In contrast, for larger molecules the molecular size has a 

significant contribution and the corresponding covalent potentials exhibit a smaller thermal 

expansion. The thermal expansion from zero-point exclusive 0K to room temperature has been 
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estimated for various systems to range between 1 and 8%.59–62 It is important to note that we 

compare the geometries calculated on the purely electronic energy surface with the measured ones 

corresponding to a free energy surface. Given the above discussed systematic shifts, too small unit 

cell values are actually 'correct'. However, since we know that several studies conduct this direct 

comparison,63–65 we want to present a pragmatic strategy to implicitly account for these effects. In 

this regard, the re-parametrization of HF-3c is similar to the B3LYP-D* strategy, where the 

dispersion part is empirically scaled to reproduce experimental geometries. In addition to the zero-

point vibrational and thermal effects, certain many-body London dispersion effects are absorbed 

into an effectively reduced two-body dispersion. 

Hereafter, we will discuss the unit cell volume in relative percentage unit, whereas cohesive 

energies and sublimation enthalpies are discussed in energy unit. We do this to avoid the effect on 

the statistics of some molecular crystals belonging to the G60 benchmark set with very large 

experimental unit cell. The details of the statistical functions are reported in the SI. 

 

X23 set 

The X23 set includes 23 molecular crystals. The data set originates from the C21 benchmark set 

compiled by Otero-de-la-Roza and Johnson32 that was, later, extended with two additional 

molecular crystals (i.e. succinic acid and hexamine) by Reilly and Tkatchenko.33 Table S5 in the 

Supporting Information reports the list of molecular crystals included in the X23 set. In the analysis 

of the molecular crystal structures of the X23 set, we realized that the rhombohedral polymorph of 

triazine (phase I) included in the X23 and C21 sets, is not stable at low temperature. It undergoes a 

phase transition at about 200K to a monoclinic polymorph, the so-called phase II. B3LYP-D* and 

HF-3c calculations on the triazine polymorphs support the experimental evidence. Indeed, the phase 

II is 1.1 and 2.3 kJ·∙mol-1 more stable than the phase I at the B3LYP-D*/TZP and HF-3c-(0.7 s8) 

level, respectively. When the zero point energy is included at the HF-3c-(0.7 s8) level, the phase II 

results to be more stable by 1.5 kJ·∙mol-1. Therefore, in the following comparison between computed 

and experimental data, we employ triazine phase II in the analysis of cell volumes. Instead, for 

consistency with previous benchmarking works on the X23 set, we refer to triazine phase I when 

comparing cohesive energies and sublimation enthalpies. 

Let us first compare the results for the HF-3c and the B3LYP-D*/TZP methods. In both cases, we 

refer to the fully optimized crystal geometry. Table 1 reports the statistical summary of the 

predicted cell volumes compared with the available experimental data. To better appreciate the role 

of the different intermolecular interactions, the X23 set of structures has been divided into three 
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groups according to the predominant type of contributions to the binding energy, namely: dispersive 

interactions, hydrogen-bonding interactions and mixed interactions.  

In Figure 1, we illustrate the relative deviations in percentage of the HF-3c and B3LYP-D*/TZP 

optimized crystal cell volumes from low temperature experimental data. As expected, HF-3c shows 

a systematic tendency to shrink the unit cell volume with respect to experiment. This contraction 

effect is larger for the systems in which dispersion forces are more important, e.g. dispersion 

dominated subgroup (crystal label 1-10) and mix subgroup (crystal label 20-23). Those systems are 

indeed the main source of error in the statistics for the HF-3c method (see Table 1). The strongest 

differences can either arise due to an intrinsic error of HF-3c or due to the typically more shallow 

potential of pure π-systems in contrast to hydrogen bonded ones. In contrast, but not unexpectedly, 

the B3LYP-D*/TZP method performs better. The computed mean absolute relative error in 

percentage (MARE%) is 3.0% and the distribution around the mean value is narrower than HF-3c 

with a percentage standard deviation (SD%) of 1.9%. 

The statistic of the cohesive energies of the X23 set calculated with HF-3c and B3LYP-D*/TZP is 

shown is Table 2. Figure 2 shows the deviations of the computed from the measured cohesive 

energies. Even though the cohesive energies for the X23 set have been previously reported for the 

HF-3c method,20,66 the corresponding values, ΔEc, for the fully optimized geometries have never 

been presented before. As an additional comparison, we report the same analysis as obtained by 

other authors with the PBE0-MBD (on the optimum PBE+TS geometry) and PBE-D3 methods with 

complete basis set of projector augmented plane-waves, and PBE-D3 and B3LYP-D3 methods with 

a SVP basis set and the empirical gCP scheme to correct the cohesive energies for the BSSE.33,67 

The accuracy of HF-3c in computing the cohesive energy for the whole X23 set as given by a mean 

absolute error (MAE) of 8.2 kJ·mol-1 is comparable with DFT methods with small basis sets 

B3LYP-D3-gCP/SVP and PBE-D3-gCP/SVP that, show a MAE of 7.8 and 10 kJ·mol-1, 

respectively. As observed for the unit cell volumes, HF-3c gives the largest deviation for systems 

dominated by dispersion interactions (MAE 10.3 kJ·mol-1). In that case, indeed, computed ΔEc are 

clearly overestimated as shown by a mean signed error of 9.4 kJ·mol-1.  

Remarkably, the B3LYP-D*/TZP method performs very well. We attained a MAE of 4.6 kJ·mol-1 

for the X23 set that is close to the “chemical accuracy” (i.e. 4.2 kJ·mol-1).58 Other dispersive 

corrected DFT methods that employ large basis sets of plane-waves such as PBE0-MBD/CBS and 

PBE-D3/CBS reach similar accuracies. 

