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Abstract 11 

Forests of the Apennines are characterised by high canopy cover and high tree species diversity (being at 12 

the interface between two major climatic zones of Europe), and provide important ecosystem functions 13 

to millions of people. They exemplify cutting-edge themes such as forest ecology in warmer climates, 14 

consequences of heavy land use, and resilience at the trailing edge of the distribution of many European 15 

forest species (Silver fir, Norway spruce, Beech, Black pine, Birch). 16 

We introduce the setting under the geological and climatological point of view and review the literature 17 

on the interactions between these long-term drivers and the specific, structural, and genetic diversity of 18 

these forest communities (e.g., effects of glacial refugia or tectonic/volcanic activity), followed by a 19 

brief outline of what little is known about natural disturbance regimes and their range of variability. 20 

Anthropogenic disturbances (fire, grazing) and land use changes (abandonment of cropland and pasture) 21 

have been by far the main drivers of forest dynamics at least for the last two millennia, determining for 22 

examples overageing of coppices, treeline advances, forest encroachment on former agricultural land.  23 

We suggest considerations about the interplay between these land use changes and disturbance drivers 24 

(e.g. fuel continuity), summarise comparisons between managed and unmanaged forests (e.g., increase 25 

in tree size, deadwood, biodiversity indicators), and elaborate on current proposals for climate-adapted 26 
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management, highlighting specific and genetic diversity as an important source of resilience and 27 

adaptive potential. 28 
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Highlights 34 

 Forests of the Apenninnes have been poorly explored in the ecological literature  35 

 Anthropogenic disturbances and land use changes are the main drivers of forest dynamics 36 

 Regimes of natural disturbances (avalanches, fires, wind, insects) are masked by human impacts  37 

 Specific and genetic diversity (e.g., trailing edges) are an important source of resilience and 38 

adaptive potential 39 

 40 

  41 
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1. Introduction  42 

Italy has two main mountain systems: the Alps and the Apennines (Figure 1). The alpine area represents 43 

approximately one-quarter of the total Italian land surface (75,000 km
2
), while the Apennine region 44 

accounts for approximately two-fifths (120,000 km
2
). Together they make up approximately 35% of the 45 

total area of the country. 46 

The Apennines include a series of mountain ranges (approximately 38-45° N and 8-17° E) bordered by 47 

narrow coastlands that form the physical backbone of peninsular Italy. Their total length is 48 

approximately 1,400 kilometres, and their width ranges from 40 to 200 km. Mount Corno Grande (2,912 49 

m a.s.l.) is the highest point of the Apennines proper on the peninsula, while the stratovolcano Mount 50 

Etna (3,323 m) in the island of Sicily is the highest peak, and the highest active volcano in Europe.  51 

The Apennines are characterised by high forest cover and high tree species diversity (being at the 52 

interface between the temperate and Mediterranean biomes of Europe). Apennine forests provide 53 

important ecosystem services for millions of people, e.g., timber and energy wood, non-wood forest 54 

products, water, biodiversity, and recreation (Vizzarri et al. 2015). Their functioning is driven by similar 55 

macroecological factor as those at work in the Alps (Bebi et al. 2016), but the local peculiarities of 56 

geological history, climate, and human influence have shaped a very different situation in terms of forest 57 

composition, structure, and landscape mosaic. However, the Apennines have been much less explored 58 

than the Alps in the literature in terms of disturbance regimes (both natural and anthropogenic) and their 59 

effects on ecosystem processes.  60 

The aim of this review is to summarize the main drivers of the composition, cover, structure, and 61 

dynamics of Apennine forests, including both macroecological constraints (geology and climate), human 62 

influence, and natural disturbance agents. In order to do so, we searched the existing scientific literature 63 

(Google Scholar database) using the keywords “Apennine” and “forest”, plus each of the following: 64 

“pollen OR charcoal”, “land use change”, “(stand OR forest) structure”, and “disturbances” (all words 65 

used in either English or Italian languages). The search produced 9860 unique records. After filtering out 66 
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irrelevant and inaccessible papers, the total number of reviewed studies was 170 (i.e., 74, 42, 28, and 24 67 

papers for each of the last four keywords, respectively) (Appendix 1). 68 

Although focused on a specific geographic area, the history and dynamics of forests illustrated herein 69 

are similar to those occurred in other heavily anthropized mountain regions of the world, and our 70 

conclusions could be relevant in such areas as well. 71 

 72 

2. Macroecological drivers 73 

2.1 Geology 74 

The Apennine orogeny began in the middle Miocene (about 20 million years ago, i.e., millions of years 75 

later than the Alpine orogeny) (Carminati et al. 2012) as a consequence of the subduction of the African-76 

