
02 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Priority-driven Swapping-based Scheduling of Aperiodic Real-Time Messages over EtherCAT
Networks

Published version:

DOI:10.1109/TII.2014.2350832

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1608659 since 2016-12-30T16:22:27Z



1

Priority-driven Swapping-based Scheduling of
Aperiodic Real-Time Messages over EtherCAT

Networks
Lucia Lo Bello, Senior Member, IEEE, Enrico Bini, Senior Member, IEEE, and Gaetano Patti, Member, IEEE

Abstract—Real-Time Ethernet (RTE) technologies are becom-
ing increasingly popular, as they provide high bandwidth and are
able to meet the requirements of industrial real-time communica-
tions. Among RTE protocols, the EtherCAT standard is suitable
for motion control and closed-loop control applications, which
require very short cycle times. As EtherCAT was specifically
devised for periodic traffic, aperiodic real-time transmissions
are far from being efficient, as they entail long cycle times. To
overcome this limitation, this paper presents a general framework
for priority-driven swapping-based scheduling of aperiodic real-
time messages over EtherCAT networks, which uniformly covers
both dynamic and static priority and allows for very short
cycle times. The paper provides a description of the priority-
driven swapping framework, a schedulability analysis for both
static priority and dynamic priority scheduling, and simulative
assessments, obtained through OMNeT++ simulations.

Index Terms—Industrial networks, Real-time Ethernet, Ether-
CAT, Priority-based real-time scheduling.

I. INTRODUCTION AND MOTIVATION

T
HE integration of heterogeneous applications with differ-
ent information flows and requirements requires networks

capable to support multi-service communications. In particu-
lar, modern industrial networks must offer support for both
time-driven and event-driven control applications. In time-
driven applications, messages are periodically transmitted and
control actions are taken at constant rate [1], [2], while in
event-driven applications, messages are transmitted when one
or more trigger events occur (e.g., if the controlled variable
exceeds a given threshold) [3], [4]. For example, closed-
loop control applications typically generate periodic messages
with deadlines of approximately 1 ms [2]. However, these
applications may also require the transmission of aperiodic
real-time messages, that have to be accommodated in the
overall traffic schedule without affecting periodic messages.
Aperiodic real-time transmissions are also found in Cyber-
Physical Systems (CPSs), as they typically operate in unpre-
dictable environments [5]–[7].

Recently, Real-Time Ethernet (RTE) technologies [8] have
become increasingly popular, as they offer high bandwidth,

Manuscript received February 15, 2014. Accepted for publication August
8, 2014. Copyright c© 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Lucia Lo Bello and Gaetano Patti are with the Department of Electrical,
Electronics and Computer Engineering, University of Catania, 95125, Catania,
Italy (e-mail: lucia.lobello@dieei.unict.it, gaetano.patti@dieei.unict.it)

Enrico Bini is with the Scuola Superiore Sant’Anna, 56124, Pisa, Italy
(e-mail: enrico.bini@sssup.it).

meet the requirements of industrial real-time communication
and allow for vertical integration of the different levels in
the automation pyramid [9]. Recent literature highlighted the
properties of industrial Ethernet networks able to support
various traffic classes [10] and temporal constraints [11].
One example is Profinet IRT, whose bandwidth management
and scheduling are addressed in [12] and [13], respectively.
Another interesting real-time Ethernet protocol is TTEther-
net [14], which offers three different traffic classes to support
the temporal and bandwidth constraints of a broad range of
applications.

This paper focuses on the EtherCAT protocol, which is
included in both the IEC 61158 [15] and IEC 61784 [8]
standards. EtherCAT is suitable for motion control and closed-
loop control applications, which require very short cycle times,
where the cycle time is defined as the time necessary to
exchange the input/output data between the controller and all
the networked devices once [16], [17].

EtherCAT provides a daisy-chain topology and a mas-
ter/slave architecture in which the master periodically trans-
mits a standard Ethernet frame that embeds an EtherCAT
frame containing multiple telegrams (as shown in Fig.1).
Slaves read and/or write data in the telegram by processing
the frame “on-the-fly”, so when a byte arrives to a slave it is
processed and transmitted to the next slave without waiting for
the complete reception of the Ethernet frame. The last slave in
the chain transmits the frame back to the master by exploiting
the full-duplex capability of Ethernet.

As shown in Fig.1, the EtherCAT frame used for transmit-
ting process data contains one or multiple telegrams, which
start with a header containing the command code (i.e., read,
write or read/write), the addressing fields, and the payload
length. Telegrams end with a Working Counter (WKC) field,
which is incremented by the slaves every time they success-
fully read and/or write data into the telegram. The WKC is
also used for error detection.

In order to allow slaves to transmit periodic real-time traffic,
the EtherCAT standard provides polling-based mechanisms
that can also be adopted for the transmission of aperiodic real-
time messages. For instance, the master may send EtherCAT
frames containing at least one telegram for each slave that
might have aperiodic real-time traffic to transmit.

However, such a mechanism would entail long cycle times,
as the master must provide room in the EtherCAT frame for
any slave that has the potential to transmit aperiodic real-time
traffic, regardless of whether such a slave actually has traffic



2

Standard Ethernet Frame

EtherCAT Frame

EtherCAT Telegram

Ethernet Payload (42 - 1500 bytes)Ethernet Header (22 bytes) FCS (4 bytes)

EtherCAT Header (2 bytes) EtherCAT Telegram EtherCAT Telegram

Header (10 bytes) Data Working Counter (2 bytes)

...

Fig. 1. Structure of an EtherCAT frame containing multiple telegrams

to transmit. For instance, in a network with 20 slaves, each
with the potential for transmitting 32 byte long aperiodic real-
time messages, the master should provide 20 telegrams for
each cycle. This would result in an increase in the cycle time
duration of 70.4 µs, with the probability that most of the time
such telegrams would not actually be used, due to the event-
driven nature of aperiodic traffic generation.

In addition to the cycle time increase, the need for han-
dling aperiodic real-time messages by a polling mechanism
performed by the master would also introduce, in the case
of event-triggered control applications, a bandwidth waste
that would reduce the main advantage of the event-triggered
control, that is, the low bandwidth demand.

Some works in the recent literature address methods to
reduce the cycle times in the EtherCAT networks. In [18]
periodic and aperiodic real-time traffic is scheduled by the
master, which provides guaranteed bandwidth for the slave
transmissions. In [19] a switch operating at the EtherCAT
telegram level is proposed, but such a solution does not focus
on aperiodic traffic scheduling.

The work in [20] proposes an arbitration-based access
scheme for aperiodic real-time messages which introduces
new aperiodic telegrams that are contented by the slaves for
transmitting aperiodic messages. The slave with the highest
priority among the ones competing for the aperiodic telegrams
will overwrite “on-the-fly” the incoming aperiodic message.

The mechanism in [20] foresees that the master transmits a
copy of the aperiodic message received. In this way, the slave
that transmitted the message realizes that it was successful
and so the message can be safely removed from its queue.
Conversely, the other slaves know that they did not succeed
and must try again. This approach reduces the cycle time for
transmitting aperiodic messages compared with the EtherCAT
standard, but still suffers from some limitations. The main one
is that low priority messages may experience long delays due
to the interference from high priority ones, with a potential
for starvation.

