
11 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The ParaPhrase Project: Parallel patterns for adaptive heterogeneous multicore systems

Publisher:

Published version:

DOI:10.1007/978-3-642-35887-6-12

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1602810 since 2016-10-23T18:14:38Z

The ParaPhrase Project:
Parallel Patterns for Adaptive Heterogeneous

Multicore Systems

Kevin Hammond1, Marco Aldinucci2, Christopher Brown1, Francesco
Cesarini3, Marco Danelutto4, Horacio González-Vélez5, Peter Kilpatrick6,

Rainer Keller7, Michael Rossbory8, and Gilad Shainer9

1 School of Computer Science, University of St Andrews, Scotland, UK.
2 Computer Science Dept., University of Torino, Torino, Italy.

3 Erlang Solutions Ltd., London, UK.
4 Dept. Computer Science, Universitá di Pisa, Pisa, Italy.
5 School of Computing, Robert Gordon University, UK.

6 School of Electronics, Electrical Eng. and Comp. Sci., Queen’s Univ. Belfast, UK.
7 High Performance Computing Centre, Stuttgart (HLRS), Germany.

8 Software Competence Centre Hagenberg, Austria.
9 Senior Director of HPC and Technical Computing, Mellanox Technologies, Israel.

Emails: kh@cs.st-andrews.ac.uk, aldinuc@di.unito.it,
chrisb@cs.st-andrews.ac.uk, francesco@erlang-solutions.com,

marcod@di.unipi.it, h.gonzalez-velez@rgu.ac.uk, p.kilpatrick@qub.ac.uk,
keller@hlrs.de, michael.rossbory@scch.at, Shainer@Mellanox.com.

Abstract. This paper describes the ParaPhrase project, a new 3-year
targeted research project funded under EU Framework 7 Objective
3.4 (Computer Systems), starting in October 2011. ParaPhrase aims
to follow a new approach to introducing parallelism using advanced refac-
toring techniques coupled with high-level parallel design patterns. The
refactoring approach will use these design patterns to restructure pro-
grams defined as networks of software components into other forms that
are more suited to parallel execution. The programmer will be aided
by high-level cost information that will be integrated into the refactor-
ing tools. The implementation of these patterns will then use a well-
understood algorithmic skeleton approach to achieve good parallelism.
A key ParaPhrase design goal is that parallel components are intended
to match heterogeneous architectures, defined in terms of CPU/GPU
combinations, for example. In order to achieve this, the ParaPhrase
approach will map components at link time to the available hardware,
and will then re-map them during program execution, taking account
of multiple applications, changes in hardware resource availability, the
desire to reduce communication costs etc. In this way, we aim to develop
a new approach to programming that will be able to produce software
that can adapt to dynamic changes in the system environment. More-
over, by using a strong component basis for parallelism, we can achieve
potentially significant gains in terms of reducing sharing at a high level
of abstraction, and so in reducing or even eliminating the costs that are
usually associated with cache management, locking, and synchronisation.

1 Introduction

From the 1960s until very recently, hardware designers were able to exploit the
effects of Moore’s law to create processors with ever-increasing clock frequencies.
Software benefited from each new processor generation more or less automati-
cally. At the same time, software engineers remained essentially wedded to the in-
herently sequential von Neumann programming model that has been in use ever
since the early days of computing. Most of the major advances in programming
language technology and software engineering that have taken place (e.g. struc-
tured programming, object-orientation, or abstract modelling) were therefore
solely motivated mainly by the need to keep ever-larger software systems man-
ageable, rather than to make effective use of the available hardware capabilities.
This situation is currently changing, however, and changing extremely rapidly.
Future multicore/manycore hardware will not be slightly parallel, like today’s
dual-core and quad-core processor architectures, but will be massively parallel.
Concurrently with this trend towards increasing numbers of cores, there is also
a strong trend towards heterogeneous architectures, with chips containing not
only conventional processor cores, but also various specialist processing units
such as graphics-processing units (GPUs), physics engines, digital signal pro-
cessors (DSPs), etc. Properly exploiting heterogeneous multicore technology is
essential for today’s users of high-performance computers: provided they can be
properly harnessed, hybrid multicore/manycore systems offer the potential for
cheap, scalable and energy-efficient high-performance computing. Unfortunately,
while GPU computing [52] compares very favourably with multicore CPUs in
terms of performance, it has even worse programmability. It is therefore becom-
ing increasingly obvious that the traditional sequential programming model has
reached its limits. This problem of programmability for future parallel computers
motivates the ParaPhrase project.

The Challenge. It is clear that effectively exploiting heterogeneous multi-
core/manycore processor technology will be an essential requirement for future
software developers. The main challenge they face is finding a programming
model that provides a suitable level of abstraction, while still allowing good use
of the available hardware resources. It is already very difficult for classically-
trained applications programmers to benefit from the performance offered by
today’s multicore systems, and only highly-skilled programmers or those seeking
the highest levels of performance are presently exposed to parallel programming
techniques [1]. Without a fundamental shift in the programming model, pro-
grammers will find it essentially impossible to exploit the mid-term/long-term
developments that major hardware companies such as Intel and NVidia promise
to deliver. The dilemma is that a large percentage of mission-critical enterprise
applications will not “automagically” run faster on multicore servers. In fact,
many will actually run slower [43]. It is therefore essential that we make it as
easy as possible for applications programmers to exploit the latest developments
in heterogeneous multicore/manycore architectures, while still making it easy to
target future (and perhaps unanticipated) hardware developments.

