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ABSTRACT 

Muscoloskeletal ultrasound imaging can be used to investigate the skeletal muscle structure in 

terms of architecture (thickness, cross sectional area, fascicle length, and fascicle pennation angle) 

and texture. Gray-scale analysis is commonly used to characterize transverse scans of the muscle. 

Gray mean value is used to distinguish between normal and pathological muscles, but it depends on 

the image acquisition system and its settings. 

In this study, quantitative ultrasonography was performed on five muscles (biceps brachii, vastus 

lateralis, rectus femoris, medial gastrocnemius, and tibialis anterior) of twenty healthy subjects (10 

females, 10 males) to assess the characterization performance of higher-order texture descriptors to 

differentiate genders and muscle types. A total of 53 features (7 first-order descriptors, 24 Haralick 

features, 20 Galloway features, and 2 Local Binary Pattern features) were extracted from each 

muscle region of interest (ROI) and were used to perform the multivariate linear regression analysis 

(MANOVA). Our results show that first order descriptors, Haralick features (energy, entropy, and 

correlation measured along different angles) and local binary pattern (LBP) energy and entropy 

were highly linked to the gender, whereas Haralick entropy and symmetry, Galloway texture 

descriptors, and LBP entropy helped to distinguish muscle types. Hence, the combination of first-

order and higher-order texture descriptors (Haralick, Galloway, and LBP) can be used to 

discriminate gender and muscle types. Therefore, multi-texture analysis may be useful to investigate 

muscle damage and myopathic disorders.  

 

Keywords: Muscle ultrasonography, texture analysis, muscle characterization, musculoskeletal 

ultrasound, Haralick features, Galloway features, Local Binary Pattern, gray scale mean value, 

MANOVA 
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INTRODUCTION 

Ultrasound imaging is proven to be effective in the investigation of the skeletal muscle structure 

(Walker et al. 2004; Pillen et al. 2008; Pillen and van Alfen 2011). The main advantages of 

ultrasounds are portability, low associated costs of the examination, and non-invasivity of the 

method. Moreover, the acoustic power levels used in diagnostic equipment minimize the probability 

of biological negative effects. Ultrasound imaging is however an operator-dependent technique. In 

order to lower the intra- and inter-reader variability, quantitative approach is needed. 

The quantitative features most commonly extracted from ultrasound images to investigate muscle 

size are cross sectional area, thickness, fascicle length, and fascicle pennation angle (Narici et al. 

1996; Chow et al. 2000; Reeves et al. 2004). The muscle quality is commonly assessed through the 

quantification of the mean echo intensity by gray-scale analysis of a region of interest (ROI). This 

numerical parameter is highly dependent on the ultrasound scanner settings (Zaidman et al. 2008; 

Pillen et al. 2009b).  

Contrary to the mean echo intensity and other first order descriptors, higher-order texture features 

that can be extracted from ultrasound images are intensity invariant (Acharya et al. 2012d; Acharya 

et al. 2012e; Acharya et al. 2012f), and have already proven informative in the analysis of 

intramuscular fat content in animals (Kim et al. 1998), as well as in the characterization of arterial 

surface roughness (Acharya et al. 2012a; Niu et al. 2013), breast (Singh and Singh 2010) and 

ovarian tumors (Acharya et al. 2012c; Acharya et al. 2013), thyroid lesions (Acharya et al. 2012b; 

Acharya et al. 2014a), and liver images (Gao et al. 2014; Acharya et al. 2015) in human studies. 

Moreover, in a recent review focused on thyroid cancer, Acharya et al. showed that high 

characterization performance can be achieved only when sonographic features from the ultrasound 

images are merged to non-clinical features extracted from the ultrasound images using statistical 

and data mining techniques (Acharya et al. 2014b). They have also showed that higher-order and 

non-linear descriptors offer better characterization performance than histogram-based parameters 

(Acharya et al. 2012c; Acharya et al. 2014b). 
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To the best of our knowledge, in previous studies, only linear and first-order descriptors are used to 

characterize the texture of different skeletal muscles. In this paper, we characterized the image 

texture of five skeletal muscles of healthy men and women using different texture features. We 

show that Haralick features (second order statistical descriptors), Galloway features, and texture 

descriptors based on the Local Binary Pattern (LBP) are unique for gender and muscle type. It can 

be seen from our results that the texture features are superior to the first order descriptors (based on 

the echo intensity histogram) in classifying the muscle type. 

 

 

 

  



5 

 

METHODS 

Subjects 

Twenty healthy volunteers (10 females: age 26.0 ± 2.3 years; body mass index 20.7 ± 2.2 kg/m2 and 

10 males, age 30.2 ± 5.6 years; body mass index 23.3 ± 2.6 kg/m2) participated in this study.  

Health status was assessed by medical history, clinical exam, and electrocardiogram. The “Waterloo 

Handedness and Footedness Questionnaires - Revised” (Elias et al. 1998) was used to assess side 

dominance.  Among them, three subjects were left side dominant. Before participating in the study, 

the subjects were instructed about the aims and then they signed a written informed consent. The 

study conformed to the guidelines of the Declaration of Helsinki and was approved by the local 

ethical committee. 

 

Ultrasound procedures and equipment 

During a single experimental session, we acquired ultrasound B-mode images of the following five 

muscles from each subject: biceps brachii, vastus lateralis, rectus femoris, medial gastrocnemius, 

and tibialis anterior. Images were acquired on both sides of the subjects. 

The same experienced sonographer (MAM) conducted the clinical examinations and acquired all 

the images. Three consecutive scans were acquired in the transverse plane of each muscle. After 

each scan, the subject moved and then the transducer was repositioned. To increase the repeatability 

of the acquisitions and to ensure that the insonation was orthogonal to the bone, the optimal 

insonation angle was selected by maximizing the representation of the bone boundary. 

