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Chapter x 
Registration, Lesion Detection 
and Discrimination for Breast 
Dynamic Contrast Enhanced 
Magnetic Resonance Imaging 
 

1.1 Introduction 
Breast cancer is the second most common malignancy after lung cancer and 

the most common cancer in women1,2.  
Dynamic contrast-enhanced (DCE) breast MRI, in which the breast is imaged 

before (unenhanced image), during and after (enhanced images) the 
administration of a contrast agent, provides a noninvasive assessment of the 
microcirculatory characteristics of tissues in addition to traditional anatomical 
structure information3.  

DCE-MRI shows promise in detecting both invasive and ductal carcinoma in 
situ cancers, gives information on the biological aggressiveness of tumors, may 
be used to evaluate response to neoadjuvant chemotherapy4–7 and is therefore 
increasingly used in breast cancer diagnosis as an adjunct to conventional 
imaging techniques8,9. Furthermore, DCE-MRI is highly sensitive, allowing 
detection of malignancy that is occult on physical examination, mammography, 
and sonography. However, despite its high sensitivity, several factors have 
precluded more widespread use of this technique. Current challenges include the 
lack of standardized acquisition protocols, time required for image processing 
and interpretation, and variable specificity of this imaging tool. In addition, the 
particular combinations of morphologic and kinetic features that best 
discriminate benign from malignant lesions have yet to be fully defined10.  

In the last years, Computer-aided diagnosis (CAD) systems have been 
introduced to overcome these obstacles. CAD systems aid in the visualization of 
kinetic information by providing color mapping, facilitate analysis through 
graphical and quantitative representations and provide an index of suspicion. In 



order to compute morphological features and kinetic curves for use in predicting 
pathology probability (discrimination step), a typical CAD system also includes a 
procedure of motion compensation between unenhanced and enhanced images 
(registration) and a procedure of lesion identification (lesion detection).  

In this chapter a specific approach is chosen and described for each step of a 
CAD system (CADBREAST MRI, research version, im3D). 

1.2 Registration 
This step is aimed at correcting possible misalignment in the dynamic sequence 
due to patient motion. It was performed by registering all the contrast-enhanced 
images with reference to the unenhanced sequence.  

1.2.1 Method 
The registration method, illustrated in Fig x.1, is based on the method proposed 
by Rueckert11, and was implemented using the insight toolkit (itk)12. 

To reduce the computational burden, the registration was performed at a 
minimal predefined resolution in each axis direction. Therefore, if the frames of 
the dynamic series presented a lower resolution in any of the directions, the 
images were down-sampled to the predefined minimal resolution. Otherwise, 
registration was performed at original resolution. In addition, the registration was 
performed within a rectangular region of interest, containing the relevant part of 
the scans for the diagnosis (i.e., breasts and axillae), which was automatically 

 
Figure x.1. (a) Scheme of the registration method. (b) Basic components of the 
itk registration framework used for the rigid and non-rigid registration steps. 



determined based on the maximum and minimum points of the breast (as defined 
in section 1.3.1). 

The registration itself consists of two main steps. First, the global 
misalignment was compensated by using a translation and a rigid-body 
transformation. Subsequently, local motion was corrected by a free-form 
deformation model based on B-splines11. In all cases, mutual information was 
used as image similarity measure, in particular by the method specified by Mattes 
et al13. Optimization was carried out by means of a gradient descent optimizer for 
the rigid registrations, and of the LBFGSB (Limited memory - Broyden, Fletcher, 
Goldfarb, and Shannon - for Bound constrained optimization) optimizer for the 
nonrigid sub-step14. If the contrast-enhanced frames were down-sampled before 
the registration, the respective deformation fields were up-sampled to the original 
resolution. Finally, the original contrast-enhanced frames were warped to obtain 
the transformed (aligned) contrast-enhanced frames by applying the respective 
deformation field. In the warping, B-spline interpolation was used to minimize 
the introduction of sampling artifacts.  

1.2.1 Results 
The registration method was tested on 24 patients (mean age 55 years, range 37-
79 years) acquired on a 1.5T scanner using a 3D axial FLASH sequence15–16. 
Sixteen of 24 patients were randomly selected while the remaining 8 were added 
as they presented relevant artifacts due to patient movement.  



