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ABSTRACT

Muscoloskeletal ultrasound imaging can be used to investigate thetatkmluscle structure in
terms of architecture (thickness, cross sectional aregclasength, and fascicle pennation angle)
and texture. Gray-scale analysis is commonly used to charadranseerse scans of the muscle.
Gray mean value is used to distinguish between normal and pathologeelkes, but it depends on
the image acquisition system and its settings.

In this study, quantitative ultrasonography was performed on five nsufaleeps brachii, vastus
lateralis, rectus femoris, medial gastrocnemius, and shealierior) of twenty healthy subjects (10
females, 10 males) to assess the characterization parfoenof higher-order texture descriptors to
differentiate genders and muscle types. A total of 53 feafdrésst-order descriptors, 24 Haralick
features, 20 Galloway features, and 2 Local Binary Pattetnrés were extracted from each
muscle region of interest (ROI) and were used to perform thvariate linear regression analysis
(MANOVA). Our results show that first order descriptors, &ligk features (energy, entropy, and
correlation measured along different angles) and local binargrpattBP) energy and entropy
were highly linked to the gender, whereas Haralick entropy and symnt&alloway texture
descriptors, and LBP entropy helped to distinguish muscle typeseHthe combination of first-
order and higher-order texture descriptors (Haralick, Galloway, |l#BH) can be used to
discriminate gender and muscle types. Therefore, multi-teanaby/sis may be useful to investigate

muscle damage and myopathic disorders.

Keywords: Muscle ultrasonography, texture analysis, muscle charatterizmusculoskeletal
ultrasound, Haralick features, Galloway features, Local Binary Pajtgray scale mean value,

MANOVA



INTRODUCTION

Ultrasound imaging is proven to be effective in the investigatiothefskeletal muscle structure
(Walker et al. 2004; Pillen et al. 2008; Pillen and van Alfen 20Thg main advantages of
ultrasounds are portability, low associated costs of the examinatimhnon-invasivity of the
method. Moreover, the acoustic power levels used in diagnostic ezutipmmimize the probability
of biological negative effects. Ultrasound imaging is however amatgredependent technique. In
order to lower the intra- and inter-reader variability, gilaiinte approach is needed.

The quantitative features most commonly extracted from ultrasourgksrta investigate muscle
size are cross sectional area, thickness, fascicle leathfascicle pennation angle (Narici et al.
1996; Chow et al. 2000; Reeves et al. 2004). The muscle quality is coynassessed through the
guantification of the mean echo intensity by gray-scale analysisegfian of interest (ROI). This
numerical parameter is highly dependent on the ultrasound scannmegss@faidman et al. 2008;
Pillen et al. 2009b).

Contrary to the mean echo intensity and other first order descriptghgr-order texture features
that can be extracted from ultrasound images are intensityanvgfAcharya et al. 2012d; Acharya
et al. 2012e; Acharya et al. 2012f), and have already proven infeemiati the analysis of
intramuscular fat content in animals (Kim et al. 1998), a$ agein the characterization of arterial
surface roughnes@charya et al. 2012a; Niu et al. 2013), breast (Singh and Singh 20d0) an
ovarian tumors (Acharya et al. 2012c; Acharya et al. 2013), thigsidns (Acharya et al. 2012b;
Acharya et al. 2014a), and liver images (Gao et al. 2014; Acledrgh 2015) in human studies.
Moreover, in a recent review focused on thyroid cancer, Achatyal. showed that high
characterization performance can be achieved only when sonographieddaban the ultrasound
images are merged to non-clinical features extracted thenultrasound images using statistical
and data mining techniques (Acharya et al. 2014b). They have alsodstmtenigher-order and
non-linear descriptors offer better characterization performaiman histogram-based parameters

(Acharya et al. 2012c; Acharya et al. 2014b).



To the best of our knowledge, in previous studies, only linear and first-@ederiptors are used to
characterize the texture of different skeletal muscleshim gaper, we characterized the image
texture of five skeletal muscles of healthy men and women usingetifféexture features. We
show that Haralick features (second order statistical des@)jp@alloway features, and texture
descriptors based on the Local Binary Pattern (LBP) are uniqugefaer and muscle type. It can
be seen from our results that the texture features are sujpetter first order descriptors (based on

the echo intensity histogram) in classifying the muscle type.



METHODS

Subjects

Twenty healthy volunteers (10 females: age 26.0 + 2.3 years; bayinuex 20.7 + 2.2 kg/fmand

10 males, age 30.2 + 5.6 years; body mass index 23.3 + 2.6)kg@micipated in this study.
Health status was assessed by medical history, clinical,exad electrocardiogram. The “Waterloo
Handedness and Footedness Questionnaires - Revised” (Ellad @& was used to assess side
dominance. Among them, three subjects were left side dominant. Beforecipatting in the study,
the subjects were instructed about the aims and then they signditea imformed consent. The
study conformed to the guidelines of the Declaration of Helsinki andaywpsoved by the local

ethical committee.

Ultrasound procedur es and equipment

During a single experimental session, we acquired ultrasound B-imades of the following five
muscles from each subject: biceps brachii, vastus lateratig)jsr femoris, medial gastrocnemius,
and tibialis anterior. Images were acquired on both sides siittjects.

The same experienced sonographer (MAM) conducted the clinicalired@ons and acquired all
the images. Three consecutive scans were acquired in theehsmplane of each muscle. After
each scan, the subject moved and then the transducer wasiapdsiTo increase the repeatability
of the acquisitions and to ensure that the insonation was orthogonal boribe the optimal
insonation angle was selected by maximizing the representatiba bbne boundary.

