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Abstract

This paper concerns the introduction of a new Markov Chain Monte Carlo scheme
for posterior sampling in Bayesian nonparametric mixture models with priors that
belong to the general Poisson-Kingman class. We present a novel compact way
of representing the infinite dimensional component of the model such that while
explicitly representing this infinite component it has less memory and storage re-
quirements than previous MCMC schemes. We describe comparative simulation
results demonstrating the efficacy of the proposed MCMC algorithm against ex-
isting marginal and conditional MCMC samplers.

1 Introduction

According to Ghahramani [9], models that have a nonparametric component give us more flexiblity
that could lead to better predictive performance. This is because their capacity to learn does not satu-
rate hence their predictions should continue to improve as we get more and more data. Furthermore,
we are able to fully consider our uncertainty about predictions thanks to the Bayesian paradigm.
However, a major impediment to the widespread use of Bayesian nonparametric models is the prob-
lem of inference. Over the years, many MCMC methods have been proposed to perform inference
which usually rely on a tailored representation of the underlying process [5, 4, 18, 20, 28, 6]. This
is an active research area since dealing with this infinite dimensional component forbids the direct
use of standard simulation-based methods for posterior inference. These methods usually require a
finite-dimensional representation. There are two main sampling approaches to facilitate simulation
in the case of Bayesian nonparametric models: random truncation and marginalization. These two
schemes are known in the literature as conditional and marginal samplers.

In conditional samplers, the infinite-dimensional prior is replaced by a finite-dimensional repre-
sentation chosen according to a truncation level. In marginal samplers, the need to represent the
infinite-dimensional component can be bypassed by marginalising it out. Marginal samplers have
less storage requirements than conditional samplers but could potentially have worst mixing proper-
ties. However, not integrating out the infinite dimensional compnent leads to a more comprehensive
representation of the random probability measure, useful to compute expectations of interest with
respect to the posterior.

In this paper, we propose a novel MCMC sampler for Poisson-Kingman mixture models, a very
large class of Bayesian nonparametric mixture models that encompass all previously explored ones
in the literature. Our approach is based on a hybrid scheme that combines the main strengths of
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both conditional and marginal samplers. In the flavour of probabilistic programming, we view our
contribution as a step towards wider usage of flexible Bayesian nonparametric models, as it allows
automated inference in probabilistic programs built out of a wide variety of Bayesian nonparametric
building blocks.

2 Poisson-Kingman processes

Poisson-Kingman random probability measures (RPMs) have been introduced in Pitman [23] as a
generalization of homogeneous Normalized Random Measures (NRMs) [25, 13]. Let X be a com-
plete and separable metric space endowed with the Borel σ-field BpXq, let µ „ CRMpρ,H0q be a
homogeneous Completely Random Measure (CRM) with Lévy measure ρ and base distribution H0,
see Kingman [15] for a good overview about CRMs and references therein. Then, the corresponding
total mass of µ is T “ µpXq and let it be finite, positive almost surely, and absolutely continuous
with respect to Lebesgue measure. For any t P R`, let us consider the conditional distribution of
µ{t given that the total mass T P dt. This distribution is denoted by PKpρ, δt, H0q, it is the distri-
bution of a RPM, where δt denotes the usual Dirac delta function. Poisson-Kingman RPMs form
a class of RPMs whose distributions are obtained by mixing PKpρ, δt, H0q, over t, with respect to
some distribution γ on the positive real line. Specifically, a Poisson-Kingman RPM has following
the hierarchical representation

T „ γ

P |T “ t „ PKpρ, δt, H0q. (1)

The RPM P is referred to as the Poisson-Kingman RPM with Lévy measure ρ, base distribution H0

and mixing distribution γ. Throughout the paper we denote by PKpρ, γ,H0q the distribution of P
and, without loss of generality, we will assume that γpdtq9hptqfρptqdt where fρ is the density of
the total mass T under the CRM and h is a non-negative function. Note that, when γpdtq “ fρptqdt
then the distribution PKpρ, fρ, H0q coincides with NRMpρ,H0q. The resulting P “

ř

kě1 pkδφk
is almost surely discrete and since µ is homogeneous, the atoms pφkqkě1 of P are independent of
their masses ppkqkě1 and form a sequence of independent random variables identically distributed
according to H0. Finally, the masses of P have distribution governed by the Lévy measure ρ and
the distribution γ.

