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 Stem cells therapy for ALS 

Abstract 

Introduction: Despite knowledge on the molecular basis of ALS having quickly progressed over the 

last few years, such discoveries have not yet translated into new therapeutics. With the advancement 

of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS.  

 

Areas Covered: we discuss in detail the therapeutic potential of different types of stem cells in pre-

clinical and clinical works. Moreover we address many open questions in clinical translation.  

 

Expert Opinion: SC therapy is a potentially promising new treatment for ALS and the need to better 

understand how to develop cell-based experimental treatments, and how to implement them in 

clinical trials, becomes more pressing. Mesenchymal Stem Cells and Neural Fetal Stem Cells have 

emerged as safe and potentially effective cell types but there is a need to carry out appropriately 

designed experimental studies to verify their long-term safety and possibly efficacy. Moreover the 

cost-benefit analysis of the results must take into account the quality of life of the patients as a 

major endpoint. It is our opinion that a multicenter international clinical program aimed at fine-

tuning and coordinating transplantation procedures and protocols is mandatory. 

 

1. Introduction 

 Amyotrophic Lateral Sclerosis (ALS) is the most common neuromuscular disease 

worldwide for an incidence of 2-3 cases per 100,000 general population, and a prevalence around 

four to six per 100,000 [1]. It targets motor neurons (MNs) in the primary motor cortex, brainstem, 

and spinal cord leading to muscle atrophy, paralysis and death due to respiratory failure within 2-5 

years. In most cases ALS is sporadic but a clear family history is present in approximately 10% of 

ALS patients. Mutations in more than 25 different genes are known to occur in 68% of familial and 
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about 10% of sporadic ALS [2]. ALS is a multifactorial disease and many pathogenetic mechanisms 

influence the onset and progression of the disease including failure of axonal transport, oxidative 

stress, mitochondrial dysfunction and glutamate-mediated excitotoxicity [3]. ALS was traditionally 

considered a pure motor disorder. However ALS rodent studies have provided strong evidence that 

ALS is a non-cell autonomous disease as oligodendroglia may play a significant role in onset and 

both astroglia and microglia play a role in progression [4]. Deletion of mutant SOD1 in astrocytes 

and microglia reduced disease severity and boosted the survival of ALS mice [5]. In chimeric mice 

expressing high levels of mutant SOD1 in 100% of MNs and oligodendrocytes, the presence of wild 

type support cells delayed the onset of MN degeneration [6]. Prominent neuroinflammation is found 

in both the central nervous system (CNS) and the spinal cords from ALS patients [7] and mouse 

models [8], showing gliosis and large numbers of activated microglia and astrocytes. Emerging 

evidence also points to an involvement of both innate and adaptive immunity in ALS progression 

[9-10]. Increased numbers of CD4+ and CD8+ T cells and dendritic cells were detected near dying 

MNs in the spinal cords and in brain parenchyma of ALS patients [11].  

Our knowledge on the molecular basis of ALS has progressed very fast over the last few years, 

though such discoveries have not yet translated into new therapeutics. Since its approval in 1996, 

riluzole is indeed the only currently available drug with only modest efficacy in increasing patient 

survival [12]. Many clinical trials have been initiated for the ALS/MND patient community only to 

be abandoned later due to lack of efficacy [13].   

2. Stem Cell Translational Research 

 As previously mentioned multiple factors are involved in the pathogenesis of ALS, but these 

factors have not been successfully targeted by pharmaceutical agents [13].  With the advancement 

of stem cell technology, stem cell therapy has been proposed as novel treatment for ALS. Stem cells 

(SCs) potentially target several of the putative mechanisms involved in the onset and progression of 
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the disease.  

2.1 Cell-replacement strategies 

 SCs can act in neurodegenerative diseases by replacing those cells that have died, but they 

can also restore function through other mechanisms [14]. In the case of cell replacement, substantial 

improvement in ALS will require cells with the properties of motor neurons. Motor neurons can be 

generated in vitro from stem cells of various sources including embryonic stem cells (ESCs), 

induced pluripotent stem cells (iPS) and neural stem cells (NSCs) [15-16]. However, practical 

issues might limit the clinical translation of direct MNs replacement to humans. For effective cell 

replacement strategies for ALS these motor neurons should  also reinnervate appropriate targets and 

establish physiologically functional synapses, send axons through inhibitory white matter, and 

direct axons over long distances to the target muscles in order to retain neuromuscular function. 

