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Our motivating application stems from surveys of natural populations and is

characterized by large spatial heterogeneity in the counts, which makes parametric

approaches to modeling local animal abundance too restrictive. We adopt a

Bayesian nonparametric approach based on mixture models and innovate with

respect to popular Dirichlet process mixture of Poisson kernels by increasing the

model flexibility at the level both of the kernel and the nonparametric mixing

measure. This allows to derive accurate and robust estimates of the distribution

of local animal abundance and of the corresponding clusters. The application and

a simulation study for different scenarios yield also some general methodological

implications. Adding flexibility solely at the level of the mixing measure does

not improve inferences since its impact is severely limited by the rigidity of the

Poisson kernel with considerable consequences in terms of bias. However, once

a kernel more flexible than the Poisson is chosen, inferences can be robustified

by choosing a prior more general than the Dirichlet process. Therefore to im-

prove the performance of Bayesian nonparametric mixtures for count data one has

to enrich the model simultaneously at both levels, the kernel and the mixing measure.

Keywords: Abundance heterogeneity; Bayesian Nonparametrics; mixture model;

Pitman–Yor process; Poisson mixture; Rounded Mixture of Gaussians.

1 Introduction

The Dirichlet process (DP) mixture model, introduced by Lo (1984), currently represents the

most popular Bayesian nonparametric model and is widely used for density estimation, cluster-

ing, and as key nonparametric ingredient in complex models. See Müller et al. (2015); Hjort

et al. (2010) for exhaustive accounts. A recent line of research has explored the possibility of

replacing, within mixture models, the DP with more general classes of nonparametric priors. It
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turns out that a more general nonparametric prior can lead to more accurate estimates, espe-

cially in terms of the quantification of the mixture components. See, for instance, Ishwaran and

James (2001); Lijoi et al. (2005; 2007b) and the recent reviews in Barrios et al. (2013); De Blasi

et al. (2015). However, up to now all studies have been confined to the case of mixture models for

continuous data. Although the case of count data, or discrete data in general, is also important,

little is known on the performance of general nonparametric mixtures for their estimation. Here

we fill this gap by considering discrete mixtures based on the Pitman–Yor process (Pitman and

Yor, 1997), which includes the DP as a special case, and verify whether the added flexibility is

beneficial also in the discrete case.

Our motivating application stems from surveys of natural populations and is characterized by

large spatial heterogeneity in the counts, a direct consequence of difference in animal abundance

among sample locations. In particular, we focus on a specific dataset consisting of counts of an

endangered fish species first analyzed in Dorazio et al. (2008), to be described in Section 3. In

their paper Dorazio et al. (2008) nicely show that the data heterogeneity requires a nonparamet-

ric approach, which is clearly superior to parametric models. As Bayesian nonparametric model

they adopt a DP mixture of Poisson kernels, a natural choice in presence of count data. Poisson

parametric and nonparametric mixtures, indeed, played a central role in extending the Pois-

son distribution for complex situations for their mathematical tractability. See, for instance,

Hougaard et al. (1997), Viallefont et al. (2002), Karlis and Xekalaki (2005), Guindani et al.

(2006; 2014), Brown and Buckley (2015) and Li et al. (2015). An alternative nonparametric

approach for discrete data is to avoid the mixture specification and instead directly model the

data by a discrete random probability measure. While this has been done successfully in the

context of species sampling problems (see e.g. Lijoi et al., 2007a; Favaro et al., 2012), it has

major disadvantages, such as not allowing the posterior to smoothly deviate from the prior, in

the context of probability mass function estimation. See e.g. Canale and Dunson (2011) for a

discussion. One of the key aspects of the results pointed out in Dorazio et al. (2008) is that

the estimation of the mixture components is a difficult task in this context. This observation

represents the starting point of our analysis aiming at improving estimation by replacing the

DP with a more general nonparametric prior. However, we discover that this is not sufficient

to stabilize and improve the estimates of the number of mixture components. In contrast, the

difficulty of this estimation problem is even more apparent with a general nonparametric prior.

This leads to conjecture that the origin of the problem is actually represented by the Poisson

kernel and our findings confirm it. It is well-known that the standard parametric Poisson model

cannot accommodate under- and over-dispersion. However, this lack of flexibility carries over,

to a certain extent, to Poisson mixtures regardless of how general the chosen mixing measure

is. In fact, the mean-variance structure of Poisson mixtures is still rigid and it is also easy to

show that even infinite Poisson mixtures do not contain under-dispersed distributions in their

support. Therefore, in order to appropriately tackle the application at hand we also consider
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kernels more flexible than the Poisson and, in particular, the Rounded Gaussian kernel recently

introduced in Canale and Dunson (2011). As will be shown, adding flexibility to both kernel

and mixing measure leads then to the envisaged more accurate and robust results.

Given these findings for the population count application, it is then natural to investigate the

general validity of the discovered phenomena. This is done by a simulation study for several

different scenarios. The conveyed evidence is unequivocal in suggesting: (i) to use Poisson

mixtures with caution given their lack of flexibility leading to a potentially poor fit in terms of

estimation of both the probability mass function and the number of mixture components; (ii) a

flexible and robust mixture model can be achieved by acting at both levels, the kernel and the

mixing measure, and Rounded Gaussian Pitman–Yor process mixtures appear to be an effective

and computationally convenient choice.

Section 2 first describes the setup of animal abundance estimation together with the sampling

protocol, then presents our nonparametric prior and the computational strategy. In Section 3,

the modeling strategy is applied to the Okaloosa darters dataset analyzed in Dorazio et al.

(2008) and the results are discussed. Section 4 is devoted to a simulation study in which

several different scenarios of data generating distribution are considered and the performance

of different nonparametric mixtures is compared. Section 5 contains some concluding remarks.

The Appendix provide complements concerning computational aspects, the application and the

simulation study.

2 Animal abundance estimation

Surveys of animal populations represent a natural source of count data. See Royle and Dorazio

(2008) for a recent review. In an important paper by Dorazio et al. (2008) the problem of

modeling heterogeneity in abundance of stream fishes among different sampling locations was

considered. Here we consider the same dataset, analyzed in Section 3, as motivating application.

In particular, data are collected with a specific sampling protocol called “removal sampling”

(Dorazio et al., 2005). Under this protocol, animals are removed from site i with i = 1, . . . , n

in Ji successive occasions called “removal passes”. Clearly the actual number of animals Yi at

each site cannot be directly observed and is to be estimated. The observed data, for the i-th

site, consist of zi = (zi1, . . . , ziJi)
′, a vector containing the number of animals observed in Ji

successive removal passes. The observed counts zi are modeled as multinomial outcomes with

parameters (Yi,πi) with πi = (πi1, . . . , πiJi)
′ and πij = πi(1− πi)j−1 for j = 1, . . . , Ji, where πi

denotes the capture probability at site i. Hence the probability mass function (pmf) of zi given

(Yi, πi) is

(1) Pr(zi|Yi, πi) =
Yi!

(Yi − zi)!
∏Ji
j=1 zij !

 Ji∏
j=1

π
zij
ij

1−
Ji∑
j=1

πij

Yi−zi

,



4 A. Canale, I. Prünster

with zi =
∑Ji

j=1 zij .