The registration method was applied to the enhanced sequences with 
reference to the unenhanced one. Registered (REG) and non-registered (N-REG) 
axial images and maximum intensity projections (MIPs) of the first enhanced 
subtracted frame were randomized and blindly evaluated by two radiologists 
separately by scrolling the axial images and rotating the MIPs, with free 
windowing. Image quality was assessed for both axial images and MIPs. Readers 
were asked to define equivalence or superiority of one of the two datasets of each 
patient, simultaneously presented. Finally, the im3D CADBREAST MRI system 
(research version) identified suspicious enhancements (prompts) for REG and N-
REG images. A radiologists excluded prompts related to real findings; the 
remaining false prompts and their volume were obtained for both REG and N-
REG images. Sign test, weighted kappa (k), and Wilcoxon exact test were used17. 

Image quality of REG-MIPs was found to be significantly superior than that 
of N-REG-MIPs for both readers (p-value<0.001) with a quite good inter-rater 
agreement (k=0.5). Image quality of REG-axial images was found to be slightly 
better than that of N-REG axial images by both readers without significant 
difference. The mean number of false prompts per patient was 29.4±17.7 on N-
REG and 25.0±16.5 for REG (p-value=0.041). Excluding one patient with wrong 
segmentation of the heart, the mean volume of false prompts was 13,000±11,641 
mm3 for N-REG and only 4,345±4,274 mm3 for REG (p-value<0.001). 

Examples of how registration was able to compensate for motion artifacts are 
shown in Fig. x.2 and Fig. x.3. 

 
Figure x.2 Comparison between subtracted images with and without 
registration. (a) Subtraction artifacts due to patient movement are visible along 
the breast profile (plain arrow), in the breast parenchyma (dot arrow), at lesion 
and vessel borders, as well as at the borders of fat lobules. These artifacts may 
introduce spurious enhancing voxels, thus increasing the number of FP findings 
at segmentation. (b) Subtraction artifacts are dramatically reduced when elastic 
registration is used. 



 

1.3 Lesion detection 
As DCE-MRI data analysis is time-consuming, lesions may be isolated by 
segmentation to reduce reporting time. 

This image processing procedure is preliminary to the extraction of 
quantitative information on lesion morphology, kinetics and volume, and to 
distinguish viable from non-viable tissue18. Most segmentation methods are 
manual or semi-automatic, and therefore may be affected by high inter- and intra-
observer variability19–21. On the contrary, a fully automatic lesion segmentation 
process has the potential to reduce reading time and provide more reproducible 
results. Unfortunately, few papers have addressed automatic lesion detection and 
segmentation techniques for breast DCE-MRI22–24. Furthermore, to our 
knowledge these methods have been tested only on non fat-saturated (fat-sat) 
contrast-enhanced images. Fat-saturation allows to enhance the contrast between 
lesion and surrounding tissue6, but introduces additional challenges for lesion 
segmentation, such as artifacts from inhomogeneous signal saturation and a 
lower contrast-to-noise-ratio between enhanced lesions and surrounding 
parenchyma25. 

A new, fully automatic algorithm for breast lesion detection is presented26. 
The method has been conceived to run on both fat-sat and non-fat-sat DCE-MRI 
datasets obtained from different MR scanners. 

Figure x.3 Comparison of non-registered (a) and registered (b) MIPs. The image 
quality is significantly superior in registered images (in N-REG images the motion 
artifacts introduce spurious enhancing voxels). 



1.3.1 Method 
The detection pipeline (CADBREAST MRI, research version, im3D) consists of 
four main processing steps, none of which requires user interaction: 

(1) breast segmentation, to automatically identify the breast and axillary 
regions; 

 
(2) lesion detection, to extract suspicious contrast enhanced areas; 
(3) false positive (FP) reduction, to identify and discard regions incorrectly 

extracted.  

Breast segmentation 

The breast segmentation itself is preceded by a process of identification of the 
approximate size and location. 

A rough estimate of breast location was obtained by identifying the 
maximum point, defined as the most anterior point reached by the breasts, and 
the minimum point, which is the deepest point within the concavity between the 
breasts (Fig. x.4).  

These measures were obtained following a rough segmentation of the 
patient’s body, based on Otsu’s thresholding algorithm27. The central line, 
defined as the line running along the concavity between the breasts, was 
computed by exploiting image symmetry and by searching for the skin voxel 
around the center of each slice.  