Given these limitations neuronal replacement seems unlikely to occur in ALS patients. However not 

only MNs but also astrocytes clearly play a role in ALS pathogenesis [5,17] and the disruption in 

astrocytic function markedly promotes neurodegeneration. Moreover recent studies suggest that 

even during normal aging, astrocytes become less supportive to motor neurons [18,19] suggesting 

also a role of aging in   the significant motor neuron death related to astrocytes in a rodent model of 

familial ALS [20]. Importantly, Dass and Svendsen [20] found that priming aged wild-type and 

SOD1G93A astrocytes with GDNF in the media resulted in increased levels of motor neuron 

survival in coculture . Astrocyte precursors or stem cell-derived astrocytes promote axonal growth, 

support mechanisms involved in myelination and oligodendrocyte myelination , are able to 

modulate the host immune response, deliver neurotrophic factors and provide protective molecules 

against oxidative or excitotoxic insults, amongst many possible benefits [21,22,23]. Studies with 

chimeric mice showed that delivering wild type glial cells in the ALS model can improve the 

disease phenotype [6,24]. These results support the astrocyte replacement-based therapies in ALS to 

alleviate overall astrocyte dysfunction, deliver neurotrophic factors to degenerating spinal tissue and 
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stimulate endogenous CNS repair abilities [23]. 

 

2.2 Neurotrophic activity 

 SCs could provide a means to deliver neurotrophins to the diseased brain and spinal cord, 

potentially enhancing neuronal survival. One of the main mechanisms by which MNs survival is 

regulated in fact, consist in the release of  neurotrophins by glial cells. Growth factors are proteins 

essential for neuronal survival: their deficiency could induce MNs death in ALS patients [25]. 

Among these, brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic  factor 

(GDNF) play critical roles in MNs survival. Interestingly, most SCs populations including 

mesenchymal stem cells and neural stem cells can also produce and release several neurotrophins 

[26,27,28,29]. Several growth factors were succesful in animal models but not in humans. Clinical 

trials using BDNF, ciliary neurotrophic factor, and insulin-like growth factor demonstrated no 

significant survival benefits [30,31,32]. These failures might be related to an inadequate route of 

administration. Penetration of large peptides, such as growth factors, into the CNS, in fact, is 

limited by the blood-brain barrier (BBB). On the other hand, SCs transplanted into the nervous 

system produce and deliver neurotrophic and growth factors and their efficacy could be improved 

by genetic modification to deliver molecules that promote MNs survival [33,34]. Spinal intrathecal 

transplantation of human NSCs over-expressing VEGF (F3.VEGF) in a transgenic SOD1/G93A 

mouse model significantly delayed disease onset and prolonged the survival of animals [35]. 

2.3 Anti-inflammatory activity 

 As previously mentioned chronic inflammation plays an important role in ALS. The most 

important therapeutic potential of SCs relies on their ability to regulate inflammation and to 

empower resident cells to facilitate tissue repair through endogenous stem cell activation or 

environment modulation. In fact both neural precursor cells [36] and mesenchymal stem cells 
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[37,38] promote “bystander” immunomodulation, as they can release soluble molecules and express 

immuno-relevant receptors which are able to modify the inflammatory environment. MSC 

transplantation was found to attenuate neuroinflammation in SOD1 G93A transgenic mice [38,39]. 

Many studies have demonstrated that MSCs can suppress the activation and function of various 

cells of the innate and adaptative immune system, including macrophages, neutrophils, natural killer 

cells, dendritic cells and T/B lymphocytes. These effects are mediated by several factors and 

molecules secreted by MSCs such as TGF-, NO, Prostaglandins, IL- Receptor antagonists, IL-10 

and many others [40,41]. The beneficial effects of glial cell replacement, the enhancement of 

neurotrophic support and the immunomodulatory effects suggests that SCs based therapies could 

prove beneficial in ALS, albeit via indirect mechanisms rather than cellular replacement [42,43]. 

3. Sources of Stem Cells for Clinical Trials 

Candidates for stem cell therapy in ALS must be able to survive and influence the 

pathological tissue environment, including inflammatory and immune reactions, and migrate into the 

sites of diffuse neurodegeneration. Moreover, it is fundamental for clinical application that stem 

cells are safe, and can be easily isolated and expanded. 

Mesenchymal stem cells (MSCs) are very attractive multipotent stem cells for ALS cell 

therapy because of their great plasticity [44] and their ability to provide the host tissue with growth 

factors or to modulate the host immune system [45]. They can be easily isolated from bone marrow 

(BM) and expanded in culture. In addition to their potential therapeutic effects, BM-derived MSCs 

are almost free from significant adverse effects. Most importantly, in vivo transplantation of long-

term cultured hMSCs in vivo mouse models did not result in tumour formation [46]. MSC have now 

been tested in phase I and II clinical trials for several neurodegenerative diseases of various etiology, 

including ALS and safety seems to be demonstrated also in humans [47,48,49,40,51,52]. While the 

use of MSCs is an intriguing approach, the use of such cells from outside the CNS has been 

undertaken chiefly based upon the mistaken concept that a source of neural cells with stem cell 

characteristics may not be available, particularly for clinical applications. The source of the cells to 
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be transplanted  represents a critical point for the implementation of cell therapy clinical trial in the 