 

Despite the reasonably good performance of the HF-3c method, results show that there is room for 

even further improvement. As previously pointed out, on one hand, HF-3c tends to predict unit cell 
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volumes that are systematically smaller than experiment, on the other hand, computed cohesive 

energies are overestimated. The HF-3c method has been parametrized on molecular adducts which 

differ from the systems studied in this work. In molecular crystals the overlap between charge 

densities is larger and the intermolecular contacts are shorter. This may lead to an unbalance 

combination of the semi-empirical terms that are expected to have larger effects on modeling 

intermolecular interactions for the dispersion and the gCP corrections.	
  Additionally, we want to 

develop a practical strategy to directly compute X-ray geometries (compare with discussion on 

thermal expansion given above). Therefore, we attempted to scale both terms of the HF-3c method. 

We first enforced the correct asymptotic limit by fixing the s6 factor to one, whereas the s8 term was 

reduced by a factor of 0.7, 0.5 and 0.27 (see eq. 1). The resulting methods have been denoted as 

HF-3c-(0.7 s8), HF-3c-(0.5 s8) and HF-3c-(0.27 s8). Secondly, an overall scaling term σ of 1.23 was 

applied to the gCP term and referred to HF-3c-(1.23 gCP). 

Geometry optimizations were re-run for both the molecules and the crystals with the modified HF-

3c methods with scaled parameters. The corresponding statistical analysis is gathered in Table 1. 

The volumes computed with the scaled dispersion term are in better agreement with the experiment 

than the pure HF-3c. As expected, the scaling of the s8 factor leads to a systematic expansion of the 

cell volume due to the reduced binding energy within the crystal. The MARE% of 8.0% for HF-3c, 

now, drops to 1.9% for HF-3c-(0.27 s8). It is worth noticing that the percentage standard deviation 

does not change when tuning the dispersion term. The scaling procedure leads to a progressive 

reduction of the mean relative error in percentage (MRE%) (i.e. -8.0%, -5.2%, -3.2% and -0.8% for 

the HF-3c, HF-3c-(0.7 s8), HF-3c-(0.5 s8) and HF-3c-(0.27 s8) methods, respectively) and this is the 

reason of the increased accuracy. Notably, the HF-3c-(0.27 s8) computes molecular crystal volumes 

closer to experiment than the B3LYP-D*/TZP method. An expansion of the computed volumes is 

also obtained when increasing the BSSE correction in the HF-3c method through the gCP term. It 

turnout that the HF-3c-(1.23 gCP) predicts unit cell volumes with good accuracy thus reaching a 

MARE% of 5.6%.  

As the volume analysis suggests, when decreasing the dispersive contribution to the HF-3c total 

energy leads to cohesive energies in closer agreement with the experiment. The HF-3c-(0.7 s8) 

method reduces the MAE from 10.3 to 4.5 kJ·mol-1, for the dispersion dominated systems. This 

scaling increases the overall accuracy thus yielding a MAE of 6.9 kJ·mol-1. These results and those 

for the optimized unit cell volumes may point out the need of new fitting parameters specific for 

solid state systems. It is clear that semi-empirical methods cannot be parametrized to yield generally 

good results for all possible observables, so we aim here at a specialized version with improved 

crystal mass densities (related to the intermolecular distances) and cohesive energies. 
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A further reduction of the dispersion term, i.e. 0.5 and 0.27 scaling factors, leads to a loss of 

binding energy within the crystals, with a general underestimation of the ΔEc. The computed MAE 

are 8.8 and 13.1 kJ·mol-1 for HF-3c-(0.5 s8) and HF-3c-(0.27 s8), respectively. The HF-3c-(1.23 

gCP) method shows a better balanced accuracy in computing the ΔEc for the different X23 subsets, 

but it is in general less accurate than the original HF-3c. The best performance, on average, is 

achieved by scaling the s8 term by a factor of 0.7. This leads to the best results for crystal structures 

and the best evaluation of the cohesive energy with respect to all HF-3c methods. Therefore, from 

now on we refer to the scaled version as S-HF-3c method. 

In addition, since the HF-3c-(0.27 s8) resulted to give the best crystal structures among the HF-3c 

scaled variants, the cohesive energies for the X23 were also computed through single-point energy 

calculations at the B3LYP-D*/TZP level on the HF-3c-(0.27 s8) optimized structures. This approach 

has been denoted hereafter as SP-B3LYP-D*. Encouraging, high accuracy is achieved by this 

approach, which shows a MAE of 5.2 kJ·mol-1 with a SD of 5.8 kJ·mol-1. Similarly, we also tried on 

the S-HF-3c optimized geometries. In this case, results are slightly worsened with a MAE of 5.5   

kJ·mol-1 with a SD of 6.2 kJ·mol-1. Overall, the combination of single-point energy calculations at 

the B3LYP-D*/TZP level on the HF-3c geometries is a very promising result. Indeed, this paves the 

way to its application in crystal structure prediction due to the very cheap cost of crystals geometry 

optimization, in particular at the HF-3c-(0.27 s8) level.  