The same authors in [21] added the capability for embed-
ding multiple aperiodic messages in one telegram. In this
new approach, a slave has to receive a cumulative “acknowl-
edgement” message from the master before removing the
transmitted message from the local queue. The purpose of
such a message is twofold. It is a notification of successful
transmission and also a way to allow a slave to remove the
aperiodic message from its local queue.

Inspired by the Slot Swapping Protocol (SSP) [22]–[24],
in [25] dynamic priorities are exploited to swap between
an incoming lower priority aperiodic message and a higher
priority message pending at the current slave. This is achieved
by defining a new telegram type, contented among the slaves
that have an aperiodic real-time message to transmit.

Contention is ruled by comparing the absolute deadlines
of the messages according to the EDF algorithm. When the
message contained in the incoming telegram is less urgent
and therefore loses the contention, it is swapped and replaced
by the message with the most urgent deadline in the local
queue. Swapping does not entail message loss, because the
slave which has swapped the incoming message will be in
charge of transmitting it whenever possible.

a) Contributions of this paper: This paper proposes a
Priority-driven swapping-based mechanism to deal with the
problem of providing support for aperiodic real-time traffic
over EtherCAT networks. As previously explained, the Ether-
CAT standard does not offer this support. The Priority-driven
swapping-based approach combines the arbitration mechanism
in [21] with the deadline-driven swapping proposed in [25].
In particular, this paper extends the work in [25], which only
addresses EDF scheduling, in a general framework for priority-
driven swapping-based scheduling of aperiodic real-time mes-
sages over EtherCAT networks, which uniformly covers both
dynamic and static priority. The proposed mechanism allows
slaves to transmit multiple aperiodic real-time messages in a
single EtherCAT frame, while maintaining compatibility with
the EtherCAT standard and achieving cycle times in the order
of 100µs.

The paper target is to achieve short cycle times while
ensuring the schedulability of aperiodic real-time messages.
For this reason, the paper provides schedulability conditions
that enable the network designer to configure the network
parameters (e.g., the number of aperiodic telegrams in the
EtherCAT frame) so as to avoid deadline miss. The Priority-
driven Swapping here proposed is implementable with minor
modifications in the EtherCAT protocol state machine and
maintains compatibility with EtherCAT standard devices, so
there is a clear potential for industrial exploitation.

The paper is organized as follows. Section II describes
the Priority-driven Swapping approach here proposed and
discusses its implementation. Sect. III presents the timing
analysis of the approach, under static and dynamic priorities,
respectively. Sect. IV deals with simulative assessments of the
Priority-driven Swapping approach and discusses its perfor-
mance. Finally, Sect. V concludes the paper and gives hints
for future work.

II. THE PRIORITY-DRIVEN SWAPPING

In the Priority-driven Swapping approach here proposed
to efficiently support aperiodic traffic under both static and
dynamic priority scheduling, a novel telegram has been in-
troduced. The aperiodic telegram, which is shown in Fig. 2,
is contented among the slaves according to a preemptive
policy that enables the slaves to send aperiodic messages
when needed. This is possible as the daisy-chain topology of



3

Telegram HDR

(CMD = DDS)
ApM_PRIO ApM_ADR ApM_LEN ApM_PAYLOAD

PADDING

(if needed)
WCK

Bytes 10 6 4 2 2ApM_LEN

ApM Header

ApM

Ethernet Header Header EtherCAT Telegram Aperiodic Telegram FCS

Fig. 2. Aperiodic Telegram structure

TABLE I
APERIODIC TELEGRAM FIELDS.

Data Field Data Type Description/Value

CMD Unsigned8 Command: (PdS) 0x10

IDX Unsigned8 Index

ADR DWORD Slave address of the last ApM

LEN Unsigned11 DATA field Length

RESERVED Unsigned3 0x00

C Unsigned1 Circulating frame

NEXT Unsigned1 0 if the last telegram in the frame

IRQ WORD Reserved for future use

DATA OctectString Data

WKC WORD Working Counter

EtherCAT allows for message preemption by changing “on-
the-fly” the telegram payload of an incoming frame when the
frames traverses a slave.

Each slave maintains a local queue of aperiodic messages
(ApMs), ordered according to a priority. The network can
work under either static or dynamic priority scheduling, but the
choice has to be made during the configuration phase, through
a suitable setting.

In order to maintain compatibility with the EtherCAT
standard, the aperiodic telegram is mapped into the standard
EtherCAT telegram as shown in Table I.

The CMD field of the telegram header contains the 0x10
value which indicates an aperiodic telegram, while the ADR
field contains the address of the slave that generated the last
received ApM. The other fields remain the same as specified
in the EtherCAT standard. The DATA field contains an ApM,
which is the aperiodic message containing the data transmitted
by a slave. The ApM is composed of an ApM header and a
payload. The header fields are specified as follows:

• ApM_PRIO: the message priority.
• ApM_ADR: the address of the slave that transmitted the

ApM.
• ApM_LEN: the ApM payload length in bytes.

The master periodically transmits one EtherCAT frame
containing both standard telegrams for the periodic data and
one or multiple aperiodic telegrams. A slave, with a ready-to-
transmit ApM, upon receiving the aperiodic telegram, stores
the local ApM with the highest priority (Mloc) in the output
buffer (Out_Buf) and the incoming ApM (Min) in the input
buffer (In_Buf). When the first byte of Min arrives, the
contention starts and the slave compares byte by byte the
priorities of Mloc and Min. The message with the highest
priority value is transmitted, while the other one is stored in

the slave local queue.
For priority comparison, due to serial communication, the

six bytes of the ApM_PRIO field are encoded and transmitted
from the most to the least significant byte. The comparison
works as follows. The i-th byte of the priority of the incoming
message Min (i.e., the ApM_PRIO field of the ApM), Bi,in,
for i=0...5, is compared with the corresponding byte of the
ApM_DL field of the ApM of the local message Mloc, Bi,loc.
The incoming message Min is swapped if the following
inequality (1) holds (here we assume that the lower the value,
the higher the priority):

Bi,loc < Bi,in (1)

otherwise Min is forwarded to the next slave. No swap occurs
if the incoming ApM has the same priority as the local ApM.
If according to inequality (1) a swap occurs, while the local
message Mloc is transmitted to the next slave and removed
from the local queue, the swapped message has to be entirely
received and is then inserted in the local queue according
to its priority. Such a mechanism cannot be implemented in
the upper layer of the Data Link, as it requires “on-the-fly”
processing of the frame.

Compared to the EtherCAT standard [15], the Priority-
driven swapping provides the possibility for slaves to transmit
aperiodic messages without the need for the master to provide
room for each slave with a potential for transmitting, thus
reducing the cycle time. In fact, a single aperiodic telegram
can be contented among all the slaves that intend to transmit
an aperiodic message. If compared to the mechanism proposed
in [21], the Priority-driven swapping provides two advantages.
First, it allows a slave to embed more aperiodic telegrams into
a single EtherCAT frame. This is possible because the slave
which has swapped the incoming message will be in charge
of transmitting it whenever possible. Second, thanks to this
mechanism, a slave which transmitted an ApM can remove it
from the local queue right after completing the transmission
without waiting for an “acknowledgement” message, as no
aperiodic message will be lost due to preemption from other
messages.

