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Abstract 

Aromatase catalyses the conversion of androgens into estrogens and is a well-known target for breast cancer 

therapy. As it has been suggested that its activity is affected by inhibitors of phosphodiesterase-5, this work 

investigates the potential interaction of sildenafil with aromatase. This is carried out both at molecular level 

through structural and kinetics assays applied to the purified enzyme, and at cellular level using neuronal and 

breast cancer cell lines.  

Sildenafil is found to bind to aromatase with a KD of 0.58±0.05 µM acting as a partial and mixed inhibitor with a 

maximal inhibition of 35±2%. Hyperfine sublevel correlation spectroscopy and docking studies show that 

sildenafil binds to the heme iron via its 6th axial water ligand. 

These results also provide information on the starting molecular scaffold for the development of new generations 

of drugs designed to inhibit aromatase as well as phosphodiesterase-5, a new emerging target for breast cancer 

therapy. 

 

 

Keywords : aromatase inhibitors, sildenafil, cytochromes P450, estrogens, breast cancer. 
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1. Introduction 

Aromatase is the cytochrome P450 that converts androgens into estrogens through three catalytic cycles that lead 

to the aromatization of the A ring of the steroid molecule (Scheme 1A) [1-3]. 

This protein is directly involved in the control of physiological levels of androgens and estrogens, and it is 

pathologically over-expressed in breast cancer cells leading to an ‘in situ’ overproduction of estrogens. Indeed, 

the enzyme is a very well known target for breast cancer therapy and aromatase inhibitors are used as anticancer 

drugs since they block the production of estrogens that are responsible for tumour cell proliferation [4]. To date, 

three generations of aromatase inhibitors have been developed. They are steroidal molecules that accommodate 

in the active site of the protein mimicking the substrate and, as in the case of the inhibitor exemestane, can cause 

irreversible inhibition. Non-steroidal inhibitors are azole derivatives containing nitrogen atoms that can directly 

coordinate to the heme iron. However, aromatase inhibitors can be administrated only in post-menopausal 

women to avoid the inhibition of ovarian aromatase. In fact, aromatase protein is the product of a single gene 

and only one isoform is present within different tissues of the human body such as gonads, brain, adipose tissue, 

placenta, blood vessels, bone, and skin [5]. Such a wide distribution justifies the fact that sex hormones are 

implicated not only in sexual development and reproduction but also in neurotransmission, immune response [6], 

cardiovascular and neurological protection [7, 8]. This is the reason why the maintenance of their correct levels 

is crucial for many physiological and pathological processes. As a consequence, an aromatase inhibitor interferes 

with the correct balance of sex hormones within the human body, leading in some cases to diseases such as 

Alzheimer’s [9]. 

Very recently, an overexpression of phosphodiesterase-5 (PDE5) was observed in several cancer tissues and cell 

lines, including those of the breast and thyroid glands [10, 11]. Moreover, sildenafil that is a cyclic guanosine 

monophosphate (cGMP)-specific PDE5 inhibitor used for the treatment of erectile dysfunction and pulmonary 

hypertension [12] has attracted the attention of scientists since different studies have reported that this molecule 

has a synergic effect with some anti-cancer drugs such as doxorubicin in breast cancer cells [13]. More recently, 

different studies show that sildenafil blocks the proliferation of colorectal [14] and thyroid cancer cells [11]. 

Moreover, it was demonstrated that treatment with sildenafil significantly decreases migration and invasion of 

MCF-7 breast cancer cell line, where PDE5 and aromatase are contemporarily overexpressed [10]. 

It has been reported that treatment with tadalafil, another PDE5 inhibitor leads to an alteration of 

testosterone/estradiol ratio in human body that may be due to a modulation of aromatase activity [15]. In another 

work, it was shown that sildenafil treatment causes an increase in the levels of serum testosterone in male rats 

[16]. These data suggest that PDE5 inhibitors can act on aromatase as well. The structure of sildenafil shows the 

presence of a pyrazole ring often involved in aromatase inhibitors, such as anastrozole (Scheme 1 B-C). This 

paper investigates this hypothesis in vitro at molecular level, using the purified N-terminally modified 

recombinant aromatase (rArom) that we have shown having the same 3D structure of the full-length wild-type 

human enzyme (RMSD 0.4 Å) [17, 18]. The in vitro data are validated using cell models expressing the full-

length enzyme, including breast cancer cells. 
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Scheme 1. Structure of substrate, products and inhibitors of human aromatase. A) The three step reaction 

catalysed by human aromatase; B) chemical structure of sildenafil and C) chemical structure of the aromatase 

inhibitor anastrozole. 

 

 
 

2. Materials and methods 

2.1 Materials 

All the chemicals were purchased from Sigma Aldrich and were analytical grade. 19-oxoandrostenedione was 

purchased from ABI Chem (Germany). Human recombinant cytochrome P450-reductase (CPR) was purchased 

by Life Technologies.  

 
2.2 Protein expression and purification 
 
Recombinant human aromatase (rArom) was expressed and purified as previously described [19]. Briefly, E. coli 

DH5α rubidium-competent cells were transformed by a pCW Ori+ vector carrying an IPTG-inducible Tac 

promoter, an ampicillin resistance gene and rArom cDNA. Positive clones selected by 100 µg/mL ampicillin 

were grown in Terrific Broth (TB). Expression was induced by 0.5 mM IPTG and cells were let grown 48 hours 

at 28°C in the presence of the heme precursor δ-aminolevulinic acid. 