 

As another important benchmark in the present work, we computed the cohesive energies of the 

X23 set at the LMP2 level of theory, for the first time. In this case, single-point energy calculations 

were carried out on the B3LYP-D*/TZP optimized structures by using a p-aug-6-31G(d,p) basis set 

(LMP2/p-aug-6-31G(d,p)). Since the LMP2 energy includes electron correlation effects, we 

expected that the LMP2 method would give a proper description of intermolecular dispersion 

forces. The LMP2/p-aug-6-31G(d,p) method performs moderately well in computing the cohesive 

energies. However, the accuracy is lower than most of the methods presented above with a MAE of 

9 kJ·mol-1 and a SD of 11 kJ·mol-1. Even though, LMP2 performs best in the description of systems 

with mixed-type interactions (see Table 2). Again, two effects may lead to these deviations. On the 

one hand, the basis set may be too small and far from complete for a correlated wavefunction 

method, which is however needed to make to computations feasible. On the other hand, MP2 

intrinsically performs badly for dispersion dominated interactions, in particular for chemically 

unsaturated systems.68,69 The reason for this is that the dispersion energy contribution to the 

supermolecular MP2 energy lacks intramolecular correlation effects and therefore describes the 

long-range correlation energy on the so-called uncoupled level. 
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To better understand the basis set dependency of LMP2 , we further investigated the systems with 

very high percentage error (over 20%), namely CO2 and pyrazine. As regards CO2, the cohesive 

energy is underestimated by 20.2%, but it is know that the result can be improved by enlarging the 

basis set size,29 whereas, for pyrazine, the cohesive energy is overestimated by 43.0%. The 

interaction energy of a dimer extracted from the B3LYP-D*/TZP optimized crystal was performed 

at the LMP2 level by employing the p-aug-6-31G* and the larger aug-cc-pVTZ (without diffuse s 

functions). The dimer binding energy decreases from 16 kJ·mol-1 to 12 kJ·mol-1 by increasing the 

basis set size. If the same correction were applied to the cohesive energy of the crystal the 

percentage error would reduce to 7%. Thus, even in the converged basis set, we expect an 

overestimation of cohesive energies for π-systems as explained above. Apparently, one has to go 

beyond MP2 to achieve an accuracy that is consistently higher compared to dispersion corrected 

density functionals. 

 

As picture of the overall accuracy of the investigated methods, the plot of the normal error 

distributions has been illustrated in Figure 3. It highlights that the full width at half maximum of the 

HF and Post-HF methods is similar. While the LMP2 method tends to underbind, the HF-3c method 

tends to overbind the molecular crystals. For the HF-3c method, as discussed above, an unbalanced  

contribution to intermolecular energy (i.e. dispersion and gCP) in solid state calculations could 

explain the systematic overestimation of ΔEc. In fact, by simply tuning the s8 term, like for the S-

HF-3c method, the normal error distribution becomes narrower and more centered around the zero 

value. As regards DFT methods, the B3LYP-D*/TZP and the SP-B3LYP-D* approaches present 

very sharp and centered distributions of errors, comparable to the PBE-D3/CBS method. This is not 

unexpected because for all DFT calculations a dispersion correction was included and large basis 

sets were employed. 

To further analyze the accuracy of the HF-3c method in computing the properties of molecular 

crystals we have evaluated the sublimation enthalpies, ΔHsub, for the X23 set. For the HF-3c and S-

HF-3c methods computed cohesive energies were corrected by including the thermal contribution to 

enthalpy (ΔEvib + 4RT). In Figure 4, we compare the results obtained for the S-HF-3c with the 

PBE+TS results and the widely adopted 2RT correction.70 We also considered a reduced ΔEvib 

contribution by scaling the zero point and thermal energy to account for the systematic error of the 

HF method in computing the vibrational frequencies. By following the work of Sinha et al.71 a 

factor of 0.9204 and 1.1254 were adopted for zero-point and thermal energies, respectively. Figure 

4 shows that the S-HF-3c computed thermal corrections for the different molecular crystals are in 

good agreement with the PBE+TS results. Interestingly, the best agreement is reached for the 
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dispersive subgroup. It is important to point out that, on average, the thermal correction to enthalpy 

is -7.1 kJ·mol-1 and -6.3 kJ·mol-1 for S-HF-3c and PBE+TS, respectively. These values are not far 

from the 2RT constant correction (about -5.0 kJ·mol-1). This then suggests that such correction can 

be used as an easy and fast way to estimate experimental cohesive energies from the experimental 

sublimation enthalpies without the need of expensive vibrational frequencies calculations. In that 

case, one can assume an error bar of 2.0 kJ·mol-1. The statistical analysis for the ΔΗsub is 

summarized in Table 3. It can be seen the HF-3c method yields sublimation enthalpies with 

reasonable accuracy with a MAE of 8.6. In addition, our proposed scaling method, S-HF-3c, further 

improves the accuracy by achieving a MAE of 7.3 kJ·mol-1. Results in Table 3 and Figure 4 also 

show that the scaling of the vibrational quantities does not lead to any change in our results. 

G60 set 

The G60 set is an extended benchmark set of 60 molecular crystals employed for the first time by 

Gavezzotti and some of us, few years ago,70 which includes molecules with a wide range of 

chemical functionalities. Thus it represents a challenging validation test for computing non-covalent 

interactions. The analyzed systems are listed in Table S4 of the SI. We notice that 8 out of the G60 

systems belong also to the X23 set. 

We investigated the performance of the HF-3c, S-HF-3c and HF-3c-(0.27 s8) methods in computing 

the cohesive energy and the unit cell volumes of all the 60 molecular crystal in the benchmark set. 