As in Dorazio et al. (2008) we assume independent priors for πi while the site-specific abun-

dances yi are modeled via a nonparametric mixture p(·) =
∫
k(·;x)P̃ (dx), where k is a parametric

kernel and the nonparametric component is given by random probability measure P̃ . Dorazio

et al. (2008) clearly show that the flexibility conveyed by a nonparametric approach is neces-

sary in this context overcoming drawbacks inherent to a parametric modeling. We innovate on

their approach in two dimensions. First, we consider mixing measures more general than the

DP, namely the Pitman–Yor process, to further improve the flexibility. Second, by considering

kernels more flexible than the Poisson. The results both for this dataset, reported in Section 3,

and for simulated data for different scenarios, reported in Section 4, show the benefit of our

proposed innovations and have interesting general methodological implications.

2.1 Prior specification

As far as the nonparametric component is concerned, we propose to use a Pitman–Yor (PY)

process, which represents probably the most tractable generalization of the DP. Such a nonpara-

metric prior has already found many successful applications in various areas including imagine

reconstruction, linguistics, networks, and species sampling, among others. See, e.g., Hjort et al.

(2010), Jara et al. (2010), and De Blasi et al. (2015) for recent accounts. Like for the DP, any

sample X1, . . . , Xn drawn from a PY process will feature ties with positive probability, there-

fore generating Kn ≤ n distinct observations X∗1 , . . . , X
∗
Kn

with frequencies n1, . . . , nKn such

that
∑Kn

j=1 nj = n. The PY can be defined in terms of its predictive distributions, which take

on a particularly simple form and uniquely characterize it. Let (σ, θ) be parameters such that

σ ∈ [0, 1] and θ > −σ and P0 be a probability distribution on X. The associated predictive

distributions are then of the form

(2) Pr(Xn+1 ∈ · |X1, . . . , Xn) =
θ + σKn

θ + n
P0( · ) +

1

θ + n

Kn∑
j=1

(nj − σ)δX∗
j
( · )

with δa indicating a point mass at a. In symbols a PY process will be denoted by PY(θ, σ;P0).

For σ = 0, the predictive distributions (2) clearlyuce to the well-known DP case and for θ = 0

one obtains the normalized stable process. Note that the PY process is also defined for the

parameter range σ < 0 and θ = |σ|m for some positive integer m, but for our purposes it

suffices to consider the case of σ ≥ 0 which includes the popular special cases. The predictive

distributions (2) represent also a key ingredient of the sampling scheme detailed in the next

section.

Given the nonparametric prior to be used, we propose to model the abundance distribution

p via PY mixture priors, i.e.

(3) p(·) =

∫
k(·;x)P̃ (dx), P̃ ∼ PY(θ, σ;P0).
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As for the kernel k, we compare the results of two different choices. Following Dorazio et al.

(2008), the first specification corresponds to k being a Poisson kernel with mean parameter

λ = exp(φ) and we also set the base measure P0 to be normal with mean α and variance ω2.

Hence, the hierarchical representation of the model is

Yi | φi ∼ Poi(exp(φi)), φi | P̃ ∼ P̃ , P̃ | σ, θ,N(α, ω2) ∼ PY(σ, θ;N(α, ω2)).(4)

The second specification relies on a flexible rounded Gaussian (RG) kernel. The general idea is

that a discrete kernel kr can be obtained by thresholding the domain of a continuous kernel k

via a prespecified sequence aj such that kr(j;x) =
∫ aj+1

aj
k(y∗;x)dy∗. For instance, if k(·, x) is

defined on R+, one can set aj = j for j = 0, 1, 2, . . . , whereas if k(·;x) is defined on [0, 1], one

can set aj = 0, 1/2, . . . , 1− 1/2j , . . . . Henceforth we consider the following RG mixture

Yi | µi, τi ∼ RG(µi, τ
−1
i ), (µi, τi) | P̃ ∼ P̃ , P̃ | σ, θ, P0 ∼ PY(σ, θ;P0).(5)

where RG(·;µ, τ−1) denotes a RG kernel with location µ and precision τ and thresholds a0 =

−∞, aj = j for j = 1, 2, . . . ,∞, i.e.

RG(j;µ, τ−1) =

∫ aj+1

aj

N(y∗;µ, τ−1)dy∗.

For the base measure we adopt standard choices (Escobar and West, 1995) assuming P0(µ, τ) =

N(µ;µ0, κτ
−1)Ga(τ ;α, β) and a hyperprior on the rate parameter β. Adopting a default empir-

ical Bayes approach, the scale parameter κ is fixed equal to the variance of the observed counts

in the first removal pass and the location parameter µ0 is set equal to
∑

j>1 z̄j , where z̄j is the

sample mean of the j-th removal pass, calculated for the locations having at least j removal

passes. Typically the location parameter is centered on the sample mean of the observed data,

which corresponds to computing the sample mean of the Yi’s in our sampling protocol. Since

these are not observed, we use the sum of the means of each removal count, accounting for the

fact that different numbers of removal counts are considered for different locations, as a proxy.

As for the parameters (θ, σ) of the PY process, we take different values of σ and fix θ in a way

to make the corresponding PY priors comparable. Specifically we consider σ = 0, 0.25, 0.5, 0.75

and fix θ such that the prior expected number of distinct mixture components, E[Kn], is equal to

a desired value. In this way all PY priors are centered, a priori, on the same number of clusters.

This is achieved in a straightforward way by using the well-known expressions for E[Kn] in PY

case (reported in the Appendix). In both cases we assume πi to be fixed for each location and

variability in detectability among sites is modeled with independent beta priors πi ∼ Be(a, b)

with a and b equal to the posterior means obtained by Dorazio et al. (2008).

2.2 Posterior computation

Posterior samples from the specifications discussed in Section 2.1 are obtained by using Markov

chain Monte Carlo (MCMC) algorithms. For the nonparametric Poisson mixtures, the algo-
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rithm detailed in the Supplementary Materials of Dorazio et al. (2008) has been used with the

appropriate modifications to extend it to PY processes. Instead, for model (5), our algorithm is

obtained by suitably adapting the one set forth in Canale and Dunson (2011). According to their

proposal, a first data augmentation step is required to simulate latent continuous Y ∗i ’s. Then,

conditionally on the Y ∗i ’s, the algorithm relies on any existing MCMC algorithm developed for

nonparametric mixtures of Gaussians. However, in this particular application also the Yi’s are

unobserved and need to be estimated from the observed removal counts. In Dorazio et al. (2008)

the full conditionals of the Yi’s have a simple Poisson specification and thus the simulation of

the Yi’s can be done easily. In contrast, for the RG case the conditional posterior of Yi is not

in closed form and a Metropolis-Hastings step needs to be introduced to simulate yi. However,

we are able to mitigate this issue by merging the steps to simulate Yi and Y ∗i in a single step,

directly simulating Y ∗i from its full conditional posterior distribution via Metropolis-Hastings.

Details are reported in the Appendix.

Conditionally on Y ∗i , each observation is assigned to a cluster Si with Si = 1, . . . ,Kn with

Kn ≤ n. The posterior clustering is done via a generalized Pólya-Urn sampler based on the pre-

dictive distributions (2). In particular, the modification of Algorithm 8 of Neal (2000) reported

in the Appendix is employed. A further reshuffling step that, conditionally on such cluster al-

locations, draws new values for the kernel’s parameters is also performed following Bush and

MacEachern (1996).