The medial gastrocnemius was insonated with the subjecteme position, whereas for all other
muscles the supine position was maintained. In all measurgntieatarms and legs were extended
and the subjects were asked to completely relax their esiddltrasound coupling gel (Ultrasound
transmission gel, REF: 907137475, PBpharma, Torino, Italy) wastasedsure optimal image
quality while limiting the transducer pressure on the skin. Alhsovere performed by placing the

transducer in correspondence to the largest muscle diameker fallowing anatomical sites: the
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biceps brachii was measured at two-thirds of the distamee the acromion to the antecubital
crease; the rectus femoris halfway along the line from titeriar-superior iliac spine to the
superior border of the patella; the vastus lateralis halfwaygathe line from the anterior-superior
iliac spine to the superolateral border of the patella; thelisbénterior at one-quarter of the
distance from the inferior border of the patella to the dhteralleolus; the medial gastrocnemius
from the mid-sagittal line of the muscle, midway betwtwnproximal and distal tendon insertions.
We used a MyLab™ Twice ultrasound devigsgote, Genoa, Itdlyequipped by a linear-array
transducer (code LA533) with a bandwidth from 3 to 13 MHz. Gain wiaat$0% of the range,
dynamic image compression was turned off, and time gain compensafmaintained in the
same (neutral) position for all depths. All system-settingrpatars were kept constant throughout
the study for each subject. The depth setting (initially set a4 was adapted for each subject
during examination in order to display the entire muscle. The conversitur f@as equal to 0.92

mm/pixel. The pictures in DICOM format were transferred momputer for offline processing.

Texture feature extraction

All images were visually inspected and analyzed by the same exped operator (CC), who
positioned a ROI in each image as showfignl. One ROI was chosen in the median portion of
the biceps brachii, vastus lateralis, and medial gastrocnemwhile two equal sized ROIs were
chosen in the rectus femorigg( 1.A) and tibialis anteriorf(g. 1.C) to include most of the muscle
without the central aponeurosis (white arrowidn 1.A) and the internal fascia (white arrowfig.
1.0). Figure 1.Bdepicts the ROI positioning for the vastus lateralis @mnd1.D for the medial
gastrocnemius. The two ROIs of the rectus femoris are iedicas medialis and lateralis and
abbreviated as Rfq and RIcy, respectively. The tibialis anterior ROIls are indicatedsaperior
and inferior and abbreviated as dfpand TA¢, respectively. The dimension and the position of the
ROIs were chosen to be the same for each muscle of all suinjemtder to make the extracted

features independent of ROI size. The following ROI areas wensidered for each muscle: 286
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mn? for the biceps brachii, 144 nfnfor the rectus femoris, 338 nirfor the vastus lateralis, 68
mnY for the tibialis anterior, 338 nfnfior the medial gastrocnemius.

Different features extracted from the ROIs are descrilmedhé following. The mean of six
measurements (one measurement per ROI for both sides) wa®usethparison among muscles
and between genders. All the texture parameters were computastoyn developed software in

MATLAB ( The MathWorks, Natick, MA, USA

First order statistical descriptors

Based on the first order statistics, the following seven featuees extracted from the image ROlIs:
integrated optical density, mean, standard deviation, variancgnsgs, kurtosis and energiyable
1 presents the mathematical description of these featuresngngy feature is denoted as Energy

to avoid confusion with the same second order parameter (desurithee next section).

Haralick features

The Haralick features (also called second order statistesadriptors) are based on the Gray Level
Co-occurrence Matrix (GLCM) (Haralick et al. 1973). The GLOM a square matrix with
dimension equal to the number of gray levels in the imageCle¢ the matrix containing the
GLCM. The elemen€C(i,j) measures the number of times in which a pixel of given gray lasel
found adjacent to a pixel of gray leyelSince two pixels can be adjacent in vertical, horizontal and
in the two diagonal directions, we computéd,j) for the four angles 0°, 45°, 90°, and 135%Jure

2 shows an example of construction of the GLCM for the horizontadtdire fig. 2.A depicts the
numerical values representing the pixels of an image that isneghéh a linear gray scale fig.

2.C. The corresponding GLCM is numerically computed fig. 2.B and the gray scale
representation of the GLCM is shownfig. 2.D. The red circles ifig. 2.A indicate the horizontal
adjacencies of the pixél= 1 and of the pixe] = 6. There are four occurrences of this adjacency,

hence the corresponding pix&{1,6)in fig. 2.B has a value equal to 4.



The Haralick features are the mathematical descriptors dbitl@&M (fig. 2.D). We computed the
following six features: symmetry, contrast, homogeneity, entropyggnand correlation. Since
each feature is computed along 4 angular directiwashave 24 descriptors per ROI. These second
order features are mathematically definedTable 2 The full mathematical details about the

Haralick features are reported in Appendix.

Galloway features

The Galloway features (Galloway 1975) are based on the run lengtlx (RitM) R. In a RLM,
the pixelR(i,j) contains the number of pixels with run lengtnd intensityi in a given direction.
The RLM has a number of rows equal to the number of gray levdie iimage and a number of
columns equal to the maximum length of the run length. Galld@ajloway 1975) observed that
in coarse texture, long gray level runs may exist more frequentigrapared to fine texture which
generally contains short runs. This means that we expect longeansequof pixels with same
intensity in coarse images, but only short runs in fine textdres. Galloway features are then
mathematical descriptors of the runs of the Rlsklort run emphasis, long run emphasis, gray-level
non-uniformity, run length non-uniformity, and run percentageble 3reports the mathematical
description of the features that were calculated from the Riikte each feature was computed
along four different angles (0°, 45°, 90° and 135°), we have &xtra® Galloway features per

ROL.