The statistical analysis of the predicted unit cell volumes is reported in Table 4. Details are given in 

Table S6 of the SI. The results we obtain for the G60 set parallel those obtained for the X23 set. It is 

confirmed that when tuning the dispersion term within the HF-3c approach the accuracy improves, 

without any relevant change in the SD% of the method. In fact, for the G60 set, we compute 

MARE% of 6.9%, 4.7% and 3.5% at the HF-3c, S-HF-3c and HF-3c-(0.27 s8) levels, respectively, 

to be compared with the values of 8.0, 5.2% and 1.9% for the X23 set. Instead, the MRE% are 

shifted to higher values compared to those for the X23 set. We calculate a MRE% of -6.7%, -3.8% 

and +0.7% for the G60 set and of -8.0%, -5.2% and -0.8% for the X23 set at the HF-3c, S-HF-3c 

and HF-3c-(0.27 s8) levels, respectively. A closer inspection of the results shows that this positive 

shift may be due to chlorinated compounds whose interaction energies appear to be not properly 

reproduced by the methods investigated in the present work. The HF-3c-(0.27 s8) method, which 

does very well in computing unit cell volumes for the X23 set, gives indeed volumes of the 

chlorinated molecular crystals that are 3% larger, on average, than experiment. This overestimation 

is also observed for nitro-substituted compounds. In both cases, we believe that this is due to the 

electron rich moieties whose complex chemical behavior (e.g halogen-halogen interactions) needs 
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both the inclusion of correlation effects missing in HF-3c and larger basis sets to be properly 

described. 

Along with HF-3c and S-HF-3c, we computed the cohesive energy with the SP-B3LYP-D* 

approach. The statistical analysis is reported in Table 5. Details can be found in Table S7 of the SI. 

As a comparison, we have also included the results for the ΔEc at the B3LYP-D*/6-31G* method 

calculated by keeping the crystal and molecules geometries fixed to the experiments, as reported in 

ref 70. In this case, the scaling of the dispersion term in the HF-3c scheme does not lead to any 

improvement. In fact, the computed MAE is 12 kJ·mol-1 for both the standard and scaled methods. 

The performance of the B3LYP-D* method improves when increasing the basis set size. This is 

testified by the MAE of 8.8 kJ·mol-1 and 10 kJ·mol-1 at the SP-B3LYP-D*, which employs a TZP 

basis set, and B3LYP-D*/6-31G* levels, respectively. It must be noticed that the accuracy achieved 

in computing the G60 set cohesive energies is rather poor in comparison to the results obtained for 

the X23 set. For instance, the computed S-HF-3c MAE is 12 kJ·mol-1 for G60 benchmark set while 

it is 6.9 kJ·mol-1 for the X23 set. We suspect that G60 cohesive energies are predicted with low 

accuracy and precision for mainly two reasons. Firstly, the experimental error on the sublimation 

enthalpies used as reference data for the statistical analysis, is larger than for the X23 dataset. 

Secondly the nitro and chlorinated compounds, which have shown large deviations from experiment 

for the crystal structure, cannot be properly simulated with both the original and scaled HF-3c 

methods assessed in this work. 

 

K7 set 

The K7 set is comprised of seven molecular crystals selected because of the different intermolecular 

interactions present in the structure, namely: acetamide, the cubic and orthorhombic polymorphs of 

acetylene, boric acid, hydrogen cyanide, ice XI and propane. We optimized crystal structures at the 

HF-3c, S-HF-3c, HF-3c-(0.27 s8) and B3LYP-D*/TZP levels and then computed the corresponding 

cohesive energies. For the HF-3c-(0.27 s8) method the SP-B3LYP-D* approach was adopted. For 

brevity, the results and the statistical analysis are gathered in Table S8 in the supporting 

information. 

As already seen for the X23 and the G60 sets, the HF-3c method tends to overestimate dispersion 

interactions so that it systematically underestimates the unit cell volumes. Instead, the HF-3c-(0.27 

s8) method predicts unit cell volumes in good agreement with the B3LYP-D*/TZP method. In fact, 
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the latter performs slightly better than the HF-3c-(0.27 s8) with the computed MARE% being 3.2% 

and 5.3%, respectively. 

The trend for the computed cohesive energies of the K7 set parallels the one of the other test sets. 

As already pointed out, when decreasing the dispersion within the HF-3c approach the accuracy 

increases. For instance, the MAE for the HF-3c method of 8.1 kJ·mol-1 decreases to 6.2 kJ·mol-1 for 

S-HF-3c, although, both the unscaled and scaled HF-3c methods are not as accurate as the B3LYP-

related methods which give a MAE of 4.1 kJ·mol-1 and 4.0 kJ·mol-1 at the SP-B3LYP-D*/TZP and 

the B3LYP-D*/TZP levels, respectively. Notably, the proposed combination of scaled HF-3c 

geometries and B3LYP-D*/TZP energies as in the SP-B3LYP-D*/TZP approach confirms to give 

remarkably accurate cohesive energies also for the K7 set. 

 

Molecular crystals geometry 

Computed results highlight, clearly, the overall ability of the scaled HF-3c methods in predicting 

unit cell volumes. As a further assessment, we analyzed the intermolecular distances for a small 

selection of molecular crystals for which accurate experimental data are available from low-

temperature neutron diffraction measurements,72–75 namely: urea, formamide, fomic acid and 

benzene. They are also representative of different intermolecular interactions that lead to a different 

crystal packing from a 3D network of H-bonds in urea to 2D sheets of H-bonded molecules 

connected through weak CH---O bonds in formamide, from 1D H-bonded chains of formic acid 

linked by weak interchain interactions to a purely dispersive crystal as benzene. The most relevant 

intermolecular distances data have been gathered in Table 6 and shown in Figure 5. For the scaled 

HF-3c approach, the decrease of the dispersion contribution leads to an elongation of the 

intermolecular distances that are in a better agreement with the experimental values than the 

original HF-3c method. Overall, the B3LYP-D*/TZP predicts molecular crystal geometries in rather 

good agreement with experiment. Notably, the results for the HF-3c-(0.27 s8) method nicely 

approach those obtained at the B3LYP-D*/TZP level. This is a further demonstration of the validity 

of the SP-B3LYP-D* approach that relies on the HF-3c-(0.27 s8) computed geometries. 