Finally, the conditional posterior distribution of πi and the probability of animal detection at

site i in a single removal have the same simple closed form as in Dorazio et al. (2008).

3 Okaloosa darters data analysis and discussion

The dataset that we considered consists of counts of Okaloosa darters (Etheostoma okaloosae)

in n = 53 different locations of a stream in northwest Florida and has already been analyzed

in Dorazio et al. (2008). The number of fishes observed in the first pass has mean 40.34 and

standard deviation 39.48 suggesting substantial heterogeneity in local abundances. Also, the

total number of removal passes varies from site to site and ranges between one and three. In

those sites where multiple passes were taken, lower removal counts were registered in successive

passes suggesting effectiveness of the sampling protocol in depleting the local populations of

animals.

To conduct our analysis, we consider prior centerings on 10, 22, 30 and 40 components and

the corresponding pairs of (θ, σ) are reported in Table 1.

In discussing the results of the analysis, we focus on the two key quantities of inferential inter-

est, namely the estimation of the pmf of the local abundance, which given the heterogeneity in

population distribution can be thought of as mixture, and the number of components such a pmf
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Table 1: PY prior centering for the n = 53 Okaloosa darters dataset: values of θ corresponding
to various choices of σ such that the prior expected number of components is equal to
a desired number.

E[Kn] σ = 0 σ = 0.25 σ = 0.50 σ = 0.75

10 3.38 1.60 0.21 -0.60
22 13.59 8.24 3.46 0.07
30 27.82 18.24 9.20 1.72
40 72.55 50.95 29.75 9.83

is made of. The different mixture components can be interpreted as clusters of locations with

similar fish abundance. A low number of mixture components denotes a substantially homoge-

neous distribution of the fishes along the stream while a high number of mixture components,

denotes a highly heterogeneous distribution.

First we focus on the estimation of the pmf of local abundance, which according to the adopted

Bayesian nonparametric approach, is obtained as posterior expected value of (3) or, in other

terms, as the predictive distribution. Figure 1 displays the corresponding estimates for the

Poisson and RG mixture models. In terms of prior specification, the plots correspond to the

intermediate case of σ = 0.25 and prior expected number of components E[Kn] = 30. It is

important to remark that there is no significant difference in the pmf estimates for each model

when varying σ or the prior centering of E[Kn]. The pmf estimates corresponding to the Poisson

mixture essentially coincides with one obtained in Dorazio et al. (2008) for the special case of a

Dirichlet process, i.e. a PY process with σ = 0. However, by comparing the Poisson mixture to

the RG mixture one realizes that the Poisson mixture tends to assign mixture components to

those observations that are far from 0. In fact, considering Poisson mixtures is a natural and at

first glance highly flexible choice. However, the well-know rigidity of the Poisson kernel (due to

a single parameter controlling location and scale) carries over to the mixture model even when

the mixing measure is a highly flexible nonparametric prior such as the PY process. In contrast,

as apparent from Figure 1, the RG model is able to capture both over- and under-dispersed

components. This can be done since the RG kernel has two different parameters designated

to control its location and scale respectively. Another appealing aspect of the RG model, if

compared to the Poisson model, is the ability to naturally detect zero-inflated pmf. Indeed, the

estimated mass in zero for the RG mixture is 0.112 while for the Poisson mixture it is just 0.032.

Note that the proportion of zero counts in the sample is 0.094.

Things become even more interesting when looking at the second key aspect, the posterior

distribution of the number of mixture components. This is quite a delicate point with Dirichlet

process mixtures since the inferential output often heavily depends on the specification of the

total mass parameter θ of the Dirichlet process. This undesirable feature is typically faced by
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Figure 1: Posterior estimates of local abundance Y for the Okaloosa darters dataset: Poisson
mixture (upper panel) and RG mixture (lower panel) with σ = 0.25 and E[Kn] = 30.
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putting a prior on θ. However, Dorazio et al. (2008) were the first to highlight that the results

may actually depend on the chosen prior. This probably went unnoticed because Dirichlet

process mixtures are typically used with continuous kernels and most often mixtures with a

small number of components are considered. The authors then circumvented the problem by

adopting the empirical Bayes procedure of McAuliffe et al. (2006) to estimate θ and obtained

reasonably stable results with a posterior estimate of 22 mixture components.

Here we have a closer look at this important phenomenon. Figure 2 displays the posterior

mean number of components used to fit the data by the Poisson and RG mixture models as σ

varies and with the 4 different prior specifications E[Kn] = 10, 22, 30, 40. First consider Poisson

mixtures. For the Dirichlet process case (σ = 0) and prior centering E[Kn] = 22, one obtains

the same estimate as Dorazio et al. (2008) for the number of mixture components. However,

still with σ = 0, by varying the prior centering and considering 10, 30, 40, the mean number

of components differ significantly and only slightly moves towards the desired 22 components.

The unpleasant influence of prior specifications on the estimated number of components is well-

known in the case of continuous mixtures, where it can be fixed by employing a nonparametric

prior more flexible than the Dirichlet process (see Lijoi et al., 2007b). In our case this means

allowing σ to be different from 0 or, in other terms, using the full range admitted by the PY

process. One would then expect that this should fix the problem also for discrete mixtures.

Figure 2 shows that this is not the case and that allowing σ to vary results only in increasing the

number of estimated mixture components as σ increases. This is clearly due to the inflexibility

of the Poisson kernel, which is not able to benefit from the greater flexibility at the level of

the mixing measure and uses it only to increase the number of components resulting in almost

erratic behavior. Hence, with a Poisson mixture, the task of estimating the mixture components

of the present dataset in a robust way is essentially an impossible task. This discovery and

its methodological implications will be explored in depth in Section 4. Turning to the RG

mixtures one notes the usual sensitivity with respect to the prior specification of E[Kn] for the

Dirichlet process case (σ = 0). However, for larger σ the estimates shrink closer to each other

and, regardless of the prior centering of E[Kn], essentially agree on about 30 components for

σ = 0.75. The path and tendency to overall stability of the estimates is neat and means that,

with a more flexible kernel like the RG, the mixture model is able to make a good use of the added

flexibility at the mixing measure level. This phenomenon will be further investigated through

a simulation study in Section 4. Finally, further evidence of the described behaviors can be

deduced from Figures 6 and 7 in the Appendix, where the corresponding posterior distributions

are depicted.

Summing up our discoveries, we find that the local abundance distribution of the Okaloosa

darters dataset is a highly complex mixture with zero-inflation and over- and under-dispersed

components. They confirm the conclusions of Dorazio et al. (2008) concerning the need for a
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Figure 2: Posterior mean number of distinct clusters E[Kn|−] for the Okaloosa darters dataset:
Poisson mixture (left panel) and RG mixture (right panel) for σ = 0, 0.25, 0.5, 0.75 and
prior expected number of components E(Kn) equal to 10 (continuous line), 22 (dashed
line), 30 (dotted line), and 40 (dash-dot line). Lines are connected for visualization
purposes only.

nonparametric model to deal with unobserved sources of heterogeneity. Moreover, they reveal

that the mixture distribution at hand is even more complex than previously thought with large

heterogeneity in terms of both number and shape of the clusters. From a methodological point

of view, our findings show the limitations of Poisson mixture models, which cannot be remedied

by using a more flexible mixing measure. Instead, once a sufficiently flexible kernel, such as the

RG, is chosen, the benefit of a general nonparametric component is apparent and inferences can

be robustified by choosing a prior more general than the DP.