Cells were harvested and re-suspended in a 100 mM KPi pH 7.4, 20% glycerol, 0.1 % Tween-20 and 1 mM β-

mercaptoethanol buffer supplemented with 1 mg/mL lysozyme, 1% Tween-20 and 1 mM PMSF at 4°C, 

disrupted by sonication and ultra-centrifuged for 25 minutes at 40,000 rpm and 4°C in a Beckman Coulter Ultra 

centrifuge. rArom was purified by loading the supernatant on a diethylaminoethyl ion-exchange column (DEAE-

Sepharose Fast-Flow, GE Healthcare) followed by a Nickel-ion affinity column (Chelating-Sepharose Fast-
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Flow, GE Healthcare). The protein was eluted applying a linear histidine gradient from 1 to 40 mM. The 

fractions containing the enzyme were pooled and histidine was removed in Amicon Ultra 30,000 MWCO 

devices (Millipore). 

 

2.3 UV-vis spectroscopic studies. 
 
The binding of rArom to sildenafil was studied as a spectroscopic shift of the γ Soret peak from 418 nm to 422 in 

an Agilent 8453 UV-vis spectrophotometer (diode array) at the controlled temperature of 25°C (Agilent 89090 A 

Peltier). The rArom protein (2.0 µM) was titrated with increasing sildenafil concentrations (0.26 µM-2.5 µM) in 

100 mM KPi pH 6.5, 7.0, 7.4, 8.0 and 100 mM Tris-HCl pH 8.5 and 9.0 supplemented with 262 mM NaCl to 

keep the ionic strength constant. All buffers contained also 20% glycerol, 0.1% Tween-20 and 1 mM β-

mercaptoethanol. Spectral transitions (ΔAbs422 - ΔAbs418) were plotted as a function of sildenafil concentration 

and the data fitted to the following equation:  

 

(ΔAbs422 - ΔAbs418) = [(ΔAbs422 - ΔAbs418)MAX LFREE]/(KD + LFREE)  

 

where LFREE is L total-[EL] and [EL] = (ΔAbs422 - ΔAbs418)[E]/(ΔAbs422 - ΔAbs418)MAX and KD the dissociation 

constant. Four independent measurements were averaged and error bars represent the standard deviation.  

 

2.4 EPR studies 

X-band CW EPR spectra were recorded at 77K on a Bruker EMX spectrometer (microwave frequency 9.47 

GHz) equipped with a cylindrical cavity. A microwave power of 10 mW, modulation amplitude of 0.3 mT and a 

modulation frequency of 100 KHz were used. 

Pulse EPR experiments were performed on an ELEXYS 580 Bruker spectrometer (at the microwave frequency 

of 9.76 GHz) equipped with a liquid-helium cryostat from Oxford Inc. The magnetic field was measured by 

means of a Bruker ER035M NMR gauss meter. All pulse EPR experiments were performed at 7K.  

Electron-spin-echo (ESE) detected EPR experiments were carried out with the pulse sequence: 

π/2− τ− π− τ−echo, with microwave pulse lengths tπ/2 = 16 ns and tπ = 32 ns and a τ value of 160 ns. 

Hyperfine Sublevel Correlation (HYSCORE) experiments [20] were carried out with the pulse sequence 

π/2− τ − π/2 − t1 − π− t2 − π/2 − τ − echo with the microwave pulse lengths tπ/2 = 16 ns and tπ = 32 ns. The time 

intervals t1 and t2 were varied in steps of 16 ns starting from 96 ns to 4704 ns. A τ value of 176 ns was chosen. A 

shot repetition rate of 1 kHz was used. A four-step phase cycle was used for eliminating unwanted echoes. The 

time traces of the HYSCORE spectra were baseline corrected with a third-order polynomial, apodized with a 

Hamming window and zero filled. After two-dimensional Fourier transformation, the absolute value spectra 

were calculated. Both CW and HYSCORE spectra were simulated using the Easyspin program [21]. 

Typical rArom concentrations adopted for the EPR analysis were 0.5 mM. 
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2.5 Molecular docking  

The drug sildenafil was docked into the crystal structure of rArom (PDB ID 4KQ8), where the substrate was 

removed before docking.  The YASARA embedded AutoDock V4 algorithm [22] was used to predict protein-

ligand interactions. In order to dock the ligands in the protein active site, a simulation cell (15x15x15 Å) was 

built around the heme iron atom and 25 runs of local docking were performed allowing ligand and protein 

flexibility. The binding energies were predicted using the scoring function included in AutoDock. The binding 

energy is obtained by calculating the energy at infinite distance (between the selected object and the rest of the 

scene, i.e. the unbound state) and subtracting the energy of the scene (i.e. the bound state). The more positive the 

binding energy, the more favorable the interaction. 

In a second simulation, the pentacoordinated heme cofactor was replaced by the water-bound hexacoordinated 

one from the crystal structure of CYP106A2 (PDB ID 4YT3) [23] and docking was again performed.  

In a third simulation, the drug sildenafil was globally docked into aromatase in the presence of androstenedione 

to check the presence of a second binding site.  

 

2.6 Activity assay and product quantification by HPLC 
 
For the determination of the kinetics parameters and the inhibition constants for the three steps of reaction, the 

enzymatic conversion was followed through the separation and quantification of the substrate and the product 

formed by HPLC. 

Reactions were set up by mixing 250 nM of rArom and 250 nM of cytochrome P450 reductase (CPR), 

increasing concentrations of the three androgens (0.5 µM-300µM) and 0.5 mM NADPH up to 100 µL in a 100 

mM KPi pH 7.0, 20% glycerol, 0.1% Tween-20 and 1 mM β-mercaptoethanol buffer. Reactions were carried out 

for 10 minutes at 30°C, heat-inactivated for 10 minutes at 90°C and centrifuged for 5 minutes at 11,000 g. 