 

Different dispersion schemes as applied to B3LYP-D 

As a final assessment, we have explored the inclusion of the more recently proposed D3 correction 

without and with the Axilrod-Teller-Muto three-body term (hereafter denoted as D3ABC) to the 
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B3LYP/TZP cohesive energies as computed on the scaled HF-3c-(0.27 s8) optimized geometries for 

both the X23 and the G60 sets. The statistics are reported in the supporting information (see Table 

S9). While B3LYP-D3 performs worsen than B3LYP-D*, in the B3LYP-D3ABC/TZP//HF-3c-(0.27 

s8) approach the inclusion of the repulsive three-body term reduces the over-binding tendency of the 

D3 scheme and leads to a MAE which is the lowest among the tested methods. For the X23 set, a 

remarkably low MAE of 3.5 kJ·mol-1 has been attained which competes with results found in 

literature, as for instance the PBE0/MBD method.33 This intriguing result deserves further 

investigation and will be explored in a forthcoming work. One very strong advantage of the 

B3LYP-D/TZ approach when compared to commonly used GGA functionals as PBE-D/TZ (or 

PBE-MBD) is the inclusion of HF exchange that leads to (i) improved description of induction 

effects important to describe strong hydrogen bonds for e.g. water and ice and (ii) improved 

reaction barriers and thermochemistry needed to describe chemical reactions in the solid state. As 

alternative to using B3LYP-D/TZP, the recently proposed PBEh-3c method, a hybrid functional 

which employs a DZ quality basis set that includes the D3 and the gCP correction as HF-3c, could 

be another possible choice in the trade-off between cost and accuracy.59 

 

Conclusions 

In this work, we have presented a comprehensive evaluation of the performance of the semi-

empirical HF-3c method and the dispersion-corrected B3LYP functional for the prediction of 

structure and cohesive energy of molecular crystals. Three benchmark sets, all envisaging molecular 

crystals, have been investigated: X23, G60 and the new K7; that is 82 molecular crystals in total. 

For comparison, the LMP2 post-HF method has been also investigated to assess its performance in 

reproducing the cohesive energies of the molecular crystals in the X23 set.  

In summary, the following conclusions can be drawn.  

Despite its simplicity, the semi-empirical HF-3c method gives accurate geometries and cohesive 

energy. We have found out a systematic tendency to overbind molecular crystals in which 

dispersion interaction tends to dominate. As a practical strategy, a simple scaling of the dispersion 

term, in particular for the -C8/R8 contribution, has been proposed that significantly improves the 

results. The best compromise for structure and cohesive energy has been obtained when applying a 

scaling factor of s8=0.7 (S-HF-3c). The dispersion corrected B3LYP-D* functional confirms its 

excellent accuracy in predicting both structure and cohesive energy of molecular crystals, in 
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particular, when large basis sets are employed (e.g. TZP), even though the cost can rapidly increase 

with the size of the system. This latter point can be mitigated by adopting the very fast HF-3c-(0.27 

s8) method for structure prediction coupled with single point energy evaluation at the B3LYP-D* to 

predict cohesive energy (SP- B3LYP-D*). The saving in computational time is very large as for the 

most complex pyrazine crystal the HF-3c method is 36 times faster for a complete self-consistent 

field and nuclear gradient calculation with respect to B3LYP-D*/TZP. The computational burden 

increases in the following order HF-3c > B3LYP-D/TZ = PBE-D/CBS > MP2/TZ. Therefore, the 

SP-B3LYP-D* method proposed by us can be suggested as a cost-effective tool for studying 

molecular crystals. 

For the X23 set, the LMP2 gives cohesive energies with only a moderate accuracy (but quite good 

for systems with mixed-type interactions). The non-excellent performance could be partly due to the 

small basis set employed (i.e. p-aug-6-31G(d,p)), that was chosen to keep the computational cost 

relatively low, and partially due to the intrinsic flaw of MP2 to describe dispersion interactions with 

the uncoupled HF orbitals and at the same time neglecting type-B non-additivity effects.76 

Nevertheless, promising results for molecular crystals were recently obtained with double hybrid 

methods28,31 that are strictly related to MP2. Some of us showed indeed that different variants of 

double hybrids could outperform MP2.28 Work is in progress to benchmark double hybrid 

functionals for the X23 set. 

We also tested different DFT-D type corrections to B3LYP/TZP method. The B3LYP-

D3ABC/TZP//HF-3c-(0.27 s8) approach has been shown to be quite promising and deserves further 

investigations. 

By combining the three test sets, we propose a new large benchmark set of molecular crystals, 

dubbed MC82. The reference cohesive energies have been estimated from the experimental 

sublimation energies by applying the 2RT correction factor. We have shown for the X23 set that, on 

average, such correction is not far from the thermal contribution to enthalpy obtained through rather 

costly vibrational frequencies calculations. Therefore, we have confidently applied this correction to 

other systems in the MC82 test set. Performance of the HF-3c method has been confirmed for the 

full set (see Table S10 in the supporting information), as well as the excellent agreement with 

experiment for the optimized unit cell volumes computed with the scaled HF-3c-(0.27 s8) method. 

Overall, the SP-B3LYP-D* approach gives a good accuracy with a global MAE of 7.4 kJ/mol. 

Interestingly, as shown by preliminary results, the inclusion of the D3ABC correction to B3LYP/TZP 

would presumably provide quite accurate results. 
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In perspective, the combination of the cost-effective HF-3c method and the more accurate 

dispersion-corrected B3LYP/TZP model is potentially of great interest for large screening studies, 

in investigating polymorphism in molecular crystals77 and in crystal structure prediction.  
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19	
  
	
  

Table 1. Statistical summary for unit cell volumes of the molecular crystals in the X23 set. MAE, 

corrected sample standard deviation (SD) and maximum error (MAX) of the optimized volumes 

evaluated at the HF-3c and the B3LYP-D*/TZP levels of theory. For the HF-3c case, the results 

obtained by different scaling of dispersion and gCP terms are also reported (see text for details). 