4 Simulation study

By means of a simulation study we now further investigate the behavior of both Poisson and

RG mixtures driven by a PY process. In order to exclude a possible influence of the sampling

protocol on the inferential outcome, we assume to directly observe the count data Y . As the

results will show, the behaviors emerged in the application do not depend on it and are confirmed

by the simulation study. Computations have been carried out with the R package rmp (Canale,

2016), whose new version has been purposedly updated to include the PY process.
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Figure 3: Data generating pmf for the simulation experiments of Section 3. The pmf in the first
row correspond to Poisson mixtures with k0 = 3, 6, 12 components, the pmf in the
second row to RG mixtures with k0 = 3, 6, 12 components and the third row to the
complex mixtures described in, respectively, (9) and (10).
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Our goal is to compare the two competing mixture models in terms of providing robust

estimates of the number of components of the data generating distribution and performance in

estimating the pmf of count data. Three types of data generating distributions are considered:

RG mixtures, Poisson mixtures and complex mixtures made of components belonging to different

distributions. The corresponding pmf, from which the data are generated, are displayed in Figure

3.

The first (second) type serves to test the RG (Poisson) mixture in the most favorable situation,

i.e. when data are drawn from a mixture made of the same kernels, and verifies whether it detects

the correct number of components. Note that outside this favorable scenario, one cannot expect

to detect the correct number of components. In fact, when fitting a mixture of kernels ka with a

mixture of kernels kb, the number of kernels kb needed is different, and typically larger, than the

correct number of kernels ka. However, it is crucial that the estimate of the number components

is robust with respect to the prior specification leading to consistently stable estimates. Such a

robustness should also hold with respect to increases in the sample size, although some moderate

increase in the estimated components as the sample size increases is reasonable. In fact, a larger

sample implies potentially more components in nonparametric model and it is natural that when

using kernels kb to fit an ka kernel mixture some of these potential new components will be used

to produce a better fit.

As for the RG and Poisson mixtures data generating distributions, for each we consider three

scenarios with k0 = 3, 6, 12 components and generate datasets of size n = 50, 100, 200 on which

the models will be tested. Despite the outputs of single datasets for each scenario are reported,

the results are consistent also with different replicates. In terms of prior specification of the

nonparametric models, we vary the key parameter of the PY process σ considering 0, 0.25,

0.5, and 0.75. In addition, to make the models comparable and to check their sensitivity with

respect to prior centering we allow the prior expected number of components, E[Kn] to be equal

to 3, 6, 12, 24. This means that for each of the 9 samples (as k0 and n vary) we have 16 estimates

(as σ and E[Kn] vary) allowing to closely inspect the robustness of the model.

Consider first the case of RG mixtures with data generating distribution a RG mixture.

This is clearly a benchmark test for the RG mixture model and the posterior mean number

of components are reported in Table 2. If the prior expected number of components of the

model, E[Kn] is centered on the correct one k0 (i.e. 3, 6 or 12 in Table 2), the posterior

estimated number of components sticks to the truth with minimal variability as σ varies, hence

satisfying this minimal requirement. The key question is then whether the estimated number of

components is close to the truth also when the model is “misspecified” i.e. centered on a different

number of prior expected components. Table 2 shows that this is the case. For instance, in the

case of k0 = 6 true components and n = 100, when the prior is centered on 3 components,

the posterior estimated number of components increases towards the truth, whereas it decreases

towards the truth when centered in 12 or 24. This holds for any value of σ. Moreover, a closer



Robustifying Bayesian nonparametric mixtures for count data 13

look at the estimates, as σ varies, shows these are significantly better for larger σ implying that

a large σ allows to overcome prior misspecifications in a much more effective way. Analogous

considerations hold for all other cases. Importantly, from a modeling perspective, this shows that

RG mixtures benefit from using a more flexible mixing measure, i.e. with a large σ, to overcome

prior misspecifications. This is consistent with the findings in the case of nonparametric mixtures

for continuous data. See Lijoi et al. (2007b) and De Blasi et al. (2015).

Now consider the case of Poisson mixtures with data generated from a RG mixture. The

estimated number of components are also reported in Table 2. If the true data generating

distribution is made of 3 RG components, the model behaves relatively well. The estimated

number of components stabilizes around 4 components as both the value of σ and the sample

size increase. The only exception is the case of n = 50 with prior centering on 24 components,

where however one can see that the estimate moves in the right direction as σ increases. Recall

that the specific estimated value of the number components is not crucial given the data are

not generated from a Poisson mixture. What is important is the robustness of the inferential

outcome with respect to different prior specifications (and misspecifications). If we move on

to considering mixtures made of 6 components, the estimated number of components settles

around 13-16 components for σ = 0.75, but things start to become unstable as σ, n and k0 vary.

This is then apparent for the case of the 12 components data generating mixture where things

derail: the added model flexibility connected to larger σ’s induces the model to add more and

more components rather than to adapt quickly to specific value. In fact, the estimated number

of components is increasing in σ, regardless of the prior centering and the sample size, leading

for σ = 0.75 to estimated number of components of about 24, 45 and 60 for samples sizes of

50, 100 and 200, respectively. This means that, with a rigid kernel like the Poisson, adding

flexibility to the mixing measure does not bring any benefit and actually adds to the instability.

To the authors knowledge this is the first time such phenomena are reported in the literature

and we suspect they are specific to the discrete case. From a methodological point of view the

implications are clear: in order to gain the model flexibility required by count data, it is not

enough to enrich the mixing measure since this is neutralized by rigid kernels. To gain flexibility

both kernel and mixing measure are to be made more flexible at the same time. And, a RG

kernel combined with a PY process appear to be an effective choice.

Now consider the second type of data generating distribution, namely that of Poisson mixtures.