One nice property is that P is almost surely discrete: if we obtain a sample tYiu
n
i“1 from it, there is

a positive probability of Yi “ Yj for each pair of indexes i ‰ j. Hence, it induces a random partition
Π on N, where i and j are in the same block in Π if and only if Yi “ Yj . Kingman [16] showed
that Π is exchangeable, this property will be one of the main tools for the derivation of our hybrid
sampler.

2.1 Size-biased sampling Poisson-Kingman processes

A second object induced by a Poisson-Kingman RPM is a size-biased permutation of its atoms.
Specifically, order the blocks in Π by increasing order of the least element in each block, and for
each k P N let Zk be the least element of the kth block. Zk is the index among pYiqiě1 of the
first appearance of the kth unique value in the sequence. Let J̃k “ µptYZkuq be the mass of the
corresponding atom in µ. Then pJ̃kqkě1 is a size-biased permutation of the masses of atoms in µ,
with larger masses tending to appear earlier in the sequence. It is easy to see that

ř

kě1 J̃k “ T , and
that the sequence can be understood as a stick-breaking construction: starting with a stick of length
T0 “ T ; break off the first piece of length J̃1; the surplus length of stick is T1 “ T0 ´ J̃1; then the
second piece with length J̃2 is broken off, etc.

Theorem 2.1 of Perman et al. [21] states that the sequence of surplus masses pTkqkě0 forms a
Markov chain and gives the corresponding initial distribution and transition kernels. The corre-
sponding generative process for the sequence pYiqiě1 is as follows:

i) Start with drawing the total mass from its distribution Pρ,h,H0
pT P dtq9hptqfρptqdt.

ii) The first draw Y1 from P is a size-biased pick from the masses of µ. The actual value of Y1

is simply Y ˚1 „ H0, while the mass of the corresponding atom in µ is J̃1, with conditional
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distribution

Pρ,h,H0
pJ̃1 P ds1|T P dtq “

s1

t
ρpds1q

fρpt´ s1q

fρptq
, with surplus mass T1 “ T ´ J̃1.

iii) For subsequent draws i ě 2:
– Let K be the current number of distinct values among Y1, . . . , Yi´1, and Y ˚1 , . . . , Y

˚
K

the unique values, i.e., atoms in µ. The masses of these first K atoms are denoted by
J̃1, . . . , J̃K and the surplus mass is TK “ T ´

řK
k“1 J̃k.

– For each k ď K, with probability J̃k{T , we set Yi “ Y ˚k .
– With probability TK{T , Yi takes on the value of an atom in µ besides the first K

atoms. The actual value Y ˚K`1 is drawn from H0, while its mass is drawn from

Pρ,h,H0
pJ̃K`1 P dsK`1|TK P dtKq “

sK`1

tK
ρpdsK`1q

fρptK ´ sK`1q

fρptKq
, TK`1 “ TK´J̃K`1.

By multiplying the above infinitesimal probabilities, one obtains the joint distribution of the random
elements T , Π, pJ̃iqiě1 and pY ˚i qiě1

Pρ,h,H0pΠn “ pckqkPrKs, Y
˚
k P dy

˚
k , J̃k P dsk for k P rKs, T P dtq (2)

“ t´nfρpt´
řK
k“1 skqhptqdt

K
ź

k“1

s
|ck|
k ρpdskqH0pdy

˚
k q,

where pckqkPrKs denotes a particular partition of rns with K blocks, c1, . . . , cK , ordered by in-
creasing least element and |ck| is the cardinality of block ck. The distribution (2) is invariant to the
size-biased order. Such a joint distribution was first obtained in Pitman [23] , see also Pitman [24]
for further details.

2.2 Relationship to the usual Stick-breaking construction

In the generative process above, we mentioned that it is reminiscent of the well known stick breaking
construction from Ishwaran & James [12], where you break a stick of length one but it is not the
same. However, we can effectively reparameterize the model, starting with Equation (2), due to
two useful identities in distribution: Pj

d
“

J̃j
T´

ř

`ăj J̃`
and Vj

d
“

Pj
1´

ř

`ăj P`
for j “ 1, . . . ,K.