The medial gastrocnemius was insonated with the subjects in prone position, whereas for all other 

muscles the supine position was maintained. In all measurements, the arms and legs were extended 

and the subjects were asked to completely relax their muscles. Ultrasound coupling gel (Ultrasound 

transmission gel, REF: 907137475, PBpharma, Torino, Italy) was used to ensure optimal image 

quality while limiting the transducer pressure on the skin. All scans were performed by placing the 

transducer in correspondence to the largest muscle diameter at the following anatomical sites: the 
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biceps brachii was measured at two-thirds of the distance from the acromion to the antecubital 

crease; the rectus femoris halfway along the line from the anterior-superior iliac spine to the 

superior border of the patella; the vastus lateralis halfway along the line from the anterior-superior 

iliac spine to the superolateral border of the patella; the tibialis anterior at one-quarter of the 

distance from the inferior border of the patella to the lateral malleolus; the medial gastrocnemius 

from the mid-sagittal line of the muscle, midway between the proximal and distal tendon insertions. 

We used a MyLab™ Twice ultrasound device (Esaote, Genoa, Italy) equipped by a linear-array 

transducer (code LA533) with a bandwidth from 3 to 13 MHz. Gain was set at 50% of the range, 

dynamic image compression was turned off, and time gain compensation was maintained in the 

same (neutral) position for all depths. All system-setting parameters were kept constant throughout 

the study for each subject. The depth setting (initially set at 44 mm) was adapted for each subject 

during examination in order to display the entire muscle. The conversion factor was equal to 0.92 

mm/pixel. The pictures in DICOM format were transferred to a computer for offline processing. 

 

Texture feature extraction 

All images were visually inspected and analyzed by the same experienced operator (CC), who 

positioned a ROI in each image as shown in fig. 1. One ROI was chosen in the median portion of 

the biceps brachii, vastus lateralis, and medial gastrocnemius, while two equal sized ROIs were 

chosen in the rectus femoris (fig. 1.A) and tibialis anterior (fig. 1.C) to include most of the muscle 

without the central aponeurosis (white arrow in fig. 1.A) and the internal fascia (white arrow in fig. 

1.C). Figure 1.B depicts the ROI positioning for the vastus lateralis and fig. 1.D for the medial 

gastrocnemius. The two ROIs of the rectus femoris are indicated as medialis and lateralis and 

abbreviated as RFMed and RFLat, respectively. The tibialis anterior ROIs are indicated as superior 

and inferior and abbreviated as TASup and TAInf, respectively. The dimension and the position of the 

ROIs were chosen to be the same for each muscle of all subjects in order to make the extracted 

features independent of ROI size. The following ROI areas were considered for each muscle: 286 
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mm2 for the biceps brachii, 144 mm2 for the rectus femoris, 338 mm2 for the vastus lateralis, 68 

mm2 for the tibialis anterior, 338 mm2 for the medial gastrocnemius.  

Different features extracted from the ROIs are described in the following. The mean of six 

measurements (one measurement per ROI for both sides) was used for comparison among muscles 

and between genders. All the texture parameters were computed by custom developed software in 

MATLAB ( The MathWorks, Natick, MA, USA). 

 

First order statistical descriptors 

Based on the first order statistics, the following seven features were extracted from the image ROIs: 

integrated optical density, mean, standard deviation, variance, skewness, kurtosis and energy. Table 

1 presents the mathematical description of these features. The energy feature is denoted as Energy1 

to avoid confusion with the same second order parameter (described in the next section).  

 

Haralick features 

The Haralick features (also called second order statistical descriptors) are based on the Gray Level 

Co-occurrence Matrix (GLCM) (Haralick et al. 1973). The GLCM is a square matrix with 

dimension equal to the number of gray levels in the image. Let C be the matrix containing the 

GLCM. The element C(i,j) measures the number of times in which a pixel of given gray level i is 

found adjacent to a pixel of gray level j. Since two pixels can be adjacent in vertical, horizontal and 

in the two diagonal directions, we computed C(i,j) for the four angles 0º, 45º, 90º, and 135º. Figure 

2 shows an example of construction of the GLCM for the horizontal direction: fig. 2.A depicts the 

numerical values representing the pixels of an image that is rendered in a linear gray scale in fig. 

2.C. The corresponding GLCM is numerically computed in fig. 2.B and the gray scale 

representation of the GLCM is shown in fig. 2.D. The red circles in fig. 2.A indicate the horizontal 

adjacencies of the pixel i = 1 and of the pixel j = 6. There are four occurrences of this adjacency, 

hence the corresponding pixel C(1,6) in fig. 2.B has a value equal to 4. 



8 

 

The Haralick features are the mathematical descriptors of the GLCM (fig. 2.D). We computed the 

following six features: symmetry, contrast, homogeneity, entropy, energy, and correlation. Since 

each feature is computed along 4 angular directions, we have 24 descriptors per ROI. These second 

order features are mathematically defined in Table 2. The full mathematical details about the 

Haralick features are reported in Appendix. 

 

Galloway features 

The Galloway features (Galloway 1975) are based on the run length matrix (RLM) R. In a RLM, 

the pixel R(i,j) contains the number of pixels with run length j and intensity i in a given direction. 

The RLM has a number of rows equal to the number of gray levels in the image and a number of 

columns equal to the maximum length of the run length. Galloway (Galloway 1975) observed that 

in coarse texture, long gray level runs may exist more frequently as compared to fine texture which 

generally contains short runs. This means that we expect longer sequences of pixels with same 

intensity in coarse images, but only short runs in fine textures. The Galloway features are then 

mathematical descriptors of the runs of the RLM: short run emphasis, long run emphasis, gray-level 

non-uniformity, run length non-uniformity, and run percentage. Table 3 reports the mathematical 

description of the features that were calculated from the RLM. Since each feature was computed 

along four different angles (0º, 45º, 90º, and 135º), we have extracted 20 Galloway features per 

ROI. 