The full results are reported in Table 3 of the Appendix. Here we limit ourselves in displaying

Figure 4, which depicts the posterior mean number of components for both models estimated

on the basis of samples of size n = 50, 100, 200 generated from a mixture of k0 = 6 Poisson

distributions. In fact, the plot suffices to show the erratic behavior of Poisson mixtures, which are

not able to detect the correct number of mixture components (although the data are generated by

a Poisson mixture). Moreover, as before, adding flexibility to the mixing measure by increasing
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Table 2: Posterior mean number of mixture components E(Kn|−) for the simulated datasets.
Data generated from RG mixtures with k0 = 3, 6, 12 components and samples sizes
n = 50, 100, 200. Results for Poisson mixtures and RG mixtures and for σ =
0, 0.25, 0.50, 0.75 and prior expected number of components E(Kn) = 3, 6, 12, 24.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

k0 n E[Kn] 0 0.25 0.50 0.75 0 0.25 0.50 0.75

3 50 3 2.77 3.11 3.26 4.95 2.80 2.85 3.02 3.11
6 4.56 4.63 4.83 4.94 4.22 3.66 3.33 3.10
12 8.22 7.38 6.28 5.57 6.99 5.65 4.22 3.40
24 16.26 14.38 12.67 10.16 12.66 10.43 7.58 4.48

100 3 2.76 2.97 3.40 4.28 2.77 2.84 3.05 3.18
6 4.16 4.26 4.38 4.42 4.22 3.56 3.26 3.21
12 8.26 6.53 4.79 4.48 7.00 5.13 3.82 3.34
24 17.16 14.72 10.57 5.28 11.86 8.89 5.58 3.70

200 3 2.66 2.79 3.22 3.66 2.88 2.86 3.00 3.15
6 3.99 4.04 4.07 4.11 3.93 3.30 3.07 3.05
12 7.45 5.38 4.06 4.01 6.59 4.62 3.41 3.25
24 15.52 11.51 6.47 4.77 11.52 7.45 4.45 3.31

6 50 3 4.02 4.88 7.30 12.93 4.24 5.13 5.79 6.09
6 6.23 6.61 8.75 13.17 5.85 5.90 5.97 6.05
12 11.15 11.26 11.53 14.82 8.51 7.59 6.82 6.17
24 23.18 22.84 21.83 19.65 12.91 11.26 9.38 7.00

100 3 3.97 5.16 8.14 14.31 4.27 5.33 5.88 6.14
6 5.93 6.80 8.68 13.78 5.92 5.99 6.15 6.20
12 11.13 11.16 11.24 14.49 8.90 7.83 6.78 6.40
24 21.78 20.74 17.79 15.51 13.24 11.06 8.26 6.50

200 3 3.78 4.99 7.62 14.24 3.96 5.02 5.53 5.95
6 5.86 7.04 9.03 15.93 5.45 5.49 5.61 5.90
12 10.08 10.22 10.29 16.38 8.51 6.91 5.97 5.90
24 21.74 18.99 16.07 17.08 13.50 9.94 7.05 6.01

12 50 3 6.27 9.28 14.59 23.80 6.36 7.80 8.69 9.38
6 8.33 10.55 15.17 23.86 7.61 8.13 8.61 9.53
12 13.13 14.35 16.85 24.13 9.17 9.24 9.37 9.59
24 23.25 23.38 23.84 26.40 13.20 12.17 11.07 10.02

100 3 6.78 11.98 22.84 44.77 6.53 10.21 11.76 12.26
6 9.38 13.54 23.96 45.63 9.15 10.92 11.65 11.87
12 14.19 17.25 25.23 45.50 12.65 12.48 12.19 12.08
24 24.96 26.05 29.82 45.89 17.22 15.06 13.52 12.12

200 3 7.02 13.14 27.98 57.54 6.02 10.25 11.30 11.96
6 9.36 14.69 27.96 60.07 9.19 10.80 11.97 12.19
12 14.20 17.90 30.19 57.56 12.39 12.26 12.23 12.02
24 24.24 26.12 33.27 62.82 17.53 15.48 13.13 12.37
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Figure 4: Posterior mean number of mixture components E[Kn|−] for simulated datasets. Data
generated from a k0 = 6 Poisson mixture and results reported for samples sizes n =
50, 100, 200 (from left to right). Each plot depicts the posterior mean for both Poisson
(dashed) and RG (dotted) models for σ = 0, 0.25, 0.50, 0.75 and E[Kn] = 3, 6, 12, 24.
Lines are connected for visualization purposes only.

σ results in a strong overestimation of the mixture components. For the RG mixture model

the behavior is exactly the opposite: the estimated number of components stabilizes around 10,

which is reasonable given the data are not generated by a RG mixture, and the larger σ the

more the prior misspecification on the components number is overcome.

As for the estimated pmf, the plots, corresponding to the two types of data generating dis-

tributions considered so far, are reported in Figures 8 and 9 of the Appendix. The greater

flexibility and robustness of RG mixtures are clear as well as the poor fit and rigidity of Poisson

mixtures. However, the differences are less apparent at the pmf level given the number of em-

ployed components is typically difficult to visualize and, more importantly, the considered data

generating distributions have a quite regular structure with components of the same type.

Things change dramatically when considering more complex data generating distributions with

components of different shape. As we will see the rigidity of the Poisson mixture emerges strik-

ingly also at the pmf estimation level. In particular, the first scenario we consider corresponds

to a data generating distribution with 6 component pmf of the form

(6) .05δ0( · )+ .2Poi(·; 10)+ .1B(·; 100, .6)+ .15B(·; 100, .6)+ .2R-Poi(·; 40, 9)+ .3NC-Poi(·; 41, 6)

where B(·;n, π) is a binomial with n ∈ N and π ∈ [0, 1], and R-Poi(·;m,λ) and NC-Poi(·;m,λ)

are, respectively, a reverse and non-central Poisson, i.e.

R-Poi(j;m,λ) ∝ λm−j

(m− j)!
exp{−λ} for j = 1, . . . ,m
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NC-Poi(j;m,λ) =
λj−m

(j −m)!
exp{−λ} for j = m,m+ 1, . . . .

The second scenario corresponds to a 9 component mixture with pmf of the form

(7) .1δ0( · ) + .05δ1( · ) + .3Poi(·; 5) + .05Poi(·; 1) + .15B(·; 25, 0.8)

+ .2R-Poi(·; 45, 6) + .05R-Poi(·; 40, 3) + .05NC-Poi(·; 45, 7) + .05NC-Poi(·; 50, 8).

Both data generating mixtures are depicted in the third row of Figure 3. As for their estimation,

we compare our two competing models. For samples of sizes n = 100, the posterior pmf,

corresponding to both the Poisson and RG nonparametric mixtures with E[Kn] = 6 and σ = 0.75,

are depicted in Figure 5. The evidence concerning the lack of flexibility of the Poisson mixture

model is indisputable and clearly shows its inability to fit under-dispersed components and

overly smooth different components with locations far from zero. In contrast, the RG mixture

has a satisfactory performance being able to closely resemble the data generating distributions.

Analogous behaviors arise for different prior specifications and sample sizes. For instance, for the

case (7), their performance as the sample sizes varies is shown in Figure 10 of the Appendix. The

results on the posterior mean number of components are reported in Table 4 of the Appendix.

Given (6) and (7) have little in common with both Poisson and RG mixtures and the components

are irregular, it is not surprising that the nonparametric model uses more components than the

actual ones. However, exactly as in the cases considered before, the RG nonparametric mixture

stabilizes around the used number of components as σ increases. The Poisson nonparametric

mixture, instead, is again erratic.

Focusing again on the pmf estimation, it is also important to evaluate a quantitative index

of discrepancy between the estimated pmf and the data generating distribution. We do this by

means of the Kullback–Leibler divergence. The results, reported in Tables 5–7 of the Appendix,

clearly show that the RG mixture has a dramatically better performance both when the data

are generated from both RG mixtures and the complex mixtures with components of different

shapes. Quite naturally, when the data are generated from a Poisson mixture, the performance

of the Poisson mixture model is slightly better with the differences decreasing as n increases.

The considered scenarios are not particular cases and are confirmed by several other simulation

studies not reported here. Although there may be cases in which also a Poisson mixture well

approximates true pmf with the correct number of mixture components, practitioners are to

warned to using nonparametric Poisson mixtures with caution.