Once the central line has been obtained two different procedure for breasts 
segmentation were performed. If fat-sat is not used, the breasts can be easily 
identified based on the high signal intensity of fat tissue. Similarly to the 
technique used by Twellmann et al.24, a satisfactory segmentation can be 
obtained by combining morphological operations and Otsu's thresholding. On the 
contrary, if fat-sat is used, intensity alone is not sufficient to obtain a reliable 
segmentation. In this case, an a priori knowledge of the main anatomical 

 
 

Figure x.4. Arrows point to the maximum and minimum points. 



structures in the field of view was exploited, using an atlas-based segmentation 
scheme. A simplified atlas was used in which the breasts, heart, chest wall and 
lungs have been previously manually segmented and color-coded. Because breast 
size and shape may vary considerably across subjects, three different atlases were 
generated for large, medium and small breasts. The most appropriate model was 
automatically selected for each patient according to breast size, measured as the 
distance between the maximum point, and the minimum point along the central 
line.  

The patient body was identified by the above mentioned Otsu’s thresholding 
method, the image was down-sampled to a predefined resolution to reduce the 
computational burden, and then registered to the appropriate breast atlas. 

Two examples of breasts segmentation results are shown in Fig. x.5.  
The two methodologies yield slightly different results in the axillary area, but 

this is not compromising for the lesion detection. Axillae, supraclavicular fossae, 
chest wall, and anterior mediastinum can be assessed by breast MRI (e.g. to 
search for enlarged lymph nodes) but their evaluation could be omitted as there is 
no evidence of its diagnostic value25. 

Lesion detection 

Differences in vascular permeability28,29 and other technical and physiological 
parameters, including type and dose of contrast material30,31, cause large 
physiologic variations in the contrast enhancement of breast lesions. Differences 
may depend on lesion histology, on the timing of imaging or on inhomogeneities 
within the lesions, such as those observed in necrotic areas or in fibrosis. The 
proposed approach used the subtracted mean intensity projection image over time 
(mIPT) in order to consider the nonuniform uptake of contrast, reducing at the 

 
Figure x.5. (a) Example of breast segmentation for a study acquired with fat-
saturation. The breast mask extends further than in non-fat-sat sequences, as 
defined by the breast atlas. (b) Example of breast segmentation for a study 
acquired without fat-saturation. 



same time the computational burden associated with the processing of all the 
contrast-enhanced registered frames. Being the dynamic sequence a 4D image (x 
× y × z × t), where t is time, the mIPT is the 3D image (x × y × z) formed by 
averaging along t axis each voxel of each registered enhanced frames. In order to 
neglect the contribution of regions which do not show contrast enhancement, 
subtraction of the unenhanced frame was performed. 

Different scanners, coils, acquisition modalities, types and amounts of 
contrast agent injected, patients’ physiology, and other external factors, result in 
significant variations of image intensities among images acquired in different 
hospitals, in different patients, or even among different examinations from the 
same patient30,31. The subtracted mIPT was normalized by contrast enhancement 
of the mammary vessels to compensate for these effects. 

In the first dynamic phase images it is possible to obtain the best 
“angiographic effect” for both arteries and veins, because in the subsequent 
acquisitions a more pronounced distribution of contrast material in the interstitial 
space reduces the vascular enhancement32. Therefore, the mammary vessels were 
automatically segmented on the first subtracted contrast-enhanced frame. 
Referring to the position of the central line, a suitable ROI was automatically 
selected by placing a rectangle of a fixed size in each slice. The mammary 
vessels were then identified by applying to the ROI the multiscale 3D Sato’s 
vessel enhancement filter, which is based on the eigenvalues of the Hessian 
matrix33,34. 

The Sato’s vessel enhancement filter considers the mutual magnitude of the 
eigenvalues as indicative of the shape of the underlying object: isotropic 
structures are associated with eigenvalues which have a similar nonzero 
magnitude, while vessels present one negligible and two similar nonzero 
eigenvalues. Let the eigenvalues of the Hessian matrix be λ1, λ2, λ3 (with 
λ1>λ2>λ3). On a given scale, vesselness is thus defined as: 
 

 
 

 
(x.1) 

 
 
 
 
where λc = min (λ2, λ3), α1 and α2 were set to 0.5. The σ footer in Vσ indicates 

that the vesselness is computed on a smoothed version of the image and is 
therefore representative of the variations of image intensity on the σ spatial scale. 
As vessels in the breasts could have different diameters, the vesselness is 
evaluated on a range of spatial scales, and the highest response is selected for 
each voxel. Specifically, the vesselness response is computed at 6 exponentially 
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distributed scales between the maximum and minimum scales σmin = 0.5 and σmax 
= 1.0. 

