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Abstract:  

Exopolysaccharide (EPS)-producing bacteria are of growing interest in industrial 

processes, mainly concerning food. Lactic acid bacteria are widely appreciated for 

their GRAS (generally recognized as safe) status and their ascertained or putative 

probiotic features. Detailed investigation on what happens at metabolic level during 

EPS production are scarce in the literature. The facultative heterofermenter 

Lactobacillus plantarum Q823 was studied in order to compare growth and EPS 
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production at 30°C and 37°C. A higher growth rate was observed at 37°C, 

whereas, a significantly higher (ten fold increase) EPS amount was produced at 

30°C. To understand the molecular mechanisms leading to the different EPS 

production in the two conditions, a comparative proteomic experiment was 

performed. The results of the in-gel proteomics revealed that: i) at 37°C a higher 

abundance of proteins involved in carbon catabolism and nucleic acid biosynthesis 

together with a significant amount of stress proteins was observed; ii) at 30°C the 

production of an atypical manganese-containing non-heme catalase 

(pseudocatalase) was increased, in agreement with previous data reporting that 

growth-rates of catalase negative Lactobacillus plantarum strains were greater 

than that of catalase positive strains. Taken together, all these findings provide 

further insights about the metabolic pathways stimulated during EPS production, 

and the mechanism that triggers EPS biosynthesis. 
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1. Introduction 

Lactic acid bacteria (LAB), naturally present in the human intestine as 

commensal microbiota, are considered to be safe (GRAS status) and they are the 

main group of microorganisms used by the food and pharmaceutical industries as 

starter cultures, biocontrol agents and probiotics (Pessione, 2012).  

LAB have also been proposed as microbial cell factories to produce different 

metabolites of industrial interest such as bacteriocins, sweeteners, nutraceuticals 

(like selenoproteins), exopolysaccharides (EPS) (Mazzoli et al., 2014). Among the 

phenotypic features of LAB, the ability to produce extracellular sugar polymers is 

one of the most promising and widespread. These extracellular polymers include 

capsular polysaccharides, which form a cohesive layer or capsule covalently linked 

to the cell surface, and EPS, which form a slime layer loosely attached to the cell 

surface or secreted into the environment (Ruas-Madiedo and de los Reyes-

Gavilán, 2005). A number of LAB strains have been reported to produce hetero- or 

homo-exopolysaccharides and these EPS have been widely used as viscosifying 

and bioflocculating agents thus playing an important role in the rheology, texture, 

and mouthfeel of fermented food products (Badel et al., 2011; Vijayendra and 

Shamala, 2014). 

Apart from EPS application in the food industry as thickeners, stabilizing, 

gelling, and emulsifying agents (Mazzoli et al., 2014), the ability to biosynthesize 

these molecules is also essential in the definition of the probiotic status of a strain. 

Probiotics are live microorganisms that when administered in adequate amounts 

confer a health benefit to the host (FAO/WHO, 2001). However, to persist and then 

exert their probiotic potential, they should be able of adhering to the intestinal 

mucosa or to the extracellular matrix (Selle and Klaenhammer, 2013) by means of 

specific adhesive proteins (adhesines), and/or teichoic/lipoteichoic acids and/or 

EPS. Actually, it was demonstrated that the presence of β-D-glucan enhances the 

in vitro adhesive potential of the probiotic Lactobacillus plantarum WCFS1 towards 

human intestinal epithelial cells (Russo et al., 2012). Furthermore, EPS can 

enhance the immune system and reinforce the innate mucosal barrier (Liu et al., 

2011; Zivkovic et al., 2015). On the side of the bacterial cells, EPS play a role in 
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the protection against desiccation, toxic compounds, osmotic stress, and allow 

adhesion to solid surfaces and biofilm formation as well (Pessione, 2012).  

The particular interest for the food industry in EPS-producing LAB, lies in the 

fact that LAB, possessing the GRAS status, are considered food-grade bacteria, 

thus they can be easily included in foodstuffs during its manufacturing. The only 

limit is that they should be resistant to the starter competitive weapons and, 

similarly, they have to be harmless for starters (i.e. not to be bacteriocin producing-

strains). The use of EPS-producing sourdough starters meets the strict 

requirements of the modern baking biotechnology for clean labels and consumer 

demands for a reduced use of additives (Di Cagno et al., 2006). 