2

Application

Design

Pattern-based

Development/

Refactoring

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

CPU

GPU GPU

GPU GPU

Parallelised

Application
Parallelised

Application

Parallelised

Application

Dynamic Mapping

Heterogeneous Hardware Pool

Fig. 1. The ParaPhrase Vision

2 Related Work

Pattern-Based Parallel Programming Models. The recent advent of multi-
core processors, GPUs, chip multiprocessors, and multinode clusters and constel-
lations has dramatically increased the number of concurrent processors that are
available within a single system configuration. Architectures involving dozens of
heterogeneous core in an integrated processing node are becoming commonplace
in high-performance computing environments, and, as a result, state-of-the-art
supercomputing facilities must efficiently administrate thousands of processing
units. JUGENE (the Blue Gene/P PRACE platform at Julich) features 294,912
“traditional” multicore processing elements and the Tianhe-1 comprises 186,368
CPU/GPUs, according to the November 2010 Top500 list [60]. However, software
development techniques have not evolved at the same pace and the software it-
self has typically outlived architectural generations. Linpack, the canonical HPC
benchmark, was initially released in 1979 and still constitutes the basis for the
Top500 list. While the linguae franca for large parallel computers have histor-
ically been Fortran and C coupled with coordination libraries such as MPI,
OpenMP, or PVM, there is no clear trend on how to efficiently engineer the
required parallel programs for mainstream parallel computers. Research effort
needs to be devoted to design efficient parallel programs that not only exploit
the architectural characteristics of parallel architectures, but also preserve the
investment in programming over time in a number of platforms. The challenge is

3

therefore to holistically develop high-quality parallel software, which is not only
efficient and scalable, but which is also well-programmed and generic.

While they were originally defined as abstractions of common themes in
object-oriented programming [25, 26], design patterns have subsequently been
incorporated into parallel programming methodologies [50]. Pattern-based par-
allel programming allows an application programmer the freedom to generate
new parallel programs by parameterising parallel abstractions. This approach is
very similar to that taken by algorithmic skeletons, described below. The main
differences lie in their respective visions [18]: in the design pattern approach the
(software engineering driven) vision proposes patterns as models to be instan-
tiated, implemented and used by the programmer; in the algorithmic skeleton
approach the (language-driven) vision uses skeletons as predefined language con-
structs or library entries that can be seamlessly used by the programmer in the
same way as other non-parallel language constructs and/or library entries.

The parallel programming pattern concept has been extended into a design
method under the umbrella of parallel pattern languages. Unlike other parallel
programming languages, parallel pattern languages present rules for designing
parallel programs based on problem-class abstractions which describe parallel
structure, dataflow, and communication; critical region locks, such as test-and-
set and queued for simple mutual exclusion, or reader/writer for concurrent
execution; or socket-based operators for web applications.

In their frequently-cited report, Asanovic et al. have emphatically suggested
the deployment of parallel design patterns to successfully produce effective par-
allel programs for multi and manycore architectures [7]. However, the generic
implementation of these parallel design patterns in multi and manycore archi-
tectures requires the use of refined techniques which can provide a clear-cut
separation of software and hardware. This has long been considered critical to
the success of any parallel programming endeavour since it is essential if we
are to foster the reuse of algorithms and software. Moreover, we consider that
the division of the structure from the application itself is crucial to the goal of
delivering adaptability.

Algorithmic Skeletons. Algorithmic skeletons abstract commonly-used pat-
terns of parallel computation, communication, and interaction into a set of
language constructs [17, 32]. Skeletons present a top-down structured approach
where parallel programs are formed from the parametrisation of skeleton nest,
also known as structured parallelism. Structured parallelism deployed through
skeleton frameworks provides a clear and consistent structure across platforms
by distinctly decoupling the application from the structure in a parallel pro-
gram. It does not rely on any specific hardware and it benefits entirely from
any performance improvements in the system infrastructure. Algorithmic skele-
ton frameworks (provided either as new languages or as libraries) have been
implemented using a variety of techniques including macro data flow, templates,
aspect-oriented programming, and rewriting techniques to target distributed ar-
chitectures (such as COW/NOWs and grids) and, more recently, homogeneous

4

multicore architectures. Recently, implementation techniques supporting expand-
able algorithmic skeleton sets have been demonstrated [3]. It is arguable that
the different techniques used to implement algorithmic skeleton frameworks are
suitable to support implementations targeting heterogeneous multicore archi-
tectures. While algorithmic skeletons (and indeed parallel patterns in general)
cannot be used to produce all parallel and distributed programs, there is a grow-
ing number of important applications [19, 55]. A number of recent and highly
successful “programming models” such as the well-known Google MapReduce
also derive and inherit from algorithmic skeletons [13]. Furthermore, skeletal
methodologies inherently possess a predictable communication and computa-
tion structure, since they directly capture the structure of the program. They
therefore provide, by construction, a foundation for performance modelling and
estimation of parallel applications.

Refactoring Technology for Parallel Programming. Refactoring [51] changes
a program’s structure, but keeps its behaviour the same. Software refactoring
involves using tool support to adapt or change existing software according to
well-defined patterns. It is primarily used to produce code that is either more
efficient, that uses specific library/language capabilities, or that is better struc-
tured to meet some software engineering goals. The primary challenges lie in:
i) identifying the refactorings that are available to the programmer; ii) guid-
ing the programmer in determining which of those refactorings are most sensi-
ble/beneficial; and iii) correctly applying the refactoring so that the resulting
code has the required behaviour without introducing unwanted changes in func-
tionality. Refactoring tools such as Eclipse [24] now offer an extensive range of
refactorings also including inlining, extract constant, introduce parameter and
encapsulate a field. Many refactoring tools are fully-fledged commercial or open-
source products.