This is not the case for the CAN-like approach in [21],
where a slave must wait for the acknowledgement message
sent by the master before removing the transmitted mes-
sage from the local queue, so the same slave cannot send
more than one aperiodic message in the same telegram. The
second advantage compared to [21], which only addresses
static priorities in a CAN-like fashion, is that the Priority-
driven swapping uniformly covers both dynamic and static
priority scheduling, therefore, at the configuration step, the
most appropriate scheduling policy for the application at hand
can be chosen on a case-by-case basis.

An example of dynamic priority scheduling is the Earliest
Deadline First (EDF) algorithm [26], in which the messages
with closer absolute deadlines preempt those with less immi-
nent ones. To implement EDF in the Priority-driven swapping
approach here proposed, the absolute deadline counts the
microseconds elapsed since January 1, 2000 (the date refers
to the EtherCAT system time [27]) and a slave generating
an ApM calculates the absolute deadline by adding to the



4

Application Layer

Physical Layer

Data Link Layer

EtherCAT Slave Controller (ESC)

Prioritized

Local

Queue

InBuf OutBuf

Comparator

<=

Standard ESC

Modules

Network Interface

Host Controller

Fig. 3. Modules implementing the Priority-driven Swapping

system time the relative deadline of the message received
from the upper layers. Such a mechanism relies on the clock
synchronization, which is also provided with the EtherCAT
standard with an accuracy in the order of 100ns [27].

A. Implementing the Priority-driven Swapping

Each EtherCAT slave consists of three layers, i.e.:
• Application layer, which contains the Host Controller.

This can be implemented, for instance, in a microcon-
troller.

• Data Link Layer, which contains the EtherCAT Slave
Controller (ESC). This can be implemented either in
hardware (FPGA, ASIC) or in software [28].

• Physical Layer, which implements the physical interface
to the network.

The Priority-driven Swapping approach requires an addi-
tional module in the ESC whose main components, shown in
Fig. 3, are a prioritized local queue containing the local ApMs,
two buffers for the incoming and outcoming ApMs, and an
8-bit comparator. All these components can be implemented
in hardware in the case of FPGA/ASIC ESC. The hardware
implementation of the buffers and the comparator is simple
and, as far as the prioritized local queue is concerned, in
the literature several hardware implementations of prioritized
local queues are proposed [29] (e.g., Shift register prioritized
queue or Systolic array prioritized queue). The module can
be also implemented in software in the case of software ESC,
as shown in [28]. Some slight modification in the EtherCAT
protocol state machine has also to be added in order to handle
the novel telegram type.

III. ANALYTIC ASSESSMENT

A. Frame propagation and Timing

In EtherCAT networks, if the data to be embedded in the
Ethernet frame exceed the maximum payload size (i.e., 1500
bytes), multiple Ethernet frames will have to be transmitted by
the master to complete a cycle. However, this paper addresses
the case of very short cycle times (e.g., in the order of 100µs),

TABLE II
SUMMARY OF NOTATION

Symbol Definition

m The number of slaves in the chain

ℓk Length of the cable connecting the k-th slave to the (k+1)-
th slave. ℓ0 is the length of the cable connecting the master
to slave 1, while ℓm the length of the cable connecting slave
m back to the master.

P The transmission period of the Ethernet frame.

Tc The minimum cycle time, i.e., the minimum time taken by all
the network nodes to exchange their input/output data once.
In Fig.4, Tc = Tet + Tec + Tpr + Tde + Tif .

Tet The sum of the transmission times of the Ethernet header and
Frame Check Sequence (FCS) fields (a+ c in Fig. 4).

Tec The time necessary to transmit the EtherCAT frame.

u The propagation delay per unit of length over the medium
(that is 5 ns/m according to the EtherCAT standard).

Tpr The propagation delay over the communication medium that
is equal to Tpr = u

∑m
k=0

ℓk .

Tsv the time taken by each slave to process the frame.

∆k the delay from the reception of a frame at slave k to the
reception of the same frame at the master, that is (m − k +
1)Tsv + u

∑m
i=k ℓi.

Tde The frame delay that is mTsv .

Tif The inter-frame gap, i.e., the time between the end of the
transmission of an Ethernet frame and the start of the trans-
mission of the next one.

p Number of aperiodic telegrams in the frame (p = 3 in Fig. 4).

Tap The time between the start of the transmission of the Ethernet
frame and the start of the transmission of the first aperiodic
telegram (a+ b− pq in Fig. 4).

n The number of ApMs.

πi The index of the slave where the i-th ApM is generated.

pri(i) Priority of the i-th ApM.

Ti The minimum interarrival time between two consecutive
instances of the i-th ApM.

Di The relative deadline of the i-th ApM.

S The time for receiving an aperiodic telegram (q in Fig. 4).

A Time elapsing from the start of the reception of the first
aperiodic telegram to the end of the reception of the frame
(pS + c in Fig. 4).

and a maximum payload Ethernet frame has a cycle time of
150µs. Hence, here only a single frame cycle is considered.

Fig. 4 illustrates the propagation of the Ethernet frame
and the related terminology and notations (also summarized
in Table II). The Figure shows a scenario with an Ethernet
frame that is transmitted by the master to a chain of three
slaves, and then goes back to the master according to the
daisy chain topology. In Fig. 4 the master is represented
twice to illustrate separately the transmission (top-side) and
the reception (bottom-side). The propagation of the Ethernet
header and the Frame Check Sequence (FCS) field is drawn
in light gray.

The Ethernet payload is drawn in two shades of gray
(gray/dark gray). In the payload, we highlight in dark gray
the EtherCAT telegrams (three in the figure) dedicated to the
transmission of aperiodic messages (ApMs). All the notations
are described in Table II. The master periodically sends an



5

d

r

master

slave 1

slave 2

slave 3

master

a+c

b

e+g+k+o

f+h+n

a b c d

e f g h k n o r q q q c time

Ethernet header/FCS
Ethernet payload
Aperiodic EtherCAT telegrams

Tet =
Tec =
Tpr =
Tde =
Tif =
Tap =

Tc
A

P

Fig. 4. EtherCAT frame processing sequence

Ethernet frame, with period P . Each frame then propagates to
the slaves through the network. Slaves are labeled following
the frame reception order, so slave 1 is the one that receives
the frame first, while slave m is the last. The time elapsing
from the transmission of a frame by the master to its reception,
as a response [15], is equal to the time needed by the signal
to propagate through the medium (Tpr), plus the time needed
by the m slaves to process the frame (Tde).

From Fig. 4 it is possible to observe that the slaves process
the frame “on-the-fly”, i.e., each frame starts to be transmitted
before it has been fully received from the preceding node. This
allows a low end-to-end latency and enables the transmission
of an ApM even if the external event generating the ApM ar-
rives during the reception of the Ethernet frame. At any slave,
the instant at which the highest priority ApM is transmitted is
the start of the reception of the next aperiodic telegram (here
called start time). Then, the availability of aperiodic telegrams
must be carefully analyzed, as illustrated in the following.