Adriatic plate below the European plate (Carminati et al. 2003), and still continues today (Devoti et al. 77 

2008). At the same time, large faults developed along the western side of the Apennines, connected to a 78 

crustal thinning that resulted in the opening of the Tyrrhenian sea (Rosenbaum and Lister 2004). 79 

Therefore, these young mountains of Italy are of paradoxical provenience, deriving from both 80 

compression (folded systems) and extension (fault-block systems). This is responsible for the great 81 

variety of rock types and the rugged appearance of the range today. In the north, sandstones, marls, and 82 

greenstones occur. In the central Apennines clay, sandstone, and limestones are common. In the 83 

southern Apennines large calcareous rock outcrops are separated by lowland areas of shale and 84 

sandstone, and interrupted by extensive argillaceous rock types, which originate frequent erosion of the 85 

“badlands” type. 86 

 87 

2.2 Historical climate  88 

Italy is placed at the boundary between the Mediterranean and the temperate zone of the boreal 89 

hemisphere (Blasi et al. 2007). The Mediterranean Sea, which almost surrounds the country, is a 90 

reservoir of heat and humidity. The Apennines intercept Atlantic perturbations and, with their rough 91 
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morphology, experience sharp temperature variations over short distances, frequent rainfalls for 92 

adiabatic cooling and stau wind currents, and winter fog stagnation inside the several internal closed 93 

basins and narrow valleys. The climate is of the mountain variety of the Mediterranean type, with dry 94 

summers and rainy (and snowy) winters. Mean temperature ranges from 0 to 11 °C in January and from 95 

24 to 28 °C in July. In the upper zone (over 2,000 m) there is snow 180-190 days per year. Annual 96 

precipitation ranges from 600 to 4500 mm. Because the Adriatic Sea, rather thin and shallow, exerts a 97 

less pronounced effect than the Tyrrhenian Sea, most of the precipitation falls on the western slopes of 98 

the mountains (> 3,000 mm per year in Liguria). Precipitation seasonality is another typical trait of 99 

Mediterranean climates; summer cyclones bring in torrential rains and may cause severe flooding. The 100 

aridity index (ratio between precipitation and ET0: Wang et al. 2012) is often < 0.65 (sub-humid), 101 

especially in Sicily, Apulia, Sardinia and Basilicata. 102 

 103 

2.3 Climate change 104 

The Mediterranean basin is very sensitive to climate variation (Lionello et al. 2006). In the last century, 105 

Italian temperatures registered a warming (+1°C on average between 1865 and 2003) comparable to 106 

Europe-wide trends (Brunetti et al. 2006). Annual precipitation and the number of rainfall days 107 

decreased (811 to 723 mm in 1961-2000, and -10% in 1866-1996, respectively), but the intensity of 108 

individual events increased (Brunetti et al. 2001). Hot waves increased in frequency and duration (66 to 109 

187 hot days in 1951-2000) (Lionello et al. 2010). These trends are expected to worsen in the next 110 

decades (Giorgi and Lionello 2008). Conditions simulated by HadCM3 forecast a remarkable increase of 111 

maximum July temperatures over the whole country (+7.6 °C and +5.6°C in 2080 under A2 and B2 112 

scenarios, respectively). The highest increases are concentrated in the northern Apennines, the lowest in 113 

the South. Minimum January temperature is also expected to increase, albeit moderately (+1.8 to +2.8°C 114 

in 2080). An overall reduction in annual precipitation is projected for year 2080, more pronounced under 115 

the A2 (-18.1%) than the B2 scenario (-5.9%), mainly concentrated along the central Apennines (-22.8% 116 
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and -9.3% under A2 and B2 scenarios, respectively). The highest reductions are expected in summer (-117 

48.5% and -41.5%) (Dibari et al. 2015). The potential consequences of the northward extension of the 118 

Mediterranean subtropical climatic region in Italy include a decline in soil organic carbon, and a 119 

reduction in snow cover associated with warming. In turn, a shallower, ephemeral snowpack will 120 

promote soil freezing, with important consequences on soil nutrient dynamics (e.g., higher N losses) 121 

(Edwards et al. 2007). 122 

 123 

3. Vegetation history 124 

The flora of the Apennines is the result of several “floristic streams” that have reached Italy since the 125 