Refactoring Parallel Programs. Despite the obvious advantages, there has so far
been little work in the field of applying software refactoring technology to assist
parallel programming. The earliest work on interactive tools for parallelisation
stemmed from the Fortran community, targeting loop parallelisation [40]. These
interactive tools were early transformation engines allowing users to manipulate
loops in their Fortran programs by specifying what loops to interchange, align,
replicate or expand. The interactive tools typically reported to the program-
mer various information such as dependance graphs, and was mainly applied
to the field of numerical computation. Recent work in the field includes Reen-
trancer [62]: a refactoring tool developed by IBM for making code reentrant.
Reentrancer targets global data by making them thread-safe. Further recent
work includes a refactoring approach to parallelism by Dig [20], targeted at in-
troducing concurrency in Java programs by aiming to make them more thread
safe, increasing throughput and scalability. Hitherto, Dig’s refactoring tool con-
tains a minor selection of transformations including make class immutable, par-
allelise loop and convert HashMap to ConcurrentHashMap. Software refactoring

5

techniques have therefore only previously been applied in a very limited paral-
lel setting: by applying simple transformations to introduce parallel loops and
thread safety in object-oriented (OO) programs. Currently, these approaches do
not take any extra function properties into account, such as hardware character-
istics, costing and profiling, for aiding the refactoring process. Furthermore, the
techniques are rather limited to homogeneous architectures and OO languages,
rather than applying general patterns to heterogeneous architectures, as needed
in the ParaPhrase project.

Automatic Parallelisation. (Semi-)Automatic parallelisation poses two main
challenges: i) how to identify those parts of the program that could be executed
concurrently; and ii) how to map these parts onto a given set of computing re-
sources. Failing in either challenge immediately limits any potential performance
gains. Both of these challenges are clearly addressed within the ParaPhrase
project. Most research on automatic parallelisation has focused on how to iden-
tify concurrency. Many sophisticated optimisation techniques based on depen-
dence analyses have been developed [8, 63, 6]. They form the basis for the polytope
model [42, 23, 9], which facilitates compiler-directed transformations to increase
loop-level concurrency. Such approaches are fundamentally limited, however, to
specific programming patterns, and tend to favour fine-grained parallelism. In
the ParaPhrase project, we take a higher-level approach to identifying paral-
lelism, recognising that programmer assistance and insight may be valuable at
this stage. This has three main advantages: firstly, the pattern-based approach
allows us to easily decompose the application into suitably concurrent tasks,
breaking accidental dependencies that will limit the polytope approach; secondly,
we can use performance information not only to drive the choice of parallel imple-
mentation, as commonly happens, but also to guide programmer-directed refac-
toring to identify the most profitable parallel structure; and thirdly, by using a
component structure with a strong explicit resource interface that automatically
exposes necessary inter-task dependencies, and avoids accidental dependencies
that restrict the opportunities for concurrency. Having identified good paral-
lelism, it is necessary to focus on the issues involved in the second challenge,
i.e. effectively mapping concurrency onto the available computing resources so
as to maximise performance. This mapping requires decisions to be made such
as: Which concurrently executable parts should actually be done in parallel?
How and when should synchronisation happen? Where should data be placed?
What layout in memory should be used for the data to enable non-conflicting
(and cache-friendly) concurrent access? etc.

A large body of work addresses these issues in the context of nested loops.
Besides scheduling-driven [22, 38] and partitioning-driven [44, 45] approaches,
more recent tiling-based [12] and streamisation-based [53] approaches have shown
promising results for shared-memory architectures. Any compiler-driven decision
mechanism for these aspects relies on the availability of as precise as possible
knowledge of application properties such as typical data sizes, function applica-
tion frequencies, typical parameter ranges etc. Over recent years we have devel-

6

oped several analysis and program transformation techniques that aim at identi-
fying these properties. Amongst these are partial evaluation techniques such as
those described in [36, 59, 10, 39], as well as code restructuring techniques [56, 34,
37], and multi-threaded code generation techniques [33, 35]. However, the inter-
play of such optimisations combined with the complexity and variety of target
platforms often renders static mapping approaches far less effective than the
mappings that can easily be achieved manually. Even in the single-processor
setting it has been shown that semi-static approaches such as iterative optimi-
sations [47, 54] can improve the effectiveness of the optimisation process. The
ParaPhrase approach avoids these problems by exploiting a more dynamic
approach that can adapt to changing system conditions, given a good initial
placement as its starting point.

Hardware/Software Virtualisation In the context of ParaPhrase, the
purpose of the hardware/software virtualisation layers is: i) to abstract over the
available heterogeneous multicore hardware in order to support the automated
mapping of an application onto diverse targets; ii) to support dynamic remapping
and adaptivity; and iii) to support the seamless mapping of multiple simulta-
neous parallel applications to the available hardware resources. This represents
a significant challenge. The virtualisation must allow the decomposition of the
parallel software into units that can easily be mapped/re-mapped to alternative
hardware realisations; it must support cost information that allows rapid deci-
sions to made on dynamic re-mapping; it must be sufficiently flexible that it can
support all the required parallel patterns; and it must be sufficiently lightweight
that it does not impose excessive overhead that may restrict the flexibility of
dynamic re-mapping.

The state-of-the-art in dynamic targeting is epitomised by the Java Virtual
Machine (JVM) [46], where compiled code, represented as an abstract instruction
set (Java byte-code), is either interpreted by the JVM or is compiled on execution
into the instruction set of that processor. Virtualisation can also be used to
translate between instruction sets. For example, the full virtualisation of a target
is possible where a virtual machine environment is able to execute all software
that is capable of executing on that target. A good example is the Transmeta
Crusoe architecture [27], which provides a full virtualisation of the x86 platform
onto a much more energy-efficient VLIW processor. The techniques exploited
here use a mixture of binary translation from native x86 binaries to the Crusoe’s
VLIW instruction set together with a mechanism for caching recently translated
code blocks. These techniques, namely interpretation, binary translation and
just-in-time compilation may be augmented with the use of fat binaries, where
the choice of target or target parameterisation is reasonably bounded. All of
these techniques could be exploited by ParaPhrase. However, the main issue
for ParaPhrase is the efficient execution of generic parallel code on an arbitrary
heterogeneous target. Although the Java execution model supports concurrency,
this model was originally designed to support threaded programs on a single
processor rather than supporting distributed parallel programming. Moreover,

7

the model is not constrained, which means that the programmer must ensure
both that threads do not interfere with each other and that resources are properly
synchronised. It therefore does not meet the objectives posed by ParaPhrase.
It follows that a more general model of concurrency is required, one that ideally
is safely composable without inducing deadlock or compromising efficiency. By
using a new virtualisation model based around costable software components
coupled with a simple hardware virtualisation, we anticipate that we will be
able to meet the stringent requirements of the ParaPhrase project.