A threshold, equal to half the maximum vesselness value observed in the 
ROI identified as described above, was then applied to select the most vessel-like 
voxels. Figure x.5 shows an example of mammary vessels.  

The mean contrast enhancement of the mammary vessel voxels in the first 
contrast-enhanced frame was considered as normalization factor. 

After normalizing the subtracted mean intensity projection, regions showing 
contrast enhancement were extracted. Even if the contrast-enhanced frames were 
normalized, a fixed threshold was not found to be suitable to successfully 
segment lesions on all scans. As a consequence, a global threshold TI was 
empirically determined as: 
 

(x.2) 
 

 
where meanI is the mean value of the normalized intensity histogram of the 

breast and axillary region and maxI is the highest intensity value observed in the 
same region.  

Lesions and connected feeding vessels are often segmented together, leading 
to lesion oversegmentation, which could reduce the diagnostic quality of the 
segmentation and limit the performance of segmentation-based CAD 
applications. To avoid this risk, the eigenvalues of the covariance matrix were 
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Figure x.6 (a) First subtracted contrast-enhanced frame with the region where 
the mammary vessels are located in the rectangle. (b) Zoom of the region in the 
rectangle highlighted in (a). Arrows point mammary arteries that will be 
segmented by the system. 



extracted for each voxel, and the ratio between the highest and medium 
eigenvalues was used as a vesselness measure. Voxels with a ratio larger than a 
fixed threshold Tv were labeled as vessels and excluded from lesion detection. 
Connected components were then extracted from the resulting mask. 

FP reduction 

The method based on the covariance matrix eigenvalues, above described, do not 
completely discard all vessels,therefore, together with motion artifacts and noise, 
they contribute to the number of FP.  

A few heuristic criteria were applied in our algorithm to exclude regions 
showing contrast enhancement, different from lesions. First, regions with a 
volume of less than 20 mm3 were excluded. Taking into account image resolution 
and possible lesion undersegmentation, this roughly corresponded to a lesion of 5 
mm in diameter, which is the cutoff between foci and lesions35. 

Contrast enhancement kinetics can be classified as curves I, II and III with an 
increasing probability of malignancy (6%, 64%, and 87%, respectively)36. 
However, these curves are commonly referred to individual voxels or to a set of 
few contiguous voxels within a plane belonging to a single part of tissue with 
uniform vascular characteristics, and thus homogeneous contrast enhancement, 
whereas the average intensity curve calculated over an entire lesion (typically 
without homogeneous vascular characteristics) is generally more similar to the 
average signal intensity curves shown in Fig. x.6. Thus, the aim was to identify 
trends which are indicative of structures other than benign and malignant lesions, 
such as noise, artifacts or vessels. Empirically, some simple kinetic features were 

 
 
Figure x.6. Signal intensity curves calculated over an entire connected 
component in the case of a lesion, a vessel and an artifact. 
 



found to identify trends rather typical of vessels or artifacts, as shown in Fig. x.6. 
For instance, artifacts due to noise and patient motion are usually characterized 
by high signal variations; hence, regions with standard deviation greater than a 
specific value, or with a higher-than-10% decrease or increase in signal intensity 
in the last frame, with respect to the second-last frame, were discarded. 
Furthermore, regions with mean intensity decreasing from the first to the second 
enhanced frame were discarded, as this pattern is found in vessels but not in 
lesions. 

1.3.2 Results 

Subjects and MRI Protocol 

Algorithm performance was evaluated on a dataset of 48 DCE-MRI studies 
(mean patient age 51 years, range 31-79 years) performed on women with 
suspicion of breast cancer based on conventional imaging26. 

Nineteen (group A) of the 48 studies were acquired on a 1.5 T scanner, using 
a fat-sat 3D axial fast spoiled gradient-echo sequence and administering 
Gadopentetate dimeglumine, for a total of seven scans for each study (one 
baseline, 5 contrast-enhanced frames with 50-s time resolution, and one delayed 
frame acquired 7 minutes after contrast injection).  