Local Binary Pattern features

The Local Binary Pattern (LBP) was introduced by Ogtlal. in the field of texture analysis and
face recognition (Ojala et al. 1996; Ojala et al. 2002). Blgiday means of this technique, a LBP
value is assigned to a pixel neighborhood on the basis of the comparthenpokels’ intensities

with the intensity of the central pixel. With referencéido 3, let's consider the central pixel of the

3x3 neighborhood infig. 3.A. The intensity of the central pixel is used to threshold the
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neighborhood and a pixel is assigned the value O if its intensitpwisr than the center or 1
otherwise fig. 3.B). Then, the binarized image is multiplied by the image @oingthe powers of

2 (fig. 3.C) and the resulting imagéd. 3.D) is used to compute the LPB, which is the sum of all
the pixels (in the case 6fy. 3.D the LBP is equal to 216). Hence, each pixel is assignedPa LB
value. Acharyeet al. demonstrated that two powerful descriptors of the LBP imagéharenergy
and entropy of the LBP distribution (Acharya et al. 2012d). Partlguldre indicators based on
LBP have lower values for more homogeneous images, and assume hilyleer feet more
inhomogeneous images. The full mathematical details of thedoB#putation method we adopted

are reported in the Appendix.

Statistical analysis and classification

The Shapiro-Wilktest was used to assess the normality of the variable digirnbutNormally
distributed data were analysed using the Student’s t-test, mdmlenormally distributed data were
analysed using the Mann-Whitney U test. The Kruskal-Wallis XN@followed by Dunn’s post-
hoc test) was adopted for comparing the features’ value amodgfgrent muscles.

The overall number of texture descriptors was equal to 53 per Rfdbkttorder descriptors, 24
Haralick features, 20 Galloway features, and 2 LBP featus#s}e we had 5 muscles and 7 ROIs
(the RF and TA were measured in two different ROIs), and sirceneasured the dominant and
non-dominant side, each subject was represented by 742 featuresaiaiéianalysis of variance
(MANOVA) was used to test the equality of the means among gridpsested the texture feature
values against gender and against the muscle type. To avoid stregularthe observation matrix,
prior to performing the MANOVA analysis, collinear variables eveemoved by computing the
Wilks’ Lambda which is defined as the ratio between the determinant afithen group variance
matrix and the sum between the determinants oivitten andbetweermatrices. Conceptually, the
Wilks' lambdais the proportion of the total variance in the discriminant scoo¢®xplained by

differences among the groups Tlembdaranges from O to 1 and the lower is the value, the more
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discriminant between groups is the associated variable (CosamazAfifi 1979). The optimal
Lambdavalue for our dataset was found to be 0.35. Higher values leadufficient removal of
collinear variables, whereas lower values discardedexsessive number of variables. The
dimension of the MANOVA was used to assess the number of grbepdata belong to. For
example, a dimension equal to zero indicates that it is nsibd@g0 reject the hypothesis that all
the subjects belong to the same group, whereas a dimension @qualdicates that the subjects
can be divided into two groups. Classification of the subjects onais bf either the gender or
muscle type was obtained by linear regression analysis perfaimtte most significant features,
as revealed by MANOVA. All the continuous data variables wagreesented by means + standard
deviation (SD). The statistical significance is set to 05. Statistical analyses were performed by

R (www.r-project.org and MATLAB.
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RESULTS
Comparisons between sides and genders
All the texture features of the dominant side were correlatéde non-dominant side (PG<00J).
The lowest value of theVilks’ Lambdawas 0.875. Accordingly, the MANOVA analysis was not
significant when the side dominance was the dependent varidieefdre, we averaged the
variables of the two sides: the total number of variablesegaal to 371 for each of the subjects.
When the gender was considered as the dependent variablereafigving the collinear
variables, 38 features were left. The MANOVA dimension ofgimip means was equal to 1 (P <
0.00). The dimensionality of the MANOVA was important to understand hamptes were
distributed on the hyperplane of the canonical variables. The canomcables are linear
combinations of the original features and are built in order tomiagithe variance among groups.
Since the canonical variables are ordered with decreasing explanance, the dimension of 1
ensured that only one canonical variable (the first) is enough tcaseplae subjects on the basis of
gender. We plotted the'land 2° canonical variable for each subjefitj(4) and we indicated the
males by a full symbol (circle) and females by an empty one, gridiesame notation throughout
the paper. The graph demonstrates that the first canonicablawas discriminant for gender. The
left column ofTable 4reports the ten variablesq,, the image features) with highest weight on the
first canonical variable (i.e., the most discriminant betwden two genders). First order and
Galloway features were not significant ¢ 0.2). Haralick features (energy, entropy, and
correlation), LBP energy and entropy were significantly higherdktk energy, P <0.01) and
lower (all other features, £0.001) in males compared to femaldg)(5). By using those ten most
discriminant features, we performed a classification ofstiigects based on the linear regression.
All the subjects were correctly classified, with sendigivand specificity of 100% (correlation
coefficient equal to 1 and 95% confidence interval 0.98-1) and amadea the receiving-operator-

curve (AUROC) equal to 1.
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Comparison among muscles