Autonomic and Dynamic Placement Placement of concurrent components
derived from the compilation of high level parallel patterns on multicore, het-
erogenous architectures poses different problems related to efficiency and per-
formance. Vadhiyar and Dongarra [61] suggest that a “self-adaptive software
system examines the characteristics of the computing environments and chooses
the software parameters needed to achieve high efficiency on that environment”.
Thus, we consider that the key challenges in adaptively improving the perfor-
mance of parallel programs in a heterogeneous system are therefore:

1. the correct selection of resources (processors, links) from those available;
2. the correct adjustment of algorithmic parameters (for example, blocking of

communications, granularity); and, most importantly,
3. the ability to adjust all of these factors dynamically in the light of evolving

external pressure on the chosen resources.

Although different parallel solutions for heterogeneous distributed systems have
traditionally exhibited parallel patterns, their associated optimisations have not
necessarily exploited the application structure. They have either modified the
scheduler [14] or kept the actual application interlaced [57], without decoupling
the structure from the behaviour. Such challenges are aligned with the tradi-
tional view on intra-application scheduling, which proposes five actions: i) select
resources to schedule the tasks; ii) map tasks to processors; iii) distribute data;
iv) order tasks on compute resources; and, v) order communication tasks. How-
ever, traditional strategies for placement or scheduling in distributed systems [11,
15, 21, 41, 49] rely on system simulators, dedicated configurations, and/or per-
formance estimators to model the general system, particularly to characterise
the background load in terms of its job arrival rate. While much can be said
about the reproducibility of their results, one may argue that they artificially
create tractable evaluation scenarios for their scheduling policies. It follows that
he ParaPhrase methodology cannot be simplistically compared to any task
scheduling policy in terms of algorithmic optimality and complexity, but ought
to be evaluated in terms of the makespan for a certain workload.

In addition to the preliminary, possibly static, optimisations performed when
deploying the program components onto the target architecture, based on the
expected performance models of the parallel patterns used, complementary ap-
proaches will be considered:

8

Control loops. This approach extends the experience of the Universities of
Pisa and Torino in Behavioural Skeletons [5, 2, 4].

Divisible Workloads. This approach builds on previous work from several
partners including that of Robert Gordon University on statistical scheduling
of divisible workloads [30] and the systematic introduction of adaptivity into
parallel patterns and skeletons [29, 31, 4].

Each of the components derived from the compilation of the high-level pat-
terns will be equipped with a couple of additional interfaces: a sensor inter-
face and an actuator interface. The former will provide methods suitable to
gather actual measures related to the current status of the computation (e.g.
throughput, service time, latency). The latter will provide methods to modify
the implementation of the high level pattern (e.g. change its parallelism de-
gree by adding/removing components, migrating the component from CPUs to
GPUs (or vice-versa). An additional autonomic performance manager compo-
nent will be added to the implementation of each high level parallel pattern.
The manager will implement a control loop. Performance of the parallel pattern
implementation will be monitored through the sensor interface and possibly ac-
tions performed by invoking the actuator methods to improve overall pattern
performance. The autonomic manager may be implemented on top of a busi-
ness rule engine in such a way the rules executed at each control loop iteration
may embody all techniques to dynamically optimise the performance of the high
level patterns as well as any new and/or experimental techniques. In particu-
lar, techniques based on learning from previous experience may be implemented,
provided a data base of past computation management is maintained.

In summary, the ParaPhrase approach can be categorised as a autonomic
and dynamic placement methodology for parallel programs executing in hetero-
geneous distributed systems, which is:

dynamic since the correct selection of resources and the adjustment of algo-
rithmic parameters are performed at execution time;

autonomic due to the provision of intrinsic mechanisms to dynamically adjust
to variations in system performance;

application-level because all decisions are based on the specific requirements
of the application at hand; and,

heuristic because it comprises a set of rules intended to increase the probability
of enhancing the overall parallel program performance.

3 The ParaPhrase Project

The challenges identified in Section 1 require a new and radical approach that
tackles parallel programming in a coherent and holistic way. The ParaPhrase
project aims to produce a new structured design and implementation process for
heterogeneous parallel architectures, where developers exploit a variety of paral-
lel patterns to develop component-based applications that can be mapped to the
available hardware resources, and which may then be dynamically re-mapped to

9

meet application needs and hardware availability (Figure 1). We will exploit
new developments in the implementation of parallel patterns that will allow us
to express a variety of parallel algorithms as compositions of lightweight software
components forming a collection of virtual parallel tasks. Components from mul-
tiple applications will be instantiated and dynamically allocated to the available
hardware resources through a simple and efficient software virtualisation layer.
In this way, we will promote adaptivity, not only at an application level, but
also at a system level. Finally, virtualisation abstractions will be provided across
the hardware boundaries, allowing components to be dynamically re-mapped to
either CPU or GPU resources on the basis of suitability and availability.

3.1 Achieving the ParaPhrase Project Vision

In order to achieve the vision described above so that we can make effective use
of recent and future advances in heterogeneous multicore/manycore computing,
a number of key technical problems must be addressed.

We must develop new parallel programming models. The parallel pro-
gramming models in widespread use today require the programmer to manage
many low-level organisational details, including communication, placement and
synchronisation. This low-level coding style makes programming parallel sys-
tems notoriously difficult, since a whole new class of programming errors severely
impacts programming productivity as mismatched communications, deadlocks,
race conditions, which often exhibit non-deterministic behaviour

We must develop new means of identifying parallelism. Low-level par-
allelism libraries, such as OpenMP, MPI or Pthreads are widely used in non-
numerical applications. However, such approaches are highly inflexible, making
it hard: to dynamically adapt to the execution environment; to introduce the
high-level changes to program structure that may be necessary to support new
multicore computer architectures; or to refactor existing program code to sup-
port a new parallel application. What is needed is a simpler way of identifying
parallelism that can both support adaptation to conform to dynamic changes in
hardware availability and that can support long-term software evolution to meet
new application or hardware needs.