CNS disorders. Clinical trials for Parkinson’s disease, that used primary fetal tissue, have 

demonstrated, although with controversial results, that cell therapy could be suitable for 

neurodegenerative diseases. The use of fetal tissue presents several issues that have hampered the 

clinical development of this approach. In addition to the ethical concerns related to the required 

continuous supply of fetal specimen, the necessity to use cells from multiple fetuses in a single graft 

represents an additional problem. Cell viability and composition differs in donors and, further, the 

heterogeneity in the donor cells increases the probability of immunological rejection or 

contamination. An ideal tissue cell source for neural cell replacement must be renewable, thus 

eliminating the need for transplantation of primary fetal tissue, and must  allow viability, sterility, 

cell composition and cell maturation to be controlled, while being inherently non tumorigenic.  In 

order to attain a rapid clinical translation of CNS cell therapy, paramount importance must be placed 

upon a continuous and standardized clinical grade source of normal human neuronal cells, able to 

combine the plasticity of fetal tissue with an extensive proliferating capacity and functional stability. 

The discovery of the existence of neural stem cells (NSCs) in the adult rodent brain by Weiss and 

Reynolds in 1992 [53], and the initial isolation of human neural stem cells (hNSCs) by Vescovi lab 

in 1999 [54], have eventually provided a solution to this conundrum, thus paving the way to the 

implementation of perspective cell therapy applications using the brain's own stem cells. Thus, 

recent in vivo studies have shown that transplanted neural stem/precursor cells display good survival 

and integration capacity into the damaged brain parenchyma, while also eliciting putative 

therapeutic effects in different pathological scenarios [55, 14]. In these studies, in addition to 

integration and differentiation into neurons, astrocytes and oligodendrocytes, transplanted NSCs 

exerted their beneficial effects through an immunomodulatory action involving both innate and 

adaptive (local vs systemic) immune responses (eg microglial and astroglial scar reduction, T 

lymphocyte inhibition, etc), as well as secretion of trophic factors and cross correction of missing 

enzymatic activities. 
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Another more recent interesting source of stem cells for clinical transplantation is 

represented by induced Pluripotent Stem Cells (iPS). iPS can be generated from somatic cell types 

through ectopic expression of a defined set of transcription factors, acquiring the features of 

embryonic stem cells and thus bearing the potential to give rise to virtually any cell type, including 

inaccessible tissues such as neurons.The method was first described by Shinya Yamanaka [56] and 

MNs have been derived from an old patient bearing a familial form of ALS [57]. Human iPS cells 

might represent an ideal cell source for cell therapy given that iPS cells can be derived from the 

patient, thus preventing immune rejection. Therefore, iPSC technology may provide benefits in that 

it can allow for the use of autologous and allologous cell therapy. However iPS clinical use is still 

highly debated because iPS safety must be demonstrated. iPSCs have a well-known tumorigenic 

potential [58] moreover given the possible genetic causes of sporadic ALS a genetic alteration could 

be present in autologous-derived stem cells.The earliest strategies [59]  for the induction of iPS 

cells, in fact,  relied on the use of viral vectors, which however bear the risks of insertional 

mutagenesis and transgene reactivation, representing a limitation for clinical use. To bypass these 

safety concerns, numerous alternative methods for inducing pluripotency have been developed such 

as new small molecules recently identified  that provide enhancements of somatic cell 

reprogramming and are able to compensate for three of the four canonical factors, SKM [60]. 

4. Characterization and manufacture of cell product for transplantation 

 To assure quality and safety of tissue and cell-based treatments, the EU Directive 

2004/23/EC regarding the quality and safety for the donation, procurement, testing, processing, 

preservation, storage, and distribution of human cells and tissues was approved. This Directive was 

followed by Directive 2006/86/EC that regulate traceability of tissue donations and by Directive 

2006/17/EC concerning the requirements for collecting of human tissues specifying tests required 

for donors. 

Finally in 2008, European Regulation 1394/2007 came into the force as a lex specialis, introducing 
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the definition of Advanced Therapy Medicinal Products (ATMPs) that are definited as different 

therapies (Somatic cell therapies, Gene Therapies of Tissue engineering) that have properties for 

treating or preventing diseases in human beings, or that they may be used in or administered to 

human beings with a view to restoring, correcting or modifying physiological functions by exerting 

a pharmacological, immunological or metabolic action. 

SCs should be considered ATMPs and to be used in clinical studies they should be routinely 

produced according to good manufacturing practice protocols (GMP) as dictated by the European 

Medical Agency (EMA). This ensures that cell preparations are produced and controlled, from the 

collection and manipulation of raw materials, through the processing of intermediate products, to 

the quality controls, storage, labelling and packaging, and release. During the whole production 

process, critical steps should be known and described. A thorough risk analysis during all phases of 

production and control ensures a final product with the expected quality. The tissue collection 

procedure, the cell factory and the production standard operating procedures (SOPs) and cell 

validation criteria must receive formal approval and certification by the appropriate regulatory body 

national medicinal agency in EU. 