Health benefits have been claimed for EPS from LAB because of their 

prebiotic effect (Russo et al., 2012), antioxidant features (Li et al., 2014; Zhang et 

al., 2013) and anti-biofilm properties (Rendueles et al., 2013). Moreover, 

immunostimulating (Liu et al., 2011), putative antitumoral (Wang et al., 2014) 

inducing autophagic cell death of tumor cells (Kim et al, 2010), and blood 

cholesterol lowering activities (Patten and Laws, 2015) were also reported. 

EPS production yield by most LAB species is low, variable and depend on 

several factors (Rimada and Abraham, 2003). As an example, a high C:N ratio 

usually favours EPS production (Kumar et al, 2007), as well as the type of the 

carbon source (sucrose appears to be an inducer) (Rimada and Abraham, 2003). 

Phosphate-limited cultures as well as manganese enriched cultures strongly 

stimulate EPS production in Klebsiella spp. and Lactobacillus casei respectively 

(Kumar et al, 2007). Furthermore the oxygen availability, culture pH, osmolarity, 

viscosity and detergents, have all been found to influence EPS production (Kumar 

et al, 2007). 

As far as optimum temperature for EPS production is concerned, a great 

variability is observed among species and strains. In Streptococcus thermophylus 

maximum EPS production is achieved between 32°C and 42°C (Vaningelgem et al, 

2004). Azotobacter beijerinckii produced maximum EPS at 30°C whereas B. 

subtilis produced maximum EPS at 37°C (Chug et al, 2016). However, with a 

different Bacillus strain (CMG1403) maximum yield of EPS was obtained at 30°C 
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(Muhammadi and Hafzal, 2014). In L. plantarum EP56 inverse correlation between 

growth temperature and EPS synthesis was demonstrated with maximum yield at 

18°C and poor production at the optimum growth temperature of the strain, 37°C 

(Tallon et al., 2003). At present, although the importance of environmental factors 

on the EPS production yields is widely demonstrated, little is known about the 

metabolic pathways stimulated during EPS production, and finally, the mechanism 

that triggers EPS biosynthesis is still poorly understood.  

In previous studies, the probiotic properties of Lactobacillus plantarum Q823, 

a strain isolated from Andean traditional food, were established, including 

resistance to gastrointestinal tract stresses and adhesion to human intestinal 

epithelial cells (Vera Pingitore et al., 2016). When grown in solid media, this strain 

displays a “ropy” phenotype indicating EPS-biosynthesis capabilities. 

Proteomics is a well-established approach allowing to analyze protein profiles 

during environmental changes (not detectable with genome investigations) and 

thus supplying a picture of what happens at metabolic level in different 

experimental conditions. Comparative proteomics, in particular, is a strategy 

intended to detect modifications occurring in the protein pattern under a certain 

stimulus. 

The aim of the present work was to study the proteomic profile of the potential 

starter/probiotic strain L. plantarum Q823, grown in different experimental 

conditions, favoring (or not) EPS production. As far as we know, this is the first 

proteomic investigation during EPS production in LAB. 

2. Materials and Methods 

2.1. Bacterial strain and growth conditions 

Lactobacillus plantarum Q823 was isolated from Quinoa (Chenopodium 

quinoa) seeds and conserved into the Culture Collection of Centro de Referencia 

para Lactobacillus (CERELA, Tucumán, Argentina). L. plantarum Q823 was stored 

at -20°C in MRS medium supplemented with 20% (v/v) glycerol. The cultures were 

performed in MRS broth (Difco, USA) with initial pH adjusted to 5.65±0.1 at either 

30°C or 37°C. For both growth temperatures, the strain was pre-grown for 12 h and 
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then inoculated (3%) in 250 mL flasks containing 150 mL of fresh culture medium. 