The remaining 29 studies (group B) were acquired on a different 1.5T 
scanner, using a dynamic 3D axial spoiled fast low angle shot sequence and 
administering Gd-BOPTA, for a total of six scans for each study (one baseline, 5 
contrast enhanced frames taken 118 s apart). Fat-sat sequences were not 
performed in group B patients. 

The whole dataset included 12 benign and 53 malignant lesions. The median 
of the largest diameter of benign and malignant lesions was, respectively, 6 mm 
(range, 5–15 mm) and 26 mm (range, 5–75 mm). Overall, there were 16 lesions 
sized 10 mm or less, 15 lesions between 11 and 20 mm, and 34 lesions sized 
larger than 20 mm. 

Statistical analysis 

A radiologist with more than 4 years of experience in breast MRI labeled a 
finding as a true positive if the lesion was confirmed at histology or at follow-up, 
otherwise it was defined as a FP.  

Detection rate was calculated as the number of true positives (both malignant 
and benign) over the total number of lesions as defined at the reference standard, 
whereas sensitivity was calculated as the number of malignant lesions detected 
by the system over the total number of malignant lesions.  

Lesions were grouped according to size (see Table x.1) and detection rate 
and sensitivity were calculated for each group. Sensitivity and detection rate 
values are presented with 95% confidence intervals (CIs) using the Wilson 



method for single proportions. Detection rate and sensitivity were also separately 
calculated for fat-sat and non-fat-sat exams, and the χ2 test was used to assess 
differences between the two subgroups.  

The detection rate was analyzed separately for lesions satellite to index 
cancers detected by radiologists, for which a lesion-by-lesion pathological 
analysis was not reported.  

FP findings were recognized by the radiologist according to the position 
(mammary or extra-mammary) and the type (vessels, image artifacts, lymph 
nodes, normal gland or other findings). The FP median, 1st and 3rd quartiles 
were calculated for the entire testing set, for the fat-sat and non-fat-sat 
subgroups.A two-sided Kruskal Wallis test was applied to test for differences 
between the medians for the total number of FP/patient. A p-value lower than 
0.05 was considered statistically significant. 

Results 

The automatic algorithm detected 58 of the 65 lesions (89% detection rate; 95% 
CI 79–95%), including 52 of the 53 malignant lesions (98% sensitivity; 95% CI 
90–99%). Detection rate and sensitivity according to lesion size are shown in 
Table x.1. 

In the fat-sat subgroup, 20 of the 25 lesions (80% detection rate; 95% CI 61–
91%) were detected, including 19 of the 20 malignant lesions (95% sensitivity; 
95% CI 76–99%). In the non-fat-sat subgroup, 38 of the 40 lesions (95% 
detection rate; 95% CI 84–99%) were detected, including all 33 malignant 
lesions (100% sensitivity; 95% CI 90–100%). Differences in sensitivity and 
detection rate between the two groups were not statistically significant (p-value = 
0.798 and p-value = 0.137, respectively). 

Table x.1. Number of lesions and performance for each dimension group. 
Lesions were grouped according to the National Cancer Institute. Detection 
rate and sensitivity were calculated with a 95% confidence interval. 

  



A total of 7 lesions with an average size of 7±3 mm (mean±SD) were missed 
by the algorithm, including 6 benign and 1 malignant nodules. Five of the 
undetected lesions were in dataset A including: 2 fibroadenomas, 2 small 
enhancements with a negative MRI follow-up of 5 and a 7 mm in size, 
respectively, and a 12-mm invasive ductal carcinoma. Missed lesions in dataset B 
were two 5 mm small enhancements unchanged at MRI follow-up. Examples of 
lesions detected and missed by the system are shown in Fig x.7. 

In addition to malignant lesions histologically confirmed as a result of a 
lesion-by-lesion analysis in the pathological report, 17 lesions satellite to 

 

 
Figure x.7. Examples of segmentation results, superimposed on the normalized 
and subtracted mean projection over time. a: A 33-mm invasive ductal 
carcinoma (fat-sat image) correctly segmented; (b) a 7-mm invasive ductal 
carcinoma (fat-sat image) correctly segmented; (c) a 26-mm invasive ductal 
carcinoma (non-fat-sat image) correctly segmented; (d) a 25-mm invasive ductal 
carcinoma (fat-sat image) correctly segmented; here a 5-mm satellite lesion 
(arrow) was missed by the system. 



malignant index lesions, with a median diameter of 7 mm (range, 5–20 mm) were 
detected by two radiologists. Sixteen of them (94%) were detected by the system. 