We must develop new ways of abstracting across the capabilities of
different architectures/devices. Code written for a general-purpose GPU
(GPGPU) cannot easily be executed on a general-purpose CPU core, or vice-
versa. This limits the ability to reconfigure software to exploit the available
hardware resources, effectively restricting software to a static placement.

The ParaPhrase project focuses on issues of programmability for parallel sys-
tems. It will develop a new approach based on patterns of parallelism that struc-
ture independent parallel components. Each independent component will have a
well-defined interface identifying memory dependencies and key extra-functional
properties, such as performance information, degree of parallelism and commu-
nication access patterns. The patterns and components will be identified using

10

a high-level and novel refactoring approach that will guide the programmer to-
wards optimal design decisions targeting a range of different implementations.
Having chosen a pattern, the pattern must be mapped to the available hardware
targets using a behavioural skeleton approach. Finally, since it is well known
that even an optimal initial placement is unlikely to achieve maximum perfor-
mance under real-world operating conditions, components from multiple applica-
tions will be re-mapped during execution in order to maximise performance. The
project thus combines automatic approaches to task placement and re-mapping
with an assisted approach to the initial identification of the parallel program
structure. The use of a component-based approach, with strong behavioural in-
terfaces forming a virtual parallel task structure, is fundamental in allowing the
ParaPhrase project to achieve its goals.

3.2 Key Technologies

The key technologies used in and deployed by the ParaPhrase project are:

Refactoring: the process of changing the structure of a program without
changing its behaviour. Refactoring has been practised implicitly for as long
as programs have been written, as programmers actively re-structure their
code as they typically build software. Refactoring tools, such as the Para-
phrase Refactoring Tool, will provide a set of well-defined semi-automatic
refactorings aimed at parallelisation that will allow the programmer to sim-
ply select which parallel pattern (or skeleton) to apply. The refactoring tool
then checks any conditions and applies the transformations automatically.

Virtualisation: the ParaPhrase project deploys two levels of virtualisation.
Component Virtualisation abstracts over different software implementations
of the same parallel program, allowing parallel programs to be composed
from several software components. Hardware Virtualisation abstracts over
the heterogeneous hardware resources that are available, allowing software
components to be mapped/re-mapped to alternative physical hardware.

Parallel Patterns: high-level expressions of generalised parallel algorithms
that typify classes of parallel problems. Typical parallel patterns include task
farms, work pools, pipelines, parallel maps and parallel reduce operations.

Skeletons: “implementations” of design patterns. A skeleton provides a para-
metric implementation of a specific parallel design pattern targeting a given
class of architecture.

FastFlow: a skeleton-based programming framework, developed at the Uni-
versities of Pisa and Torino, that efficiently targets cache-coherent multicore
architectures.

Erlang: a strict functional language with dynamic types and support for built-
in concurrency. Erlang is executed on the Erlang Virtual Machine layer,
which provides implicit mechanisms for managing fault tolerance and for
deploying data serialisation in message passing.

11

WP2:
Parallel Patterns

WP3:
Component Interfaces

for Adaptivity

WP4:
Refactoring Tools

WP5:
Compilation and

Platform-Specific Deployment

WP6:
Use Cases, Requirements

and Evaluation
WP7:
Community Building

Fig. 2. The ParaPhrase Workpackages and their Dependencies

3.3 ParaPhrase Structure and Workplan

An outline structure of the ParaPhrase project into its component technical
workpackages (WP2–WP7; WP1 is Management) is shown in Figure 2. WP2
covers high-level parallel patterns and their implementation as skeletons. WP3
defines the software virtualisation framework. WP4 develops new refactoring
tools and techniques. WP5 considers adaptive mapping technology. WP6 vali-
dates the work done in the project against some real applications. Finally, WP7
aims to develop a user community for the ParaPhrase technologies.

High-Level Parallel Patterns (WP2). The use of a pattern-based approach
allows parallelism to be expressed at a very high level of abstraction, so achieving
the overall aim of simplifying the programming of multicore systems. At the
same time, by exposing parallelism in terms of specific parallel patterns, parallel
programs can be easily refactored into alternative forms with different parallel
behaviours, as indicated in Figure 3. For example, a parallel map operation,
where a single operation is applied in parallel to every element of a collection
of data may be either refactored into a parallel task farm, with a fixed mapping
of tasks to processing elements; or may alternatively be refactored to a parallel
workpool, where the tasks are mapped dynamically to processing elements as

12

Parallel
Pattern

Parallel
Pattern

Refactor

Implementation Implementation

Mapping Mapping

Implementation in
Software Virtualisation
Layer

Implementation
on Heterogeneous
Platform

Design

Dynamic Re-Mapping Dynamic Re-Mapping

Implementation
on Heterogeneous
Platform

Dynamic Re-Mapping
instance

Dynamic Re-Mapping
instance

Dynamic Re-Mapping
instance

Fig. 3. The ParaPhrase Approach: Refactoring and Implementing Parallel Patterns

they become available. Depending on the structure of the parallel application,
one or other of these patterns may be preferable: for example, a task farm is
more suitable for more regular task sizes; where a workpool is more suitable for
irregular task sizes. Achieving this objective will therefore allow us to improve
programmability of multicore systems.