B. Timing Analysis

In real-time systems, in which the focus is on meeting
the deadlines in the worst case, the analysis is made by
determining the worst case for both the resource availability
and the resource request [30]. In the analysis the same number
of aperiodic telegrams for each EtherCAT frame is assumed.

In this context, the resource is the start time of an aperiodic
telegram. Hence, the worst case for the resource availability is
determined by computing the minimum number s(t) of start
times of aperiodic telegrams which may occur in any interval
of length t. As illustrated in Fig. 5, the worst-case interval (that
is the one containing the minimum number of start times of
aperiodic telegrams) begins when the last aperiodic telegram
has just started. From this instant (please refer to Fig. 5 where
the black dots denote the start time of the aperiodic telegrams
over time), the time a slave may have to wait before another
aperiodic telegram starts is P − (p − 1)S. Then p aperiodic

telegrams will start, spaced S, and the pattern will repeat with
period P .

7

6

5

4

3

2

1

s(t)

t

SSSS SS

P P

P−(p−1)S

2PP

Fig. 5. Example of the minimum number of start times s(t), with p = 3
aperiodic telegrams in a frame.

The formal expression of s(t) can then be written as follows

s(t) =

p
∑

j=1

⌊

t+ (j − 1)S

P

⌋

, (2)

which accounts for the fact that:
• the start times of the p aperiodic telegrams in the same

frame are separated by S;
• consecutive aperiodic telegrams at the same position in

the frame are separated by P .
In the example shown in Figure 5, we have p = 3 aperiodic
telegrams in a frame.

C. Response-time analysis

For computing the longest response time of an ApM, we
adopt the classic busy-interval approach [31], which was
extended to the event-stream task model [32] by Ritcher et
al [33]. To apply this method, it is necessary to compute the
longest time w(N) a slave has to wait to see N consecutive
start times of aperiodic messages. By this definition, w(N) is
given by

w(N) = sup{x ∈ R : s(x) < N}. (3)

By definition, w(N) then is the longest time interval in which
less than N aperiodic telegrams may start.

In the special case of s(t) of (2), consecutive aperiodic
telegrams in the same frame are separated by S, while the last
aperiodic telegram in the frame and the first one in the next
frame are separated by P−(p−1)S, so that aperiodic telegrams
at the same position in the frame are separated exactly by
P . As also illustrated in Figure 5, this condition implies that
w(N) increases by P − (p− 1)S when N is a multiple of p,
while it increases by S at all other values of N (not multiple
of p). Hence w(N) can be written as

w(N) = (Q+ 1)P − (p− 1− Z)S (4)

with Q and Z , respectively, quotient and remainder of the
Euclidean division of N − 1 by p, that is N − 1 = Qp + Z

with Z ∈ {0, 1, . . . , p−1}. For example, if p = 3 (as illustrated
in Fig. 5) and N = 1, then the result of the Euclidean division
is Q = 0 and Z = 0. For this choice, from (4) we find
w(1) = P − 2S, which correctly is the longest separation



6

between two consecutive aperiodic telegrams. If, for example,
N = 3, then Q = 0, Z = 2 and w(3) = P . With these
definitions in mind, we can compute the response time of an
ApM, by applying the classical busy-period approach. First,
we define Ij(t) as the largest number of messages of the j-
th ApM which can be generated in any interval of length t.
For example, in the classical example of sporadic ApM with
minimum interarrival time Tj , we have Ij(t) =

⌈

t
Tj

⌉

. Then,
we compute the largest number Ni of aperiodic telegrams,
which may be needed to transmit the i-th ApM, as the smallest
fixed point of the following iteration































N
(0)
i = 1

N
(k+1)
i = 1 +

∑

pri(j)>pri(i) Ij(w(N
(k)
i ))

+
∑

pri(j)=pri(i)
πj<πi

Ij(w(N
(k)
i ))

+
∑

pri(j)=pri(i)
πj=πi,j 6=i

1.

(5)

The expression of N
(k+1)
i accounts for the fact that in the

time interval w(N (k)
i ) we must consider the following possible

sources of interference:
• the ApMs with higher priority, represented by the first

sum with j such that pri(j) > pri(i);
• the ApMs with the same priority as the i-th, but generated

at preceding slaves (as described earlier, an incoming
ApM with the same priority of the ApM at the local
slave is not swapped), represented by the sum over
pri(j) = pri(i), πj < πi;

• the ApMs at the same slave with the same priority, which,
however, may interfere only once, since ApMs with the
same priority are scheduled FIFO within the same slave
(the last term in the sum of (5)).

Note that, if messages have minimum interarrival time
Tj , the above described iterative definition is proved to
converge [31] if the maximum number of needed aperiodic
telegrams is less than the available ones, that is

∑

pri(j)>pri(i)

1

Tj

<
p

P
. (6)

Once Ni is computed, the response time (Ri) of the i-th
ApM is

Ri = ∆πi
+ w(Ni) +A (7)

with the following interpretation:
• ∆πi

is the maximum time from the slave πi to the master;
• w(Ni) is the time the i-th ApM may have to wait to have

one telegram available;
• A is the time from the reception of the aperiodic telegram

at the master to the instant the message is actually read.

D. EDF analysis

If the ApMs have a deadline Di between their release at the
slave and the delivery time at the master, and ApM priorities
are assigned based on EDF, so it is then possible to tighten
the analysis by adapting the classic EDF guarantee test [34].

Theorem 1: A set of n aperiodic messages (ApMs), each
one triggered by events with minimum interarrival time Ti are

guaranteed to be received at the master within Di from their
release time when scheduled by EDF, if:

∀t > 0,

n
∑

i=1

max

(

0,

⌊

t− (Di −∆πi
−A)

Ti

⌋

+ 1

)

≤ s(t).

(8)
Condition (8) also implies the necessary condition

n
∑

i=1

1

Ti

≤
p

P
(9)

which is equivalent to the classic necessary condition of a
non-overloaded processor in CPU scheduling problems.

Theorem 1 (whose proof is given in Appendix A) provides a
test which is not practical. In the next Lemma (whose proof is
given in Appendix B), following the idea by Baruah et al [35],
we reduce the set in which the inequality of (8) needs to be
tested to a finite one.

Lemma 1: A set of n aperiodic messages (ApMs), each
one triggered by events with minimum interarrival time Ti are
guaranteed to be received at the master within Di from their
release time when scheduled by EDF, if:

n
∑

i=1

1

Ti

<
p

P
(10)

and

∀t ∈ D,

n
∑

i=1

max

(

0,

⌊

t− φi

Ti

⌋)

≤ s(t) (11)

with

φi = Di −∆πi
−A− Ti (12)

L∗ = max
ℓ=0,...,n

p

P
(P − (p− 1)S)−

∑ℓ

i=1
φi

Ti

p
P
−
∑ℓ

i=1
1
Ti

(13)

D = {d : d = φi + kTi, i = 1, . . . , n, k ∈ N, d < L∗}, (14)

and assuming that ApMs are sorted by an increasing value of
φi.