 

Local Binary Pattern features 

The Local Binary Pattern (LBP) was introduced by Ojala et al. in the field of texture analysis and 

face recognition (Ojala et al. 1996; Ojala et al. 2002). Basically, by means of this technique, a LBP 

value is assigned to a pixel neighborhood on the basis of the comparison of the pixels’ intensities 

with the intensity of the central pixel. With reference to fig. 3, let’s consider the central pixel of the 

3x3 neighborhood in fig. 3.A. The intensity of the central pixel is used to threshold the 
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neighborhood and a pixel is assigned the value 0 if its intensity is lower than the center or 1 

otherwise (fig. 3.B). Then, the binarized image is multiplied by the image containing the powers of 

2 (fig. 3.C) and the resulting image (fig. 3.D) is used to compute the LPB, which is the sum of all 

the pixels (in the case of fig. 3.D the LBP is equal to 216). Hence, each pixel is assigned a LBP 

value. Acharya et al. demonstrated that two powerful descriptors of the LBP image are the energy 

and entropy of the LBP distribution (Acharya et al. 2012d). Particularly, the indicators based on 

LBP have lower values for more homogeneous images, and assume higher values for more 

inhomogeneous images. The full mathematical details of the LBP computation method we adopted 

are reported in the Appendix. 

 

Statistical analysis and classification 

The Shapiro-Wilk test was used to assess the normality of the variable distributions. Normally 

distributed data were analysed using the Student’s t-test, while non-normally distributed data were 

analysed using the Mann-Whitney U test. The Kruskal-Wallis ANOVA (followed by Dunn’s post-

hoc test) was adopted for comparing the features’ value among the different muscles. 

The overall number of texture descriptors was equal to 53 per ROI (7 first-order descriptors, 24 

Haralick features, 20 Galloway features, and 2 LBP features). Since we had 5 muscles and 7 ROIs 

(the RF and TA were measured in two different ROIs), and since we measured the dominant and 

non-dominant side, each subject was represented by 742 features. Multivariate analysis of variance 

(MANOVA) was used to test the equality of the means among groups. We tested the texture feature 

values against gender and against the muscle type. To avoid singularities in the observation matrix, 

prior to performing the MANOVA analysis, collinear variables were removed by computing the 

Wilks’ Lambda, which is defined as the ratio between the determinant of the within group variance 

matrix and the sum between the determinants of the within and between matrices. Conceptually, the 

Wilks' lambda is the proportion of the total variance in the discriminant scores not explained by 

differences among the groups The Lambda ranges from 0 to 1 and the lower is the value, the more 
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discriminant between groups is the associated variable (Costanza and Afifi 1979). The optimal 

Lambda value for our dataset was found to be 0.35. Higher values lead to insufficient removal of 

collinear variables, whereas lower values discarded an excessive number of variables. The 

dimension of the MANOVA was used to assess the number of groups the data belong to. For 

example, a dimension equal to zero indicates that it is not possible to reject the hypothesis that all 

the subjects belong to the same group, whereas a dimension equal to 1 indicates that the subjects 

can be divided into two groups. Classification of the subjects on the basis of either the gender or 

muscle type was obtained by linear regression analysis performed on the most significant features, 

as revealed by MANOVA. All the continuous data variables were represented by means ± standard 

deviation (SD). The statistical significance is set to P = 0.05. Statistical analyses were performed by 

R (www.r-project.org) and MATLAB. 
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RESULTS 

Comparisons between sides and genders 

All the texture features of the dominant side were correlated to the non-dominant side (P < 0.001). 

The lowest value of the Wilks’ Lambda was 0.875. Accordingly, the MANOVA analysis was not 

significant when the side dominance was the dependent variable. Therefore, we averaged the 

variables of the two sides: the total number of variables was equal to 371 for each of the subjects. 

When the gender was considered as the dependent variable, after removing the collinear 

variables, 38 features were left. The MANOVA dimension of the group means was equal to 1 (P < 

0.001). The dimensionality of the MANOVA was important to understand how samples were 

distributed on the hyperplane of the canonical variables. The canonical variables are linear 

combinations of the original features and are built in order to maximize the variance among groups. 

Since the canonical variables are ordered with decreasing explained variance, the dimension of 1 

ensured that only one canonical variable (the first) is enough to separate the subjects on the basis of 

gender. We plotted the 1st and 2nd canonical variable for each subject (fig. 4) and we indicated the 

males by a full symbol (circle) and females by an empty one, and kept the same notation throughout 

the paper. The graph demonstrates that the first canonical variable was discriminant for gender. The 

left column of Table 4 reports the ten variables (i.e., the image features) with highest weight on the 

first canonical variable (i.e., the most discriminant between the two genders). First order and 

Galloway features were not significant (P > 0.2). Haralick features (energy, entropy, and 

correlation), LBP energy and entropy were significantly higher (Haralick energy, P < 0.01) and 

lower (all other features, P < 0.001) in males compared to females (fig. 5). By using those ten most 

discriminant features, we performed a classification of the subjects based on the linear regression. 

All the subjects were correctly classified, with sensitivity and specificity of 100% (correlation 

coefficient equal to 1 and 95% confidence interval 0.98-1) and an area under the receiving-operator-

curve (AUROC) equal to 1. 
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Comparison among muscles 

When the muscle was considered as the dependent variable, after removing the collinear 

variables, 43 features were left. The MANOVA dimension was equal to 6 (P<0.02), thus we could 

consider that samples belonged to 7 different groups. Figure 6.A shows the different muscles 

plotted in the plane of the first two canonical variables, whereas fig. 6.B shows the same 

distribution in the plane of the first and third canonical variables. The right column of Table 4 

reports the ten original features that were most discriminant among the different muscles. The most 

important features were the Galloway ones (gray-level non-uniformity, run length non-uniformity, 

run percentage, short run emphasis), the Haralick ones (entropy and symmetry) and the LBPentropy . 

No first order features are listed. Figure 7 shows the gray-level non-uniformity (GLNU, fig. 7.A), 

the run length non-uniformity (RLNU, fig. 7.B), the LBPentropy (fig. 7.C) and the Haralick entropy 

(fig. 7.D) for the different muscles and ROIs. No significant difference in the texture features was 

observed between the different ROIs selected in the rectus femoris and tibialis anterior muscles (P > 

0.05 for all comparisons).  Galloway features (GLNU and RLNU) and the Haralick entropy resulted 

higher (P < 0.05 for all comparisons) in biceps brachii, medial gastrocnemius, and vastus lateralis 

muscles in comparison to rectus femoris and tibialis anterior muscles. It can be noticed that the 

texture descriptors considered alone do not have a very high discriminatory power. 