The growth of the strain was monitored by 600 nm Optical Density (OD600) and pH 

measurement. Both supernatants, for exopolysaccharide determination, and cells, 

for proteomic analysis, were harvested (3000 x g, 20 min, 4°C) at the end of the 

exponential phase. Three biological replicates for each growth condition were 

performed. 

2.2. Isolation of bacterial EPS  

After 24 h growth, the cells of L. plantarum Q823 were harvested (3000 x g, 

20 min, 4°C) and discarded. The supernatants were incubated with 10% (w/v) 

trichloroacetic acid under shaking at 4°C for 1 h. The mixture was centrifuged 

(12500 x g, 30 min, 4°C) and the pellets, containing the extracellular proteins, were 

discarded. Cold ethanol was added to the supernatants in a 2:1 ratio and the 

mixtures were incubated at 4°C for 24 hours. The samples were centrifuged again 

(12500 x g, 30 min, 4°C) and pellets were dried and resuspended in 5 ml deionized 

water. Hundred microliters of each sample were dialyzed by using 3 kDa cut-off 

centrifugal filters (Millipore Centricon®, Ireland) and resuspended in milliQ water to 

remove the impurities. The samples were stored at -20°C. 

2.3. Quantitative determination of EPS 

The carbohydrate concentration of dialyzed samples was determined using 

the phenol-sulfuric acid method (Dubois et al., 1956). Glucose at different 

concentrations (10 to 50 mg/L) was used as the standard to obtain a calibration 

curve. The obtained values, expressed in mg equivalent of glucose per liter of 

growth medium (mg/L), were reported as mean values ± standard deviation. Not-

inoculated MRS culture medium was used as negative control for EPS 

measurements. All the reported values were calculated by subtracting MRS 

medium component to the values obtained from fermented broths. Tukeyʼs test 

was applied for the pairwise comparison of the results obtained. The differences 

between mean values were considered significant when p<0.05. 
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2.4. Proteome analyses: Comparative proteome analys es of in toto proteins 

by 2-DE 

2.4.1. Protein sample preparation 

Fifty mg of cells were treated in each protein preparation. The cells were 

collected by centrifugation (3000 x g, 20 min, 4°C) and washed three times with 

NaCl 0.85% (w/v). The obtained pellets were resuspended in 3 mL 50 mM Tris-HCl 

pH 7.3, 1 mM EDTA and disrupted twice by sonication as previously described 

(Pessione et al., 2010), to recover the highest amount of proteins. After clarification 

(4000xg, 20 min, 4°C), supernatants were supplemented with 10 μL/mL Nuclease 

mix (GE Healthcare, USA) and after 30 min incubation at room temperature they 

were centrifuged (100000xg, 1h, 4°C) in a Beckman L8-60M ultra-centrifuge (Type 

60 rotor). The obtained supernatants were then dialyzed against four volumes of 

ddH2O and precipitated with methanol/chloroform according to the method 

described by Wessel and Flugge (1984). The obtained pellets were then dissolved 

in rehydration solution consisting of 6.5 M urea, 2.2 M thiourea, 4% (w/v) CHAPS, 

5 mM Tris-HCl pH 8.8, 0.5% IPG buffer 4-7 (GE-Healthchare, USA), 100 mM DTT. 

The protein concentration was evaluated by the 2-D Quant-Kit (GE Healthcare, 

USA).  

2.4.2. Two-dimensional electrophoresis 

Isoelectrofocusing (IEF) was performed using 13 cm IPG strips (GE 

Healthcare) with a linear gradient ranging from 3 to 10: 200 µg of proteins were 

loaded by in gel rehydration method. IEF was performed by using IPGphor (GE 

Healthcare, USA) at 20°C, with 83000 Vhrs. After IEF, the strips were incubated at 

room temperature in 6 M urea, 30% v/v glycerol, 2% w/v SDS, 50 mM Tris-HCl, pH 

8.6, supplemented at first with 2% w/v DTT for 15 minutes and subsequently with 

4.5% w/v iodoacetamide for 15 min. They were then loaded at the top of 1.0 mm 

vertical second dimension gels. SDS-PAGE was performed on 11.5% T and 3.3% 

C acrylamide (Biorad Acrylamide, USA) homogeneous gels. The running buffer 

was 2.5 mM Tris, 192 mM glycine, 0.1% SDS. The running conditions were 11°C, 
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600V constant voltage, 20 mA/gel, 60W for 15 min and 11°C, 600V constant 

voltage, 40 mA/gel, 80W for about 2.5 h. Molecular weight markers were from the 

Low Mr Electrophoresis Calibration Kit (GE Healthcare, USA). The gels were 

automatically stained using the Processor Plus (Amersham Biosciences, USA) with 

freshly prepared Neuhoff stain (Colloidal Coomassie Blue) (Neuhoff et al., 1988). 