When the muscle was considered as the dependent variable reafteving the collinear
variables, 43 features were left. The MANOVA dimension wasakto 6 (P<0.02), thus we could
consider that samples belonged to 7 different gro&pgure 6.A shows the different muscles
plotted in the plane of the first two canonical variables, ed®fig. 6.B shows the same
distribution in the plane of the first and third canonical variablé® right column ofTable 4
reports the ten original features that were most discrimiaaong the different muscles. The most
important features were the Galloway ones (gray-level non-unifgrmin length non-uniformity,
run percentage, short run emphasis), the Haralick ones (entropy anetsyyrand the LBRyopy-
No first order features are listelligure 7shows the gray-level non-uniformity (GLNWg. 7.A),
the run length non-uniformity (RLNUig. 7.B), the LBRuwopy (fig. 7.C) and the Haralick entropy
(fig. 7.D) for the different muscles and ROIs. No significant differeincéhe texture features was
observed between the different ROIs selected in the rechesiteand tibialis anterior muscles (P >
0.05for all comparisons). Galloway features (GLNU and RLNU) @nedHaralick entropy resulted
higher (P <0.05for all comparisons) in biceps brachii, medial gastrochnemng$,vastus lateralis
muscles in comparison to rectus femoris and tibialis anteriggcles. It can be noticed that the
texture descriptors considered alone do not have a very high distiony power.

The performance in classifying different muscles using the lirgaession is reported ifable
5 (leftmost half). The average sensitivity was equal to 7624.9%, the specificity to 97.7 + 1.9%,
the correlation coefficient was 0.98 (95% confidence interval 0.98rb),the AUROC to 0.976 +
0.026. The two ROIs of the tibialis anterior were perfectlgsifed (AUROC=1), and the worst

performance was obtained in classifying the rectus femoliR@C=0.936).

Comparisons between genders and among muscles based on the first order descriptors
To further compare the performance of the Haralick, Galloway, LBP features with the first

order descriptors, we performed the MANOVA analysis and thaifiagion using only the 7 first
12



order features-igure 8.Arepresents the subjects on the basis of the gender as returtiedfiogt
two canonical variables of the MANOVA analysis. The dimensiotained by the MANOVA was

1 (P <0.02), thus allowing for the separation of the samples in two groups.tidalien of the two
groups is still evident, even though not defined adign 4 for Haralick and LBP features.
Accordingly, the first order features were significantly difer between males and females. It can
be seen fronfig. 9 that the mean echo intensity of four muscles was higher fordsrtfaan males.
When we classified the subjects on the basis of the gender usynther first order features, we
obtained a 100% sensitivity and specificity and an AUROC equal terdcd{ the use of Haralick
and LBP features did not improve the description of subjectseohdsis of gender.

Similarly, we classified the muscles using only the 7 trster descriptors and we did not get clear
separation among the musclég.(8.B). As the muscles are not separated &g)ir6, we expected

a lower classification performance when first order descept@re used to differentiate among the
five muscles. The dimension obtained by the MANOVA was 6 (P0§. The rightmost part of
Table 5 reports the classification performance we obtained when ther legaession was
performed using the 7 first order features. The average sengitivit 4 + 32.3%, the specificity of
97.3 £ 1.92%, and AUROC of 0.907 + 0.081 was obtained. The sensitivithar®IROC were
significantly (P <0.01) lower than Haralick, Galloway, and LBP features. Consibtethe first
order features resulted statistically comparable among thenfisscles (P ©.05. In other words,
the overall performance was lower than when higher-order descripgoesused, but this decreased
performance was consistent for all the muscles.

Briefly, it was possible to differentiate between the tvemdgrs on the basis of the first order
descriptors, while the Haralick, Galloway, and LBP featwlassified the images of different

muscles with a better performance than the first ordéuriesa
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DISCUSSION

In the present study, quantitative ultrasonography was performieeimuscles (biceps brachii,
rectus femoris, vastus lateralis, tibialis anterior, meghatrocnemius) of twenty healthy subjects to
assess the characterization performance of higher-order textsoepties in the differentiation
between genders and among muscles. Our results show that firstl@sdaptors, Haralick features
(energy, entropy, and correlation measured along different angieB)ehergy and entropy were
highly linked to the gender, whereas Haralick entropy and symmediigway texture descriptors,
and LBP entropy helped to distinguish different types of muscleghd best of our knowledge,
this is the first study that used higher-order textural descriptotharacterize the human muscles
using ultrasound images.

Previous studies have shown that the first order descriptorsniiean or median echo intensity)
help to study the echogenicity of different genders and skeletatlesu@Arts et al. 2010), and
muscle adaptations to physical training (Radaelli et al. 2012)ed¥er, muscle echo intensity
guantification enables to characterize the disruption of the mastnacture that occur in both
myopathic and neuropathic and damaged muscles. Neuromuscular disandemsyapathic
conditions are associated to fat and collagen infiltratiolhe(Pet al. 2008; Arts et al. 2010) and/or
interstitial edema (Fujikake et al. 2009). These histologic clramgpeease the reflection of the
ultrasound beam and result in increased echo intensity (Walkkr2&t04; Pillen et al. 2008).
Despite these results, the muscle echo intensity preseniemcnizcism that limits its clinical use:
it is dependent on the settings of the ultrasound scanner andrefotbedifferent for each
ultrasound device used. To improve the reproducibility of the echo intedaitymanet al. studied

a calibration procedure (Zaidman et al. 2008; Zaidman et al. 2012) apdspd a calibrated
muscle backscatter index, which was adopted in the analysigsafutar dystrophy (Zaidman et al.
2010). The need for a calibration procedure is, however, impragti¢the clinical environment.