The performance in classifying different muscles using the linear regression is reported in Table 

5 (leftmost half). The average sensitivity was equal to 76.4 ± 21.9%, the specificity to 97.7 ± 1.9%, 

the correlation coefficient was 0.98 (95% confidence interval 0.93-1), and the AUROC to 0.976 ± 

0.026. The two ROIs of the tibialis anterior were perfectly classified (AUROC=1), and the worst 

performance was obtained in classifying the rectus femoris (AUROC=0.936). 

 

Comparisons between genders and among muscles based on the first order descriptors 

To further compare the performance of the Haralick, Galloway, and LBP features with the first 

order descriptors, we performed the MANOVA analysis and the classification using only the 7 first 
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order features. Figure 8.A represents the subjects on the basis of the gender as returned by the first 

two canonical variables of the MANOVA analysis. The dimension obtained by the MANOVA was 

1 (P < 0.02), thus allowing for the separation of the samples in two groups. A distinction of the two 

groups is still evident, even though not defined as in fig. 4 for Haralick and LBP features. 

Accordingly, the first order features were significantly different between males and females. It can 

be seen from fig. 9 that the mean echo intensity of four muscles was higher for females than males. 

When we classified the subjects on the basis of the gender using only the 7 first order features, we 

obtained a 100% sensitivity and specificity and an AUROC equal to 1. Hence, the use of Haralick 

and LBP features did not improve the description of subjects on the basis of gender. 

Similarly, we classified the muscles using only the 7 first order descriptors and we did not get clear 

separation among the muscles (fig. 8.B). As the muscles are not separated as in fig. 6, we expected 

a lower classification performance when first order descriptors were used to differentiate among the 

five muscles. The dimension obtained by the MANOVA was 6 (P < 0.05). The rightmost part of 

Table 5 reports the classification performance we obtained when the linear regression was 

performed using the 7 first order features. The average sensitivity of 46.4 ± 32.3%, the specificity of 

97.3 ± 1.92%, and AUROC of 0.907 ± 0.081 was obtained. The sensitivity and the AUROC were 

significantly (P < 0.01) lower than Haralick, Galloway, and LBP features. Consistently, the first 

order features resulted statistically comparable among the five muscles (P > 0.05). In other words, 

the overall performance was lower than when higher-order descriptors were used, but this decreased 

performance was consistent for all the muscles. 

Briefly, it was possible to differentiate between the two genders on the basis of the first order 

descriptors, while the Haralick, Galloway, and LBP features classified the images of different 

muscles with a better performance than the first order features. 
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DISCUSSION  

In the present study, quantitative ultrasonography was performed in five muscles (biceps brachii, 

rectus femoris, vastus lateralis, tibialis anterior, medial gastrocnemius) of twenty healthy subjects to 

assess the characterization performance of higher-order texture descriptors in the differentiation 

between genders and among muscles. Our results show that first order descriptors, Haralick features 

(energy, entropy, and correlation measured along different angles), LBP energy and entropy were 

highly linked to the gender, whereas Haralick entropy and symmetry, Galloway texture descriptors, 

and LBP entropy helped to distinguish different types of muscles. To the best of our knowledge, 

this is the first study that used higher-order textural descriptors to characterize the human muscles 

using ultrasound images. 

Previous studies have shown that the first order descriptors (i.e., mean or median echo intensity) 

help to study the echogenicity of different genders and skeletal muscles (Arts et al. 2010), and 

muscle adaptations to physical training (Radaelli et al. 2012). Moreover, muscle echo intensity 

quantification enables to characterize the disruption of the normal structure that occur in both 

myopathic and neuropathic and damaged muscles. Neuromuscular disorders and myopathic 

conditions are associated to fat and collagen infiltration (Pillen et al. 2008; Arts et al. 2010) and/or 

interstitial edema (Fujikake et al. 2009). These histologic changes increase the reflection of the 

ultrasound beam and result in increased echo intensity (Walker et al. 2004; Pillen et al. 2008). 

Despite these results, the muscle echo intensity presents a major criticism that limits its clinical use: 

it is dependent on the settings of the ultrasound scanner and is therefore different for each 

ultrasound device used. To improve the reproducibility of the echo intensity, Zaidman et al. studied 

a calibration procedure (Zaidman et al. 2008; Zaidman et al. 2012) and proposed a calibrated 

muscle backscatter index, which was adopted in the analysis of muscular dystrophy (Zaidman et al. 

2010). The need for a calibration procedure is, however, impractical in the clinical environment. 

Also, as shown by authors, the quality of the calibration depends on the ROI size and location 
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inside the muscle (Zaidman et al. 2012). Another approach for the comparison of echo intensity 

values between different ultrasound devices was proposed by Pillen et al. (Pillen et al. 2009b) who 

adopted a conversion equation (based on standardized measurements of the same samples made 

with two ultrasound devices) to transpose the echo intensity values obtained with one device to 

another device. 

Another criticism of the muscle echo intensity is that it is able to capture only the overall change in 

the brightness of the muscle, but it cannot measure the actual texture. Few studies have attempted to 

develop quantification methods that can overcome the limitation of echo intensity in measuring the 

image texture. Maurits et al. proposed quantitative variables obtained by density analysis (such as 

muscle inhomogeneity and white-area index, which measures the presence of patches of high 

echogenicity) to differentiate between myopathies and neuropathies (Maurits et al. 2003) and to 

distinguish between healthy muscles and neuromuscular diseases (Maurits et al. 2004). The 

rationale was that highly inhomogeneous muscles showed a higher number of bright pixels in the 

gradient compared to homogeneous muscles. The white-area index is anyway correlated to the 

overall brightness of the ultrasound image; thus, it suffers from the same limitations of the mean 

echo intensity. Gdynia et al. used the muscle echo intensity, the first order entropy, and the fractal 

dimension to analyze the ultrasound images of tibialis anterior and medial gastrocnemius muscles 

of healthy subjects and patients affected by myopathies and motor neuron disorders (Gdynia et al. 