They were digitized with the Personal Densitometer SI (Amersham Biosciences, 

USA) and then stored after dehydration in a GD 2000 Vacuum Gel Dryer System 

(GE Healthcare, USA). 

2.4.3. Image and statistical analyses  

Image analysis was performed with the Progenesis PG 220 software (Non 

Linear Dynamics, UK). Spot detection was automatically performed using the 2005 

detection software algorithm and manually verified. After the establishment of 

some user seeds, matching was automatically performed and manually checked. 

Two analytical replicates of all the three biological replicates were performed. A 

spot was considered significant when it was present in both the technical replicates 

of at least two out of three biological replicates. Spots showing at least 1.3-fold 

change between 30°C and 37°C were analyzed by mass spectrometry (MS).  

2.4.4. Protein identification by MS  

The protein spots were excised from the dried gels and rehydrated with MilliQ 

water. They were washed twice with 50% v/v ACN in a 25mM NH4CO3 and once in 

100% v/v ACN and vacuum-dried. The proteins were in-gel digested with 

sequencing-grade, modified porcine trypsin (Promega, USA) and added to a 

MALDI target plate as described by Hewitson et al., (2008). Positive-ion MALDI 

mass spectra were obtained using an Applied Biosystems 4700 Proteomics 

Analyzer (Applied Biosystems, USA) in reflectron mode. MS spectra were acquired 

over a mass range of m/z 800–4000 and monoisotopic masses were obtained from 

centroid of raw, unsmoothed data. Finally, the mass spectra were internally 

calibrated using the tryptic autoproteolysis products at m/z 842.509 and 2211.104. 
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CID-MS/MS was performed on the 20 strongest peaks with an S/N greater than 40. 

A source 1 collision energy of 1 kV was used for CID-MS/MS, with air as the 

collision gas. The precursor mass window was set to a relative resolution of 50, 

and the metastable suppressor was enabled. Default calibration was used for the 

MS/MS spectra, which were baseline-subtracted (peak width 50) and smoothed 

(Savitsky-Golay with three points across a peak and a polynomial order of 4), the 

peak detection used a minimum S/N of 5, a local noise window of 50 m/z, and a 

minimum peak width of 2.9 bins. S/N 20 and 30 filters were used to generate peak 

lists from the MS and MS/MS spectra, respectively. The mass spectral data from 

the protein spots were submitted to a database search using a locally running copy 

of the MASCOT programme (Matrix Science, version 2.1). 

Batch-acquired MS/MS data were submitted to an MS/MS ion search through 

the Applied Biosystem GPS explorer software interface (version 3.6) with 

MASCOT.  

The search parameters allowed a maximum of one missed cleavage, the 

carbamidomethylation of cysteine, the possible oxidation of methionine, peptide 

tolerance of 100 ppm and an MS/MS tolerance of 0.1 Da. The spectra were 

searched against a recent version of the NCBI non-redundant protein database.  

The significance threshold for peptide identification was set at p<0.05; protein 

identification required that each protein contained at least one peptide with an 

expect e-value <0.05. 

3. Results 

3.1. Growth of L. plantarum  Q823 and quantitative determination of EPS 

production . After 24 h of incubation of L. plantarum Q823 the final biomass values 

reached at 30°C (OD600nm= 11.8±0.7) and at 37°C (OD600nm=11.35±09) were not 

statistically different (Figure 1). However, the specific growth rate (µ), was higher at 

37°C (µ37°C=0.27±0.02 h-1) than 30°C (µ30°C= 0.23±0.03 h-1). Moreover, there was 

an inverse relationship between EPS production and growth temperature. The EPS 
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production of L. plantarum Q823 was significantly higher at 30°C (133.23 mg/L) 

than 37°C (13.18 mg/L) (Table 1).  