The statistics is reported for both absolute errors (in Å³)  and relative absolute percentage errors by 

using the following format MAE ± SD (MAX). Details on the statistical functions employed in the 

SI. 

 All (X23) Dispersive H-bond Mixed 

Statistics in Å³ 
    

HF-3c  27 ± 14 (-51) 33 ± 12 (-50) 15.2 ± 6.5 (-29.) 40.4 ± 7.6 (-50.6) 

HF-3c-(0.7 s8) 17.3 ± 9.4 (-34.3) 22.2 ± 8.6 (-34.3) 8.6 ± 3.7 (-15.4) 24.8 ± 2.7 (-28.7) 

HF-3c-(0.5 s8) 10.4 ± 7.2 (-23.1) 14.8 ± 6.6 (-23.1) 4.1 ± 2.7 (-9.3) 13.8 ± 5.6 (-19.4) 

HF-3c-(0.27 s8) 5.9 ± 6.7 (16.2) 7.2 ± 5.2 (-10.6) 3.4 ± 3.7 (-6.3) 9 ± 11 (16) 

HF-3c-(1.23 gCP) 19 ± 13 (-44) 26 ± 11 (-44) 7.8 ± 5.8 (-20.6) 30.2 ± 5.1 (-36.1) 

B3LYP-D*/TZP 10.1 ± 8.7 (-35.7) 12.6 ± 9.8 (-35.7) 5.4 ± 4.6 (-14.5) 14.6 ± 9.7 (-22.3) 

Statistics in percentage     

HF-3c  8.0 ± 2.5 (-12.4) 9.2 ± 2.5 (-12.4) 6.5 ± 2.3 (-12.2) 8.3 ± 1.2 (-9.7) 

HF-3c-(0.7 s8) 5.2 ± 2.3 (-9.5) 6.4 ± 2.3 (-9.5) 3.9 ± 2.1 (-9.2) 5.3 ± 1.4 (-6.8) 

HF-3c-(0.5 s8) 3.2 ± 2.3 (-7.4) 4.3 ± 2.2 (-7.4) 2.0 ± 2.1 (-7.2) 3.1 ± 1.7 (-4.6) 

HF-3c-(0.27 s8) 1.9 ± 2.3 (-5.0) 2.3 ± 2.1 (-5.0) 1.6 ± 2.2 (-4.9) 1.7 ± 2.0 (2.3) 

HF-3c-(1.23 gCP) 5.6 ± 3.0 (-10.8) 7.3 ± 2.8 (-10.8) 3.4 ± 2.5 (-8.9) 6.3 ± 1.4 (-8.1) 

B3LYP-D*/TZP 3.0 ± 1.9 (-6.0) 3.4 ± 1.9 (-6.0) 2.3 ± 1.8 (-5.8) 3.4 ± 2.2 (-4.8) 
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Table 2. Statistical summary for cohesive energies of the molecular crystals in the X23 set. MAE, 

SD and MAX of the ΔEc evaluated at the HF-3c, B3LYP-D*/TZP, LMP2/p-aug-6-31G(d,p) and 

SP-B3LYP-D* levels of theory. For the HF-3c case, the results obtained by different scaling of the 

dispersion and gCP terms are also reported. For comparison, we have also included the statistical 

analysis for the ΔEc at the PBE0-MBD/CBS, PBE-D3/CBS, PBE-D3-gCP/SVP and B3LYP-D3-

gCP/SVP levels of theory.33,67 The statistics is reported for both absolute errors (in kJ·mol-1) and 

relative absolute percentage errors by using the following format MAE ± SD (MAX). 

Method All (X23) Dispersive H-bond Mixed 

Statistics in kJ·mol-1     

HF-3c  8.2 ± 8.8 (21.3) 10.3 ± 7.9 (18.7) 7.0 ± 9.9 (21.3) 5.5 ± 6.6 (12.0) 

S-HF-3c 6.9 ± 8.0 (13.9) 4.5 ± 6.0 (-13.2) 9.3 ± 9.8 (13.9) 7.8 ± 8.5 (-13.6) 

HF-3c-(0.5 s8) 8.8 ± 8.1 (-20.0) 6.2 ± 5.9 (-18.4) 10.7 ± 9.9 (-20.0) 11.0 ± 9.8 (-19.8) 

HF-3c-(0.27 s8) 13.1 ± 8.7 (-26.6) 12.1 ± 6.6 (-24.0) 13 ± 10 (-27) 16 ± 11 (-26) 

HF-3c-(1.23 gCP) 8.4 ± 9.6 (-18.2) 8.1 ± 8.4 (13.0) 9.1 ± 8.9 (-18.2) 7.5 ± 9.5 (-13.5) 

B3LYP-D*/TZP 4.6 ± 6.0 (-17.9) 6.2 ± 7.4 (-17.9) 3.6 ± 4.1 (6.1) 2.7 ± 2.4 (-5.4) 

LMP2/aug-6-31G(d,p) 9 ± 11 (26) 10 ± 13 (26.3) 9.5 ± 7.1 (-23.7) 4.2 ± 4.9 (11.5) 

SP-B3LYP-D* 5.2 ± 5.8 (-15.6) 6.4 ± 7.0 (-15.6) 4.3 ± 5.2 (-10.4) 4.3 ± 3.0 (-7.7) 