IV. SIMULATIVE ASSESSMENTS

A. Simulation Model Assessment

To assess the performance of the proposed approach, a
suitable simulation model was developed using the OMNeT++
framework. In the simulation model two kinds of nodes are
implemented, i.e., the EtherCAT Master and the EtherCAT
Slave. The EtherCAT Master is composed of a MasterDLL

module and a MasterPHY module. The first module period-
ically generates Ethernet frames and collects statistics. The
MasterPHY transmits the frame in one-byte long packets
and transmits each byte every 0.08µs (i.e., the byte time
of the 100Mb/s Ethernet). In this way, the timing of the
simulation model is compliant with that of the EtherCAT
standard. The EtherCAT Slave module provides several func-
tionalities. Among them, the EtherCAT DLL, which supports
both the periodic telegrams foreseen by the standard and the
aperiodic telegrams of the proposed Priority-driven swapping
approach, the forwarding mechanisms for incoming packets,



7

TABLE III
SIMULATION I - NETWORK PARAMETERS AND TIMINGS

Net. params Value/range

Tsv 1µs

Tpr 50ns

Tc 46.33µs

P 41.28µs

A 3.84µs

p 1

Payload size of an aperiodic telegram 44 bytes

Number of periodic telegrams 7

Payload size of a periodic telegram 48 bytes

the read/write and management functions of the ApMs local
queue, and the slave Application layer.

The simulation model was assessed by comparing the Ether-
CAT timing parameters calculated as in Sect. III with those
obtained in the simulation. In particular, for the simulations,
a typical networked control system for motion control was
simulated. The system consists of one controller (the master),
5 devices (the slaves), 6 joints and 4 wheels. Three slaves are
in charge of 2 axes each, and the other two slaves manage 4
wheels (2 wheels for each slave). For the joint control 48-byte
data is cyclically exchanged with a period of 50µs, a realistic
value for these applications [36]. The wheels are controlled in
an event-triggered way, so the traffic is sporadic (i.e., charac-
terized by a minimum interarrival time). The data transmission
period for the wheel control is 500µs [37] and data size at
the application layer is 32 bytes. The wheel control traffic
is randomly generated between 500µs and 1000µs using a
uniform distribution. The relative deadline Di is chosen equal
to the minimum interarrival time (i.e., 500µs). The slaves
may also transmit event notification messages characterized
by Ti = 1000µs and Di = 1000µs. The distance between
two consecutive network nodes is 2m, so the overall distance
covered by the Ethernet frames is 20m. The relevant simulation
parameters and timing are summarized in Table III.

In the simulation, the slaves 1 and 2 manage the wheels,
while the slaves 4,5, and 6 are in charge of the 6 joints.
Table IV shows the ApMs parameters. An ApM set indicates
the ApMs with the same interarrival time Ti and the same
relative deadline Di, and ∆k is the delay from the reception
of a frame at slave k to the reception of the same frame at
the master (as defined in Table II). With these parameters, the
conditions of Lemma 1 are met. Therefore, the scheduling of
the ApM set is feasible.

A simulation run of 10s, corresponding to a generation
of about 20000 ApMs, was performed and simulations were
repeated 5 times varying the seed of the random generators.
The calculated cycle time is 46.33µs as required from the
application. Results show that the response time values ob-
tained by the simulation match the ones calculated using the
analysis described in Section III. In Fig. 6 the Cumulative
Percentage Distribution of the message response times, defined
as the percentage of ApMs with the response time lower than a
given response time value (i.e., the value of x-axis), is drawn.

TABLE IV
SPORADIC TRAFFIC PARAMETERS OF SIMULATION I

ApMs Set Slave πi Ti Di ∆k

1 1 500µs 500µs 5.040µs

1 2 500µs 500µs 4.030µs

2 1 1000µs 1000µs 5.040µs

2 2 1000µs 1000µs 4.030µs

2 3 1000µs 1000µs 3.020µs

2 4 1000µs 1000µs 2.010µs

2 5 1000µs 1000µs 1.000µs

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Response Time (us)

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e
 D

is
tr

ib
u
ti
o
n
 (

%
)

ApM1 (D: 500us)

ApM2 (D: 1000us)

Fig. 6. Cumulative Percentage Distribution of the ApM Response Times.

This corresponds to the results of the analysis that proved
the feasibility of the considered ApM set (i.e., that the ApM
response times are always lower than their relative deadlines)
in the addressed scenario. The same simulation was performed
using static priorities. Results also match with the values
obtained with the analysis in Sect. III-C.

B. Cycle Time assessment

To assess the cycle times which can be reached using
the proposed approach and to compare it with the standard
EtherCAT, a set of simulations were performed. The goal of
these simulations is to find the minimum number of aperiodic
telegrams required to transmit the ApMs while maintaining
the Deadline Miss Ratio (DMR) (i.e., the number of deadline
misses over the number of generated ApMs) lower than 0.1%.

In this simulation a network with 10 slaves was deployed.
Each slave generated ApMs with three different priorities
(or deadlines in the case of EDF scheduling). ApMs were
generated with exponentially distributed random generation
periods with a given mean (λ), while the ApMs deadlines
were uniformly distributed. Table V shows the simulation
parameters. Lambda is given as an interval because for each
simulation run different lambda values were used. This choice
was made in order to evaluate the protocol performance with
varying mean generation periods.

To have realistic frame sizes, 20 periodic telegrams were
transmitted, in addition to the aperiodic telegrams, every cycle.
This entails an increase of 70.4µs in the cycle time. Each



8

TABLE V
PARAMETERS OF SIMULATION II

Parameters Values/Range

Number of slaves 10

Number of periodic telegrams 20

Payload size of a periodic telegram 32 bytes

Number of aperiodic telegrams (p) from 1 to 8

Payload size of an aperiodic telegram 32 bytes

ApMs deadlines 300µs, 600µs, 900µs

λ from 186µs to 1515µs

Repetitions 5 repetitions varying the seed

TABLE VI
CYCLE TIME AS A FUNCTION OF THE NUMBER OF APERIODIC TELEGRAMS

IN THE ETHERCAT FRAME

p Tc p Tc

1 87.62µs 5 101.70µs

2 91.14µs 6 105.22µs

3 94.66µs 7 108.74µs

4 98.18µs 8 112.26µs

simulation run was repeated 5 times varying the seed. In each
simulation the simulated time was chosen to collect statistics
over 50000 ApMs.

Increasing the number of aperiodic telegrams embedded in
the EtherCAT frame entails an increase in the cycle time. For
the simulated scenario, the cycle time values as a function of
the number of aperiodic telegrams are shown in Table VI.