Median mammary FPs per breast were 4 (1st–3rd quartiles 3–7.25), while 
median extra-mammary FPs per study were 2 (1st–3rd quartiles 1–5). Table x.2 
shows the distribution of FP findings according to the type. For the fat-sat 
subgroup, median mammary FPs per breast were 4 (1st–3rd quartiles 2–7.25); 
median extra-mammary FPs per study were also 4 (1st–3rd quartiles 3–6). In the 
non-fat-sat group, median mammary FPs per breast were 4.5 (1st–3rd quartiles 
3.5–7), while median extra-mammary FPs per study were 1 (1st–3rd quartiles 1–
2). No statistical significant differences were detected between the two subgroups 
(p-value= 0.72). 

 

1.4 Lesion Discrimination 
Lesion discrimination is a diagnostic stage in the CAD pipeline dedicated to 
recognize the level of malignancy of previously detected lesions.  

Breast DCE-MRI allows to depict differences between malignant and benign 
lesions according to morphological and contrast-enhancement kinetics features of 
lesions.  

 
Table x.2. Classification of FP findings according to the type 

 
 



Morphological attributes such as irregular or spiculated margins, irregular 
shapes, heterogeneous and peripheral internal contrast enhancement are 
important indicators of malignancy37. Signal-to-time curves with rapid decreasing 
of signal intensity after peak enhancement, reached approximately 2 or 3 minutes 
after contrast injection, are more frequently found in malignant lesions, whereas 
benign lesions have typically slow persistent enhancement increase37. 

Figure x.8 shows an example of a malignant lesion with irregular margins 
and heterogeneous internal enhancement and a benign lesion with regular 
margins and homogeneous internal enhancement. 

Clinical interpretation of the kinetic and morphological properties is 
subjective and qualitative, therefore several studies have proposed computer 
assisted approaches. 

Gihuijs et al.38,39 extracted morphological and kinetic features from lesions 
segmented manually or semi-automatically after manual indication of a seed 
point and used linear discriminant analysis and step-wise selection to select the 
best subset of features. Gibbs et al.40 applied texture analysis based on Haralick 
features and used logistic regression analysis with backwards elimination method 
to select the most discriminating subset of texture features. Gal et al.41 compared 
different classifiers (logistic regression, linear discriminant analysis, bayesian 
and support vector machine) combining kinetic and morphological features, and 
using an exhaustive search to select the best features.  

In the following a multiparametric model is presented, which combines a 
selection of morphological and kinetic features for discriminating malignant from 
benign mass-like breast lesions at DCE-MRI42. Original features are introduced 
and combined with features already presented in literature, with the aim of trying 
a different approach. Model selection is performed by a genetic search43 and a 
wrapper approach44 using a support vector regressor. 

 
       
 
 
 
 
 
 
 
 
 
Figure 1 Examples of invasive ductal carcinoma (left) and benign fobroadenoma (right) 
breast lesions. 



1.4.1 Method 
To validate the method, 73 mass-like lesions were retrospectively used. Lesions 
were detected in 51 exams acquired at two centers at 1.5 T with MRI protocols 
described in 1.2.2 and confirmed by histopathology (54 malignant and 19 
benign). Lesions were automatically segmented after image normalization and 
elastic registration of contrast-enhanced frames, as described in the previous 
steps, and then selected by two experienced radiologists in order to exclude non 
mass-like lesions or blood vessels.  

Lesion size was 13±8.4 mm (mean±standard deviation) for benign lesions 
and 16.1±14.7 mm) for malignant lesions, with lesion size determined as the 
longest diameter measured by radiologists. 33 lesions had a size smaller than 10 
mm (22 malignant, 11 benign), whereas 40 lesions had a size larger than 10 mm 
(32 malignant, 8 benign). Table x.3 summaries lesions histology.  

 
Table x.3 histological types of the 73 lesions included in the study 

Tumor types Number 

Malignant lesions 54 

Invasive ductal carcinoma (IDC) 36 

Invasive lobular carcinoma(ILC) 4 

Ductal carcinoma in-situ (DCIS) 4 

Mixed Invasive Carcinoma 10 

Benign lesions 19 

Fibroadenoma (FAD) 9 

Papilloma 4 

Other benign lesions 6 
 
For each lesion, a set of 19 features were automatically extracted: 10 

morphological features, related to shape, margins, and internal contrast-
enhancement distribution, and 9 kinetic features computed from signal-to-time 
intensity curves.  