2009). They showed that the parameters were able to distinguish between healthy and pathological 

muscles, but not between muscles affected by different pathologies. Entropy filtering, combined 

with vibration elastography was used in another study on the myofascial trigger points of the upper 

trapezius muscle (Turo et al. 2013). The combination of the two measurements lead to overall good 

performance (sensitivity of about 70% and specificity of 80%) in discriminating myofascial trigger 

points from normal tissue. Both the studies showed that entropy analysis can extract more 

information from the B-mode images than the mean echo intensity. However, the measurement of 

the first order entropy is based on the intensity histogram distribution of the pixels. Thus, the 
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texture information present in the image and reflecting the muscle microstructure is not fully 

captured. 

On the contrary, the image texture analysis enables to overcome both limitations of the first order 

descriptors (Acharya et al. 2012a; Acharya et al. 2012b; Acharya et al. 2012c). In the present study, 

we used both first order descriptors and higher-order texture descriptors to discriminate between 

genders and different skeletal muscles of healthy subjects.  

The main findings of this study are the following: 

i) First order and texture descriptors are comparable to the dominant and non-dominant side of each 

muscle.  

ii) First order features help to distinguish the two genders.  

iii) Galloway features, quantify the coarseness of an image along a given direction (i.e., describe the 

spatial changes in the local acoustic impedance of the tissues) and enable to distinguish different 

types of muscles.  

iv) Haralick and LBP features (in particular, Haralick entropy and LBP entropy) quantify the 

overall (Haralick entropy) and local (LBP entropy) image homogeneity, and distinguish both gender 

and muscle types.  

A previous study on the echo-intensity of the tibialis anterior and of the upper limb muscles showed 

that the first-order descriptors had different values in the dominant and non-dominant side (Arts et 

al. 2010). In our study, the first order descriptors failed to differentiate between the dominant and 

non-dominant. Hence, further studies are required to examine the dependence of muscle echo 

intensity (and texture as well) on the side dominance. 

Our observation of females indicating higher echo intensity compared to males is in agreement with 

previous findings (Arts et al. 2010; Caresio et al. 2014). But the observation that the image 

homogeneity (as quantified by Haralick and LBP features) is lower in females compared to males 

and directional coarseness (as quantified by Galloway features) difference among muscles is the 

original contribution of this study. Although no muscle biopsies were performed in this study, the 
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observed gender variability in first order descriptors, Haralick features, and LBP features may be 

related to the higher degree of fibrous and adipose tissue present in muscles of females compared to 

males (Pillen et al. 2009a; Caresio et al. 2014).  The inter-muscle variability in directional 

coarseness probably resulted from different proportions of fibrous tissue and/or from different 

architectural features of the fascicles (i.e., their lengths, their arrangement relative to one another 

and their alignment relative to the force-generating axis). Given these possible relations between 

textural features and adipose and fibrous tissue content and distribution, future studies are required 

to investigate the type of textural features that enable to detect differences between healthy and 

pathological muscles. For example, conditions associated to interstitial edema in a first phase and 

collagen infiltration in a subsequent phase (e.g., muscle injuries) can be longitudinally assessed by 

quantitative muscle ultrasonography for monitoring and prognosis of the myopatic process. We 

found in a series of endocrine patients affected by steroid myopathy that the muscle texture 

impairment occurs earlier than the muscle size reduction (unpublished observations). Therefore, we 

infer that quantitative muscle ultrasonography has the potential to predict the occurrence (and the 

evolution) of a myopathic process. Moreover, we strongly feel that combinations of different 

texture features may be required for prediction, diagnosis, monitoring, and prognosis of the 

myopathic disorders. 

This work has the following two main limitations. From the practical point of view, this feature-

based characterization is currently still not available in commercial scanners. However, since the 

computation of the features is not very demanding, it is likely that applications for the 

characterization of images based on higher order features will be embedded in high-end scanners in 

a close future. A second limitation is relative to the actual capability of detecting and grading 

pathological conditions by using this multi-features approach. This study is methodological and 

aimed at demonstrating the higher sensitivity of higher order features compared to the first order 

ones in characterizing the different muscles. We are currently performing human investigations 

focused on the quantification of sarcopenia and myosteatosis based on this technique. 
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CONCLUSION 

We have proposed a texture-based technique to differentiate gender and muscle types.  In this work, 

we found that the combination of first-order and higher-order texture descriptors (Haralick, 

Galloway, and LBP) help to discriminate gender and muscle type. The most important features 

included entropy, since the local or global homogeneity of the image is clinically correlated to the 

physiological muscle status. The presented technique is objective, non-invasive, and the preliminary 

results indicate the possibility of using this technique to differentiate gender and muscle types. 

Hence, in future multi-texture analysis can be used to study the muscle damage and myopathic 

disorders.  

 

ACKNOWLEDGEMENTS 

This study was supported by the bank foundation “Fondazione CARIPLO” of Milano, Italy 

(Project: “Steroid myopathy: Molecular, Histopathological, and Electrophysiological 

Characterization”) and by a grant (ex 60%) from the University of Turin.    

 

CONFLICTS OF INTEREST 

The authors have no conflicts of interest.  



19 

 

REFERENCES 

Acharya RU, Faust O, Alvin AP, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS. Symptomatic 

vs. asymptomatic plaque classification in carotid ultrasound. Journal of medical systems 

2012a;36:1861-71.  

Acharya UR, Faust O, Molinari F, Sree SV, Junnarkar SP, Sudarshan V. Ultrasound-based tissue 

characterization and classification of fatty liver disease: A screening and diagnostic paradigm. 

Knowledge-Based Systems 2015;75:66-77.  

Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. ThyroScreen system: high resolution 

ultrasound thyroid image characterization into benign and malignant classes using novel 

combination of texture and discrete wavelet transform. Computer methods and programs in 

biomedicine 2012b;107:233-41.  