Reactions in the presence of sildenafil were set up as described above with an initial incubation for 5 minutes at 

25°C of rArom and 6.7 µM of the drug.  

After centrifugation, the supernatant was collected and injected into the HPLC system. Reaction products 

formed by rArom were analysed in a 1200 series HPLC apparatus (Agilent Technologies) using a ZORBAX 

Eclipse Plus C18 reverse phase column (Agilent Technologies). 

Analytes were eluted applying an acetonitrile HPLC grade (Sigma Aldrich) linear gradient (5%-100%) mixed to 

filtered and degased MilliQ water at the flow rate of 0.5 mL/min.  

The androgens androstenedione (AD), 19-hydroxyandrostenedione (19-OHAD) and 19-oxoandrostenedione (19-

OXOAD and estrone were detected by a diode array detector set at the wavelengths of 237 nm and 280 nm, 

respectively.  

Different concentrations of 19-hydroxyandrostenedione (0.5 µM-100 µM), 19-OXOandrostenedione (0.5 µM -

300 µM) and estrone (0.2 µM-10 µM) were dissolved in a 100 mM KPi pH 7.0, 20% glycerol, 0.1% Tween-20 

and 1 mM β-mercaptoethanol buffer to be injected into the HPLC system to build a calibration curve. The peaks 

were integrated and the corresponding areas plotted as a function of the standard concentration resulting in a 

linear regression curve used for the quantification of aromatase reaction products. Four independent 

measurements were averaged and the standard deviation calculated. Data fitting were performed by Sigma Plot 
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9.0 software. The inhibition constants KEI and KEIS were calculated using the following equation developed for 

partial inhibitors [24]: 

 

1/V = [(KM/Vmax) x B x 1/S] + A/ Vmax, 

  

where B = 1 + ([I]/KEI) and A = 1 + ([I]/KEIS). 

 

2.7 Activity assay and product quantification by estrone-ELISA 
 
When considering estrone as the only final biologically relevant product, a more sensitive direct competitive 

ELISA estrone Kit (Diagnostic Biochem Canada Inc.) was used to quantify aromatase activity.  

This assay was used to quantify aromatase product to calculate the inhibition percentage and the for sildenafil 

using the purified enzyme.  

Reactions were set up by mixing 15 nM of rArom and CPR, increasing sildenafil concentrations (25 nM-400 

nM), 10 µM androstenedione and 0.5 mM NADPH up to 60 µL in a 100 mM KPi pH 7.4, 20% glycerol, 0.1% 

Tween-20 and 1 mM β-mercaptoethanol buffer. Reactions were carried out for 10 minutes at 30°C, heat-

inactivated for 10 minutes at 90°C and centrifuged for 5 minutes at 11,000 g prior performing ELISA following 

the manufacturer instructions. 

The IC50 for sildenafil was calculated according to the following equation built for partial inhibitors: 

A = [(Amax – Amin)/ 1 + ([I]/IC50)] + Amin, 

where A is the activity percentage of the enzyme in the presence of the inhibitor at the concentration [I], Amax is 

the activity when the inhbitor is absent (set at 100%) and Amin is the activity percentage that can be obtained at 

the highest inhibitor concentrations [25]. 

Estrone-ELISA was also used to quantify aromatase reaction product when using the ST14A cell line. 

 

2.8 ST14A neuronal cell culture and transient transfection 
 
The eukaryotic neuronal cell model used to test the effect of sildenafil on full-length transmembrane aromatase 

was the neural progenitor cell line ST14A [26] Cells were grown as monolayers in Dulbeccos’s Modified Eagle 

Medium (DMEM) supplemented with 100 units/ml penicillin, 0.1 mg/ml streptomycin, 1 mM sodium pyruvate, 

2 mM L-glutamine, and 10% heat-inactivated fetal bovine serum (FBS; Invitrogen), at the permissive 

temperature of 33°C in a 5% CO2 atmosphere saturated with H2O.  

Confluent adherent cells grown in 10 cm diameter dishes were transiently transfected in Opti-MEM reduced 

serum medium (Gibco) by mixing 10 µg of the expression vector pCMV6-XL4 carrying the cDNA coding for 

the full-length aromatase (Origene, Rockville, USA) or a control empty vector (pIRES-puro2) and 10 µL of 

Lipofectamine2000 (Invitrogen) according to the manufacturer recommendations. 

24 hours post-transfection cells were split in 6 cm diameter dishes to carry out the following analysis with cells 

derived from the same transient transfection. 48 hours after transfection cells were firstly treated with four 

different sildenafil concentrations (25 nM, 75 nM, 200 nM and 1 µM) in DMEM serum-free at 33°C, 5% CO2 

atmosphere for ten minutes and subsequently stimulated in DMEM serum-free supplemented with the same 

sildenafil concentrations and 50 nM androstenedione at 33°C, 5% CO2 atmosphere for ten minutes; cells 

stimulated with 50 nM androstenedione only were used as control. The estrone containing supernatant was 
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collected and analysed by direct competitive ELISA estrone Kit (Diagnostic Biochem Canada Inc.) following 

manufacturer instructions.  