Also, as shown by authors, the quality of the calibration depends onQhesiE and location

14



inside the muscle (Zaidman et al. 2012). Another approach facaimparison of echo intensity
values between different ultrasound devices was proposed by Pilén(feillen et al. 2009b) who
adopted a conversion equation (based on standardized measurementsadighsamsples made
with two ultrasound devices) to transpose the echo intensity valuamexbtwith one device to
another device.

Another criticism of the muscle echo intensity is that it idblcapture only the overall change in
the brightness of the muscle, but it cannot measure the setuae. Few studies have attempted to
develop quantification methods that can overcome the limitationhof iatensity in measuring the
image texture. Mauritet al. proposed quantitative variables obtained by density analysis (such as
muscle inhomogeneity and white-area index, which measures thenpeesf patches of high
echogenicity) to differentiate between myopathies and neuropatMasi(s et al. 2003) and to
distinguish between healthy muscles and neuromuscular diseasesitgM# al. 2004). The
rationale was that highly inhomogeneous muscles showed a higher nuniiseghofpixels in the
gradient compared to homogeneous muscles. The white-area indeywayacorrelated to the
overall brightness of the ultrasound image; thus, it suffers fremsdime limitations of the mean
echo intensity. Gdyniat al. used the muscle echo intensity, the first order entropy, andaitialf
dimension to analyze the ultrasound images of tibialis antandrmedial gastrocnemius muscles
of healthy subjects and patients affected by myopathies and motor neunateidigGdynia et al.
2009). They showed that the parameters were able to distinguish béteadthy and pathological
muscles, but not between muscles affected by different pathold&giémpy filtering, combined
with vibration elastography was used in another study on the myofagggr points of the upper
trapezius muscle (Turo et al. 2013). The combination of the twourerasnts lead to overall good
performance (sensitivity of about 70% and specificity of 80%) irnriditicating myofascial trigger
points from normal tissue. Both the studies showed that entropy anabsisextract more
information from the B-mode images than the mean echo inteiBitvever, the measurement of

the first order entropy is based on the intensity histogram distibwati the pixels. Thus, the
15



texture information present in the image and reflecting the mumsa@eostructure is not fully
captured.

On the contrary, the image texture analysis enables to overgotindimitations of the first order
descriptors (Acharya et al. 2012a; Acharya et al. 2012b; Acledrgia 2012c). In the present study,
we used both first order descriptors and higher-order texture desctiptdiscriminate between
genders and different skeletal muscles of healthy subjects.

The main findings of this study are the following:

i) First order and texture descriptors are comparable to the dotrand non-dominant side of each
muscle.

i) First order features help to distinguish the two genders.

iii) Galloway features, quantify the coarseness of an inakgeg a given direction (i.e., describe the
spatial changes in the local acoustic impedance of the tjssndsenable to distinguish different
types of muscles.

iv) Haralick and LBP features (in particular, Haralick eptr and LBP entropy) quantify the
overall (Haralick entropy) and local (LBP entropy) image homogeraaitg distinguish both gender
and muscle types.

A previous study on the echo-intensity of the tibialis anterior amldeofipper limb muscles showed
that the first-order descriptors had different values in the mmiiand non-dominant side (Arts et
al. 2010). In our study, the first order descriptors failed to difteate between the dominant and
non-dominant. Hence, further studies are required to examineetendence of muscle echo
intensity (and texture as well) on the side dominance.

Our observation of females indicating higher echo intensity comparadlés is in agreement with
previous findings (Arts et al. 2010; Caresio et al. 2014). Butolbeervation that the image
homogeneity (as quantified by Haralick and LBP features) is lowémales compared to males
and directional coarseness (as quantified by Galloway featurésiedide among muscles is the

original contribution of this study. Although no muscle biopsies were pegfibimthis study, the
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observed gender variability in first order descriptors, Hatdkatures, and LBP features may be
related to the higher degree of fibrous and adipose tissue presamdfes of females compared to
males (Pillen et al. 2009a; Caresio et al. 2014). The-imtecle variability in directional
coarseness probably resulted from different proportions of fibrousetiaad/or from different
architectural features of the fascicles (i.e., their lesigtheir arrangement relative to one another
and their alignment relative to the force-generating axis). rGikiese possible relations between
textural features and adipose and fibrous tissue content and distrjduture studies are required
to investigate the type of textural features that enable tatdeiferences between healthy and
pathological muscles. For example, conditions associated to it rstiema in a first phase and
collagen infiltration in a subsequent phase (e.g., muscle injugspe longitudinally assessed by
guantitative muscle ultrasonography for monitoring and prognosis of the mygppatess. We
found in a series of endocrine patients affected by steroid myoplasitythe muscle texture
impairment occurs earlier than the muscle size reduction (unpedlsbservations). Therefore, we
infer that quantitative muscle ultrasonography has the potentkettict the occurrence (and the
evolution) of a myopathic process. Moreover, we strongly feel that catnms of different
texture features may be required for prediction, diagnosis, mimgtoand prognosis of the
myopathic disorders.