Acharya UR, Mookiah MR, Vinitha Sree S, Yanti R, Martis RJ, Saba L, Molinari F, Guerriero S, 

Suri JS. Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer 

Tissue Characterization and Classification. Ultraschall Med 2012c; 

Acharya UR, Sree SV, Krishnan MM, Molinari F, Saba L, Ho SY, Ahuja AT, Ho SC, Nicolaides A, 

Suri JS. Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. 

Ultrasound in medicine & biology 2012d;38:899-915.  

Acharya UR, Sree SV, Krishnan MM, Molinari F, Zieleznik W, Bardales RH, Witkowska A, Suri 

JS. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images 

from a Polish population. Journal of ultrasound in medicine : official journal of the American 

Institute of Ultrasound in Medicine 2014a;33:245-53.  

Acharya UR, Sree SV, Krishnan MM, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor 

characterization using 3D ultrasound. Technology in cancer research & treatment 2012e;11:543-52.  

Acharya UR, Sree SV, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization 

and classification using ultrasound-a new online paradigm. Journal of digital imaging 2013;26:544-

53.  



20 

 

Acharya UR, Swapna G, Sree SV, Molinari F, Gupta S, Bardales RH, Witkowska A, Suri JS. A 

review on ultrasound-based thyroid cancer tissue characterization and automated classification. 

Technology in cancer research & treatment 2014b;13:289-301.  

Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Non-invasive 

automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics 

2012f;52:508-20.  

Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle 

ultrasonography in adults. Muscle & nerve 2010;41:32-41.  

Caresio C, Molinari F, Emanuel G, Minetto MA. Muscle echo intensity: reliability and conditioning 

factors. Clinical physiology and functional imaging 2014; 

Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of 

human soleus and gastrocnemius muscle architecture: gender variability. European journal of 

applied physiology 2000;82:236-44.  

Costanza MC, Afifi AA. Comparison of stopping rules in forward stepwise discriminant analysis. 

Journal of the American Statistical Association 1979;74:777-85.  

Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of 

emotional lateralization. Neuropsychologia 1998;36:37-43.  

Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of 

bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound in 

medicine & biology 2009;35:687-96.  

Galloway MM. Texture analysis using gray level run lengths. Computer Graphics and Image 

Processing 1975;4:172-9.  

Gao S, Peng Y, Guo H, Liu W, Gao T, Xu Y, Tang X. Texture analysis and classification of 

ultrasound liver images. Bio-medical materials and engineering 2014;24:1209-16.  

Gdynia HJ, Muller HP, Ludolph AC, Koninger H, Huber R. Quantitative muscle ultrasound in 

neuromuscular disorders using the parameters 'intensity', 'entropy', and 'fractal dimension'. 



21 

 

European journal of neurology : the official journal of the European Federation of Neurological 

Societies 2009;16:1151-8.  

Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. Systems, 

Man and Cybernetics, IEEE Transactions on 1973;SMC-3:610-21.  

Kim N, Amin V, Wilson D, Rouse G, Udpa S. Ultrasound image texture analysis for characterizing 

intramuscular fat content of live beef cattle. Ultrasonic imaging 1998;20:191-205.  

Maurits NM, Beenakker EA, van Schaik DE, Fock JM, van der Hoeven JH. Muscle ultrasound in 

children: normal values and application to neuromuscular disorders. Ultrasound in medicine & 

biology 2004;30:1017-27.  

Maurits NM, Bollen AE, Windhausen A, De Jager AEJ, Van Der Hoeven JH. Muscle ultrasound 

analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound in 

medicine & biology 2003;29:215-25.  

Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius 

architecture with changing joint angle at rest and during graded isometric contraction. The Journal 

of physiology 1996;496 ( Pt 1):287-97.  

Niu L, Qian M, Yang W, Meng L, Xiao Y, Wong KK, Abbott D, Liu X, Zheng H. Surface 

roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of 

atherosclerosis. PloS one 2013;8:e76880.  

Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification 

based on featured distributions. Pattern Recognition 1996;29:51-9.  

Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture 

classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE 

Transactions on 2002;24:971-87.  

Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle & nerve 

2008;37:679-93.  



22 

 

Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, 

Hoogerbrugge PM, van Engelen BG, Verrips A. Skeletal muscle ultrasound: correlation between 

fibrous tissue and echo intensity. Ultrasound in medicine & biology 2009a;35:443-6.  

Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurological research 2011;33:1016-24.  

Pillen S, van Dijk JP, Weijers G, Raijmann W, de Korte CL, Zwarts MJ. Quantitative gray-scale 

analysis in skeletal muscle ultrasound: a comparison study of two ultrasound devices. Muscle & 

nerve 2009b;39:781-6.  

Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and echo 

intensity recovery after resistance exercise in women. Journal of strength and conditioning research 

/ National Strength & Conditioning Association 2012;26:2577-84.  

Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle 

size. European journal of applied physiology 2004;91:116-8.  

Singh A, Singh B. Texture Features Extraction in Mammograms Using Non-Shannon Entropies. In: 

Ao S-I, Rieger B, Amouzegar MA, ed. Machine Learning and Systems Engineering. Springer 

Netherlands, 2010. pp. 341-51.  

Turo D, Otto P, Shah JP, Heimur J, Gebreab T, Zaazhoa M, Armstrong K, Gerber LH, Sikdar S. 

Ultrasonic characterization of the upper trapezius muscle in patients with chronic neck pain. 

Ultrasonic imaging 2013;35:173-87.  

Walker FO, Cartwright MS, Wiesler ER, Caress J. Ultrasound of nerve and muscle. Clinical 

neurophysiology : official journal of the International Federation of Clinical Neurophysiology 

2004;115:495-507.  

Zaidman CM, Connolly AM, Malkus EC, Florence JM, Pestronk A. Quantitative ultrasound using 

backscatter analysis in Duchenne and Becker muscular dystrophy. Neuromuscular disorders : NMD 

2010;20:805-9.  

Zaidman CM, Holland MR, Anderson CC, Pestronk A. Calibrated quantitative ultrasound imaging 

of skeletal muscle using backscatter analysis. Muscle & nerve 2008;38:893-8.  