Furthermore, they require preclinical testing performed according to Good Laboratory Practice 

(GLP) and clinical trials conducted in Good Clinical Practice (GCP). 

5. Translation into the clinic 

 Many promising results obtained in animal models of ALS have been lost in translation to 

the clinic. One problem to translate preclinical findings into new treatments for ALS patients is the 

lack of reproducibility of the preclinical studies. Consensus guidelines have been written in order to 

avoid this problem [61]. Moreover, the most common animal model of ALS, the SOD1G93A 

mouse, is a quite unstable model [62]. Many studies have been conducted in pre-symptomatic 

animals, which enhances the chances to change the disease course; nevertheless, in the human 
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setting no pre-symptomatic diagnostic tests are available and experimental therapies can be 

employed only in already symptomatic patients. 

The complexity of ALS makes this motor neuron disease very difficult to treat. The lack of 

validated surrogate markers of disease and the great phenotypic heterogeneity delays the diagnosis. 

The fast progression of the neurodegenerative process in this condition leads to a very short time 

window for therapy administration. Also humans quite often are affected by other diseases, which 

add to ALS. A critical analysis of the clinical trials of proposed disease-modifying drugs in the past 

half-century which concluded with a large failure, there are potential methodological reasons that 

account for these negative results [63]. When we consider the use of stem cells for treatment, the 

level of complexity is further increased by the extreme physiological heterogeneity of these cells and 

by their unpredictable responses to the environment. Transplantation studies where human cells are 

implanted in animals, in fact, cannot provide full prediction of immune or other biologic responses 

to human cells in patients and most notably, the risk of ectopic tissue and tumor formation. Cellular 

transplants may persist for many years in patients, or their actions may be irreversible. Moreover 

pilot trials cannot be performed on normal, volunteering subjects and the use of placebo is not 

allowed for ethical reasons. 

6. Clinical trials 

Despite a great deal of positive data with stem cell transplantation in animal models, 

translation to human ALS patients is poor. Few phase-I/II clinical trials have been initiated based on 

these encouraging pre-clinical data. These trials are summarized in Table 1. 

6.1 Intraparenchymal delivery 

Intraparenchymal injection has been the method of choice for most clinical studies. Local 

injections of stem cells, close to the anterior horn of the spinal cord, have the obvious advantage of 

placing the cells close to their therapeutic target and favour the diffusion of trophic and 
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immunomodulatory factors to both the latter and the surrounding glia, thereby enhancing the 

likelihood of accomplishing therapeutic effects. However it is well known that ALS pathology 

generally starts focally and then widely spreads to the rest of the brain and spinal cord as the disease 

progresses [64]. This observation makes it difficult to determine the optimal target for 

transplantation, because multiple specific brain and spinal cord regions are affected. Transplantation 

in critical regions of the spinal cord involved in crucial functions such as the respiratory capacity or 

the control of limb movements might offer the most significant clinical benefit. Respiratory failure 

due to phrenic motor neuron loss is the ultimate cause of death in ALS patients [65] hence, an 

efficacious strategy on respiratory function could significantly modify their prognosis. A meta-

analysis of 11 independent studies demonstrated that, when they were implanted somewhat close to 

the dying MNs, NSCs may slow both the onset and the progression of clinical signs and prolong 

survival in ALS mice [66] Furthermore, it was demonstrated that human neural progenitor cells 

(hNPC) transplanted into the ventral cervical spinal cords of SOD1G93A rats slow phrenic motor 

neuron cell death and increase activity in spared phrenic MN [67]. The results of the world's first 

clinical study to determine the safety and tolerability of direct intraparenchymal transplantation of 

MSCs were published in 2003 by Mazzini et al [47]. MSCs were injected with a surgical procedure 

into different levels of the thoracic spinal cord (T4-T5; T5-T6), of nine ALS patients. Then the study 

was extended to other 10 patients that were treated with the same procedures [47,48,49,50,51].  70% 

of the patients manifested non-severe events (pain, tingling sensation, sensory light- touch 

impairment) which resolved in a few weeks. No serious adverse events were seen also in the long-

term (9 years follow-up) [51] and the procedure did not accelerate disease progression. Remarkably 

no evidence of new masses at the injection site or anywhere else in the neuraxis was visible in any 

of the MRI images of the whole follow up. A similar surgical approach was performed by Blanquer 

[68,69]  in a phase I clinical study with intraspinal injection of autologous bone marrow 

mononuclear cells at thoracic level (T3-T4) in 11 patients.  The authors did not observe any severe 

transplant-related adverse events, but there were 43 non-severe events which were similar to those 
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reported by Mazzini et al such as temporary intercostal pain, paresthesia and dysesthesia. Twenty-

two (51%) resolved in ≤ 2 weeks and only hypoestesia and constipation were still present at the end 

of follow-up [69]. No acceleration of the disease progression was reported. The MRI studies 

performed 7 days after surgery showed a transient extradural hematoma-seroma. In the follow-up 

studies no signs of tumour growth or post-traumatic syringomyelia were detected [68,69]. 