5 Concluding remarks

We considered an application concerning surveys of natural populations of animals with sig-

nificant spatial heterogeneity in the corresponding counts. Given the need for nonparametric
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Figure 5: Posterior pmf for the two complex scenarios given n = 100 data generated from (6)
(upper two plots) and (7) (lower two plots). The first and third figures display the
posterior estimates of the RG model (depicted in solid), whereas the second and fourth
of the Poisson model (depicted in solid) with E[Kn] = 6 and σ = 0.75. The true pmf
are in dotted grey.
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modeling in such contexts as proven in Dorazio et al. (2008), we adopted a Bayesian nonparamet-

ric approach and innovated previous studies by considering mixture models with more flexible

both kernel and mixing measure. This leads to more accurate estimation of the pmf of local

abundance and to a more robust quantification of its components. Starting from these findings,

we enlarged the goal to deduce general methodological implications via a simulation study for

several different scenarios. We discovered that adding flexibility to a Poisson mixture model by

generalizing the nonparametric mixing measure is severely limited by the rigidity of the Poisson

kernel and leads to a full display of the instability of Poisson mixtures in estimating the number

of mixture components. In contrast, if a sufficiently flexible kernel, such as the RG, is chosen,

inferences become more accurate and robust by choosing a prior more general than the DP.

Overall inferences for count data are improved when simultaneously selecting both kernel and

mixing measure more general than the standard DP mixture with Poisson kernel.

6 Appendix

6.1 Gibbs sampling algorithm

The Gibbs sampling algorithm set forth in Sections 2–3 iterates the following steps.

1. For each i = 1, . . . , n

• generate a candidate Ỹ ∗i from NA(xi)(µi, τ
−1
i ), were A(xi) = {Y ∗ : Y ∗ ≥ axi};

• let Ỹi = s if as ≤ Ỹ ∗i < as+1 and keep it with probability

min

{
1,
Ỹi!(Yi − xi)!
Yi!(Ỹi − xi)!

(1− πi)Ji(Ỹi−Yi)
}

2. Let S1, . . . , Sn be the current cluster allocation. For i = 1, . . . , n let H\i the set of distinct

values of Sj for j 6= i with k\i its cardinality. Then allocate the i-th observation to one

existing cluster h ∈ H\i or to a new cluster h∗ with the following probability

Pr(Si = h|−) ∝

{
(nh − σ)N(Y ∗i ;µh, τ

−1
h ) for h ∈ H\i

(θ + k\iσ)N(Y ∗i ;µ∗, τ
−1
∗ ) for h = h∗

where nh is the cluster size (excluding the ith observation), and (µ∗, τ∗) are a new draw

from P0.

3. Update (µh, τh) from its conditional posterior

(µh, τ
−1
h ) ∼ N(µ̂h, κ̂hτ

−1
h )Ga(âτh , b̂τh)

with âτh = aτ + nh/2, b̂τh = bτ + 1/2(
∑

i:Si=h
(Y ∗i − Ȳ ∗h ) + nh/(1 + κnh)(Ȳ ∗h − µ0)

2),

κ̂h = (κ−1 + nh)−1 and µ̂h = κ̂h(κ−1µ0 + nhȲ
∗
h ).
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4. For each i = 1, . . . , n, update πi from

πi ∼ Beta(aπ + xi, bπ + Ji(Yi − xi)− xi +

Ji∑
j=1

jxij).

6.2 Prior elicitation of the Pitman–Yor process

Given a sample X1, . . . , Xn generated by a PY(θ, σ;P0) process the expected number of distinct

values, Kn, is equal to

E[Kn] =
n∑
i=1

(θ + σ)i+1

(θ + 1)i+1
=

{∑n
i=1

θ
θ+i−1 if σ = 0

(θ+σ)n
σ(θ+1)n−1

− θ
σ if σ > 0

where (a)n = Γ(a+ n)/Γ(a) is the ascending factorial coefficient. See Pitman (2006).

The previous relations can be readily used to the identify θ such that E[Kn] is equal to a

desired value for any given σ and sample size n with straightforward numerical methods.

6.3 Additional plots and tables

Figures 6 and 7 report the posterior distributions of the number of components Kn|− for the

Okaloosa darters dataset as σ varies. Figure 8 depicts the posterior pmf when the data are

generated from a RG mixture. Table 3 shows the posterior mean number of components under

different prior specifications when the data generating distribution is a Poisson mixture. Figure 9

displays the associated posterior pmf estimates. Table 4 shows the posterior mean number of

components under different prior specifications when the data generating distribution are the

two complex mixtures (scenario 1 corresponds to (6) and scenario 2 to (7)). The corresponding

posterior pmf as the sample size varies are displayed in Figure 10. Tables 5-7 consider goodness

of fit of the estimated pmf: the values of the Kullback-Leibler divergence between the posterior

pmf and the data generating pmf under the different scenarios, namely data generated from

different Poisson, RG and complex mixtures, are displayed.
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Figure 6: Posterior distributions of the number of components Kn|− for the Okaloosa darters
dataset for the RG mixture model as σ varies. The prior expected number of compo-
nents E[Kn] is set equal to 10 (a), 22 (b), 30 (c), and 40 (d). The posterior probability
mass is represented with a color scale ranging from white for low probability to darker
color for higher probability.
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Figure 7: Posterior distributions of the number of components Kn|− for the Okaloosa darters
dataset for the Poisson mixture model as σ varies. The prior expected number of
components E[Kn] is set equal to 10 (a), 22 (b), 30 (c), and 40 (d). The posterior
probability mass is represented with a color scale ranging from white for low proba-
bility to darker color for higher probability.
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Figure 8: Posterior probability mass functions given n = 100 data generated from the 12 com-
ponent RG mixture. The first row displays the posterior estimates of the RG model
(depicted in solid blue) whereas the second of the Poisson model (depicted in solid
red) both with σ = 0.75 and, respectively, E[Kn] = 3 and E[Kn] = 24. The true pmf
are in solid black.
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Table 3: Posterior mean number of components E(Kn|−) for the simulated datasets. Data
generated from Poisson mixtures with k0 = 3, 6, 12 components and samples sizes n =
50, 100, 200. Results for Poisson mixtures and RG mixtures with σ = 0, 0.25, 0.50, 0.75
and prior expected number of components E[Kn] = 3, 6, 12, 24.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

k0 n E[Kn] 0 0.25 0.50 0.75 0 0.25 0.50 0.75

3 50 3 4.36 5.78 8.59 13.52 4.14 5.14 6.08 6.51
6 6.40 7.26 9.38 12.99 6.10 6.11 6.28 6.66
12 11.37 11.22 11.76 14.09 9.28 8.36 7.38 6.77
24 22.27 21.45 20.33 17.97 14.95 13.07 10.45 7.76

100 3 4.05 5.62 8.48 14.29 4.13 5.12 5.92 6.21
6 5.98 6.84 8.42 14.93 5.81 6.02 6.03 6.04
12 10.65 10.73 10.81 16.18 9.24 7.86 6.50 6.27
24 21.57 20.42 17.78 18.64 14.81 11.97 8.91 6.30