3.2. Proteomic profiles of L. plantarum  Q823 at different temperatures.  As 

displayed in figure 2, the in toto proteomic patterns of L. plantarum Q823 grown at 

30°C and 37°C were overall similar (a total 226 ± 10 well-resolved protein spots 

was detected in each growth condition). Image analysis revealed that 19 protein 

spots showed different intensities (p<0.05) between the two tested conditions: 12 

were more expressed at 37°C and 7 at 30°C. These spots were all identified by 

MALDI TOF/TOF mass spectrometry exception made for spot 3 which did not give 

a significant protein identification score. Considering that spots 8 and 9 were both 

identified as glucose-6-P isomerase, 17 proteins were found to be differentially 

expressed between the two tested conditions: 10 proteins were expressed to a 

higher level at 37°C and 7 proteins were up-regulated at 30°C. The identified 

proteins and the sequenced peptides leading to their identification are summarized 

in Table 2.  

The identified proteins fell into different functional families. The proteins 

showing different abundance in the two conditions were divided in two groups 

(Table 2). The first group includes proteins that are overexpressed at 37°C: 

Molecular chaperon GroEL, Glucose-6-P-isomerase, Glyceraldheyde-3-P-

dehydrogenase, Phosphoribosylaminoimidazole carboxylase (ATPase subunit), 

Oxidoreductase, Orotate phosphoribosyltransferase, Putative elongation factor Tu, 

Alkaline shock protein, ATP-binding subunit ClpB and Co-chaperone GrpE. The 

second group includes proteins that are over-expressed at 30°C: DNA-directed 

RNA polymerase subunit alpha, cystathionine beta-lyase, Elongation factor Ts, cell 

division initiation protein DivIVA, D-lactate dehydrogenase, cell division protein 

FtsA and Catalase.  

4. Discussion  

As referred in the introduction chapter, EPS are multifunctional compounds 

that have found interesting applications in both the food and pharmaceutical 
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industry. Moreover, EPS are important when testing the probiotic potential of a 

strain because of their involvement in both in vivo adhesion to human mucosa 

(Russo et al., 2012), in immunomodulation (Liu et al., 2011) and in anti-infective 

(anti-biofilm) properties (Rendueles et al., 2013). Among the main factors affecting 

EPS production (e.g. carbohydrate source, pH, temperature, growth phase 

harvesting) temperature showed to be crucial (Tallon et al., 2003). 

L. plantarum Q823, object of the present investigation, shows a mucoid 

(“ropy”) phenotype clearly related to EPS production on MRS agar plates, (one of 

the most common media used for testing lactobacilli EPS production).  

In view of possible industrial or probiotic use of this strain, we compared L. 

plantarum Q 823 EPS production at 30°C (LAB optimal temperature for industrial 

processes) and at 37°C (human body temperature for probiotic application of LAB).  

The experimental data obtained on L. plantarum Q823 revealed that 

significant EPS biosynthesis (ten-fold increase) can be obtained at 30°C whereas a 

higher growth rate (37°C) correlated with lower EPS production. This is in 

agreement with the results reported by Degees et al. (2001) who observed 

enhanced EPS production at low temperatures in Lactobacillus sakei and by 

Minervini et al. (2010) who found that EPS synthesis by Lactobacillus curvatus 

DPPMA10 was higher at 30°C than 37°C. Similar results were also obtained by 

Tallon and co-workers (2003) on a different L. plantarum strain (L. plantarum 

EP56). This behavior can be partly explained by LAB metabolic necessity during 

the rapid logarithmic growth (observed at 37°C), to direct all carbon nutrients 

towards glycolysis and substrate-level ATP production, rather than EPS synthesis. 