23 

 

Zaidman CM, Holland MR, Hughes MS. Quantitative ultrasound of skeletal muscle: reliable 

measurements of calibrated muscle backscatter from different ultrasound systems. Ultrasound in 

medicine & biology 2012;38:1618-25.  

  



24 

 

FIGURE CAPTIONS 

Figure 1. 

Region of interest (ROI) positioning in the transversal B-mode images: A) rectus femoris; B) vastus 

lateralis; C) tibialis anterior; D) medial gastrocnemius. The white arrows in panels A) and C) 

indicate, respectively, the central aponeurosis and the internal fascia that were never comprised into 

the ROI. 

 

Figure 2. 

Schematic representation of the computation of the Gray Level Co-occurrence Matrix (GLCM). A) 

Numerical values corresponding to the pixel intensities. B) Associated GLCM. C) Gray scale 

representation of the image in A). D) Gray scale representation of the GLCM. The red circles in A) 

depict the adjacencies (1,6), which correspond to the number circled in red in panel B). 

 

Figure 3. 

Schematic representation of the Local Binary Pattern (LBP) process. A) Original pixel intensities. 

B) Binarization by thresholding. C) Power-of-two weights. D) Final LBP neighborhood. The 

overall LBP value assigned to the central pixel is the sum of the numbers in D), which equals 216. 

 

Figure 4. 

Representation of the subjects in the plane of the first two canonical variables obtained by 

MANOVA. The features allowed for a clean-cut separation of the subjects on the basis of the 

gender. The full symbols represent the males (data from two male subjects are overlapped), the 

empty symbols the females. 

 

Figure 5. 
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Distribution of the four most discriminant features for gender in the sample groups. The full 

symbols represent the males, the empty symbols the females. The red circles indicate the biceps 

brachii muscle, the down triangles the inferior ROI of the tibialis anterior. In each graph, the mean 

value and the interval corresponding to ± two standard deviations is represented. A) Haralick 

energy (along the angular direction θ = 135°). B) Haralick entropy (θ = 135°). C) Haralick 

correlation (θ = 90°). D) Local Binary Pattern (LBP) entropy.  

 

Figure 6. 

Representation of the subjects A) in the plane of the first two canonical variables, and B) in the 

plane of the first and third canonical variable obtained by MANOVA. Different symbols and colors 

are used for the different muscles. The full symbols represent the males, the empty symbols the 

females. 

BB: biceps brachii; MG: medial gastrocnemius; VL: vastus lateralis; RF: rectus femoris; TA: 

tibialis anterior. 

 

Figure 7. 

Distribution of four discriminant features for muscle type in the sample groups. The full symbols 

represent the males, the empty symbols the females. In each graph, the mean value and the interval 

corresponding to ± two standard deviations is represented. A) Gray-level non-uniformity (GLNU, 

along the angular direction θ = 90°). B) Run length non-uniformity (RLNU, θ = 135°). C) Local 

Binary Pattern (LBP) entropy. D) Haralick entropy (θ = 135°). 

 

Figure 8. 

Results of the MANOVA analysis when only first order features are used to distinguish between 

genders and muscle types.  
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A) Representation of the subjects in function of the gender.  

B) Representation of the subjects in function of the muscle type. 

BB: biceps brachii; MG: medial gastrocnemius; VL: vastus lateralis; RF: rectus femoris; TA: 

tibialis anterior. 

 

Figure 9. 

Differences in mean echo intensity (first order feature) of four muscles between the two genders. 

The full symbols represent the males, the empty symbols the females. In each graph, the mean value 

and the interval corresponding to ± two standard deviations is represented. 
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APPENDIX 

Haralick features 

The Haralick features are based on the Gray Level Co-occurrence Matrix (GLCM). Let the image 

be represented by a M×N gray-scale matrix I(x,y), where each element of the matrix indicates the 

intensity of a single pixel in the image. The co-occurrence matrix C(i,j | ∆x, ∆y) is the second-order 

probability function estimation. This matrix denotes the rate of occurrence of a pixel pair with gray 

levels i and j, given the distances between the pixels are ∆x and ∆y in the x and y directions, 

respectively. The co-occurrence matrix C (i, j | ∆x, ∆y) is defined as  

���, �|Δ�, Δ	
 � |��
, �
, �
 � Δ�, � � Δ	
: ��
, �
 � �, ��
 � Δ�, � � Δ	
 � ��|  (1) 

where �
, �
�
 � Δ�, � � Δ	
 ∈ ���, � � �Δ�, Δ	
, and |.| denotes the cardinality of a set. The 

probability that a gray level pixel i is at a distance (∆x, ∆y) away from the gray level pixel j is given 

by 

    
∑

=
C(i,j)

C(i,j)
P(i,j)       (2) 

An element of the GLCM matrix (i, j,d,θ) is defined as the joint probability of the gray levels i and j 

separated by distance d and along angular direction θ. To reduce the computation burden, we have 

considered θ as 0º, 45º, 90º, and 135º, and d is defined as the Manhattan or city block distance (i.e. 

the number of pixels that must be crossed) based on this GLCM (Haralick et al. 1973). These 

second order features are mathematically defined in Table 2. 

 

Local Binary Pattern features 

The LBP is computed by using the following method:  

- A circular neighborhood of radius R pixels is considered around a pixel. The pixel is the 

center of the circular neighborhood and it has intensity equal to Ic. 

- P points are chosen on the circumference of the circle with radius R such that they are all 

equidistant. Let Ip (p = 1 … P) be the intensities of the P points on the circumference.  
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- These P pixels are converted into a circular bit-stream of zeros and ones according to 

whether the gray value of the pixel is less than or greater than Ic. 