Indeed, using this reparameterization, we obtain the corresponding joint in terms of K p0, 1q-valued
stick-breaking weights tVju

K
j“1 which correspond to a stick-breaking representation. Note that this

joint distribution is for a general Lévy measure ρ, density fρ and it is conditioned on the valued
of the random variable T . We can recover the well known Stick breaking representations for the
Dirichlet and Pitman-Yor processes, for a specific choice of ρ and if we integrate out T , see the
supplementary material for further details about the latter. However, in general, these stick-breaking
random variables form a sequence of dependent random variables with a complicated distribution,
except for the two previously mentioned processes, see Pitman [22] for details.

2.3 Poisson-Kingman mixture model

We are mainly interested in using Poisson-Kingman RPMs as a building block for an infinite mixture
model. Indeed, we can use Equation (1) as the top level of the following hierarchical specification

T „ γ

P |T „ PKpρσ, δT , H0q

Yi | P
iid
„ P

Xi | Yi
ind
„ F p¨ | Yiq (3)
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Figure 1: Varying table size Chinese restaurant representation for observations tXiu
9
i“1

where F p¨ | Y q is the likelihood term for each mixture component, and our dataset consists of
n observations pxiqiPrns of the corresponding variables pXiqiPrns. We will assume that F p¨ | Y q is
smooth. After specifying the model we would like to carry out inference for clustering and/or density
estimation tasks. We can do it exactly and more efficiently than with known MCMC samplers with
our novel approach. In the next section, we present our main contribution and in the following one
we show how it outperforms other samplers.

3 Hybrid Sampler

Equation’s (2) joint distribution is written in terms of the first K size-biased weights. In order to
obtain a complete representation of the RPM, we need to size-bias sample from it a countably infinite
number of times. Succesively, devise some way of representing this object exactly in a computer
with finite memory and storage is needed.

We introduce the following novel strategy: starting from equation (2), we exploit the generative
process of section 2.1 when reassigning observations to clusters. In addition to this, we reparame-
terize the model in terms of a surplus mass random variable V “ T ´

řK
k“1 J̃k and end up with the

following joint distribution

Pρ,h,H0
pΠn “ pckqkPrKs, Y

˚
k P dy

˚
k , J̃k P dsk for k P rKs, T ´

K
ÿ

k“1

J̃k P dv,Xi P dxi for i P rnsq

(4)

“ pv `
K
ÿ

k“1

skq
´nh

˜

v `
K
ÿ

k“1

sk

¸

fρpvq
K
ź

k“1

s
|ck|
k ρpdskqH0pdy

˚
k q

ź

iPck

F pdxi|y
˚
k q.

For this reason, while having a complete representation of the infinite dimensional part of the model
we only need to explicitly represent those size-biased weights associated to occupied clusters plus
a surplus mass term which is associated to the rest of the empty clusters, as Figure 1 shows. The
cluster reassignment step can be seen as a lazy sampling scheme: we explicitly represent and update
the weights associated to occupied clusters and create a size-biased weight only when a new cluster
appears. To make this possible we use the induced partition and we call Equation (4) the varying
table size Chinese restaurant representation because the size-biased weights can be thought as the
sizes of the tables in our restaurant. In the next subsection, we compute the complete conditionals
of each random variable of interest to implement an overall Gibbs sampling MCMC scheme.

3.1 Complete conditionals

Starting from equation (4), we obtain the following complete conditionals for the Gibbs sampler

P pV P dv | Restq9

˜

v `
K
ÿ

k“1

sk

¸´n

fρpvqh

˜

v `
K
ÿ

k“1

sk

¸

dv (5)

P
´

J̃i P dsi | Rest
¯

9

˜

v ` si `
ÿ

k‰i

sk

¸´n

h

˜

v ` si `
ÿ

k‰i

sk

¸

s
|ci|
i ρpdsiqIp0,Surpmassiqpsiqdsi
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where Surpmassi “ V `
řk
j“1 J̃j ´

ř

jăi J̃j .