PBE0-MBD/CBS 4.0 ± 4.7 (9.2) 4.9 ± 5.8 (9.2) 3.4 ± 3.5 (9.1) 3.1 ± 2.2 (4.7) 

PBE-D3/CBSa 3.9 ± 4.9 (13.8) 2.7 ± 3.6 (-7.5) 5.2 ± 4.9 (13.8) 4.0 ± 3.8 (5.0) 

PBE-D3-gCP/SVPa 10 ± 12 (-32) 7.8 ± 8.2 (-16.3) 14 ± 18 (-32) 6.0 ± 7.1 (7.5) 

B3LYP-D3-gCP/SVPa 7.8 ± 9.0 (16.7) 8.7 ± 9.6 (16.7) 8 ± 10 (-16) 5.2 ± 3.0 (8.8) 

Statistics in percentage     

HF-3c  11 ± 11 (22) 14.7 ± 9.5 (21.2) 9 ± 11 (22) 5.9 ± 7.2 (13.8) 

S-HF-3c 7.9 ± 8.8 (-14.9) 6.3 ± 7.8 (-14.9) 10 ± 11 (14) 6.2 ± 6.9 (-10.0) 

HF-3c-(0.5 s8) 9.6 ± 8.1 (-20.8) 8.2 ± 7.0 (-20.8) 12 ± 10 (-17) 8.5 ± 6.7 (-14.6) 

HF-3c-(0.27 s8) 15.0 ± 7.9 (-27.1) 16.5 ± 6.3 (-27.1) 14 ± 10 (-22) 13.1 ± 6.6 (-19.5) 

HF-3c-(1.23 gCP) 10 ± 11 (16) 11 ± 11 (16) 10.2 ± 9.5 (-14.4) 6.2 ± 8.3 (-9.9) 

B3LYP-D*/TZP 5.7 ± 7.2 (-16.4) 8.6 ± 8.7 (-16.4) 4.1 ± 4.3 (6.0) 2.3 ± 2.0 (-4.3) 

LMP2/p-aug-6- 11 ± 14 (43) 15 ± 19 (43) 10.4 ± 5.8 (-18.2) 3.2 ± 2.7 (7.1) 
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31G(d,p) 

SP- B3LYP-D* 6.4 ± 7.0 (-15.9) 8.9 ± 8.4 (-15.9) 4.9 ± 5.4 (-8.0) 3.4 ± 1.8 (-4.8) 

PBE0-MBD 5.7 ± 8.2 (-25.4) 8 ± 11 (-25) 4.2 ± 4.3 (11.4) 2.7 ± 2.3 (5.3) 

PBE-D3/CBSa 5.1 ± 6.7 (17.3) 4.1 ± 5.3 (11.3) 6.8 ± 6.7 (17.3) 3.9 ± 3.4 (5.8) 

PBE-D3-gCP/SVPa 14 ± 20 (60) 14 ± 20 (60) 17 ± 24 (46) 5.7 ± 6.7 (8.7) 

B3LYP-D3-gCP/SVPa 11 ± 15 (43) 14 ± 19 (43) 10 ± 14 (33) 5.4 ± 4.0 (10.1) 

a ΔEc evaluated by keeping the unit cell parameters fixed to the experimental values. 
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Table 3. Statistical summary for sublimation enthalpies of the molecular crystals in the X23 set. 

MAE, SD and MAX of ΔH evaluated at the HF-3c and S-HF-3c levels of theory. ΔΗ* results refer 

to results obtained with scaled frequencies (see text for details). The statistics is reported for both 

absolute errors (in kJ·mol-1) and relative absolute percentage errors by using the following format 

MAE ± SD (MAX). 	
  

  HF-3c  S-HF-3c 

Statistics in kJ·mol-1 
  

ΔΗ 8.6 ± 9.4 (21.1) 7.3 ± 8.3 (-14.4) 

ΔΗ* 8.4 ± 9.3 (20.7) 7.3 ± 8.2 (-14.5) 

Statistics in percentage 
  

ΔΗ 13 ± 13 (30) 9 ± 10 (-17) 

ΔΗ* 12 ± 13 (29) 9 ± 10 (-17) 
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Table 4. Statistical summary for unit cell volumes of the molecular crystals in the G60 set. MAE, 

SD and MAX of the optimized cell volumes evaluated at the HF-3c, S-HF-3c and HF-3c-(0.27 s8) 

levels of theory. The statistics is reported for both absolute errors (in Å³)  and relative absolute 

percentage errors by using the following format MAE ± SD (MAX). 

	
  

Method All (G60) Dispersive H-bond Mixed 

Statistics in Å3 

    HF-3c  45 ± 36 (-156) 49 ± 38 (-156) 9.3 ± 4.0 (-15.5) 47 ± 28 (-98) 

S-HF-3c  30 ± 32 (-115) 33 ± 35 (-115) 3.8 ± 3.4 (-8.0) 30 ± 23 (-75) 

HF-3c-(0.27 s8) 24 ± 36 (134) 30 ± 42 (134) 6.4 ± 6.1 (16.6) 13 ± 19 (-41) 

Statistics in percentage 

    HF-3c  6.9 ± 4.2 ( -17.2 ) 7.1 ± 4.6 ( -17.2 ) 4.6 ± 1.2 ( -6.1 ) 7.2 ± 3.2 ( -11.8 ) 

S-HF-3c 4.7 ± 4.2 ( -14.2 ) 5.1 ± 4.7 ( -14.2 ) 1.9 ± 1.5 ( -3.2 ) 4.7 ± 3.0 ( -9.1 ) 

HF-3c-(0.27 s8) 3.5 ± 4.5 ( 11.5 ) 4.0 ± 4.9 ( 11.5 ) 3.2 ± 3.2 ( 8.6 ) 2.0 ± 2.7 ( -4.9 ) 
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Table 5. Statistical summary for cohesive energies of the molecular crystals in the G60 set. MAE, 

SD and MAX of the ΔEc as evaluated at the HF-3c, S-HF-3c and SP-B3LYP-D* levels of theory. 