Two morphological features related to the lesion shape are calculated on the 
binary mask: circularity38 and convex index45.  

Three features are used to describe the margin of a lesion: irregularity38, 
mean and standard deviation of angles between surface normals (( mean(ABSN), 
std(ABSN))46. 

Other five features characterizing the internal enhancement pattern are 
extracted: the autocorrelation function (evaluated at 2mm displacement), two 



features related to the peripheral uptake and the mean and standard deviation of 
the shape index(SI)47 computed inside the segmented mass. 

Enhancement kinetics features are used to characterize the time course of 
signal intensity through the contrast enhancement defined as: 

 
 
 (x.3) 
 
where S(r,i) is the intensity at voxel location r at time frame i and it is 

normalized to the contrast enhancement of mammary vessels. Two types of 
features are derived from the contrast enhancement. The first type is related to 
the fitting of the contrast enhancement to the following analytical exponential 
function: 

 
(x.4) 

  
where the coefficients A and D control the function amplitude and decay, 

respectively. These coefficients characterize therefore the contrast uptake and 
washout inside the lesion. The lesion uptake and washout of contrast material 
were characterized by fitting the contrast enhancement C(r,i) with an analytical 
function rather than using a two-compartmental pharmaco-kinetic model48. The 
use of a pharmaco-kinetic model implies strict constrains in the acquisition 
protocols49, that were not fulfilled in the acquisition of many clinical datasets. 
Although, the analytical function proposed (Eqn. x.4) cannot model 
physiologically the lesion, its simple form allows for relaxing constrains on the 
acquisition protocols still characterizing the kinetic behaviour of the lesion. 

The second type of feature computes the area under the contrast enhancement 
curve C(r,t), AUCEC. This feature is related to the total amount of contrast 
material in the lesion tissue. The mean, standard deviation and entropy were 
computed in the lesion segmented volume, yielding a total of 9 contrast 
enhancement kinetic features. 

A support vector machine (SVM) was trained with feature subsets selected 
by a genetic search. Best subsets were composed of the most frequent features 
selected by majority rule. The performance was measured by receiver operator 
characteristics (ROC) analysis with the 10-fold cross-validation method that 
prevents optimistically biased evaluations due to overfitting. The bootstrap 
technique was used in order to estimate the confidence interval of area under 
ROC (AUC) and to compare the classification performances of the different 
features subsets. A Wilcoxon matched pairs one-tailed test was also performed to 
determine the significance level of the performance improvement. 
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1.4.2 Results 
Figure x.9 shows the mean ROC curves related to the feature subsets selected in 
separated genetic searches for each class of features and to the features subset 
selected by the genetic search using both classes of features. 

The AUC obtained in the three genetic searches were 0.90±0.06 
(mean±standard deviation) for the morphological features subset, 0.87±0.06 for 
the kinetic features subset, and 0.94±0.03 with the combined feature subset. The 
AUC resulted from the combined feature subset was significantly higher (p-
value < 0.01) than those obtained with the other feature subsets, showing that the 
combination of features increases the classification performances.  

Three morphological features ( mean(ABSN), std(ABSN), peripheralUptake) 
and three kinetic features (mean(D), entropy(D), entropy(A)) were selected in 
separated genetic searches for each feature class. Four features (mean(ABSN), 
std(SI), mean(D), mean(AUCEC)) were selected from the combined use all two 
classes of features. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 ROC curves associated to the feature subsets selected in separated 
genetic searches for each class of features and to the features subset selected by 
the genetic search using all two classes of features.6 



 

1.5 Discussion and Conclusions 
The CAD system here presented (CADBREAST MRI, research version, im3D) 
achieves good performance in detecting and discriminating breast lesions in a 
fully automatic way, thus having the potential of reducing inter- and intra-
observer variability and reading time19,21. 

The lesion detection step achieved a sensitivity of 98%, with an acceptable 
number of FP findings. Moreover, the good performances obtained in detecting 
satellite lesions (16 of 17 were identified) highlights the system’s potential in 
helping the detection of multifocal and multicentric breast cancers. 