In another study, bone marrow (BM)-derived hematopoietic progenitor stem cells were 

injected directly into the brainstem and in the upper spinal cord of 13 ALS patients with severe 

bulbar involvement. In 9 patients no severe adverse events and some benefits are reported [70].  

A new technique for the focal delivery of donor cells in the proximity of ventral MNs has 

been more recently established by means of a stabilized, stereotaxic frame. The system has been 

standardized in animal models using mini-pigs as a model for the human spinal cord [71]. This 

delivery system has been employed in the first FDA-approved trial for ALS, based on the 

transplantation of hNPC. In this study human spinal cord-derived neural stem cells were delivered to 

the spinal cord of ALS patients by direct intraparenchymal injection [72,73,74]. Twelve patients 

received 10 microinjections targeting the L2-L5 lumbar intraspinal injections and six patients 

received C3-C5 cervical-targeted intraspinal injections. Additionally, three patients underwent two 

surgeries receiving both lumbar and cervical HSSC transplants.  This study appears to demonstrate 

that targeting multiple levels of the spinal cord is feasible in ALS patients [72,73,74,75] and this 

approach might improve therapeutic efficacy based on  preclinical studies [76]. A phase II of the 

trial is ongoing to assess HSSC dosing and efficacy of the intervention. 

The group of Vescovi in Italy [77] expanded on these studies and reported the preliminary 

results from a first group of six patients in a Phase I trial on ALS, in which  multipotent hNSCs were 

isolated and reproducibly expanded from human foetal tissues obtained from spontaneous 

miscarriages and implanted using stereotaxic and surgical apparatus and injection procedures similar 

to those used by Riley and colleagues [72].The authors  reported no severe side effects even if the 
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number of implanted cells  was four and a half times higher than in previous approaches (73,74) and 

a floating cannula with a larger diameter was adopted [77].  This is the first report of an international 

coordinated effort about the cell therapy and transplantation approach in ALS patients. By utilizing a 

methodology similar to that previously adopted by Riley et al [74], Mazzini et al. reproduced the 

safety of the approach and provided an improved ability to compare the relative efficacy of the 

different cell types, also factoring out variance in the approach to delivery [77]. Based on these 

positive results, a Phase II study is planned. The results of these trials seem to demonstrate that a 

surgical approach to delivery of cellular therapies to the spinal cord of ALS patients can be proposed 

without significant adverse events. The atrophic spinal cord of ALS patients is capable of tolerating 

at least up to 3 ml of cell suspension in 3 injection sites [47,48,49,50]. A few side effects were 

reported following cell transplantation. In all trials the most common negative event is transient pain 

in the site of surgery hence we presume it is associated with the injection procedure itself. Other 

observed adverse effects were attributed to ALS progression and/or the immunosuppressive 

regimen.  

From these studies, however, we cannot draw definitive conclusions on the safety of cells. 

Cell transplants may survive for several years in patients, or their effects may be irreversible.  The 

only study currently published reporting a very long term follow-up shows the clinical and 

radiological results 9 years after MSCs intraspinal transplantation [51]. Long-term follow-up must 

consider the possibility of the development of a tumor, cyst or syrinx at the site of 

transplantation. Advanced MRI, in particular diffusion tensor imaging (DTI), represents an 

important monitoring mean because it allows a satisfactory quantification of the iatrogenic damage 

[78]. Although secondary to safety concerns, another major point is the monitoring of the cells after 

transplantation. Molecular imaging techniques, such as magnetic resonance imaging (MRI), have 

been explored to assess hNPC transplant location, migration and survival; however none of the 

techniques could be used in vivo in humans [79].  Assessment of the integrity and survival of the 

grafted cells, however, can  be obtained from post-mortem analysis of the spinal cord. Tadesse et 
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al.[80] analyzed the post-mortem spinal cords of 6 patients recruited in the Neuralstem, Inc trial 

[73]. The presence of donor versus recipient DNA was examined using real-time PCR methods 

(qPCR). Fluorescence in situ hybridization (FISH) was performed using DNA probes for XY 

chromosomes to identify male donor HSSCs in one female case, and immunohistochemistry (IHC) 

was used to characterize the identified donor cells. The authors demonstrated that transplanted 

HSSCs survived up to 2.5 years and some cells differentiated into neurons, while others maintained 

their SCs phenotype [80]. Another demonstration of long-term survival of SCs after transplantation 

comes from another study  [69]. Necroscopy was performed in three patients treated with intraspinal 

injection of autologous bone marrow mononuclear cells (BMNC). Pathological analysis of grafted 

spinal cord segments showed a greater number of MNs in the treated compared to the untreated 

segments. In the treated segments, MNs were surrounded by CD90+ cells and did not show 

degenerative ubiquitin deposits [69]. This data also provides evidence of the neurotrophic activity 

exerted by BMNC in the treated segments of the spinal cord. Hence autopsy would be fundamental, 

but consent represents an ongoing challenge, since it depends on legal and cultural aspects which 

vary in different countries [81]. 