Furthermore, some authors demonstrated that at lower growth rate, cells exhibit 

higher isoprenoid glycosyl lipid carriers, whereas at a higher growth rate, these 

precursors are used for cell-wall synthesis and result less available for EPS 

production (Sutherland, 1972; Tallon et al., 2003). The experimental evidences of 

EPS synthesis at different growth temperatures suggest that L. plantarum Q823 

cannot be fully performant at 37°C in vivo, at least for what concerns EPS 

involvement in adhesion and immunostimulation. On the other hand, this feature 
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seems quite regular among Lactobacilli, exception made for L. delbrueckii subsp 

bulgaricus which increases EPS production with increased temperature. 

Unfortunately, no truly probiotic traits have been demonstrated for the latter (Kumar 

et al, 2007). 

To better elucidate the metabolic aspects underlying EPS overproduction at 

30°C, a comparative proteomic analysis (30°C versus 37°C) was performed. At 

optimal growth rate (37°C) a higher abundance of enzymes involved in glycolysis 

was observed. This is in agreement with the higher energy requirement of a fast 

replication. LAB do not have respiratory metabolism due to their lack of heme 

biosynthetic pathways, hence glycolysis constitutes the main route for synthesizing 

ATP by substrate level phosphorylation (Pessione et al., 2010). L. plantarum is a 

facultative heterofermenter generally degrading hexoses by the Embden Mayeroff 

route. On the other hand, orotate phosphoribosyl transferase, an enzyme involved 

in pyrimidine biosynthesis, and Phosphoribosylaminoimidazole carboxylase, 

involved in purine anabolism, are also present in increased amounts at 37°C 

confirming the need of building blocks for DNA replication. The highly abundant 

Elongation factor Tu, involved in the translation process, can account for the need 

of newly synthesized proteins (membrane carriers, cell wall components, etc.). All 

the other highly abundant proteins in cells grown at 37°C are connected with 

stress. GroEL, GrpE co-chaperone, Alkaline shock protein, and ATP-binding 

subunit of ATP-dependent Clp protease are all proteins involved in repair of 

unfolded proteins or rather in proteolytic degradation of irreversibly damaged 

proteins.  

Apparently, these results, exception made for GrpE, a stress protein 

specifically acting as a thermosensor and hence probably related to the growth 

temperature (Grimshaw et al., 2003), suggest that a too fast replication rate causes 

stress, situation that is partly limited at lower growth rate and higher EPS 

synthesis. Actually, at 30°C, during EPS best production, stress proteins are 

present in lower abundance. This result is new since it is generally believed that 

EPS are produced under stress conditions (Pessione, 2012) and, in a Gram 



13 

 

negative model, a proteomic study revealed induction of stress proteins during 

EPS synthesis (Gallo et al., 2012). However, it has been observed that during bile 

salt exposure, a very stressing condition for LAB, enzymes for EPS biosynthesis 

are present in low abundance (Koskenniemi et al, 2011). Interestingly, in the 

present study a non-heme catalase enzyme was biosynthesized only by L. 

plantarum Q823 grown at 30°C. L. plantarum is one of the first described LAB able 

to produce a weak catalase activity (Dacre and Sharp, 1956). This enzyme is an 

atypical manganese-containing catalase (pseudocatalase) whose crystal structure 

has been solved in 2001 (Barynin et al., 2001). The enzyme proved to be useful to 

protect the bacterial cell from hydrogen peroxide derived from oxygen reduction. In 

1975, growth rates of catalase-negative and catalase-positive strains of L. 

plantarum were compared and the rates of the catalase negative strains were 

greater than that of the catalase positive strains (Yousten et al., 1975). This is 

exactly what we observe during growth at 30°C and 37°C: the strain is genetically 

catalase positive but when the pseudocatalase enzyme is not synthesized (37°C) 

growth rate is higher. In which way EPS biosynthesis could be connected with 

oxygen reduction is still unclear. D-lactate dehydrogenase production in high 

abundance together with significant amounts of cystationine beta lyase allow a 

good balance between acid-alkali production since the former produces lactic acid 

and the latter ammonia. Once again, this condition is stress protecting. 