The widespread use of the DCE-MRI in the clinical practice is slowed down 
by the lack of automatic methods able to make its analysis less time consuming 
and independent on the expertise of the radiologist. Few methods have been 
developed to detect and characterize breast lesions automatically with DCE-MRI.  
Ertas et al. developed an automatic algorithm for the detection of breast lesions 
based on cellular neural network segmentation and 3D template matching22, but 
their dataset was composed only by non-fat-sat images and they applied a fixed 
threshold to extract suspicious areas, limiting the applicability to studies acquired 
with different protocols. They assessed the performance of the system on a 
dataset of 39 lesions (19 benign and 20 malignant), obtaining a detection rate of 
100% with less than one FP per study. An automatic lesion detection method 
based on support vector machine, proposed by Twellmann et al. also showed 
promising results, yielding an area under the ROC curve of 0.98. However, the 
algorithm was tested on a limited dataset of 12 patients and only on non-fat-sat 
images24.  

The innovation of the proposed lesion detection method relies on the 
possibility to be used with both fat-sat and non-fat-sat images, since the 
normalization is not performed by dividing each enhanced images by the 
unenhanced one, but using an intrinsic value of the image related to contrast 
agent administration. The normalization process used in literature, in fact, yields 
very noisy images if fat-sat is applied, as most of the breast signal is suppressed 
in the unenhanced frame. On the other hand the proposed normalization requires 
that the mammary vessels are included in the field of view with an adequate 
spatial resolutions, therefore the DCE-MRI should be performed on the axial 
plane. 

 A second innovation relies on the use of the mIPT instead of the commonly 
used MIPT (maximum intensity projection over time). The MIPT is very 
sensitive to artifacts and noise and, due to the the ‘‘blooming sign’’ effect50–52, 
the lesion size could be overestimated. Vice versa, the use of the mIPT may 
produce an underestimation of the lesion size by averaging over time, but allows 
more reliable segmentations being less sensitive to noise, thus having a lower 
number of FPs.  



The higher number of FPs compared to other commercial and academic 
software53 is a limitation of the proposed method. As most of the FPs are vessels, 
mainly tortuous vessels or bifurcations with low vesselness values54,55, a step of 
fully automatic blood vessels detection is ongoing, aiming to dramatically 
decrease the number of FPs. Moreover, improving the accuracy of the breasts 
segmentation step, especially around the ribcage area, could lead to increase the 
specificity of the lesion detection step.  

In the proposed method the lesion detected were analyzed and discriminated 
by a classifier based on the support vector machine. For this step a more accurate 
identification of lesion boundary and morphology could be useful, and a further 
refinement of the lesion segmentation may become necessary, even if the results 
obtained during the lesion discrimination step are satisfactory. 

The classifier here proposed is able to discriminate malignant from benign 
breast mass-like lesions using two groups of features (morphological and 
kinetic), and obtaining a AUC of 0.94±0.03. The AUC for the feature selection 
(FS) resulting from the combination of all two feature groups was significantly 
higher than those obtained with all other selected FSs, showing that the 
combination of features increases the classification performances.  

A genetic algorithm was used to select feature subsets, in order to prevent 
unnecessary computation, overfitting, and to ensure a reliable classifier. The 
main limitation of the discrimination step is the limited number of lesions. This 
can produce overfitting of the training data, leading to overestimate the 
classifier's performance. In order to reduce these effects, the total number of 
features was limited to 19 and the selected feature subsets were composed only 
of 3 to 4 features. Moreover, classification performances were evaluated with a 
stratified 10-fold cross-validation method to reduce the classification bias. 

Another limitation is the unbalanced dataset. The number of malignant 
lesions is higher than benign lesions, leading to a possible bias in the 
discrimination of malignancy. This problem was partially reduced by presenting 
at training the same number of malignant and benign lesions using copies of 
benign lesions. Nevertheless, the benign class can be poorly described in the 
feature space.  

In conclusion, the proposed CAD system was tested on MR datasets obtained 
from different scanners, with a variable temporal and spatial resolution and on 
both fat-sat and non fat-sat images, and has shown promising results. This type of 
system could potentially be used for early diagnosis and staging of breast cancer 
to reduce reading time and to improve detection, especially of the smaller 
satellite nodules. Further refinements are ongoing to improve vessel detection, 
breast segmentation and to validated these conclusions on a larger dataset. 
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