Ppci “ c | c´i,Restq9

#

scF pdxi | tXjujPc Y
˚
c q if i is assigned to existing cluster c

v
M F pdxi | Y

˚
c q if i is assigned to a new cluster c

According to the rule above, the ith observation will be either reassigned to an existing cluster or to
one of the M new clusters in the ReUse algorithm as in Favaro & Teh [6]. If it is assigned to a new
cluster, then we need to sample a new size-biased weight from the following

P
´

J̃k`1 P dsk`1 | Rest
¯

9fρpv ´ sk`1qρpsk`1qsk`1Ip0,vqpsk`1qdsk`1. (6)

Every time a new cluster is created we need to obtain its corresponding size-biased weight which
could happen 1 ď R ď n times per iteration hence, it has a significant contribution to the overall
computational cost. For this reason, an independent and identically distributed (i.i.d.) draw from
its corresponding complete conditional (6) is highly desirable. In the next subsection we present a
way to achieve this. Finally, for updating cluster parameters tY ˚k ukPrKs, in the case where H0 is
non-conjugate to the likelihood, we use an extension of Favaro & Teh [6]’s ReUse algorithm, see
Algorithm 3 in the supplementary material for details.

The complete conditionals in Equation (5) do not have a standard form but a generic MCMC method
can be applied to sample from each within the Gibbs sampler. We use slice sampling from Neal [19]
to update the size-biased weights and the surplus mass. However, there is a class of priors where the
total mass’s density is intractable so an additional step needs to be introduced to sample the surplus
mass. In the next subsection we present two alternative ways to overcome this issue.

3.2 Example of classes of Poisson-Kingman priors

a) σ-Stable Poisson-Kingman processes [23]. For any σ P p0, 1q, let fσptq “

1
π

ř8

j“0
p´1qj`1

j! sinpπσjqΓpσj`1q
tσj`1 be the density function of a positive σ-Stable random variable and

ρpdxq “ ρσpdxq :“ σ
Γp1´σqx

´σ´1dx. This class of RPMs is denoted by PKpρσ, hT , H0q where h
is a function that indexes each member of the class. For example, in the experimental section, we
picked 3 choices of the h function that index the following processes: Pitman-Yor, Normalized Sta-
ble and Normalized Generalized Gamma processes. This class includes all Gibbs type priors with
parameter σ P p0, 1q, so other choices of h are possible, see Gnedin & Pitman [10] and De Blasi
et al. [1] for a noteworthy account of this class of Bayesian nonparametric priors. In this case, the
total mass’s density is intractable and we propose two ways of dealing with this. Firstly, we used
Kanter [14]’s integral representation for the σ-Stable density as in Lomeli et al. [17], introduce an
auxiliary variable Z and slice sample each variable

P pV P dv | Restq9

˜

v `
k
ÿ

i“1

si

¸´n

v´
σ

1´σ exp
”

´v
´σ
1´σApzq

ı

h

˜

v `
k
ÿ

i“1

si

¸

dv

P pZ P dz | Restq9Apzq exp
”

´vp´
σ

1´σ qApzq
ı

dz,

see Algorithm 1 in the supplementary material for details. Alternatively, we can completely bypass
the evaluation of the total mass’s density by updating the surplus mass with a Metropolis-Hastings
step with an independent proposal from a Stable or from an Exponentially Tilted Stable(λ). It is
straight forward to obtain i.i.d draws from these proposals, see Devroye [3] and Hofert [11] for an
improved rejection sampling method for the Exponentially tilted case. This leads to the following
acceptance ratio

P pV 1 P dv1 | Restq fσpvq exp p´λvq

P pV P dv | Restq fσpv1q exp p´λv1q
“

´

v1 `
řk
i“1 si

¯´n

h
´

v1 `
řk
i“1 si

¯

dv1 exp p´vq
´

v `
řk
i“1 si

¯´n

h
´

v `
řk
i“1 si

¯

dv exp p´v1q
,

see Algorithm 2 in the supplementary material for details. Finally, to sample a new size-biased
weight