Heterogeneous Pattern Implementations (WP2). Heterogeneity and par-
allelism are critical to future high-performance computers: future computer ar-
chitectures are likely to be built around collections of large numbers of par-
allel processing elements, comprising both general-purpose units (CPUs), but
also higher-performance but more specialised units (e.g. GPUs, DSPs, Physics

13

Engines, FPGAs, ASICs etc). These units may have overlapping, but not in-
terchangeable capabilities. These units may be grouped into different configu-
rations, comprising different ratios of general-purpose to special-purpose units,
different clock speeds etc. In order to make effective use of the available pro-
cessing elements in such an architecture, it is therefore essential to consider
heterogeneity. Achieving this objective will thus allow us to demonstrate the
benefits of using high-level patterns for heterogeneous multicore systems in fu-
ture high-performance computing applications.

Software Virtualisation Framework (WP3). Once a parallel program has
been refactored into the required parallel pattern, it can then be decomposed into
a set of cooperating parallel components, with well-defined communication inter-
faces, and interconnections using an algorithmic skeleton approach (Section 2).
This componentisation and encapsulation is important, since by providing al-
ternative implementations of a component, that component can be mapped to
different kinds of hardware processing elements, for example to either a CPU or a
GPU. Since the use of high-level patterns will allow programs to be decomposed
into potentially large numbers of parallel components, and we will be able to use
the same hardware to execute components from multiple parallel applications,
we will have a great deal of flexibility both when initially mapping components to
CPU/GPU elements, and in subsequently re-mapping components to CPU/GPU
cores as a result of dynamic changes in the execution environment.

Refactoring Tools for Parallel Patterns (WP4). Refactoring tools sup-
port programmer-directed transformation of the source code in order to improve
behavioural or other properties of program code. In the ParaPhrase project,
we are interested in supporting the programmer by allowing them to choose be-
tween alternative parallel patterns, using high-level information about their run-
time behaviours. While it would be, in principle, possible to automatically map
high-level programming patterns directly to implementations, as has previously
been done for some algorithmic skeletons, such an approach requires excellent
cost modelling, and usually restricts the choice of implementation. By using a
refactoring approach, much of this machinery and the associated complexity can
be avoided in favour of a programmer-directed system. The refactoring technol-
ogy will also allow us to automatically insert appropriate component interfaces,
including extra-functional (behavioural) information. In this way, we will help
to achieve our overall aim of reducing the complexity of identifying parallelism
for heterogeneous multicore systems.

Adaptive Mapping Technology (WP5). We need to develop methods to
map software components onto the resources of a heterogeneous multicore plat-
form, matching them against the available hardware characterisation that is ex-
posed through the hardware/software virtualisation layers. This mapping needs
to take into account both computations, which will mapped to the available

14

hardware resources, and any communication that is induced by this mapping.
In this way, we will achieve our aim of developing new dynamic mechanisms to
support adaptivity and heterogeneity.

Application-Based Validation (WP6). We have already identified a number
of target high-performance applications from the data analysis, machine learn-
ing and weather prediction domains. These applications must demonstrate good
multicore performance and expose opportunities for heterogeneity. They will be
used to study the effectiveness of the various stages of our approach, includ-
ing that the mapping and placement technology improves performance both in
an initial placement onto a heterogeneous multicore application, and through
system reconfiguration during execution.

User Community Building (WP7). ParaPhrase aims to create a user
community to ensure longer-term uptake of the technologies developed in the
project. Driven by the consortium industrial partners, this community will en-
compass a multiplicity of stakeholders exploiting close connections with the
HPC Advisory Council (http://www.hpcadvisorycouncil.com/, “a computing
ecosystem that includes best-in-class original equipment manufacturers (OEMs),
strategic technology suppliers, independent software vendors (ISVs) and selected
end-users across the entire range of HPC market segments.”

3.4 ParaPhrase Use-Cases

The practical utilizability of the ParaPhrase approach especially concerning
simplification of parallel development and performance gain will be demon-
strated using real applications from industrial, scientific and video streaming
domains. The focus on industrial applications for example is highly relevant in
practice due to the trend to automation of manufacturing processes and machine
control. Collected process data has the potential for optimizing those processes
if analyzed in a proper way. But the complex relations, the huge amount of
data and the often missing expertise make such optimizations hard to accom-
plish. Therefore sophisticated methods from the domain of machine learning
(ML) and data mining (DM) are often required to identify the relations within
the collected data. Furthermore high performance computational hardware is
needed to perform these computations in a reasonable amount of time. As most
ML algorithms currently only exist in a sequential version, easy transformation
into parallel implementations is important as well. Solutions therefore require
experts in machine learning for algorithm design and experts in parallelization
for implementation on different hardware platforms. Different solutions to deal
with the challenge of parallelization of ML algorithms on a higher level of ab-
straction have been proposed to cope with this problem. One approach is the
adaption of the map-reduce (MR) paradigm to execute the algorithms on clus-
ters or multicore machines [28] [58]. But this solution restricts the number of
usable ML methods to those that fit the MR paradigm [16]. Other frameworks

15

like [48] have been published to overcome this restriction, but they do not exploit
the potential of heterogeneous shared memory machines. With our use cases we
want to demonstrate how the ParaPhrase approach can be used to overcome
those shortcomings.

4 Conclusions

This paper has described the newly-started ParaPhrase project. It has intro-
duced key technologies, described the structure of the project, the key related
work in the area, and the advances that we anticipate making in the course
of the project. ParaPhrase aims to mark a step change in programmability
of heterogeneous parallel systems by synthesizing work from several indepen-
dent areas and by developing new tools and techniques that will allow parallel
programmers to develop programs using a tool-supported refactoring approach
based on well-understood parallel design patterns coupled with good skeleton
implementations. Each of the key technologies that will help achieve this goal
is described in depth in a companion paper that has been submitted to this
proceedings. Danelutto et al. describe a methodology suitable to implement au-
tonomic management of multiple non functional concerns with the patterns and
skeletons that we will use in the project; Brown et al. describe the refactoring
tools and techniques; Gonzalez-Velez et al. describe the software virtualisations
that we require; and, finally, Aldinucci et al. describe the hardware virtualisa-
tion layer that underpins the project. Achieving the overall goals of the project
represents an exciting technical challenge that will require progress to be made
in all these underlying technologies.