 

2.9 Protein extraction and Western blot analysis 

Total proteins were extracted 48 hours after transient transfection by solubilizing cells in boiling Laemmli buffer 

(2.5% SDS and 0.125 M Tris-HCl pH 6.8), followed by 5 min denaturation at 100 °C in 240 mM 2-

mercaptoethanol and 18% glycerol. Western blot analysis was carried out as previously described [27]. Proteins 

(40 µg/sample) were resolved by 8% SDS-PAGE and transferred to a HybondTM C Extra membrane 

(Amersham Biosciences) following the manufacturer instructions. For immunoblotting on ST14A neuronal cells 

a rabbit primary polyclonal antibody anti-GAPDH (Thermo Fisher) and a rabbit primary polyclonal anti-

aromatase antibody kindly provided by Dr Harada (Fujita Health University, Nagoya, Japan) were used diluted 

1:1,000 in TBST 1X (150 mM NaCl, 10 mM Tris-HCl pH 7.4, 0.1% Tween-20) supplemented with 5% bovine 

serum albumin; as secondary antibody a horseradish peroxidase-conjugated goat anti-rabbit (GE Healthcare) was 

used diluted 1:20,000 in TBST 1X supplemented with 5% bovine serum albumin.  

 

2.10 Generation of MCF-7 Arom breast cancer cells 

MCF-7 breast cancer cells stably overexpressing aromatase (MCF-7 Arom cells) were previously generated in 

our laboratories [28]. Briefly, MCF-7 cells were stably transfected with the pZeo-Arom expression vector 

containing full-length human aromatase cDNA using Fugene 6 reagent according to the manufacturer (Roche), 

and individual clones were isolated and expanded with Zeocin selection. Stably transfected clones were screened 

for expression of aromatase using immunoblot analysis and for enzymatic activity by tritiated water release 

assay. Cells were routinely maintained in minimal essential medium (MEM) supplemented with 10% fetal 

bovine serum, 0.1 nmol/l nonessential amino acid, 2 mmol/l L-glutamine, 50 units/ml penicillin/streptomycin, 

and 0.2mg/ml Zeocin. 

 

2.11 Tritiated water release assay  

The tritiated water release assay [29] was used to quantify the tritiated water released from [1β-3H]androst-4-

ene-3,17-dione (Perkin Elmer) after aromatization to estrone in the experiment with MCF7 breast cancer cells. 

Briefly, MCF-7 Arom breast cancer cells were treated for 10 minutes with vehicle or four different sildenafil 

concentrations (25 nM, 75 nM, 200 nM and 1 µM) in serum-free DMEM/F-12 medium. The aromatase activity 

in subconfluent MCF-7 Arom cell culture medium was measured by the tritiated water release assay using 0.5 

µM of radiolabeled androstenedione  as substrate [29]. The incubations were performed at 37° C for 1 h under an 

air-CO2 (5%) atmosphere. The results obtained were normalized to mg of protein and expressed as % of residual 

aromatase activity. 

 

3. Results 

3.1 UV-vis spectroscopic analysis of sildenafil binding to human aromatase 

The effect of a ligand on a cytochrome P450 can be monitored as a spectroscopic shift of the enzyme maximum 

absorbance γ band (Soret peak) in the absorbance visible region. In the resting state, the heme iron of 
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cytochromes P450 is hexa-coordinated and a water molecule acts as sixth ligand leading to a maximum of 

absorbance at 417-419 nm [30]. The binding of a ligand to the active site of a cytochrome P450 can have two 

distinct effects. The so-called type I ligands displace the water molecule with a consequent low-to-high spin 

transition of heme iron that becomes penta-coordinated. This is spectroscopically detectable as a shift of the 

maximum absorbance peak from 417-419 nm to 390-394 nm [31]. On the other hand, type II ligands are 

nitrogen-containing compounds that displace the water molecule while directly coordinating to the heme iron, or 

alternatively they form a hydrogen bond with the water molecule present as the sixth ligand [32-34]. In the case 

of type II ligands, the heme iron is hexa-coordinated and the maximum absorbance peak shift from 418 nm to 

422-426 nm [35]. On this basis, the binding of sildenafil to human aromatase was investigated by following the 

effect of its addition on the absorption properties of heme iron.  

When the visible spectra of rArom (2  µM) were recorded before and after the addition of 2.5 µM of sildenafil, a 

small effect on the γ Soret peak was observed, with a shift from 418 to 422 nm (Figure 1A). This change is also 

evidenced in the difference spectra with a decrease of the absorbance at 412 nm and a concomitant increase at 

434 nm (inset Figure 1A). This spectroscopic behaviour is usually ascribed to the so-called type II ligands of 

cytochromes P450 [30, 32, 33] and it was previously observed also for rArom in complex with the known 

inhibitor anastrozole [34, 36]. In contrast, rArom in complex with the substrate androstenedione and the steroidal 

inhibitor exemestane give rise to type I spectra, consistent with the displacement of the sixth water ligand of the 

heme iron [36]. 

Titrations with increasing amounts of sildenafil (0.26-2.5 µM) led to the construction of a binding curve with a 

typical hyperbolic trend (Figure 1B). Fitting the experimental data to a one-site saturation led to a KD of 0.58	±	

0.05 µM at pH 7.0. This value is within the same range of the KD calculated for the binding of the substrate 

androstenedione and the inhibitor anastrozole [19]. The KD values for sildenafil in the pH rage from 6.5 to 9.0 

did not show a linear increase as a function of pH (Supplemental information, Table S1), as previously reported 

for the substrate androstenedione [36]. 
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Figure 1. UV-vis spectroscopy shows a Type II binding of sildenafil to human aromatase. A) Visible direct 

spectra of ligand-free rArom (solid black line) and in the presence of 2.5 µM of sildenafil (solid grey line). Inset: 

difference spectrum of rArom bound to sildenafil minus ligand-free rArom. B) Binding curve of sildenafil.  