We considered P equal to 24 pixels and R equal to 3 pixels, in order to consider a relatively large 

neighborhood. The created neighborhood is then assigned with a uniformity measurement U that 

counts the number of bit transitions (from 0 to 1 and viceversa) in the circular domain (with 

reference to fig. 3, the U value would be equal to 4). We assigned to the LBP code only the patterns 

with U ≤ 2, so that: 

�����
 � �∑ ���� � ��
 �!" #��
 $ 2
� � 1 '()*+,��*

-    (3) 

where s(x) is the step function that equals 1 if x ≥ 0 and is null for x < 0. Let’s fi be the relative 

frequency of the histogram derived from the LBP values of all the image pixels. The LBP energy is 

defined as: 

���./.012 � ∑ 3454
      (4) 

The LBP entropy can be defined as: 

���./607�2 � �∑ 34 ∙ 9':5�34
4
     (5) 
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TABLES 

 

Table 1 

Mathematical description of first order statistical features. The input muscle region of interest (ROI) 

is denoted by I(x,y). 

Feature Description
 

Integrated optical density (IOD) IOD = I (x, y)
y=1

N
∑

x=1

M
∑  

Mean (m) m =
I (x, y)

M × Ny=1

N
∑

x=1

M
∑  

Standard deviation (σ) 
σ =

I (x, y) − m{ }2

y=1

N
∑

x=1

M
∑

M × N
 

 

Variance ( 2σ ) 

 

σ 2 =
I (x, y) − m{ }2

y=1

N
∑

x=1

M
∑

M × N
 

 

Skewness (Sk ) 

 

Sk =
1

M × N

I (x, y) − m{ }3

y=1

N
∑

x=1

M
∑

σ 3  

 

Kurtosis (Kt ) 

 

Kt =
1

M × N

I (x, y) − m{ }4

y=1

N
∑

x=1

M
∑

σ 4  

 

Energy1 (E1) 

 

E1 = I (x, y)2
y=1

N
∑

x=1

M
∑  

  



30 

 

Table 2 

Mathematical description of the Haralick features. 

Haralick feature Description 

Symmetry (Isym) I
sym

= 1− i − j P(i , j )
j=0

N−1
∑

i=0

N−1
∑  

Contrast (Icon) 
1 2 ( , )
0 0 0

N N N
I n P i jcon

n i j

−   = ∑ ∑ ∑ 
= = =  

 

Homogeneity (Ihmg) ( )
1 1 1

( , )20 01

N N
I P i jhmg i j i j

− −
= ∑ ∑

= = + −
 

Entropy (IEntr) 

1 1
( , ) log( ( , ))

0 0

N N
I P i j P i jEntr i j

− −
= − ∑ ∑

= =  

 

Energy (IEnrg) 
1 1 2( , )
0 0

N N
I P i jEnrg i j

− −
= ∑ ∑

= =
 

Correlation* (Icor) 

1 1
( , ) ( , )

0 0

N N
i j P i j x y

i j
Icor

x y

µ µ

σ σ

− −
−∑ ∑

= ==
 

 

* , , ,x y x yσ σ µ µ  are the standard deviations and means of ,P Px y which are the partial probability 

density functions. ( )  thp i ix = entry in the marginal–probability matrix obtained by summing  the 

rows of ( , )P i j  
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Table 3  

Mathematical description of the Galloway features. Ng represents the number of gray values in the 

image (i.e. the number of rows of the matrix R). Nr represents the number of runs (i.e. the number of 

columns of the R matrix). 

Galloway feature Description 

Short run emphasis (SRE) 

( , )
21 1

( , )
1 1

N Ng r R i j

i j j
SRE

N Ng r
R i j

i j

∑ ∑
= =

=

∑ ∑
= =

 

Long run emphasis (LRE) 

2 ( , )
1 1

( , )
1 1

N Ng r
j R i j

i j
LRE

N Ng r
R i j

i j

∑ ∑
= ==

∑ ∑
= =

 

Gray-level non-uniformity (GLNU) 

2

( , )
1 1

( , )
1 1

N Ng r
R i j

i j
GLNU

N Ng r
R i j

i j

 
 ∑ ∑ = = =

∑ ∑
= =

 

Run length non-uniformity (RLNU) 

2

( , )
1 1

( , )
1 1

NN gr
R i j

j i
RLNU

N Ng r
R i j

i j

 
 ∑ ∑
 = = =

∑ ∑
= =

 

Run percentage (RP) RP=
R(i , j )

j=1

Nr
∑

i=1

Ng
∑

N
g

⋅ M
r  

 

  



32 

 

Table 4  

Image features that are the most discriminant between the two genders and among the five muscles 

in the MANOVA analysis. The features are listed in order of decreasing weight in the MANOVA 

canonical variables. 

LBPenergy - LBPentropy: local binary pattern features; GLNU: gray-level non-uniformity; RLNU: run 

length non-uniformity; RP: run percentage; SRE: short run emphasis. 

 

Most discriminant features for gender Most discriminant features for muscle type 

Haralick energy (θ = 0°, 45°, 90°, 135°) GLNU (θ = 0°, 45°, 90°) 

Haralick entropy (θ = 90°, 135°) Haralick entropy (θ = 135°) 

LBPenergy LBPentropy 

Haralick correlation (θ = 45°, 90°) RLNU (θ = 135°) 

LBPentropy Haralick symmetry (θ = 90°) 

 RP (θ = 90°) 

 SRE (θ = 0°, 90°) 
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Table 5 

Classification performance based on the 10 most significant features as obtained by the MANOVA 

analysis (leftmost half of the table) and based on the first order features (rightmost half of the table). 

AUROC indicates the area under the receiving-operator-curve. 

 

 Ten most significant features First order features only 

 Sensitivity 

(%) 

Specificity 

(%) 

AUROC Sensitivity 

(%) 

Specificity 

(%) 

AUROC 

BB 80.0 97.5 0.984 100 100 1 

MG 85.0 98.3 0.990 50.0 95.0 0.932 

VL 45.0 95.0 0.942 10.0 95.8 0.851 

RFMed 75.0 97.5 0.980 65.0 98.3 0.930 

RFLat 50.0 95.8 0.936 45.0 95.8 0.910 

TA Inf 100 100 1 50.0 96.7 0.958 

TASup 100 100 1 5.0 99.2 0.765 

 

BB: biceps brachii; MG: medial gastrocnemius; VL: vastus lateralis; RFMed – RFLat: medial – lateral 

portion of the  rectus femoris; TAInf - TASup: inferior – superior portion of the tibialis anterior. 
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