200 3 4.12 5.66 10.14 15.18 4.47 6.19 6.71 6.74
6 6.31 7.17 10.04 15.56 6.23 6.24 6.26 6.28
12 11.07 10.11 12.18 16.22 9.70 8.64 7.43 6.51
24 20.68 18.40 16.59 16.36 15.67 12.24 8.56 6.39

6 50 3 6.32 10.41 17.53 29.88 5.75 9.69 12.20 12.63
6 8.96 12.16 18.31 30.19 9.04 11.07 12.41 12.75
12 14.31 16.16 20.19 29.69 13.39 13.25 13.24 12.93
24 24.90 25.40 26.71 31.56 19.69 18.59 16.57 13.74

100 3 6.49 12.64 26.90 54.04 6.05 11.13 14.44 14.49
6 9.43 14.64 27.81 54.37 9.23 12.18 14.54 14.58
12 14.72 18.60 29.33 55.47 14.08 14.86 14.98 14.99
24 26.03 28.05 33.54 54.07 20.94 19.27 16.91 14.78

200 3 6.99 15.70 40.31 88.96 6.16 13.97 15.04 16.68
6 9.98 17.32 41.02 90.81 9.39 15.13 16.03 16.90
12 15.31 21.57 40.52 89.54 15.06 17.36 17.42 17.46
24 26.65 30.53 44.17 90.40 23.91 22.35 19.82 17.01

12 50 3 5.63 8.63 14.80 25.17 5.07 6.95 7.77 8.52
6 8.09 10.17 15.63 25.11 7.23 7.72 8.15 8.37
12 13.20 14.43 17.63 25.89 9.87 9.38 8.96 8.39
24 24.11 24.22 24.84 27.86 14.55 13.05 11.21 9.06

100 3 6.43 11.56 23.09 47.40 4.53 6.86 8.02 8.15
6 8.98 12.95 23.74 45.52 7.09 8.00 8.12 8.24
12 14.21 16.74 25.08 47.00 10.75 10.13 9.65 8.14
24 25.07 26.28 30.23 47.90 15.61 13.52 11.05 8.93

200 3 6.22 12.88 29.44 62.74 4.84 6.59 7.17 7.38
6 9.05 14.78 30.81 63.76 6.44 7.34 7.43 7.99
12 14.30 18.45 31.35 63.33 10.21 9.50 8.53 7.25
24 24.85 26.91 35.34 67.55 16.19 13.28 9.62 7.56
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Figure 9: Posterior probability mass functions given n = 200 data generated from the 6 compo-
nent Poisson mixture. The first row displays the posterior estimates of the RG model
(depicted in solid blue) whereas the second of the Poisson model (depicted in solid
red) both with E[Kn] = 6 and, respectively, σ = 0 and σ = 0.75. The true pmf are in
solid black.
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Table 4: Posterior mean number of components E(Kn|−) for the simulated datasets. Data gener-
ated from complex mixtures with 6 (Scenario 1 corresponding to (6)) and 9 (Scenario 2
corresponding to (7)) components and samples sizes n = 50, 100, 200. Results for Pois-
son mixtures and RG mixtures with σ = 0, 0.25, 0.50, 0.75 and prior expected number
of components E[Kn] = 3, 6, 12, 24.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

Scenario n E[Kn] 0 0.25 0.5 0.75 0 0.25 0.5 0.75

1 50 3 5.14 6.99 10.50 15.77 6.24 7.84 9.28 10.19
6 7.12 8.47 11.14 16.25 7.97 8.58 9.41 10.01
12 11.18 11.45 12.68 16.41 10.34 10.10 10.09 10.02
24 20.09 19.19 18.08 18.03 15.23 13.91 12.46 10.96

100 3 6.12 9.94 17.76 31.83 6.89 10.43 11.96 11.96
6 8.19 11.21 19.19 31.67 9.28 11.27 11.78 11.93
12 12.83 14.46 20.11 32.56 12.02 12.02 12.03 12.03
24 21.95 22.22 24.20 32.42 18.32 16.52 14.23 12.27

200 3 6.10 10.25 17.95 41.04 7.25 12.25 13.88 14.99
6 7.91 10.88 18.69 38.53 9.60 13.12 14.43 14.76
12 11.93 13.94 20.42 40.68 13.59 14.71 15.15 15.21
24 20.83 20.65 23.55 41.11 20.02 17.87 15.93 13.97

2 50 3 5.05 7.60 13.61 23.07 5.65 7.87 8.99 9.45
6 6.58 8.55 13.51 23.95 7.14 8.16 9.32 9.54
12 9.58 10.43 13.82 23.23 9.24 9.29 9.39 9.54
24 14.83 14.44 15.92 23.68 12.68 11.36 10.22 9.51

100 3 5.20 8.31 15.49 30.50 6.38 9.90 12.06 12.43
6 7.17 9.28 16.00 29.70 8.42 10.64 12.08 12.38
12 10.89 12.04 16.54 30.15 11.31 11.95 12.52 12.54
24 18.13 17.76 19.36 30.77 16.26 14.48 13.42 12.56

200 3 5.46 9.60 18.90 42.78 6.26 10.79 14.70 14.66
6 7.98 11.33 18.97 42.46 8.62 11.92 14.48 14.78
12 12.41 13.88 21.15 42.81 13.14 13.89 15.38 14.63
24 21.83 21.96 25.03 42.04 20.55 18.88 16.49 14.58
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Figure 10: Posterior probability mass functions given n = 50, 100, 200 data generated (from left
to right) from the complex mixture (7). The first row displays the posterior estimates
for the RG model (depicted in solid blue), whereas the second for the Poisson model
(depicted in solid red) with E[Kn] = 12 and σ = 0.75. The true pmf are in solid
black.
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Table 5: Kullback–Leibler divergence between the posterior pmfs and the data generating pmfs,
which are Poisson mixtures with k0 = 3, 6, 12 components. The posterior pmfs cor-
respond to nonparametric Poisson and RG mixtures with σ = 0, 0.25, 0.50, 0.75, prior
expected number of components E[Kn] = 3, 6, 12, 24 and sample sizes n = 50, 100, 200.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

k0 n E[Kn] 0 0.25 0.5 0.75 0 0.25 0.5 0.75

3 50 3 0.03 0.04 0.05 0.07 0.03 0.04 0.06 0.08
6 0.04 0.04 0.05 0.07 0.04 0.05 0.06 0.08
12 0.05 0.05 0.06 0.07 0.06 0.06 0.07 0.09
24 0.10 0.09 0.09 0.08 0.18 0.15 0.12 0.10

100 3 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.06
6 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.06
12 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.06
24 0.05 0.05 0.04 0.04 0.08 0.07 0.06 0.06

200 3 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04
6 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04
12 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04
24 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04

6 50 3 0.06 0.05 0.05 0.05 0.04 0.06 0.09 0.13
6 0.05 0.05 0.05 0.05 0.05 0.07 0.10 0.13
12 0.05 0.05 0.05 0.05 0.08 0.09 0.11 0.13
24 0.04 0.04 0.04 0.05 0.24 0.22 0.19 0.16

100 3 0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.08
6 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.08
12 0.02 0.02 0.02 0.03 0.04 0.05 0.06 0.08
24 0.02 0.02 0.03 0.03 0.07 0.08 0.08 0.08