Fig. 7 compares the simulation results obtained by the stan-
dard EtherCAT, the Priority-driven Swapping with dynamic
priorities (PdS-EDF), and the Priority-driven Swapping with
static priorities (PdS-SP).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

87.62

91.14

94.66

98.18

101.70

105.22

108.74

112.26

Mean ApM Generation Rate (ApM/s)

C
y
c
le

T
im

e
(u

s
)

PdS-EDF

EtherCAT Standard

PdS-SP

N
u

m
.

o
f

a
p

e
ri

o
d

ic
te

le
g

ra
m

s

8

7

6

5

4

3

2

1

Fig. 7. Cycle Time vs. Mean ApM Generation Rate

In the EtherCAT standard simulation, one periodic telegram
with 20 bytes of payload is transmitted by each slave, so the
cycle time is constant in Fig. 7 (i.e., 109.70µs). Conversely,
in the PdS-EDF and in the PdS-SP the cycle time varies as
a function of the aperiodic workload. This is an advantage
of the two mechanisms here proposed over the EtherCAT
standard. In fact, while the latter provides a constant cycle
time, that is higher than 109 us in Fig. 7, independently of the
actual aperiodic workload, the two Priority-driven Swapping
approaches obtain a cycle time that depends on the aperiodic

workload. As a result, under low aperiodic workloads, the
cycle time is also low. As shown in Fig. 7, the two Priority-
driven Swapping approaches experience a cycle time value
comparable with that of the EtherCAT standard only under
a high aperiodic workload, i.e., 53700 aperiodic messages
per second. The Priority-driven Swapping (PdS) shows the
same trend with both static (PdS-SP) and dynamic priorities
(PdS-EDF), with the difference that with the same number
of aperiodic telegrams embedded in one EtherCAT frame,
and so with the same cycle time, the PdS-EDF supports a
higher generation rate for aperiodic real-time messages than
the PdS-SP. This is because in the PdS-SP the low-priority
messages experience longer delays due to the interference
from the messages with higher priority. We highlight that in
both the Priority-driven Swapping approaches the number of
ApMs in the slave queue is always lower than 10 ApMs,
so the local queues were never saturated. Summarizing, the
Priority-driven Swapping offers better performance than the
EtherCAT standard in terms of reduction of the cycle time for
the aperiodic traffic.

C. Comparison with the CAN-Like

In this simulation a comparison between the Priority-
driven Swapping with another approach proposed in the liter-
ature [21], here called ¨CAN-Like¨, is performed. In particular,
the response times in a defined scenario are compared.

In the CAN-Like an aperiodic telegram, called MARB, is
embedded in the EtherCAT frame. Slaves transmit aperiodic
messages in the MARB using a ¨bytewise¨ arbitration (similar
to the CAN protocol). The CAN-Like approach allows the
possibility to transmit multiple aperiodic messages in a MARB
(but only one for each slave). Moreover, as the CAN-Like does
not provide any swapping mechanism, it requires an additional
telegram to inform the slaves about the received messages
(i.e., the MDBT Telegram). So, if the slave messages are
received by the master, then the slaves can remove the pending
messages from their local queue. This prevents the master from
embedding multiple MARBs in the same EtherCAT frame and
also prevents the slaves from transmitting multiple aperiodic
messages within a single MARB.

In order to compare the two protocols a network with 10
slaves was simulated. Each slave generates aperiodic messages
according to an exponential distribution with mean λ. A
simulation was performed using static priorities. The priority
of each message was assigned randomly with a uniform
distribution between three ranges, as shown in Table VII. As
the CAN-Like approach does not provide the possibility to
generate messages with the same priorities (as the priority
identifies the message), the index of each slave is subtracted
to the priority, so different slaves generate messages with
different priority (e.g., slave 10 subtracts 10 to the priority
of its messages). The same assignment has been used for
the Priority-driven Swapping here proposed. In Table VII the
parameters of this simulation are shown.

A tuning of the MARB length (for CAN-Like) and of the
number of aperiodic telegrams (for PdS) was performed in
order to choose the best simulation parameters regarding the



9

TABLE VII
PARAMETERS OF SIMULATION III

Parameters Values/Range

Number of slaves 10

Number of periodic teleg. 20

Payload size (periodic teleg.) 32 bytes

Number of aperiodic teleg. (p) 4 (PdS), 1 (CAN-Like)

Payload size (aperiodic teleg.) 32 bytes (PdS), 50 bytes (CAN-Like)

Repetitions 5 repetitions varying the seed

λ 1162µs (i.e., 8600 messages/s)

Aperiodic message priorities High:[600, 609]µs,
Medium:[900, 909]µs,
Low:[1200, 1209] µs

response times. For the CAN-Like a MARB of 50 bytes
was set, so that 2 aperiodic messages per cycle can be
transmitted (increasing the MARB size does not result in better
performance). The mean generation period for the aperiodic
messages is 1162µs, which corresponds to a workload of 8600
messages/s, so as not to saturate the network. The Cumulative
Percentage Distribution of response times is shown in Fig. 8.

0 1 2 3 4 5 6 7 8 9

x 10
−4

0

20

40

60

80

100

Response Time (s)

C
u
m

u
la

ti
v
e

P
e
rc

e
n
ta

g
e

D
is

tr
ib

u
ti
o
n

(%
)

CAN−Like (PRIO: [600:609])

CAN−Like (PRIO: [900,909])

CAN−Like (PRIO: [1200:1209])

PdS (PRIO: [600,609])

PdS (PRIO: [900,909])

PdS (PRIO: [1200,1209])

Fig. 8. Cumulative Percentage Distribution of Response Times (CAN-Like
vs. PdS)

Taking into account 80% of the aperiodic messages, the
Priority-driven Swapping (PdS) obtains response times lower
than 100µs, while the response times obtained by the CAN-
Like are higher than 100µs, but remain lower than 200µs.
Considering the whole set of messages, the maximum response
time for the highest priority messages is 214µs for the PdS
and 532µs for the CAN-Like, while the maximum response
time for the lowest priority messages is 406µs for the PdS
and 879µs for the CAN-Like. The Priority-driven Swapping
provides lower response time than the CAN-Like thanks to
the capability for the same slave to transmit multiple aperiodic
telegrams in the same EtherCAT frame.

V. CONCLUSIONS

In this work a Priority-driven swapping mechanism to deal
with the problem of providing support for aperiodic real-time
traffic over EtherCAT networks was presented. The proposed
mechanism provides the possibility for slaves to transmit
aperiodic real-time messages under static and dynamic pri-
orities, respectively, while maintaining the compatibility with

the EtherCAT standard. The proposed approach is suitable for
event-triggered control applications, as the aperiodic messages
can be transmitted while maintaining short cycle times (i.e.,
in the order of 100µs). The paper proposed a general analysis
for the Priority-driven scheduling based on response times
which can be used to assess the feasibility of a static priority
message set. As far as dynamic priorities are concerned, the
case of EDF scheduling was analytically assessed and the
relevant schedulability conditions were derived. The paper also
provided extensive simulative assessments performed through
the OMNeT++ framework. Future works will address the
possibility to embed multiple ApMs within a single aperiodic
telegram so as to further reduce the cycle time.

REFERENCES

[1] A. Cuenca, J. Salt, A. Salaand, and R. Piza, “A Delay-Dependent Dual-
Rate PID Controller Over an Ethernet Network,” IEEE Transactions on
Industrial Informatics, vol. 7, no. 1, 18-29, Feb. 2011.