 

5. Conclusion  

The present investigation represents a further step towards the identification 

of bacterial biomarkers for each particular probiotic feature. In this respect, 

significant lower production of EPS by L. plantarum Q823 was caused by growth at 

higher temperature (37°C). This renders this strain not so suitable for probiotic 

applications in terms of adhesion, although other factors, like adhesive surface 

proteins, can contribute to its persistence in the human gut (Koskenniemi et al, 

2011, Pessione et al., 2015). This aspect can be investigated in the near future by 

means of extracellular and surface proteomics. Conversely, a good EPS 
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biosynthesis was observed at 30°C condition suitable for industrial processes since 

it allows energy saving. An inverse correlation between growth rate and EPS 

synthesis has been demonstrated: this is an expected result since energy 

requirements during fast growth induce active carbon catabolism generally 

preventing most biosynthetic pathways. In this case, fructose, rather than being 

diverted from glycolysis to EPS production continues to be metabolized through the 

Embden-Meyeroff pathway. As far as we know, this is the first proteomic 

investigation on LAB during EPS production. Curiously, no stress related proteins 

were found during EPS synthesis for this bacterial model, in spite of the general 

assessment that EPS production is induced by stress. Clearly, each bacterial strain 

has its own behavior. Furthermore, the present results did not highlight specific 

induction of enzymes involved in EPS biosynthesis at 30°C degrees, when a ten-

fold enhance of EPS was observed. These experimental data suggest that the high 

abundance of EPS at this temperature may be due to enhanced catalytic activity of 

EPS biosynthetic enzymes rather than to increased transcription of encoding 

genes, as previously observed by Degees et al., (2001).  

Finally, taken together all these findings underline the importance of strain 

typing, both to avoid easy generalizations and to screen the correct strains to be 

employed as probiotics. The good EPS production observed at 30°C opens new 

possibilities for production of EPS to be used in innovative processes not only 

restricted to the food industry. 
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Figure Captions 

Fig. 1. Growth kinetic of L. plantarum Q823 at 30°C and 37°C. OD600nm and pH 

trends are reported. 

Fig. 2.  Representative 2-DE gel pictures (pH range: 4–7) of in toto proteins 
expressed by Lactobacillus plantarum Q823 grown at 30ºC (Gel A) and 37ºC (Gel 
B). The differentially expressed spots are indicated. 
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Table 1.  Effect of temperature on EPS production by L. plantarum Q823 grown in 

MRS broth 

Temperature 
of incubation Growth medium 

EPS recoverd  
Average (mg/L)  SD P value  

30°C MRS (pH 5.65±0.1) 133.23 ±66.21 0.0113* 
37°C MRS (pH 5.65±0.1) 13.18 ±7.63 
* t test, significant differences p<0.05 
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Table 2.  Differentially abundant proteins (identified by MALTI-TOF/MS) found in L. 
plantarum Q823 grown at 37°C and 30°C respectively. 

Spot n° 
Increased 
expression 
(fold-change) † 

Protein  Identified peptides Score Mw(Da)/pI Sequence 
coverage 

1 37°C (1.40) Alkaline shock 
protein 

MEATATSLKPEVVFDDTVLAK 
IASNTAQEVEGVLSLQGNLIDDI
SNR 
DMLTTEEWR 
DMLTTEEWR Oxidation (M) 
 