 

3.2 EPR spectroscopy 

Since the spectral features of rArom-sildenafil complex are similar to those previously observed for rArom-

bound to anastrozole [34, 36], the possibilities to have or a direct N-Fe bond formation (as in the case of 

anastrozole) either a hydrogen bond via a water molecule was investigated by EPR spectroscopy. 

The binding of sildenafil in the active site of aromatase was studied by continuous wave (CW) and pulse EPR 

experiments at 77 K on the enzyme co-purified with sildenafil at pH 7.4 (experiments performed at pH 7.0 are 

shown in Supplemental information). The results are compared to those previously obtained on ligand-free 

aromatase and on the protein in complex with the known inhibitor anastrozole [34]. 

Figure 2A shows the X-band CW EPR spectra recorded for the different samples. All the spectra are dominated 

by the typical powder pattern of low-spin (S= ½) Fe(III) heme centers. The comparison shows that the spectrum 

of aromatase co-purified with sildenafil (Figure 2Aa 2Ac) is slightly different from both the substrate-free 

aromatase (Figure 2Aa) and the aromatase co-purified in presence of anastrozole (Figure 2Ab). As ascertained 

by computer simulations (dotted lines in Figure 2A), the EPR spectrum of the substrate free aromatase indicates 

the presence of two different species characterized by slightly different g factors (S1: g1=1.899; g2=2.254; 

g3=2.493 and S2: g1=1.924; g2=2.254; g3=2.415) (Supplemental data, Table S2) in accordance with the 
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multiplicity of species already observed for other P450 proteins [37, 38]. Upon binding of both inhibitors, a 

change in the CW EPR spectrum is observed, with the selective suppression of one of the two EPR active 

species. In particular, upon binding of anastrozole, species S2 is suppressed (Figure 1A, (b)) while the contrary 

is observed in the case of sildenafil. The spectra are found to be practically independent on the pH of the solution 

(Supplemental information, Figure S1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. EPR spectroscopy shows a different binding mode of sildenafil compared to the known inhibitor 

anastrozole. (A) Experimental (full line) and simulated (dotted line) X-band CW-EPR of aromatase. (B) 

Experimental HYSCORE spectra at the field position corresponding to the arrow in (A) (B0 ≅ 310.5 mT). The 

spectra in (A) and (B) refer to frozen solutions of (a) substrate-free aromatase, (b) aromatase co-purified with 

anastrozole and (c) aromatase co-purified with sildenafil at pH = 7.4. The arrows in the HYSCORE spectra 

indicate the signals belonging to porphyrin nitrogen nuclei of heme rings and axial ligated nitrogen nuclei in 

anastrozole.  

 

In order to ascertain the chemical environment of the active sites in the various samples, X-band HYSCORE 

spectra were recorded at different magnetic field positions (Figure 2B and Supplemental data, Figure S2 and S3). 

The spectra of all three samples are dominated by cross peaks in the (-,+) quadrant due to the typical interactions 

of the unpaired electron localized on the Fe(III) centers with the nitrogen nuclei of the porphyrin ring (Figure 2B 

(a), (b) and (c)) [34, 39, 40]. Proton ridges are also present in all spectra, which are not assigned due to the large 

number of potential contributors. As reported before [34], the HYSCORE spectrum recorded upon addition of 

anastrozole (Figure 1B (b)) shows additional peaks in the (+,+) quadrant. These signals have been assigned to 

the N4 nitrogen of the triazole ring of anastrozole, demonstrating the formation of a chemical bond between the 

ferric heme center and the molecular inhibitor. Under the same circumstances, no such evidence is observed 
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when aromatase is co-purified with sildenafil (Figure 2B (c)), suggesting a different interaction mechanism. 

 

3.3 Effect of sildenafil on the catalytic parameters of rArom 

In order to understand the effect of sildenafil on the three different steps of aromatase reaction, steady state 

kinetics through quantification of the reaction products by HPLC analysis were carried out using 

androstenedione (AD), 19-hydroxyandrostenedione (19-OHAD) or 19-oxoandrostenedione (19-OXOAD) as 

starting substrates. The activity of rArom (55 nmol/min/mg protein) [17] was previously demonstrated to be 

comparable to the full-length placental and crystallized enzyme [18] as well as other recombinant systems 

previously developed for the same enzyme [41-45].   

First, it was assessed that the product formation rate was linear during the first 10 minutes at 30°C for all the 

three compounds used as starting substrates (AD, 19-OHAD and 19-OXOAD). After this time, the reactions 

were stopped by heat, centrifuged and the supernatant directly injected into the HPLC column. A typical 

chromatogram obtained from a reaction mixture containing 7 µM of the substrate androstenedione in the absence 

and presence of 6.7  µM of sildenafil is shown in Supplemental data, Figure S4.  

Figure 3 shows the plots of the product formation rates as a function of the concentration of the starting 

substrate. These plots take into account the amounts of the intermediates formed (when present) and of the final 

product estrone. Data were fitted to the Michaelis-Menten equation and the catalytic parameters are reported in 

Table 1. 

 

When the overall reaction (three steps) or the last two steps are considered, an increase of KM and a decrease of 

the Vmax are observed in the presence of sildenafil, indicating that sildenafil acts as a mixed inhibitor, as 

demonstrated also by Lineweaver-Burk plots (insets in Figure 3).  