[2] K. W. Schmidt and E. G. Schmidt, “Distributed Real-Time Protocols
for Industrial Control Systems: Framework and Examples,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 10, 1856-1866, Oct. 2012.

[3] A. Pawlowski, A. Cervin, J. L. Guzman, and M. Berenguel, “Gen-
eralized Predictive Control With Actuator Deadband for Event-Based
Approaches,” IEEE Transactions on Industrial Informatics, vol. 10, no.
1, 523-537, Feb. 2014.

[4] E. Moradi-Pari et Al., “Design, Modeling, and Simulation of On-Demand
Communication Mechanisms for Cyber-Physical Energy Systems,” IEEE
Transactions on Industrial Informatics, vol. PP, no. 99, 2014.

[5] S. Bose, B. Natarajan, C. M. Scoglio, N. N. Schulz, D. M. Gruenbacher,
and S. Das, “Shipboard Power Systems Reconfiguration—A Cyber-
Physical Framework For Response Time Analysis,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 1, 439-449, Feb 2014.
[6] D. M. E. Ingram, P. Schaub, R. R. Taylor, and D. A. Campbell,

“Performance Analysis of IEC 61850 Sampled Value Process Bus
Networks,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,
1445-1454, Aug. 2013.

[7] W. Kang, K. Kapitanova, and S. H. Son, “RDDS: A Real-Time Data
Distribution Service for Cyber-Physical Systems,” IEEE Transactions on

Industrial Informatics, vol. 8, no. 2, 393-405, May 2012.
[8] IEC 61784-2 Ed. 2, ¨Industrial communication networks - Profiles - Part

2: Additional fieldbus profiles for real-time networks based on ISO/IEC

8802-3¨, 2010.
[9] T. Sauter, “The Three Generations of Field-Level Networks—Evolution

and Compatibility Issues,” IEEE Transactions on Industrial Electronics,
vol. 57, no. 11, 3585-3595, Nov. 2010.

[10] P. Gaj, J. Jasperneite, and M. Felser, “Computer Communication Within
Industrial Distributed Environment—a Survey,” IEEE Transactions on

Industrial Informatics, vol. 9, no. 1, 182-189, Feb 2013.
[11] L. Zhang, H. Gao, and O. Kaynak, “Network-Induced Constraints

in Networked Control Systems—A Survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, 403-416, Feb 2013.

[12] M. May, D. Ganz, and H. Doran, “HSR and PROFINET IRT bandwidth
management in generic embedded systems,” in Proc. IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), Krakow,
Poland, Sept. 2012.

[13] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet IO IRT Message
Scheduling,” in Proc. IEEE Euromicro Conference on Real-Time Systems

(ECRTS), Dublin, Ireland, July 2009.
[14] M. Elshuber and R. Obermaisser, “Dependable and predictable time-

triggered Ethernet networks with COTS components,” Journal of Sys-

tems Architecture, vol. 59, 2013.
[15] IEC 61158-3-12 Ed. 2, ¨Industrial communication networks - Fieldbus

specifications - Part 3-12: Data-link layer service definition - Type 12
elements¨, 2010.

[16] J. Jasperneite, M. Schumacher, and K. Weber, “Limits of Increasing the
Performance of Industrial Ethernet Protocols,” in Proc. IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), Patras,
Greece, Sept. 2007, 17-24.

[17] G. Prytz, “A performance analysis of EtherCAT and PROFINET IRT,”
in Proc. IEEE Conference on Emerging Technologies and Factory

Automation (ETFA), Hamburg, Germany, Sept. 2008, 408-415.



10

[18] D. Orfanus, R. Indergaard, G. Prytz, and T. Wien, “EtherCAT-based
Platform for Distributed Control in High-Performance Industrial Ap-
plications,” in Proc. IEEE Conference on Emerging Technologies and

Factory Automation (ETFA), Cagliari. Italy, Sept. 2013.
[19] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “A Distribute-Merge

Switch for EtherCAT Networks,” in Proc. IEEE International Workshop
on Factory Communication Systems (WFCS), Nancy, France, May 2010,
121-130.

[20] G. Cena, A. Valenzano, and C. Zunino, “An arbitration-based access
scheme for EtherCAT networks,” in Proc. IEEE Conference on Emerging

Technologies and Factory Automation (ETFA), Hamburg, Germany, Sept.
2008, 416-423.

[21] G. Cena, I. C. Bertolotti, A. Valenzano, and C. Zunino, “A high-
performance CAN-Like arbitration scheme for EtherCAT,” in Proc. IEEE

Conference on Emerging Technologies and Factory Automation (ETFA),
Mallorca, Spain, Sept. 2009.

[22] A. Di Stefano, A. Gangemi, L. Lo Bello, and O. Mirabella, “Slot
swapping mechanisms for Process Control Networks,” in Proc. IEEE

International Symposium on Industrial Electronics (ISIE), Guimaraes.
Portugal, July 1997, 143-148.

[23] L. Lo Bello and A. Gangemi, “A slot swapping protocol for time-critical
internetworking,” Journal of Systems Architecture, vol. 51, 2005.

[24] A. Di Stefano, A. Gangemi, L. Lo Bello, and O. Mirabella, “A slot
swapping based fieldbus,” in Proc. Annual Conference of the IEEE

Industrial Electronics Society (IECON), Aachen. Germany, Aug.-Sept.
1998, 214-219.

[25] G. Patti, L. Lo Bello, G. Alderisi, and O. Mirabella, “An EDF-
based Swapping Approach to Enhance Support for Asynchronous Real-
Time Traffic over EtherCAT networks,” in Proc. IEEE Conference on

Emerging Technologies and Factory Automation (ETFA), Cagliari. Italy,
Sept. 2013.

[26] L. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM (JACM), vol. 20,
no. 1, 46-61, 1973.

[27] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
“Evaluation of EtherCAT Distributed Clock Performance,” IEEE Trans-

actions on Industrial Informatics, vol. 8, no. 1, 20-29, Feb. 2012.
[28] M. Soni, White paper: EtherCAT on Sitara TM AM335x ARM Cortex

TM -A8 Microprocessors, Texas Instruments, November 2011.
[29] S.-W. Moon, J. Rexford, and K. G. Shin, “Scalable Hardware Priority

Queue Architectures for High-Speed Packet Switches,” IEEE Transac-

tion on Computers, vol. 49, no. 11, Nov. 2000.
[30] A. K. Mok and X. A. Feng, “Towards compositionality in real-time

resource partitioning based on regularity bounds,” in Proc. IEEE Real-

Time Systems Symposium (RTSS), London, U.K., Dec. 2001, 129-138.
[31] M. Joseph and P. K. Pandya, “Finding Response Times in a Real-Time

System,” The Computer Journal, vol. 29, no. 5, 390-395, Oct 1986.
[32] K. Gresser, “An event model for deadline verification of hard real-time

systems,” in Proc. Euromicro Workshop on Real-Time Systems, Oulu,
Finland, June 1993, 118-123.