Acknowledgements

This work has been supported by the European Union Framework 7 grant IST-
2011-288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multi-
core Systems”, http://www.paraphrase-ict.eu.

References

1. S. Adve, V. Adve, G. Agha, M. Frank, et al. Parallel@Illinois:
Parallel Computing Research at Illinois — The UPCRC Agenda.
http://www.upcrc.illinois.edu/documents/UPCRC Whitepaper.pdf, Nov. 2008.

2. M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza,
N. Tonellotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic man-
agement of grid components. In Euromicro PDP 2008, pages 54–63, Toulouse, Feb.
2008. IEEE.

3. M. Aldinucci, M. Danelutto, and P. Dazzi. MUSKEL: an expandable skeleton en-
vironment. Scalable Computing: Practice and Experience, 8(4):325–341, Dec 2007.

4. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic management of non-
functional concerns in distributed and parallel application programming. In IPDPS
2009, pages 1–12, Rome, May 2009. IEEE.

16

5. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Autonomic management of multiple
non-functional concerns in behavioural skeletons. In F. Desprez, V. Getov, T. Priol,
and R. Yahyapour, editors, Grids, P2P and Services Computing, pages 89–103.
Springer-Verlag, 2010.

6. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2001. ISBN 1-55860-286-0.

7. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view
of the parallel computing landscape. Communications of the ACM, 52(10):56–67,
2009.

8. D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-
Performance Computing. ACM Computing Surveys, 26(4):345–420, 1994.

9. C. Bastoul. Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, France, September 2004.

10. R. Bernecky, S. Herhut, S.-B. Scholz, K. Trojahner, C. Grelck, and A. Shafarenko.
Index Vector Elimination: Making Index Vectors Affordable. In Z. Horváth,
V. Zsók, and A. Butterfield, editors, Implementation and Application of Functional
Languages, 18th International Symposium (IFL’06), Budapest, Hungary, Revised
Selected Papers, volume 4449 of Lecture Notes in Computer Science, pages 19–36.
Springer-Verlag, Berlin, Heidelberg, New York, 2007.

11. V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Divisible
Loads in Parallel and Distributed Systems. IEEE, Los Alamitos, 1996.

12. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical au-
tomatic polyhedral parallelizer and locality optimizer. In PLDI ’08: Proceedings
of the 2008 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 101–113, New York, NY, USA, 2008. ACM.

13. D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the skeleton
way. Procedia CS, 1(1):2095–2103, 2010.

14. H. Casanova, M.-H. Kim, J. S. Plank, and J. Dongarra. Adaptive scheduling
for task farming with grid middleware. Int. J. High Perform. Comput. Appl.,
13(3):231–240, 1999.

15. T. Casavant and J. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. Softw. Eng., 14(2):141–154, 1988.

16. C.-t. Chu, S. K. Kim, Y.-a. Lin, and A. Y. Ng. Map-reduce for machine learning
on multicore. Architecture, 19(23):281, 2007.

17. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
Research Monographs in Parallel and Distributed Computing. Pitman/MIT Press,
London, 1989.

18. M. Danelutto. On Skeletons and Design Patterns. In G. H. Joubert, A. Murli,
F. J. Peters, and M. Vanneschi, editors, PARALLEL COMPUTING Advances and
Current Issues Proceedings of the International Conference ParCo2001. Imperial
College Press, 2002. ISBN:1860943152.

19. M. Danelutto. HPC the easy way: new technologies for high performance applica-
tion development and deployment. Journal of Systems Architecture, 49(10-11):399–
419, 2003.

20. D. Dig. A refactoring approach to parallelism. IEEE Softw., 28:17–22, January
2011.

21. H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling in Parallel and Dis-
tributed Systems. Innovative Technology Series. Prentice Hall, New Jersey, 1994.

17

22. P. Feautrier. Some efficient solutions to the affine scheduling problem: I. one-
dimensional time. Int. J. Parallel Program., 21(5):313–348, 1992.

23. P. Feautrier. Automatic parallelization in the polytope model. In The Data Parallel
Programming Model: Foundations, HPF Realization, and Scientific Applications,
pages 79–103, London, UK, 1996. Springer-Verlag.

24. E. Foundation. Eclipse - an Open Development Platform.
http://www.eclipse.org, 2009.

25. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In ECOOP’93, volume 707 of LNCS, pages
406–431, Kaiserslautern, July 1993. Springer.

26. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Upper Saddle River, 1995.

27. L. Geppert and T. S. Perry. Transmeta’s magic show [microprocessor chips]. IEEE
Spectrum,, 2000.

28. D. Gillick, A. Faria, and J. DeNero. Mapreduce: Distributed computing for machine
learning. Berkley, 2006/12/18.

29. H. González-Vélez and M. Cole. An adaptive parallel pipeline pattern for grids.
In IPDPS’08, pages 1–11, Miami, USA, Apr. 2008. IEEE.

30. H. González-Vélez and M. Cole. Adaptive statistical scheduling of divisible work-
loads in heterogeneous systems. Journal of Scheduling, 13(4):427–441, Aug. 2010.

31. H. González-Vélez and M. Cole. Adaptive structured parallelism for distributed
heterogeneous architectures: A methodological approach with pipelines and farms.
Concurrency and Computation–Practice & Experience, 22(15):2073–2094, Oct.
2010.

32. H. González-Vélez and M. Leyton. A survey of algorithmic skeleton frameworks:
High-level structured parallel programming enablers. Software–Practice & Experi-
ence, 40(12):1135–1160, 2010.

33. C. Grelck. Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming, 15(3):353–401, 2005.

34. C. Grelck, K. Hinckfuß, and S.-B. Scholz. With-Loop Fusion for Data Locality and
Parallelism. In A. Butterfield, editor, Implementation and Application of Func-
tional Languages, 17th International Workshop (IFL’05), Dublin, Ireland, Revised
Selected Papers, volume 4015 of Lecture Notes in Computer Science, pages 178–195.
Springer-Verlag, Berlin, Heidelberg, New York, 2006.