This work has the following two main limitations. From the piadtpoint of view, this feature-
based characterization is currently still not available in comialescanners. However, since the
computation of the features is not very demanding, it is likely thgtlications for the
characterization of images based on higher order features withbedeled in high-end scanners in
a close future. A second limitation is relative to the actagdability of detecting and grading
pathological conditions by using this multi-features approach. This ssudyeihodological and
aimed at demonstrating the higher sensitivity of higher order featorapared to the first order
ones in characterizing the different muscles. We are curreetfiprming human investigations

focused on the quantification of sarcopenia and myosteatosis draieid technique.
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CONCLUSION

We have proposed a texture-based technique to differentiate geddauacle types. In this work,
we found that the combination of first-order and higher-order textureripiss (Haralick,
Galloway, and LBP) help to discriminate gender and muscle typenidst important features
included entropy, since the local or global homogeneity of the insag@ically correlated to the
physiological muscle status. The presented technique is objectivenvasive, and the preliminary
results indicate the possibility of using this technique to differenti@nder and muscle types.
Hence, in future multi-texture analysis can be used to study tiselendamage and myopathic

disorders.
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FIGURE CAPTIONS

Figure 1.

Region of interest (ROI) positioning in the transversal B-modg@siaA) rectus femoris; B) vastus
lateralis; C) tibialis anterior; D) medial gastrocnemilibe white arrows in panels A) and C)
indicate, respectively, the central aponeurosis and the infastad that were never comprised into

the ROL.

Figure 2.

Schematic representation of the computation of the Gray Lavelc€urrence Matrix (GLCM). A)
Numerical values corresponding to the pixel intensities. Bjogisted GLCM. C) Gray scale
representation of the image in A). D) Gray scale representatfithe GLCM. The red circles in A)

depict the adjacencies (1,6), which correspond to the numbexccincted in panel B).

Figure 3.
Schematic representation of the Local Binary Pattern (B&jess. A) Original pixel intensities.
B) Binarization by thresholding. C) Power-of-two weights. D) Fin&8PLneighborhood. The

overall LBP value assigned to the central pixel is the sutmeofitimbers in D), which equals 216.

Figure4.

Representation of the subjects in the plane of the first twmnieal variables obtained by
MANOVA. The features allowed for a clean-cut separationhef $ubjects on the basis of the
gender. The full symbols represent the males (data from two soalects are overlapped), the

empty symbols the females.

Figureb.

24



Distribution of the four most discriminant features for gender & sample groups. The full
symbols represent the males, the empty symbols the femalesed luercles indicate the biceps
brachii muscle, the down triangles the inferior ROI of the tbiahterior. In each graph, the mean
value and the interval corresponding to + two standard deviatiorspissented. A) Haralick
energy (along the angular directiin= 135°). B) Haralick entropy6(= 135°). C) Haralick

correlation § = 90°). D) Local Binary Pattern (LBP) entropy.

Figure®6.

Representation of the subjects A) in the plane of the first tmorgeal variables, and B) in the
plane of the first and third canonical variable obtained by MANOD#erent symbols and colors

are used for the different muscles. The full symbols reprékentnales, the empty symbols the
females.

BB: biceps brachii; MG: medial gastrocnemius; VL: vastusrdédis; RF: rectus femoris; TA:

tibialis anterior.

Figure7.

Distribution of four discriminant features for muscle type in thm@ge groups. The full symbols
represent the males, the empty symbols the females. lhngeaph, the mean value and the interval
corresponding to + two standard deviations is represented. A) &ralydon-uniformity (GLNU,
along the angular directioth = 90°). B) Run length non-uniformity (RLNW, = 135°). C) Local

Binary Pattern (LBP) entropy. D) Haralick entrofly«135°).

Figure8.
Results of the MANOVA analysis when only first order featuare used to distinguish between
genders and muscle types.
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A) Representation of the subjects in function of the gender.
B) Representation of the subjects in function of the muscle type.
BB: biceps brachii; MG: medial gastrocnemius; VL: vastuer#ddis; RF: rectus femoris; TA:

tibialis anterior.

Figure9.
Differences in mean echo intensity (first order feature) of fouscles between the two genders.
The full symbols represent the males, the empty symbols thegenhaleach graph, the mean value

and the interval corresponding to *+ two standard deviationplisgented.
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APPENDIX

Haralick features

The Haralick features are based on the Gray Level Co-ooceridatrix (GLCM). Let the image
be represented by MxN gray-scale matriX(x,y), where each element of the matrix indicates the
intensity of a single pixel in the image. The co-occurrenceixn@(,j | 4%, 4y) is the second-order
probability function estimation. This matrix denotes the rate afimence of a pixel pair with gray
levelsi andj, given the distances between the pixels #teand 4y in the x andy directions,
respectively. The co-occurrence matdxi, j | 4x, 4y) is defined as
C(0,jlAx, Ay) = {(p, @), (p + Ax,q + Ay):1(p, q) = i,1(p + Ax,q + Ay) = j} 1)

where (p,q)(p + Ax,q + Ay) € MxN, d = (Ax,Ay), and || denotes the cardinality of a set. The
probability that a gray level pixelis at a distancé1x, 4y) away from the gray level pix¢lis given
by

C(i,j
s @

An element of the GLCM matri, j,d,d) is defined as the joint probability of the gray leviedsd]