When only the last aromatization step is considered, an atypical trend is observed in the presence of sildenafil, 

similar to a sigmoidal-cooperative curve. However, the Hill plot shows that a cooperative effect should be 

excluded, since the experimental data lie on two different linear curves with a Hill coefficient of 1.2 and 1.1, 

respectively (Figure 3D). In the range 0-20 µM of 19-OXOAD, a linear growth of the product estrone is 

obtained as the 19-OXOAD concentration increases (Figure 3C). In the concentration range 20-300 µM of 19-

OXOAD, a hyperbolic trend is observed. When the data within this range of concentrations are fitted by a 

Michaelis-Menten curve, an increase of the KM value is observed when sildenafil is present while the Vmax is 

unaltered, suggesting a competitive effect of the drug in this last step of reaction (Table 1).  
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Figure 3. The kinetic parameters of the three steps of reaction of rArom are affected by the presence of 

sildenafil. rArom kinetic curves in the absence (black circles) and in the presence (grey circles) of sildenafil 

using as starting substrates A) androstenedione (AD), B) 19-hydroxyandrostenedione (19-OHAD) and C) 19-

oxoandrostenedione (19-OXOAD).  Insets show the corresponding Lineweaver-Burk linearization curves. D) 

Hill linearization plot for the kinetics of 19-OXOAD (data from panel C) and fitting to linear curves.  

 

 

Table 1 reports the KEI and KEIS values obtained for the three steps of reaction. When considering the overall 

reaction, the KEI value is lower than that of KEIS, suggesting that sildenafil can bind both the enzyme and the 

enzyme-substrate complex with a higher affinity for the first one, as supported by docking experiments (see 

section 3.4). 

Moreover, the KEI measured for 19-OXOAD is the lowest calculated, suggesting that, when considering the 

overall reaction, the last step is the limiting one in terms of inhibition, with a significant competitive effect of 

sildenafil towards 19-OXOAD.  

 

3.4 Docking of sildenafil in the active site of aromatase 

In order to add structural insights to the functional data about the molecular interaction between sildenafil and 

aromatase, docking simulations were performed using the crystal structure of the recombinant enzyme (PDB ID 

4KQ8) where the substrate androstenedione was removed. The drug sildenafil reaches and accommodates into 
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the active site of the protein with a binding energy of 9.3 kcal/mol (site A). Moreover, the molecule does not 

interact through hydrogen bonds with Asp309, the proton donor for the third step of reaction [36] explaining the 

non-linear trend observed for the KD values for sildenafil as a function of pH previously observed for the 

substrate androstenedione [36]. Since sildenafil acts as a type II ligand and, according to the simulations, 

nitrogen atoms are far away from the iron atom, the possibility to have a hydrogen bond formation of the drug 

with the water molecule present as sixth axial ligand was investigate by docking sildenafil in the crystal structure 

of rArom where the pentacoordinated heme cofactor was replaced by the water-bound hexacoordinated one. The 

best pose is shown in Figure 4A and the drug binds with a energy of 8.5 kcal/mol and it almost completely 

overlaps with the previous docking run (rmsd 1.13 Å). Moreover, a hydrogen bond between the water molecule 

coordinating the heme iron and an oxygen atom of the drug is predicted since their distance is 2.3 Å. 

 

 
 

Figure 4. Sildenafil docks into the active site of human aromatase. Docking was performed in the following two 

conditions: A) the androstenedione substrate is removed and the pentacoordinated heme cofactor is replaced by 

the water-bound hexacoordinated one (red) B) the enzyme is in complex with the substrate androstenedione 

(blue) as in the original X-ray structure. 

 

Since a partial and mixed inhibition was observed, the coexistence of the substrate androstenedione and the drug 

was also investigated by docking sildenafil in the substrate-bound crystal structure (Figure 4B). The drug can 

accommodate in an alternative site (site B) with a binding energy of 11.2 kcal/mol when the substrate is present. 

However, as shown by docking simulations, the presence of the drug may affect the positioning of the substrate 

in the active site moving the keto oxygen atom of the A-ring too far away from Asp309 (4.6 Å) to form the 

hydrogen bond and to accept the proton in the third catalytic step.  

 

3.5 IC50 measurements under physiological substrate concentrations 

The physiological concentration of estrone is in the nM range and the circulating concentration of sildenafil has 

been reported to vary from 100 to 800 nM [46,47]; therefore, a more sensitive ELISA method for estrone 

detection and quantification was used to evaluate the inhibitory effect of the drug on rArom activity and to 

calculate the IC50 in conditions mimicking the physiological parameters. 
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The activity of rArom in the presence of a fixed substrate concentration (10 µM) and different amounts of 

sildenafil (from 25 to 400 nM) was measured and a partial inhibitory effect was obtained up to 35±2 % in the 

presence of 400 nM of the drug (Figure 5). Even increasing the drug concentration, the activity was not further 

decreased suggesting that sildenafil acts as a partial inhibitor. This is confirmed by the plot of 1/V versus the 

inhibitor concentration showing an hyperbolic rather than a linear trend (inset Figure 5) [24]. From the dose-

response curve shown in Figure 5, an IC50 of 47 ±	1 nM where IC50 is actually the concentration where half of 

the maximal inhibition (i.e. 17.5 % in absolute percentage) is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dose-response curve for rArom activity in the presence of increasing sildenafil concentrations. Inset: 

Dixon plot showing a hyperbolic trend typical of partial inhibitors. 