526 16056/4.77 38% 

2 37°C (9.10) Putative elongation 
factor Tu 

STVTGLEMFR 
TLDLGEAGDNVGALLR 
VGDEVEIVGLHEDVLK 
 

333 29575/4.82 15% 

4 37°C (2.42) orotate 
phosphoribosyltran
sferase 
 

SPIYTDNR 
QHIAHGIAAIIK 
QADYIDDEELASLHTWR 

293 22691/5.64 17% 

5 37°C (13.80) Oxidoreductase AVLNGEQIVSASAVAALR 
FSPEEFEEPGIR 
LDYVHVSLNNYDR 
LPLVGVGGVR 

319 41736/5.76 14% 

6 37°C (4.86) Phosphoribosylami
noimidazole 
carboxylase, 
ATPase subunit 

VVGALNDQQQLQNFAER 
VPQGADALEITQDR 
SGDTTAFFPTVENR 

227 42863/4.84 11% 

7 37°C (1.31) Glyceraldheyde-3-
P-dehydrogenase 

VYAEPQAQNIPWVK 
TIVYNVNDDILTADDR 
VGVVDGSLTELVAILDK 
TVAWYDNEYGFTCQMVR 
 

507 36644/5.30 18% 

8 37°C (1.32) Glucose-6-P-
isomerase 

GWLNLPTDYDKEEFAR 
IQDDSDVLVVIGIGGSYLGAR 
SGTTTEPSIAFR 
QEADAEGYETFVIPDDVGGR 
NEAYQYAAYR 
 

551 49816/4.96 17% 

9 37°C (1.65) Glucose-6-P-
isomerase 

GWLNLPTDYDKEEFAR 
IQDDSDVLVVIGIGGSYLGAR 
SGTTTEPSIAFR 
QEADAEGYETFVIPDDVGGR 
NEAYQYAAYR 
 

487 49816/4.96 17% 

10 37°C (1.97) Molecular chaperon 
GroEL 

NVVLEQSYGSPTITNDGVTIAK 
AIELDDHFENMGAK 
NVTAGANPVGIR  
VGHDGVITIEESR 
GVDTSLDVVEGMQFDR 
GVDTSLDVVEGMQFDR 
IEDALNATR 
AAVEEGFVAGGGTALINVIK 
 

873 57402/4.69 19% 

11 37°C (3.32) ATP-dependent Clp FLTQPGELVR 319 96511/5.19 7% 
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protease, ATP-
binding subunit 
ClpB 
 

GELHLIGATTLDEYR 
VLVAEPSVEDTISILR 
LLHLADHLHER 
ALAENLFDADDHMVR 

 
12 

 
37°C (2.13) 

 
co-chaperone GrpE 
 

 
AQAEIVNMQNR 
DVLPVLDNLER  
HGVTEIAAAGEK 
FDPNIHQAVQTVPVDDDHPAD
TVVQVLQR 

 
358 

 
22448/4.84 

 
30% 

13 30°C (2.97) D-lactate 
dehydrogenase 

VIGYDVYR 
DGAYILNFAR 
ELNTMTVGVIGTGR 
DNYHMLNADAFSK 
VAGAALDTYEYETK 
 

400 37158/4.89 17% 

14 30°C (2.56) cell division 
initiation protein 
DivIVA 
 

VLSPDDIHNK 
GYNIDEVNDFLEQIIK 
DSLNQSILVAQEAADK  
LQVMLESQLEVVK 
 

411 26158/4.49 23% 

15 30°C (1.85) Elongation factor 
Ts 

DVAMHVAAINPEYVNR 
DVAMHVAAINPEYVNR 
Oxidation (M) 
WLSEISLDDQEFVK 
DSDQTVAHFVESK 
 

353 31653/4.91 14% 

16 30°C (3.40)  cystathionine beta-
lyase 

IGQNQYEYSR 
HFGMTFTAVDTR 
YLGGHSDVIGGLVVTK 
IYYPGDPDNPDFSIAK 
LQNGIKDELIR 
LSVGVEASDDLLADLER 
 

491 40839/5.52 21% 

17 30°C (Nd) DNA-directed RNA 
polymerase subunit 
alpha 
 

FVVEPLER 
VNYQVENTR 
MLEMTIEELDLSVR 
MLEMTIEELDLSVR+oxidation 
LADLGLSLR 
 

302 
 

34935/4.80 
 

12% 
 

18 30°C (2.82) cell division protein 
FtsA 
 

EINNEDVQNVAAAALVQSLPPE
R 
YTYVDQEGGQYITK 
QHLDEIR 
ALELPGGIVLTGGVAALPGITDL
AAQR 
HPSFDEALAVIK 
 

457 48352/5.03 18% 

19 30°C (Nd) non-heme 
pseudocatalase 

LTTETGQPWANNEHSQTAGA
R 
LGANFEDLPVNKPVVPVHNYE
R 
YQVDYTTQAGDLYR 

310 55294/5.31 11% 

†Fold change is shown as a ratio (volume of the spot with higher protein expression/volume of the 

spot with lower protein expression). Nd: the spot was detected only at 30°C.
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