[33] K. Richter, R. Rocu, and R. Ernst, “Scheduling analysis integration for
heterogeneous multiprocessor SoC,” in Proc. IEEE Real-Time Systems

Symposium, Cancun, Mexico, Dec. 2003, 236-245.
[34] S. K. Baruah, R. R. Howell, and L. E. Rosier, “Algorithms and

Complexity Concerning the Preemptive Scheduling of Periodic, Real-
Time Tasks on One Processor,” Journal of Real-Time Systems, vol. 2,
301-324, 1990.

[35] S. K. Baruah, A. K. Mok., and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. IEEE Real-

Time Systems Symposium (RTSS), Lake Buena Vista, FL, Dec. 1990.
[36] S. Lim, I.-K. Jung, and J.-H. Kim, “A performance evaluation and task

scheduling of EtherCAT networked soft motion control system,” in Proc.

International Symposium on Robotics (ISR), Seoul, Oct. 2013.
[37] S. Vitturi, L. Peretti, L. Seno, M. Zigliotto, and C. Zunino, “Real-

time Ethernet networks for motion control,” Computer Standards &
Interfaces, vol. 33, 465-476, 2011.

APPENDIX

This Appendix provides the formal proofs of the Theorem
1 and Lemma 1 presented in Sect. III-D.

A. Theorem 1 - Derivation of the EDF schedulability condi-

tions.

Proof: Since the priority of ApMs is assigned according
to EDF, we adapt the guarantee test based on the demand
bound function [34]. Differently than a classic CPU scheduling
problem, the resource to be scheduled is not the CPU time
but rather the aperiodic telegrams. As also illustrated by the
dark gray band in Figure 4, the same aperiodic telegram is
available at different times for different slaves. To remove this
slave-dependent time shift, we set the common reference time
at the reception side of the master (illustrated as the horizontal
line at the bottom of Figure 4). The arrival of any ApM at time
t at slave k can be equivalently represented by the arrival of
the same message at time t + ∆k at the master. Then, if the
i-th ApM has deadline Di from the arrival at slave πi to the
reception at the master, it can be equivalently represented by a
message arriving directly at the master with deadline Di−∆πi

.
In addition, the assumption that the latest time to transmit the
ApMs is at the start of the reception of the incoming aperiodic
telegram, while the reading of the aperiodic message is made
only at the end of the reception of the entire frame at the
master, implies that all ApM deadlines must be decremented
by an amount A = Tet+Tec−Tap (also represented in Figure 4
by pq + c). In conclusion, the demand bound function [34],
which in this case is the largest possible number of ApMs with

arrival properly translated to the reference time at the master

and deadline within an interval of length t, is given by the
following expression:

n
∑

i=1

max

(

0,

⌊

t− (Di −∆πi
−A)

Ti

⌋

+ 1

)

(15)

Since the minimum possible number of aperiodic telegrams
available in any interval of length t is represented by s(t),
then Condition (8) holds, because EDF can schedule any task
set for which the demand bound function does not exceed the
available resource for all t ≥ 0. Hence, the Theorem is proved.

B. Lemma 1- A practical schedulability condition.

Proof: We observe that s(t) of (2) can be lower bounded
as follows

s(t) ≥

p
∑

j=1

(

t+ (j − 1)S

P
− 1

)

=
p

P
(t− P )+

S

P

p
∑

j=1

(j − 1)

=
p

P
(t− P ) +

S

P
p(p− 1) =

p

P
(t− (P − (p− 1)S)).

The left-hand side (LHS) of (8), which we denote for sim-
plicity dbf(t) to recall the demand bound function of EDF
scheduling [34], can be upper bounded as follows

dbf(t) ≤

n
∑

i=1

max

(

0,
t− φi

Ti

)

= max
ℓ=0,...,n

ℓ
∑

i=1

t− φi

Ti

,

since the ordering φ1 ≤ φ2 ≤ . . . ≤ φn holds. From the lower
bound of s(t) and the upper bound of dbt(t), it follows that



11

dbt(t) ≤ s(t) for all t satisfying the next condition

dbf(t) ≤ max
ℓ=0,...,n

ℓ
∑

i=1

t− φi

Ti

≤
p

P
(t− (P − (p− 1)S)) ≤s(t)

∀ℓ = 0, . . . , n,
ℓ

∑

i=1

t− φi

Ti

≤
p

P
(t− (P − (p− 1)S))

∀ℓ = 0, . . . , n,
p

P
(P − (p− 1)S)−

ℓ
∑

i=1

φi

Ti

≤ t(
p

P
−

ℓ
∑

i=1

1

Ti

)

∀ℓ = 0, . . . , n, t ≥

p

P
(P − (p− 1)S)−

∑ℓ

i=1
φi

Ti

p
P
−
∑ℓ

i=1
1
Ti

t ≥ max
ℓ=0,...,n

p
P
(P − (p− 1)S)−

∑ℓ

i=1
φi

Ti

p
P
−
∑ℓ

i=1
1
Ti

= L∗.

Note that dividing LHS and right-hand side (RHS) by p

P
−

∑ℓ

i=1
1
Ti

is possible, thanks to the hypothesis of (9).
Then ∀t ≥ L∗ is always dbf(t) ≤ s(t). If, instead, t < L∗

the condition (8) needs to be explicitly checked. However, it
is sufficient to check it only at the discontinuity of the LHS,
which are the absolute deadlines of all ApMs not larger than
L∗, all contained in D.

Lucia Lo Bello (M’02-SM’09) received the M.S.
degree in electronic engineering and the Ph.D. de-
gree in computer engineering from the University of
Catania, Catania, Italy. She is an Associate Profes-
sor with tenure with the Department of Electrical,
Electronic and Computer Engineering, University of
Catania.

Currently she is Visiting Professor at the Univer-
sity of Malardalen, Sweden and also the Chair of the
IES Technical Committee on Factory Automation.
She authored or coauthored more than 140 technical

papers in the area of industrial automation networks, real-time embedded
systems and wireless sensor networks.

Enrico Bini (SM’11) received the Ph.D. degree in
real-time systems from Scuola Superiore Sant’Anna,
Pisa, Italy, in 2004 and two M.Sc. degrees in com-
puter engineering and mathematics from the Univer-
sity of Pisa, Italy, in 2000 and 2010, respectively.

After becoming Assistant Professor at the Scuola
Superiore Sant’Anna, in 2012, he spent two years at
Lund University, Lund, Sweden, with a Marie-Curie
Fellowship, working with Karl-Erik Årzén on Cyber-
Physical Systems. While earning the Ph.D. degree,
he visited Sanjoy Baruah at the University of North

Carolina, Chapel Hill, NC, USA. He has published 80 papers (two best paper
awards) on scheduling algorithms, real-time operating systems, and design
and optimization techniques for real-time and control systems.

Gaetano Patti (M’13) received the M.S. degree
(summa cum laude) in computer engineering from
the University of Catania, Catania, Italy, in 2013.

He is currently working towards the Ph.D. degree
in Systems, Energy, Computer and Telecommunica-
tions Engineering at the University of Catania.

His research interests include real-time indus-
trial networks, Wireless Sensor Actuators Networks
(WSANs), powerline communications and networks
for mobile robots applications.