 

 

 

3.6 Effect of sildenafil on full-length aromatase activity in cells 

Like the other mammalian cytochromes P450, human aromatase is bound to the membrane of the endoplasmic 

reticulum through a N-terminal fragment. The N-terminal portion anchoring the protein to the membrane needs 

to be removed when a recombinant expression system is developed. However, the access channel of the protein 

has been suggested to be at the membrane-cytoplasm interface leading to a higher solubility of the steroid 

substrates and inhibitors [18]. In order to verify the inhibitory effect of sildenafil in cells expressing full-length 

aromatase inserted in the membrane, we first used as cell experimental model human MCF-7 breast cancer cell 

line stably overexpressing aromatase (MCF-7 Arom cells), on the basis of the relevance of aromatase in breast 

tumour progression. This cell line has been previously generated in our laboratories to study aromatase inhibitor 

response [28], and these cells were found to overexpress aromatase with an activity approximately 1,000 times 

higher than cells transfected with control vector (20 versus 0.022 pmol/h/mg protein, respectively).  Cells were 

treated for 10 minutes with vehicle or different amounts of sildenafil reported to the circulating ones [47] and 

aromatase activity was assessed by tritiated water release assay. Interestingly, we observed that sildenafil 

significantly inhibited aromatase activity in a dose-dependent manner, inducing about 38% of decrease at 1 µM 

of concentration (Table 2).  Moreover, on the basis of the relevance of aromatase protein in neural cells, where 
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estrogens have been demonstrated to act as neurotransmitters [48] and to be neuroprotective [49], as additional 

model of analysis we used the neural progenitor ST14A cell line. Cells were transfected with an aromatase 

expression vector and protein expression was confirmed by Western blotting analysis (Figure 6). Aromatase 

activity after 40 hours from transfection resulted to be about 150 times higher than cells transfected with the 

control vector (10.1 versus 0.07 pmol/hour/mg proteins, respectively). 

Aromatase activity was then assayed in presence of increasing concentrations of sildenafil. After 10 minutes of 

treatment, the supernatant was collected and estrone quantified by estrone ELISA in ST14A aromatase-

expressing cells. As previously shown for human breast cancer cells, we also observed a dose-response effect in 

aromatase-transfected ST14A cells, with the maximal inhibition of approximately 35% at the highest 

concentration of 1 µM (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Western blot analysis performed on total cellular proteins extracted from ST14A neuronal cells 

transiently transfected with full-length aromatase and from parental MCF-7 breast cancer cells stably transfected 

with full-length aromatase. GAPDH was used as house-keeping protein. Purified rArom was used as positive 

control. 

 

4. Discussion 

The effect of sildenafil on human aromatase activity is studied by a combination of techniques that give 

information about how this drug can bind in the active site of the protein at molecular level and how it can 

interfere with the three steps reaction both at molecular and cellular levels. 

The binding of sildenafil is studied by UV-vis and EPR spectroscopic techniques, showing that the drug is able 

to access the active site of the enzyme behaving as a type II cytochrome P450 ligand. The CW EPR spectra of 

aromatase co-purified in presence of sildenafil with respect to pure aromatase (Figure 2A) suggest a meaningful 

modification in the local geometry of the active site induced by the presence of sildenafil. Unlike the case of 

anastrozole, the HYSCORE spectra indicate that no direct nitrogen coordination is present. However, the typical 

spectroscopic transitions of type II ligands can arise from a hydrogen bond between the drug and the water 

molecule present as sixth ligand for the heme iron [32]. Docking simulations indicate that such a bond can form 

between the oxygen atom of the ethoxy moiety of the drug and the water molecule mentioned above that is not 

displaced from iron coordination. Such a weak interaction, compared to the one observed for aromatase 

inhibitors where a nitrogen atom directly coordinates the heme iron [34], justifies the partial inhibition effect 
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exerted by sildenafil. In this case, the drug can be displaced by the substrate more easily than other inhibitors 

such as anastrozole. However, the KD values measured by the spectroscopically detectable spin transition of the 

heme iron induced by sildenafil are in the same range as those calculated for the substrate androstenedione and 

the inhibitor anastrozole [36]. Moreover, we previously demonstrated that the binding of the substrate 

androstenedione is dramatically affected by pH, with a KD increasing as the pH varies from 6.5 to 9.0 and it was 

not possible to see a substrate-induced spin shift at pH higher than 9.0. This behaviour was assigned to a specific 

residue (Asp309) by site directed mutagenesis experiments [36]. According to the crystal structure, this residue 

is involved in a hydrogen bond with the keto-group of the substrate and it is protonated at physiological pH [17, 

18, 36]. For the aromatase inhibitor anastrozole, the KD values variation did not show a linear increasing trend in 

the pH range 6.5-9.0, indicating that the inhibitor binding does not directly depends on the protonation state of 

Asp309 in the pH range investigated. 

The access of the drug into the active site of human aromatase alters the kinetic parameters that were studied for 

all the three steps of reaction. In particular, the effect of sildenafil on the three KM values is more relevant on 19-

OXOAD, the compound that also shows the highest KM compared to the substrate AD and the first intermediate 

19-OHAD. An overall mixed inhibition effect can be observed taking into account also the first and the second 

reaction steps that can be explained with the presence of a second binding site for sildenafil. Docking 

simulations confirm that sildenafil can bind in an alternative site (site B) affecting the positioning of the 

substrate in the catalytic pocket where the keto oxygen atom of the steroid A-ring moves too far away from 

Asp309 (4.6 Å) to form the hydrogen bond and thus accept the proton for the third catalytic step. The presence 

of two potential sites for sildenafil binding may explain the mixed inhibitory effect exerted by the drug on 

aromatase activity. 