The statistical analysis for the ΔEc at the B3LYP-D*/6-31G(d,p) level is also reported. The statistics 

is reported for both absolute errors (in kJ·mol-1) and relative absolute percentage errors by using the 

following format MAE ± SD (MAX). 

Method All (G60) Dispersive H-bond Mixed 

Statistics in kJ·mol-1     

HF-3c 12 ± 15 ( -41 ) 13 ± 16 ( -41 ) 5.4 ± 8.3 ( 16.9 ) 13 ± 15 ( 34 ) 

S-HF-3c 12 ± 14 ( -57 ) 13 ± 15 ( -57 ) 8.8 ± 7.6 ( 10.8 ) 11 ± 14 ( -34 ) 

SP-B3LYP-D* 8.8 ± 7.6 ( -25.7 ) 9.6 ± 7.4 ( -25.7 ) 4.4 ± 4.3 ( -6.6 ) 8.3 ± 8.5 ( -21.0 ) 

B3LYP-D*/6-31G*a 10 ± 12 ( -37 ) 10.4 ± 9.0 ( -36.7 ) 13 ± 11 ( 32 ) 9 ± 12 ( 26 ) 

Statistics in percentage     

HF-3c  12 ± 14 ( 36 ) 13 ± 15 ( 36 ) 6.0 ± 8.9 ( 17.6 ) 11 ± 12 ( 27 ) 

S-HF-3c 11 ± 12 ( -33 ) 11 ± 12 ( -33 ) 10.0 ± 8.4 ( -12.9 ) 9 ± 11 ( -26 ) 

SP-B3LYP-D* 8.6 ± 7.1 ( -25.7 ) 9.6 ± 7.4 ( -25.7 ) 5.2 ± 5.2 ( -9.9 ) 6.6 ± 6.7 ( -16.1 ) 

B3LYP-D*/6-31G*a 10 ± 11 ( 34 ) 10.3 ± 8.2 ( -32.2 ) 13 ± 11 ( 34 ) 7.1 ± 9.5 ( 20.5 ) 

a BSSE corrected ΔEc calculated by keeping the crystal and molecules geometries fixed to the 
experiments, from ref. 70 
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Table 6. Comparison between HF-3c, S-HF-3c, HF-3c-(0.27 s8) and B3LYP-D*/TZP for predicted 

intermolecular distances (in Å) of a few selected molecular crystals. CM is the center of mass of the 

benzene ring. 

 

HF-3c S-HF-3c HF-3c-(0.27 s8) B3LYP-D*/TZP EXP 

Urea74 

O-H1(H4) 1.898 1.921 1.956 1.985 1.992 

O-H2(H3) 2.014 2.025 2.043 2.053 2.058 

Formamide75 

O1-H1 (O2-H2) 1.828 1.841 1.863 1.917 1.910 

O3-H3 1.851 1.862 1.875 1.872 1.820 

O1-H5 (O4-H4) 2.397 2.453 2.561 2.530 2.439 

Formic acid72 

O1-H1 (O3-H3) 1.626 1.634 1.643 1.604 1.613 

O2-H2 2.269 2.269 2.270 2.552 2.549 

Benzene73 

CM-H1 2.542 2.607 2.706 2.695 2.702 

CM-H2 3.416 3.468 3.556 3.595 3.575 
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Figure 1. Relative deviation in percentage, 𝛅𝐢(%) = 𝟏𝟎𝟎 ∙    𝒙𝒊 !   𝒙𝒊
𝒆𝒙𝒑

𝒙𝒊
𝒆𝒙𝒑 , of the computed cell volumes 

from the experimental reference values for the X23 set as obtained at the HF-3c and the B3LYP-

D*/TZP level of theory as well as for the scaled HF-3c-(0.7 s8) [S-HF-3c] and HF-3c-(0.27 s8) 

methods. See Table S5 of SI for details on labeling of the molecular crystals in the X23 set. 
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Figure 2. Deviation (𝛅𝐢 =    𝒙𝒊 −    𝒙𝒊
𝒆𝒙𝒑 ) of the ΔEc from the thermodynamically corrected 

experimental cohesive energies for the X23 set as computed at the LMP2/p-aug-6-31G(d,p), HF-3c, 

S-HF-3c, SP-B3LYP-D* and B3LYP-D*/TZP levels of theory. See Table S5 of SI for details on 

labeling of the molecular crystals in the X23 set. 
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Figure 3. Normal error distribution of the deviation of theoretically predicted cohesive energies 

from experimental data for the X23 set (see Table 1). Negative values mean underbinding while 

positive values indicate overbinding. PBE-D3/CBS data from ref. 67. 
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Figure 4. Comparison of the thermal correction to enthalpy (ΔEvib + 4RT) for the X23 set as 

evaluated at S-HF-3c (red squares, dotted red line) and PBE+TS level of theory (green triangle, 

solid green line) through the Einstein and supercell method, respectively.33 The usually adopted 

2RT value is also shown as black solid line. In addition, the results for the S-HF-3c level of theory 

with scaled vibrational frequencies are also reported (black squares, black dotted line). The 

temperature is set at 298.15 K. For details of crystal labeling see Table S5 of SI.  
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Figure 5. Details of the geometries of the urea, formamide, formic acid and benzene molecular 

crystals. Carbon is colored in turquoise, hydrogen in light gray, oxygen in red and nitrogen is blue. 
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