6.2 MSCs as immunomodulatory agents: intravenous and intrathecal delivery 

 Although parenchymal delivery of cells has been the standard it should be emphasized that 

many reports support a ‘touch and go’ mechanism for the therapeutic effects of MSCs that does not 

require long-term engraftment into the CNS or other tissues [39,40]. An immediate 

immunomodulatory effect induced by i.v. administration of MSCs has been shown in 5 ALS patients 

by Karussis et al. [52]. These included an increase in CD4(+)CD25(+) regulatory cells and a 

reduction in the proportion of activated dendritic cells and lymphocytes and of lymphocyte 

proliferation.  Intrathecal and combined intrathecal/intravenous transfer of autologous MSCs in 

patients with ALS have been tested in small phase I/II pilot studies[52,82]. Both studies concluded 

that this approach is safe and a slight trend toward a slowed rate of progression of the functional 

rating scales was observed. 
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6.3 Endogenous peripheral blood stem cells mobilization 

 Three phase I/II trials were also conducted by collecting and re-infusing granulocyte-colony 

stimulating factor (G-CSF) in order to mobilize peripheral blood stem cells [83,84,85] without 

adverse effects, but with no significant changes in disease progression. However the authors 

conclude that their results pave the way for a properly powered therapeutic trial with an optimized 

regimen of G-CSF. A phase II placebo-controlled clinical trial is ongoing in Italy. 

 

7. Next steps for clinical translation 

 Future studies aimed at clinical translation of stem cell treatments should address some open 

questions. The number of cells to be transplanted in order to calculate a therapeutic and also a 

maximal tolerated ‘‘dose’’ of cells before toxicity becomes a limiting factor. One should aim to 

implant the largest possible number of viable therapeutic substrates (cells), so that the greatest local 

beneficial effect can be achieved. Also, a single dose might miss adverse events that might emerge 

in later trials or large therapeutic effect. Mazzini et al. [48,49,50] found no correlation between the 

number of transplanted cells and the incidence and severity of the side effects or the outcome. Based 

on the positive results of the phase I study [73,74], Neuralstem, Inc. sponsored a Phase II study 

which  will focus on dose- escalation to define a maximum tolerated dose of NSI-566RSC cells in 

ALS patients.(Clinical trial identifier: NCT01730716) Fifteen patients in five different dosing 

cohorts will receive advancing doses of up to a maximum of 40 injections and 400,000 cells per 

injection. 12 patients will receive injections in the cervical spinal cord and the final three patients 

will receive both cervical and lumbar injections  

 Another controversy in SCs therapy concerns the optimal stage of the disease course for 

transplantation. ALS patients might benefit from transplantation before the disease has begun to 

spread. Nevertheless, the time window is difficult to define because of the complex mechanisms 

involved in the rapid progression of the disease, the heterogeneous presentation, the great 
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phenotypic variability and the lack of biomarkers which cause a delay in the diagnosis. Other 

characteristics should be carefully considered, including age and disease duration/severity at the 

time of the procedure. There is a tendency in experimental phase I trials to enroll patients in the 

advanced phases of disease, in absence of any other viable options, because they may be more 

motivated and have a more acceptable risk/ benefit profile than patients early in the disease course. 

However, the late stages of ALS are associated with significant MN damage that might create an 

inhospitable environment for cell therapy. Moreover patients in the late stages of disease are more 

susceptible to surgical complications due to disease co-morbidities. A risk-escalation paradigm in 

the recruitment of patients has been adopted in the Neuralstem study [73,74] and more recently in 

the Italian trial [77]. Under this paradigm, risk to patients receiving human spinal cord SCs 

transplants escalates across the different cohorts (designated A–E, with cohort A being the lowest-

risk and cohort E being the highest-risk group) according to disease severity and the number and 

placement of injections. 

 Another open question is represented by the age of the patient at the time of recruitment. 

ALS is usually an old age related disease but considering the possible negative influence of age on 

the spinal cord microenvironment, the survival and trophic activity of transplanted SCs might be 

affected. Hence we can speculate that younger patients might benefit most from SCs transplantation. 