200 3 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04
6 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04
12 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.04
24 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04

12 50 3 0.07 0.06 0.06 0.07 0.07 0.10 0.12 0.15
6 0.06 0.05 0.06 0.06 0.10 0.12 0.13 0.15
12 0.05 0.05 0.06 0.07 0.13 0.13 0.14 0.16
24 0.06 0.06 0.06 0.07 0.22 0.20 0.17 0.16

100 3 0.05 0.04 0.04 0.06 0.06 0.07 0.08 0.10
6 0.04 0.04 0.04 0.06 0.07 0.07 0.09 0.10
12 0.04 0.04 0.04 0.06 0.08 0.09 0.09 0.10
24 0.04 0.04 0.05 0.06 0.10 0.10 0.10 0.12

200 3 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.04
6 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.04
12 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04
24 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.04
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Table 6: Kullback–Leibler divergence between the posterior pmfs and the data generating pmfs,
which are RG mixtures with k0 = 3, 6, 12 components. The posterior pmfs correspond
to nonparametric Poisson and RG mixtures with σ = 0, 0.25, 0.50, 0.75, prior expected
number of components E[Kn] = 3, 6, 12, 24 and sample sizes n = 50, 100, 200.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

k0 n E[Kn] 0 0.25 0.5 0.75 0 0.25 0.5 0.75

3 50 3 0.54 0.54 0.55 0.55 0.34 0.34 0.34 0.33
6 0.55 0.55 0.55 0.55 0.33 0.33 0.33 0.33
12 0.56 0.56 0.56 0.55 0.32 0.32 0.33 0.33
24 0.60 0.58 0.56 0.56 0.48 0.42 0.36 0.33

100 3 0.51 0.52 0.51 0.51 0.38 0.38 0.38 0.37
6 0.51 0.51 0.51 0.51 0.37 0.37 0.37 0.37
12 0.53 0.53 0.52 0.52 0.35 0.36 0.37 0.37
24 0.56 0.54 0.52 0.52 0.34 0.34 0.35 0.37

200 3 0.47 0.47 0.47 0.47 0.30 0.30 0.29 0.30
6 0.48 0.47 0.47 0.47 0.29 0.29 0.30 0.30
12 0.48 0.48 0.48 0.47 0.28 0.29 0.29 0.30
24 0.49 0.48 0.47 0.47 0.28 0.28 0.29 0.29

6 50 3 0.30 0.31 0.32 0.36 0.27 0.28 0.28 0.28
6 0.30 0.32 0.33 0.35 0.27 0.27 0.28 0.28
12 0.32 0.33 0.33 0.36 0.27 0.28 0.29 0.28
24 0.36 0.36 0.37 0.38 0.39 0.36 0.33 0.29

100 3 0.28 0.28 0.29 0.30 0.22 0.22 0.22 0.22
6 0.28 0.28 0.29 0.30 0.22 0.22 0.22 0.22
12 0.28 0.28 0.29 0.30 0.22 0.22 0.22 0.22
24 0.29 0.29 0.29 0.30 0.23 0.22 0.21 0.22

200 3 0.27 0.27 0.27 0.27 0.22 0.22 0.22 0.21
6 0.27 0.27 0.27 0.28 0.22 0.22 0.22 0.21
12 0.27 0.27 0.27 0.27 0.22 0.21 0.21 0.21
24 0.27 0.27 0.27 0.27 0.21 0.21 0.21 0.21

12 50 3 0.16 0.16 0.18 0.21 0.16 0.16 0.16 0.21
6 0.16 0.17 0.18 0.21 0.20 0.20 0.21 0.24
12 0.17 0.17 0.19 0.22 0.23 0.22 0.23 0.24
24 0.21 0.20 0.21 0.22 0.37 0.33 0.29 0.26

100 3 0.16 0.17 0.18 0.20 0.17 0.18 0.20 0.20
6 0.17 0.17 0.18 0.21 0.16 0.17 0.18 0.20
12 0.17 0.18 0.18 0.20 0.17 0.18 0.19 0.20
24 0.19 0.19 0.19 0.21 0.18 0.18 0.18 0.20

200 3 0.11 0.12 0.12 0.13 0.09 0.09 0.10 0.11
6 0.11 0.12 0.12 0.13 0.09 0.09 0.10 0.11
12 0.12 0.12 0.12 0.13 0.10 0.10 0.10 0.11
24 0.13 0.12 0.13 0.13 0.11 0.11 0.11 0.11
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Table 7: Kullback–Leibler divergence between the posterior pmfs and the data generating pmfs,
which are complex mixtures with 6 (Scenario 1 corresponding to (6)) and 9 (Scenario
2 corresponding to (7)) components. The posterior pmfs correspond to nonparamet-
ric Poisson and RG mixtures with σ = 0, 0.25, 0.50, 0.75, prior expected number of
components E[Kn] = 3, 6, 12, 24 and sample sizes n = 50, 100, 200.

Mixture of Poissons Mixture of Rounded Gaussians
σ σ

Scenario n E[Kn] 0 0.25 0.5 0.75 0 0.25 0.5 0.75

1 50 3 0.34 0.33 0.32 0.32 0.26 0.22 0.19 0.18
6 0.32 0.33 0.32 0.32 0.23 0.20 0.18 0.17
12 0.31 0.32 0.32 0.32 0.18 0.17 0.18 0.18
24 0.32 0.32 0.31 0.31 0.22 0.21 0.19 0.18

100 3 0.22 0.23 0.25 0.26 0.07 0.07 0.07 0.08
6 0.22 0.23 0.24 0.26 0.07 0.07 0.07 0.08
12 0.23 0.23 0.24 0.26 0.07 0.07 0.08 0.08
24 0.26 0.25 0.26 0.26 0.09 0.09 0.08 0.08

200 3 0.18 0.18 0.19 0.21 0.03 0.03 0.03 0.04
6 0.18 0.19 0.19 0.21 0.03 0.03 0.03 0.04
12 0.19 0.19 0.19 0.21 0.03 0.03 0.03 0.04
24 0.20 0.20 0.20 0.21 0.03 0.03 0.04 0.04

2 50 3 0.30 0.30 0.32 0.34 0.20 0.19 0.19 0.21
6 0.30 0.31 0.32 0.34 0.19 0.19 0.19 0.21
12 0.31 0.31 0.32 0.35 0.17 0.18 0.19 0.21
24 0.33 0.32 0.33 0.35 0.17 0.18 0.19 0.21

100 3 0.23 0.23 0.24 0.25 0.08 0.08 0.08 0.09
6 0.23 0.23 0.24 0.25 0.08 0.08 0.08 0.09
12 0.23 0.23 0.24 0.25 0.08 0.08 0.08 0.09
24 0.24 0.24 0.24 0.26 0.07 0.08 0.08 0.09

200 3 0.21 0.20 0.20 0.22 0.02 0.02 0.03 0.04
6 0.20 0.20 0.21 0.23 0.02 0.02 0.03 0.04
12 0.20 0.20 0.21 0.22 0.02 0.02 0.03 0.04
24 0.21 0.20 0.21 0.22 0.03 0.03 0.03 0.04
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