In cells, the plasmid carrying the full-length human aromatase gene is transfected and the enzyme contains the 

N-terminal helix anchoring the protein to the membrane. Thus, aromatase activity is measured on the enzyme 

working in its physiological environment where the solubility and the bioavailability of substrates and inhibitors 

can be affected. Even in these cases, a partial inhibitory effect is observed on the production of estrogens. 

However, when introducing cell models, it has to be taken into account that many different parameters such as 

the lower aromatase physiological concentration can complicate the scenario. For example, in cells, sildenafil 

blocks PDE5 and increases the levels of cGMP that is an activator of the protein kinase G (PKG). PKG along 

with other kinases may modulate aromatase activity through phosphorylation processes, as already previously 

reported [50].   

 

5. Conclusion 

In conclusion, due to growing evidence about the benefits of PDE5 inhibitors as anticancer drugs [51] and about 

PDE5 as a new potential target for breast cancer therapy [10], the results of this work can be interesting since 

they can offer the basis to develop a new generation of inhibitors that combine old (aromatase) and new (PDE5) 

targets for breast cancer therapy. 
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Figure and Scheme Legends. 

 

Scheme 1. Structure of substrate, products and inhibitors of human aromatase. A) The three step reaction 

catalysed by human aromatase; B) chemical structure of sildenafil and C) chemical structure of the aromatase 

inhibitor anastrozole. 

 

Figure 2. UV-vis spectroscopy shows a Type II binding of sildenafil to human aromatase. A) Visible direct 

spectra of ligand-free rArom (solid black line) and in the presence of 2.5 µM of sildenafil (solid grey line). Inset: 

difference spectrum of rArom bound to sildenafil minus ligand-free rArom. B) Binding curve of sildenafil.  

	
Figure 2. EPR spectroscopy shows a different binding mode of sildenafil compared to the known inhibitor 

anastrozole. (A) Experimental (full line) and simulated (dotted line) X-band CW-EPR of aromatase. (B) 

Experimental HYSCORE spectra at the field position corresponding to the arrow in (A) (B0 ≅ 310.5 mT). The 

spectra in (A) and (B) refer to frozen solutions of (a) substrate-free aromatase, (b) aromatase co-purified with 

anastrozole and (c) aromatase co-purified with sildenafil at pH = 7.4. The arrows in the HYSCORE spectra 

indicate the signals belonging to porphyrin nitrogen nuclei of heme rings and axial ligated nitrogen nuclei in 

anastrozole.  

 

Figure 3. The kinetic parameters of the three steps of reaction of rArom are affected by the presence of 

sildenafil. rArom kinetic curves in the absence (black circles) and in the presence (grey circles) of sildenafil 

using as starting substrates A) androstenedione (AD), B) 19-hydroxyandrostenedione (19-OHAD) and C) 19-

oxoandrostenedione (19-OXOAD).  Insets show the corresponding Lineweaver-Burk linearization curves. D) 

Hill linearization plot for the kinetics of 19-OXOAD (data from panel C) and fitting to linear curves.  

 

Figure 4. Sildenafil docks into the active site of human aromatase. Docking was performed in the following two 

conditions: A) the androstenedione substrate is removed and the pentacoordinated heme cofactor is replaced by 

the water-bound hexacoordinated one (red) B) the enzyme is in complex with the substrate androstenedione 

(blue) as in the original X-ray structure. 

 

Figure 5. Dose-response curve for rArom activity in the presence of increasing sildenafil concentrations. Inset: 

Dixon plot showing a hyperbolic trend typical of partial inhibitors. 

 

Figure 6. Western blot analysis performed on total cellular proteins extracted from ST14A neuronal cells 

transiently transfected with full-length aromatase and from parental MCF-7 breast cancer cells stably transfected 

with full-length aromatase. GAPDH was used as house-keeping protein. Purified rArom was used as positive 

control.  
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Tables. 

 

 

Table 1. Kinetic parameters and inhibition constants for the three steps of reaction of rArom. 

 

Substrate KM (µM) 
Vmax 

(nmol product/min/mg protein) 
KEI (µM) KEIS (µM) 

 - sildenafil + sildenafil - sildenafil + sildenafil   

AD 0.46 ± 0.06 0.65 ± 0.07 35.3 ± 0.7 30.7 ± 0.6 15.8 ± 4.5 38.5 ± 11.1 

19-OHAD 4.2 ± 0.4 5.2 ± 0.6 63.6 ± 1.7 51.5 ± 1.8 18.2 ± 4.0 19.7 ± 6.7 

19-OXOAD 10.2 ± 0.8 34.5 ± 0.3 210.0 ± 4.8 214.9 ± 1.4 0.11 ± 0.005 ND* 

*ND = not determined 

 

 

 

Table 2. Residual activity of full-length aromatase in ST14A and MCF-7 aromatase-expressing cells at different 

sildenafil concentrations.  

 

Sildenafil 

concentration 

Residual aromatase 

activity in ST14A 

cells (%) 

p-value 

Residual aromatase 

activity in MCF-7 

cells (%) 

p-value 

0 100 ± 0.1  100 ± 2.8  

25 nM 88.4 ± 9.3 < 0.05 74.1 ± 7.5 < 0.05 

75 nM 73.9 ± 6.1 < 0.001 73.2 ± 3.1 < 0.05 

200 nM 65.1 ± 2.6 < 0.001 70.0 ± 3.0 < 0.05 

1 µM 64.8 ± 0.2 < 0.001 62.0 ± 3.2 < 0.05 

 

 

 

 

 

 

 

 