P
´

J̃k`1 P dsk`1 | Rest
¯

9fσpv ´ sk`1qs
´σ
k`1Ip0,vqpsk`1qdsk`1.
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Fortunately, we can get an i.i.d. draw from the above due to an identity in distribution given by
Favaro et al. [8] for the usual stick breaking weights for any prior in this class such that σ “ u

v
where u ă v are coprime integers. Then we just reparameterize it back to obtain the new size-biased
weight, see Algorithm 4 in the supplementary material for details.

b) ´ logBeta-Poisson-Kingman processes [25, 27]. Let fρptq “
Γpa`bq

ΓpaqΓpbq exp p´atq p1´ expp´tqq
b´1 be the density of a positive random variable X d

“ ´ log Y ,

where Y „ Betapa, bq and ρpxq “ expp´axqp1´expp´bxqq
xp1´expp´xqq . This class of RPMs generalises the

Gamma process but has similar properties. Indeed, if we take b “ 1 and the density function for
T is γptq “ fρptq we recover the Lévy measure and total mass’s density function of a Gamma
process. Finally, to sample a new size-biased weight

P
´

J̃k`1 P dsk`1 | Rest
¯

9
p1´ exppsk`1 ´ vqq

b´1
p1´ expp´bsk`1qq

1´ expp´sk`1q
dsk`1Ip0,vqpsk`1q.

If b ą 1, this complete conditional is a monotone decreasing unnormalised density with maximum
at b. We can easily get an i.i.d. draw with a simple rejection sampler [2] where the rejection constant
is bv and the proposal is Up0, vq. There is no other known sampler for this process.

3.3 Relationship to marginal and conditional MCMC samplers

Starting from equation (2), another strategy would be to reparameterize the model in terms of the
usual stick breaking weights. Next, we could choose a random truncation level and represent finitely
many sticks as in Favaro & Walker [7]. Alternatively, we could integrate out the random probability
measure and sample only the partition induced by it as in Lomeli et al. [17]. Conditional samplers
have large memory requirements as often, the number of sticks needed can be very large. Fur-
thermore, the conditional distributions of the stick lengths are quite involved so they tend to have
slow running times. Marginal samplers have less storage requirements than conditional samplers but
could potentially have worst mixing properties. For example, Lomeli et al. [17] had to introduce a
number of auxiliary variables which worsen the mixing.

Our novel hybrid sampler exploits marginal and conditional samplers advantages. It has less memory
requirements since it just represents the size-biased weights of occupied as opposed to conditional
samplers which represent both empty and occupied clusters. Also, it does not integrate out the
size-biased weights thus, we obtain a more comprehensive representation of the RPM.

4 Performance assesssment

We illustrate the performance of our hybrid sampler on a range of Bayesian nonparametric mixture
models, obtained by different specifications of ρ and γ, as in Equation (3). At the top level of this
hierarchical specification, different Bayesian nonparametric priors were chosen from both classes
presented in the examples section. We chose the base distribution H0 and the likelihood term F for
the kth cluster to be

H0pdµkq “ N
`

dµk | µ0, σ
2
0

˘

and F pdx1, . . . , dxnk | µk, τ1q “
śnk
i“1 N

`

xi | µk, σ
2
1

˘

,

where tXju
nk
j“1 are the nk observations assigned to the kth cluster at some iteration. N denotes a

Normal distribution with mean µk and variance σ2
1 , a common parameter among all clusters. The

mean’s prior distribution is Normal, centered at µ0 and with variance σ2
0 . Although the base distri-

bution is conjugate to the likelihood we treated it as non-conjugate case and sampled the parameters
at each iteration rather than integrating them out.

We used the dataset from Roeder [26] to test the algorithmic performance in terms of running time
and effective sample size (ESS), as Table 1 shows. The dataset consists of measurements of veloc-
ities in km/sec of n “ 82 galaxies from a survey of the Corona Borealis region. For the σ-Stable
Poisson-Kingman class, we compared it against our implementation of Favaro & Walker [7]’s con-
ditional sampler and against the marginal sampler of Lomeli et al. [17]. We chose to compare our
hybrid sampler against these existing approaches which follow the same general purpose paradigm.