P(i.j)=

separated by distanckand along angular directiah To reduce the computation burden, we have
considered as 0°, 45°, 90°, and 135°, ahi defined as the Manhattan or city block distanee (
the number of pixels that must be crossed) based on this GLCMlidhaet al. 1973). These

second order features are mathematically defindchlvie 2

Local Binary Pattern features

The LBP is computed by using the following method:
- A circular neighborhood of radiurR pixels is considered around a pixel. The pixel is the

center of the circular neighborhood and it has intensity equal to

- P points are chosen on the circumference of the circle with r&sigh that they are all

equidistant. Letp(p =1 ... P) be the intensities of thH points on the circumference.
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- TheseP pixels are converted into a circular bit-stream of zeros @reb according to
whether the gray value of the pixel is less than or grétadel ..
We consideredP equal to 24 pixels an equal to 3 pixels, in order to consider a relatively large
neighborhood. The created neighborhood is then assigned with a uniformity eneasiy that
counts the number of bit transitions (from 0 to 1 and viceversahancircular domain (with
reference to fig. 3, the value would be equal to 4). We assigned to the LBP code only thenpatter

with U <2, so that:

gzls(lp -1.) Ux)<?2
P+1 otherwise

LBP(x) = { 3)

wheres(x) is the step function that equals Ixi& 0 and is null forx < 0. Let's f; be the relative
frequency of the histogram derived from the LBP values of all thgemiels. The LBP energy is
defined as:

4
LBPenergy = Zifiz @)
The LBP entropy can be defined as:

LBPentropy = - 2lfl log,(fi) ©
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TABLES

Tablel
Mathematical description of first order statistical feadufiehe input muscle region of interest (ROI)

is denoted by(x,y).

Featur Descriptior

M N
Integrated optical density (IOD) | 10D = XZ_lyZ_ll (X.y)

M N
m=3y ¥ 1(x,y)

Mean (m) B x=1y=1M x N

Standard deviation _ y=

M x N

> {1xy)-m)

Variance ¢?) 2 _E1yE Y

M xN

M N | 3
Skewness §, ) 1 xzzlyzzl{ (xy) - m}

XM o3

Y 3 {1y}’

Kurtosis (Kt) Koo L Ly
"M xN e
M N 2
Energy (E1) E = xz=1yz=1| (x,y)
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Table 2
Mathematical description of the Haralick features.
Description

Haralick feature
N-IN-1
Symmetry [syn) lym=1-2 X ‘l - J‘P(hl)
i=0 j=0
N-Lo(N N _
Contrast (con) lcon= X n“1 > > P(i,])
n=0 i=0j=0
| NilNil 1 P(' )
. = > ————P(,]
Homogeneity lmg hmg™ 5 j=014(i—j 2
e =~ 5 5 PG, 1)Iog® ()
== I, (0] !,
Entr 0 j=0 1)io9 J

Entropy (ent)

>

| _N—lN—lP_ 2
Enrg ;5 Jéo (.5)

Energy (enrg)

N-IN-1 .
2 X (LPPGE.T) - uxuy
i=0 j=0

lcor =
co axTy

Correlation* (cor)

* Ox,0y,Hx,Hy are the standard deviations and meanB@FS/ which are the partial probability
entry in the marginal—probability matrix obtained by summing the

density functions.py(i) = ith

rows of P(i, j)
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Table 3
Mathematical description of the Galloway featufdgrepresents the number of gray values in the

image {.e. the number of rows of the mati®. N; represents the number of rung.(the number of

columns of ther matrix).

Gallowayfeature Descriptior

Short run emphasis (SRE) SRE=

Long run emphasis (LRE) LRE=2

Gray-level non-uniformity (GLNU) GLNU = ! Iil JNl
r,. .
2 2 R, )
i=1j=1
Ny (Ng ?
_2_1 _glR(I,J)
Run length non-uniformity (RLNU) RLNU = J'N =
gNp
2 2 R(i,j)
i=1j=1
Ng Ny
> 2 R(,])
Run percentage (RP) Rp==Li=1
N ™M
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Table4

Image features that are the most discriminant between thgemders and among the five muscles
in the MANOVA analysis. The features are listed in order ofekesing weight in the MANOVA
canonical variables.

LBPenergy- LBPentropy l0cal binary pattern features; GLNU: gray-level non-unifeymRLNU: run

length non-uniformity; RP: run percentage; SRE: short run emphasis.

Most discriminant features for gender Most discriminant featfor muscle type
Haralick energy €= 0°, 45°, 90°, 135° GLNU (6= 0°, 45°, 90°)
Haralick entropy €= 90°, 135°) Haralick entropydE 135°)
LBPenergy LBPentropy

Haralick correlation § = 45°, 90°) RLNU @=135°)

LBPentropy Haralick symmetry § = 90°)
RP (6= 90°)
SRE @=0°, 90°)
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Table5

Classification performance based on the 10 most significantrésaas obtained by the MANOVA
analysis (leftmost half of the table) and based on the first ted&ures (rightmost half of the table).

AUROC indicates the area under the receiving-operator-curve.