35. C. Grelck, S. Kuthe, and S.-B. Scholz. A Hybrid Shared Memory Execution Model
for a Data Parallel Language with I/O. Parallel Processing Letters, 18(1):23–37,
2008.

36. C. Grelck, S.-B. Scholz, and A. Shafarenko. A Binding Scope Analysis for Generic
Programs on Arrays. In A. Butterfield, editor, Implementation and Application
of Functional Languages, 17th International Workshop (IFL’05). Dublin, Ireland,
September 19–21, 2005, Revised Selected Papers, volume 4015 of Lecture Notes in
Computer Science, pages 212–230. Springer-Verlag, Berlin, Heidelberg, New York,
2006.

37. C. Grelck, S.-B. Scholz, and K. Trojahner. With-Loop Scalarization: Merging
Nested Array Operations. In P. Trinder and G. Michaelson, editors, Implementa-
tion of Functional Languages, 15th International Workshop (IFL’03), Edinburgh,
Scotland, UK, Revised Selected Papers, volume 3145 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 2004.

38. M. Griebl. Automatic Parallelization of Loop Programs for Distributed Memory
Architectures. University of Passau, 2004. habilitation thesis.

18

39. S. Herhut, S.-B. Scholz, R. Bernecky, C. Grelck, and K. Trojahner. From Contracts
Towards Dependent Types: Proofs by Partial Evaluation. In O. Chitil, Z. Horváth,
and V. Zsók, editors, 19th International Symposium on Implementation and Ap-
plication of Functional Languages (IFL’07), Freiburg, Germany, Revised Selected
Papers, volume (accepted) of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Heidelberg, New York, 2008.

40. K. Kennedy, K. S. McKinley, and C. W. Tseng. Interactive parallel programming
using the parascope editor. IEEE Trans. Parallel Distrib. Syst., 2:329–341, July
1991.

41. C. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors.
IEEE Transactions on Software Engineering, SE-11(10):1001–1016, Oct. 1985.

42. C. Lengauer. Loop parallelization in the polytope model. In CONCUR ’93: Pro-
ceedings of the 4th International Conference on Concurrency Theory, pages 398–
416, London, UK, 1993. Springer-Verlag.

43. P. Leonard. The Multi-Core Dilemma, Intel Software Blog,
http://software.intel.com/en-us/blogs/2007/03/14/the-multi-core-dilemma-
by-patrick-leonard/. http://software.intel.com/en-us/blogs/2007/03/14/the-
multi-core-dilemma-by-patrick-leonard/, Mar. 2007.

44. A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization
with affine transforms - extended journal version parallel computing. Parallel
Computing, 1998.

45. A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In PPoPP ’01: Proceedings of
the eighth ACM SIGPLAN symposium on Principles and practices of parallel pro-
gramming, pages 103–112, New York, NY, USA, 2001. ACM.

46. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Prentice Hall,
1999.

47. S. Long and M. O’Boyle. Adaptive java optimisation using instance-based learning.
In ICS ’04: Proceedings of the 18th annual international conference on Supercom-
puting, pages 237–246, New York, NY, USA, 2004. ACM.

48. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new framework for parallel machine learning. CoRR, abs/1006.4990,
2010.

49. S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed
parallel systems. SIGMETRICS Perform. Eval. Rev., 16(1):104–113, 1988.

50. T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel Pro-
gramming. Software Patterns Series. Addison-Wesley, Boston, 2004.

51. W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, UIUC, Cham-
paign, IL, USA, 1992.

52. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879 –899, May 2008.

53. A. Pop, S. Pop, and J. Sjödin. Automatic streamization in GCC. In Proc. of the
2009 GCC Developers Summit, Montréal, Canada, June 2009.

54. L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in
the polyhedral model: part ii, multidimensional time. In PLDI ’08: Proceedings of
the 2008 ACM SIGPLAN conference on Programming language design and imple-
mentation, pages 90–100, New York, NY, USA, 2008. ACM.

55. F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer-Verlag, London, 2003.

19

56. S.-B. Scholz. With-loop-folding in SAC — Condensing Consecutive Array Op-
erations. In C. Clack, T. Davie, and K. Hammond, editors, Implementation of
Functional Languages, 9th International Workshop (IFL’97), St. Andrews, Scot-
land, UK, Selected Papers, volume 1467 of Lecture Notes in Computer Science,
pages 72–92. Springer-Verlag, Berlin, Germany, 1998.

57. G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In
HCW’00, pages 3–16, Cancun, May 2000. IEEE.

58. H. Tamano, S. Nakadai, and T. Araki. Optimizing multiple machine learning jobs
on mapreduce. In Cloud Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on, pages 59 –66, 29 2011-dec. 1 2011.

59. K. Trojahner, C. Grelck, and S.-B. Scholz. On Optimising Shape-Generic Array
Programs using Symbolic Structural Information. In Z. Horváth and V. Zsók,
editors, Implementation and Application of Functional Languages, 18th Interna-
tional Symposium (IFL’06), Budapest, Hungary, Revised Selected Papers, volume
4449 of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, Berlin,
Heidelberg, New York, 2007.

60. U. Mannheim, U. Tennessee and NERSC. TOP500 supercomputer sites. Web site,
Nov. 2010. http://www.top500.org/ (Last accessed: 1 Dec 2010).

61. S. S. Vadhiyar and J. Dongarra. Self adaptivity in grid computing. Concurr.
Comput.-Pract. Exp., 17(2-4):235–257, 2005.

62. J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In ESEC/FSE
’09, pages 173–182, Amsterdam, 2009. ACM.

63. M. Wolfe. High-Performance Compilers for Parallel Computing. Addison-Wesley,
1995. ISBN 0-8053-2730-4.

20