6



Algorithm σ Running time ESS(˘std)
Pitman-Yor process (θ “ 10)

Hybrid 0.3 7135.1(28.316) 2635.488(187.335)
Hybrid-MH (λ “ 0) 0.3 5469.4(186.066) 2015.625(152.030)

Conditional 0.3 NA NA
Marginal 0.3 4685.7(84.104) 2382.799(169.359)
Hybrid 0.5 3246.9(24.894) 3595.508(174.075)

Hybrid-MH (λ “ 50) 0.5 4902.3(6.936) 3579.686(135.726)
Conditional 0.5 10141.6(237.735) 905.444(41.475)

Marginal 0.5 4757.2(37.077) 2944.065(195.011)
Normalized Stable process

Hybrid 0.3 5054.7(70.675) 5324.146(167.843)
Hybrid-MH (λ “ 0) 0.3 7866.4(803.228) 5074.909(100.300)

Conditional 0.3 NA NA
Marginal 0.3 7658.3(193.773) 2630.264(429.877)
Hybrid 0.5 5382.9(57.561) 4877.378(469.794)

Hybrid-MH (λ “ 50) 0.5 4537.2(37.292) 4454.999(348.356)
Conditional 0.5 10033.1(22.647) 912.382(167.089)

Marginal 0.5 8203.1(106.798) 3139.412(351.788)
Normalized Generalized Gamma process (τ “ 1)

Hybrid 0.3 4157.8(92.863) 5104.713(200.949)
Hybrid-MH (λ “ 0) 0.3 4745.5(187.506) 4848.560(312.820)

Conditional 0.3 NA NA
Marginal 0.3 7685.8(208.98) 3587.733(569.984)
Hybrid 0.5 6299.2(102.853) 4646.987(370.955)

Hybrid-MH (λ “ 50) 0.5 4686.4(35.661) 4343.555(173.113)
Conditional 0.5 10046.9(206.538) 1000.214(70.148)

Marginal 0.5 8055.6(93.164) 4443.905(367.297)
-logBeta (a “ 1, b “ 2)

Hybrid - 2520.6(121.044) 3068.174(540.111)
Conditional - NA NA

Marginal - NA NA

Table 1: Running times in seconds and ESS averaged over 10 chains, 30,000 iterations, 10,000 burn in.

Table 1 shows that different choices of σ result in differences in the algorithm’s running times and
ESS. The reason for this is that in the σ “ 0.5 case there are readily available random number
generators which do not increase the computational cost. In contrast, in the σ “ 0.3 case, a rejection
sampler method is needed every time a new size-biased weight is sampled which increases the
computational cost, see Favaro et al. [8] for details. Even so, in most cases, we outperform both
marginal and conditional MCMC schemes in terms of running times and in all cases, in terms of
ESS. In the Hybrid-MH case, even thought the ESS and running times are competitive, we found
that the acceptance rate is not optimal, we are currently exploring other choices of proposals. Finally,
in Example b), our approach is the only one available and it has good running times and ESS. This
qualitative comparison confirms our previous statements about our novel approach.

5 Discussion

Our main contribution is our Hybrid MCMC sampler as a general purpose tool for inference with a
very large class of infinite mixture models. We argue in favour of an approach in which a generic
algorithm can be applied to a very large class of models, so that the modeller has a lot of flexibility in
choosing specific models suitable for his/her problem of interest. Our method is a hybrid approach
since it combines the perks of the conditional and marginal schemes. Indeed, our experiments
confirm that our hybrid sampler is more efficient since it outperforms both marginal and conditional
samplers in running times in most cases and in ESS in all cases.

We introduced a new compact way of representing the infinite dimensional component such that it is
feasible to perform inference and how to deal with the corresponding intractabilities. However, there
are still various challenges that remain when dealing with these type of models. For instance, there
are some values for σ which we are unable to perform inference with our novel sampler. Secondly,
when a Metropolis-Hastings step is used, there could be other ways to improve the mixing in terms
of better proposals. Finally, all BNP MCMC methods can be affected by the dimensionality and
size of the dataset when dealing with an infinite mixture model. Indeed, all methods rely on the
same way of dealing with the likelihood term. When adding a new cluster, all methods sample its
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corresponding parameter from the prior distribution. In a high dimensional scenario, it could be very
difficult to sample parameter values close to the existing data points. We consider these points to be
an interesting avenue of future research.
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