Ten most significant features First order features only
Sensitivity  Specificity ~ AUROC Sensitivity  Specificity  AUROC
(%) (%) (%) (%)
BB 80.0 97.5 0.984 100 100 1
MG 85.0 98.3 0.990 50.0 95.0 0.932
VL 45.C 95.( 0.94: 10.C 95.¢ 0.851
RFwed 75.C 97.t 0.98( 65.( 98.< 0.93(
RRAat 50.0 95.8 0.936 45.0 95.8 0.910
TA | 100 100 1 50.0 96.7 0.958
TAsup 100 100 1 5.0 99.2 0.765

BB: biceps brachii; MG: medial gastrocnemius; VL: vastter#dis; Riveqs— RF o medial — lateral

portion of the rectus femoris; TA- TAsyp inferior — superior portion of the tibialis anterior.
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Click here to download high resolution image

A A—— s
S J_‘___«___”‘:"-
- _J‘\

—==Ce€ntral aponeurosis e

-




Figure 2

Click here to download Figure: fig2.eps

0
1
0
0
0
0
1
0

N

-

0(4)1
0
0
0
0
2
1

0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0

m

~ N O T OO O© N~ ©

NN AP
ViV

) 7
1|6
21|65

O

@)

4

™

-

N (3]

N - o
|
< n @0 ~ (-]

fl



7 9
8 7
1 4
128 8
64 16




Figure 4
Click here to download Figure: fig4.eps

2 .
o Females
® Males
15F
°
o)
o)
Tr o)
o [ )
o ]
= 05}
o)
© ¢ o)
©
o
~ 0
®
O
c o)
(@)
cC _ L @
S 0.5
@)
°
-1k o
® o)
-15F
_ o | | | | |
-600 -400 -200 0 200 400 600

Canonical Variable 1



Figure 5
Click here to download Figure: fig5.eps

-4 i i
5510 Haralick energy o5 - 0004Harallck entropy e BB males
5.07A v 9.3} B ' o BB females
o v TA Inf males
4.5; 911 v TA Inf females
4.0L 8.9 4 %

o P = 0.0140
3.0 P = 0.0007 % 8.5
25 i
. 8.3 !
2.0L o 8.1
S i
o v

I 7.9}
1.0/ 7.7k
05 7.5
0.95, Haralick correlation 28 LBP Entropy
P =0.1041
0.0l D P = 0.0010 2.7t C P = 0.0022
0.85 26l v
o P = 0.9090 8 v
0.80} 25}
[}
075k v v 2.4l
0.70} 23l $ \4
0.65- 22l
v
0.60} S o 21r
0.55] 2.0l °
v
0.50} 1.0}
0.45

1.8
Biceps Brachii Tibialis Anterior (Inf) Biceps Brachii Tibialis Anterior (Inf)



Figthe 6 e BB
Click herefio download Figure: figb.eps s MG
¢ VL
» RF Lat
i TA Inf
TA Sup
10 ®
AN
[}
I
0
©
~ 0
©
Q
c
2
< [
o
¢
-10
-15+
-20 | | | | | |
-60 -40 -20 0 20 40 60
Canonical Variable 1
10 e BB
B s MG
- ¢ VL
8 < RF Med
» RF Lat
6L TA Inf
TA Sup
4 -
™ O
Q e
g 2+ 0 ?
—_ 0 5
8 < %
c
O -2
c
©
o
4+
>
-6+
-8
_10 | | 1 1 1 1
-60 -40 -20 0 20 40 60

Canonical Variable 1



Figure 7
Click here to download Figure: fig7.eps

w
T

x10% GLNU

Tt
< sk

600F

500+

4001

300+

2001

1001

RLNU

0.55 LBP Entropy 9.50; D Haralick entropy
0.50L . 9.01 l
: ; < > ‘é’ g
8 > v § o _E_
0.45; 8.50 ° :
I
0.40]- ; : ? 8.0 ! ‘%’
$ g ¥ .
0.35 7.50

BB MG VL RF RF TA TA
Med Lat Inf Sup

BB MG VL RF RF TA TA
Med Lat Inf Sup

VA< OO p «VASHEEO

BB males

MG males

VL males

RF Med males
RF Lat males
TA Inf males
TA Sup males
BB females
MG females
VL females

RF Med females
RF Lat females

v TA Inf females
A TA Sup females



Figlre s o Females
Click here Aownload Figure: fig8.eps e Males
2 o
150
1+ °
N ® o
Q ° o
ﬁ 0.5+ o o} o
@® ®
= 0
®©
RS L]
5
2 -0.5+
@®©
O [}
-1+ Py
-15F
®
2+
25 I I I I I J
-4 -3 -2 -1 0 1 3 4
Canonical Variable 1
e BB males
m MG males
6 B ¢ VL males
<« RF Med males
» RF Lat males
v TA Inf males
4r A TA Sup males
o BB females
o MG females
N > ¢4 VL females
Qo 2r > > - O < RF Med females
'Eg o e D P u > RF Lat females
S o ® KB Aol v TA Inf females
> 0 ® o o AN A ,f@o A TA Sup females
(_5 ® O @ ’ 44-
) o @] < > <
5 o <] g
S ) <
O 5 ° *q |
o) 4«
4
4+
o}
<
-6
| | | | |
-6 -\ -2 0 2 6

Canonical Variable 1



obigure 9 Mean Echo Intensity

Click hgre to download Figure: fig9.eps
A P =0.054 e BB males

| ¢ VL males
80 < RF Med males

g P =0.017 v TA Inf males

o BB females
or ¢ VL females
ﬁ < RF Med females
v TA Inf females

60 - <

O
50 |- ﬁ

o
40 - <
30 -
20
Biceps Brachii Rectus Femoris (Med)
Mean Echo Intensity

0 P =0.045
8ol v ‘ P > 0.05

y |
2
60 | ¢
50 |- @

v o
40 - ¢
30 - v
20

Tibialis Anterior (Inf) Vastus Lateralis