 Other open questions include the number of patients needed for efficacy trials and how to 

quantify a response over a short time frame. Ideally a transplanted group should be compared with 

one undergoing the same surgery but receiving the vehicle. Such a study is unlikely to be approved 

by institutional review boards in most European Countries. Although a randomized and blinded trial 

design is always preferable and should be undertaken whenever possible, an alternative approach is 

to carefully document the natural history of the disease and compare it with the outcome in 

transplanted patients in an open-label clinical trial. This trial design has been adopted in most pilot 

clinical trials conducted to date [51,69,73] 

8. Expert Opinion 
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SC therapy is potentially a promising new treatment for ALS but the need to better understand how 

to develop cell-based experimental treatments, and how to implement them in clinical trials, remains 

more pressing. The benefit of cell therapy has been documented in many animal studies, neuronal 

SCs and MSCs have emerged as the most promising cell type for translational in clinical trials. 

However the newly developed capacity to reprogram adult iPS from patients with this disease has 

opened up new possibilities in this area. iPS represent a new potential sources of autologous stem 

cells that circumvent ethical issues and the need of immunosuppression but the clinical application 

of these cells needs more basic research. Their safety should be ascertained, in terms of cell 

proliferation, dedifferentiation, cell migration and the immune reaction they induce. Moreover they 

could retain a disease-specific vulnerability that will adversely affect their long-term survival and 

efficacy. Findings of the initial open-label studies in ALS patients are not definitive but they provide 

clear signals that a surgical trial may be proposed in ALS patients without significant side effects 

and adult stem cells both MSCs and fetal neural stem cells might be good candidates for phase II 

clinical trials. Unfortunately, bone marrow cells from patients with chronic diseases propagate 

poorly and can die prematurely. Different routes of delivery should be adopted for MSC and NSCs.  

The biological properties of MSCs and the results obtained in clinical trials suggest that they could 

have a therapeutic role in ALS as immunomodulatory agents when administered both intravenously 

and intrathecally.  Implanted NSCs integrate, differentiate and survive predominantly as astroglial 

cells, which are able to release growth factors and immunomodulatory molecules and re-establish 

neurocircuitry. A combinatory therapeutic approach with MSC and NSCs could be proposed for 

future clinical trials. 

Substantial challenges must be addressed and resolved to advance the use of SCs in ALS including 

timing of transplantation that maximizes attraction of SCs to the damaged motoneurons and 

determining the optimal technique for injecting SCs to enhance their survival and propagation. 

Moreover future efforts may focus on refining parameters of patient selection. 

These studies will require close cooperation and interaction of scientists and clinicians. Optimization 
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of the treatment focused on the organization of large efficacy studies requires more carefully 

implemented exploratory trials. There is a need to carry out appropriately designed experimental 

studies to verify the long-term safety and possibly efficacy of these therapies. Findings of open-label 

studies can provide in fact clear signals of efficacy when assessment is done in an unbiased way and 

follow-up is extended over several years. The clinical protocol of the studies in humans using stem 

cells should be carefully designed so as to minimize unexpected patient-related factors that may 

have a negative impact on post-transplantation outcome. Moreover clinical trial designs need to be 

debated owing to the importance of ethical challenges and the cost-benefit analysis of the results 

must take into account as a major endpoint the quality of life of the patients. A stem cell therapy, in 

fact,  will only be useful if it can manufactured at sufficient quantity and quality to treat meaningful 

numbers of patients and if the cost is justifiable to health care providers and insurers. It is our 

opinion that a multicenter clinical program aimed at fine-tuning and coordinating transplantation 

procedures and protocols seems mandatory to achieve more reliable and predictable outcomes post-

transplantation and make cell therapy a clinical reality for ALS patients. 
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Article Highlights 

 

• Stem cell therapy has been proposed as novel treatment for ALS. 

• Stem cells (SCs) potentially target several of the putative mechanisms involved in the onset 

and progression of the disease.  

• The benefit of cell therapy has been documented in many animal studies, neuronal SCs and 

MSCs have emerged as the most promising cell type for translational in clinical trials. 

• iPS represent a new potential sources of autologous stem cells that circumvent ethical issues 

and the need of immunosuppression but the clinical application of these cells needs more 

basic research. 

• Findings of the initial open-label studies in ALS patients are not definitive but they provide 

clear signals that a surgical trial may be proposed in ALS patients without significant side 

effects and adult stem cells both MSCs and fetal neural stem cells might be good candidates 

for phase II clinical trials. 

• The author’s opinion is that a multicenter clinical program aimed at fine-tuning and 

coordinating transplantation procedures and protocols is mandatory to achieve more reliable 

and predictable outcomes post-transplantation and make cell therapy a clinical reality for 

ALS patients. 
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Table 1. Clinical trials with stem cells in Amyotrophic Lateral Sclerosis 

 

Stem cells Study 
Phase 

Route of 
delivery 

Immunosuppression 
treatment 

Nb of cells Nb of patients Inclusion criteria Outcome References 

         

Autologous BM 
MSCs 

I Intraspinal 

T4-T9 

no Mean 57x106 19 Spinal onset, 
FVC>50%,  

ambulation with 
assistance or 

wheelchair bound 

Age 20-75. 

 

Safe also in the 
long term (9 yrs) 

Mazzini et 
al  
[47,48,49, 

50,51]. 

Autologous BM-
derived 
hematopoietic 
progenitors 

I Intraspinal 

T3-T4 

no 2 mL 
mononucleated 
cells 

11 Age:30-60 
FVC>50% 
Spinal onset 

Safe and feasible Blanquer et 
al. [68,69]  

OESC II Intracranial Not reported 2X 106 15 treated 20 
controls 

Age: 20-70 Safe 
ALSFRS score 
stable 
in the first 4 
months 

Huang et al. 
[86] 
 

Allogeneic 
hematopoietic 

stem cell (HSCT) 

I/II intravenous 
infusion 

following total 
body irradiation; 

and immuno-

Tacrolimus 
methotrexate 

 6 spinal or bulbar 
onset, FVC>60%, 

Age 35-59; 

Months from 

Tolerated (3 
chronic GVHD). 

No clinical 
benefits. Autopsies: 

spinal cord 

Appel et al 
[87] 
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suppression diagnosis 5-30 engrafted 

with immune  cells 

Autologous Bone 
marrow (BM)-

derived 
hematopoietic 

progenitors 

I/II Intraspinal 
injection (C3-
C4) 

no 4x106 
15x106 
5x106 

13  2-5 years from 
disease onset; age 
34-71; “moderate 
or severe” 
symptoms, 3 pts 
ventilation bounded 

nine pts “became 
much better” 

(improved neck 
and  limbs MRC; 
EMG findings of 
“regeneration”). 

Deda et al 
[70] 

autologous bone 
marrow-derived 

stem cells 

I/II Intrathecal no  10 age > 18 years Safe and feasible. 
Short-term follow-
up of ALSFRS-R 
scores suggests a 

trend towards 
stabilization of 

disease  

Prabhakar 
S, [82]  

 

Autologous blood 
purifyed 
CD133(+)    

I/II bilateral 
implantation in 
frontal motor 

cortex, 

no 2,5-7,5x105 10 and 10 
controls 

age 38-62; 18-42 
months from 

diagnosis; no pts 
with severe bulbar 

involvement or 
malnutrition; 

occurrence of FVC 
values 

safe and well-
tolerated (1 year 
follow-up).Pts 

survival 
significantly higher 
than control group  

Martinez et 
al [88] 

Autologous blood 
purifyed 
CD133(+)    

II bilateral 
implantation in 
frontal motor 

cortex, 

no 2,5-7,5x105 65 (FVC) of at least of 
30%  

appropriate 
nutritional status  

safe and feasible 
procedure. 

Martinez et 
al [89] 

Autologous BM 
MSCS 

I/II Intrathecally and 
intravenously 

no 54,7x106  CSF 
 24,5x106               iv 

 

10 intrathecal 

9 combined 

Age 25-65 Feasible and safe .   
Immediate 
immunomodulatory 
effects. 

Karussis et 
al  [52] 
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Autologous BM 
MSCS 

I intraventricular 
injection  

no dose of  1 x105 
cells/kg  

1  Safe and reliable Baek et al 
[90] 

Mobilization of 
Peripheral blood 

stem cells 
(PBSC) 

I/II mobilization of 
autologous 
PBSC with 

GCSF 

no  8 7 pts  had limb 
onset. Time interval 

from 

onset : 3 months to 
4 years.  3 pts 

wheelchair-bound 
and 5 ambulatory. 
Pre-treatment FVC 
range± 50-150% 

safe and well 
tolerated. 

Cashman et 
al [84] 

Mobilization of 
Peripheral blood 

stem cells 
(PBSC) 

I/II mobilization of 
autologous 
PBSC with 

GCSF 

no  24 Age:40-65 

FVC>80% 

Duration<12months 

moderated 
disability 

Safe and well 
tolerated 

Chiò et al 
[85] 

Mobilization of 
Peripheral blood 

stem cells 
(PBSC) 

I/II mobilization of 
autologous 
PBSC with 

GCSF 

no  19 G-CSF 

20 placebo 

Age: 18-85 

Duration<6years 

FVC>50% 

Safe and well 
tolerated 

not effective in 
slowing down 
disease 
deterioration 

Nefussy et 

al.[83] 

Human spinal 
cord-derived 
stem cells 
(HSSC) 

I Intraspinal 
(lumbar   
spinal cord) 

Basiliximab  
Prednisolone 
Tacrolimus 
Mycophenolate 

5-10 injections 
100,000 cells/ 
injection 

12+6 Age >18 yrs 
ALSFRS-R 
FVC > 60% 

Safe and well 
tolerated 

Riley et al  
[73]Glass et 
al [74] 
Feldman et 
al [75] 

 

Fetal neural stem  I Intraspinal Prednisolone 750,000 cells per 6 non-ambulatory Safe and well Mazzini et 
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cells  (T8-T11) 

 

Tacrolimus injection site. 

 

patients 

FVC>60% 

tolerated al..[77] 
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