Tertiary (Valva 1992; Uzunov et al. 2005). Most species migrated from the balkanic-illiric province 126 

during the Messinian salinity crisis in the high Miocene – a flow that originated most of the 127 

Mediterranean flora (Bocquet et al. 1978) and which explains many disjunct distributions, e.g., Pinus 128 

heldreichii Christ. (Piotti et al. 2014). Another wave of plant migration originated in the Iberian 129 

peninsula and northern Africa, again during the Messinian, and enriched the Apennine flora with several 130 

drought-tolerant elements (Biondi et al. 2015). During the later cold periods of the Pliocene, some alpine 131 

and boreal species migrated from central and northern Europe (Pedrotti and Gafta 2003), while an 132 

eastward migration, linked with plate movements, extended the distribution of some Tyrrhenian 133 

elements to the southern tip of the peninsula (e.g., Alnus cordata (Loisel) Desf. and Pinus nigra Arnold 134 

in the Calabrian Apennine) (Blasi et al. 2007). 135 

After the Pleistocenic glacial (150,000-130,000 years Before Present), at least 24 transitions between 136 

glacial (stadial) and warm (interstadial) climate occurred. Several tree species started to expand out of 137 

their glacial refugia during each interstadial (e.g., oak in Sicily: Rossignol-Strick and Planchais 1989), 138 

only to retreat again when cold and dry conditions returned (Figure 2).  However, glacial refugia during 139 

this time granted that some of the vegetational complexity that had originated in the Pliocene-140 
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Pleistocene period could be maintained in part until the modern era (1800- first half of 1900), especially 141 

in the remote areas of the central and southern Apennines. 142 

At the Last Glacial Maximum (22,000 to 14,000 years BP) summer temperatures were 6 to 8°C cooler 143 

than at present, and sea level 120-140 m lower. Both paleoecological and simulation studies suggest 144 

very little closed woody vegetation in the Mediterranean (Ray and Adams 2001; Di Rita et al. 2013), 145 

with scattered trees or small pockets of open woodland from about 500 m above [present] sea level in 146 

the Apennines and in the other Southern European peninsulas (Tzedakis et al. 1995). Since then, post-147 

glacial migration followed four main routes: (1) northward and upward range expansion, e.g., beech and 148 

fir (Bradshaw et al. 2010); (2) continuous persistence with increasing frequencies, e.g., oaks (Petit et al. 149 

2002); (3) discontinuous persistence at low frequencies, e.g., birch (Plini and Tondi 1989); (4) failed 150 

migration and persistence in localized refugia, e.g., spruce (Picea abies (L.) Karst.) (Ravazzi 2002). 151 

Following the Younger Dryas cold interval (10,800-10,000 years BP), while beech (Fagus sylvatica L.) 152 

was gaining dominance over much of temperate Europe (Bradshaw et al. 2010), the Mediterranean 153 

region showed moister-than-present conditions. Near the coasts forests might have been dominated by 154 

deciduous oaks (Lippi et al. 2007), while mountain areas developed two forest belts– the upper 155 

dominated by fir (Abies alba Mill.), and the lower with mixed deciduous forests dominated by oak and 156 

including maple, ash, linden and elm (Watson 1996). 157 

During the Holocene thermal maximum (7,000 to 4,000 years BP), paleoecological records show a rapid 158 

and fairly simultaneous decline of elm throughout Europe (Huntley et al. 1989), and a strong increase in 159 

beech, which successfully invaded the fir woodland to form a mixed fir-beech complex (Bradshaw et al. 160 

2010). Evergreen mediterranean vegetation replaced the deciduous forest on limestone soils (Di Rita and 161 

Magri 2009).  162 

In the last 4,000 years, climate has been rather stable (except for short-lived fluctuations such as the 550 163 

AD and the Little Ice Age cool periods). In the absence of land use by man, forests would dominate the 164 

potential vegetation of most of the Apennine region, with an elevational separation between 165 
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Mediterranean evergreen, deciduous broadleaves, and conifers resulting from differences in cold 166 

tolerance of each species (De Philippis 1937). Mountain conifers may descend in the broadleaves belt, as 167 

deciduous broadleaves do in the evergreen mediterranean vegetation belt, due to the fact that high 168 

temperature extremes produce less distinct zonations (Pignatti 2011). Besides temperature, water 169 

availability is a major factor influencing potential forest vegetation: forest cover is generally higher in 170 

the regions with temperate climate compared to those with Mediterranean climate, but also in regions 171 

with high orographic precipitation (e.g., the Tyrrhenian side of the northern Apennines) with respect to 172 

more continental and drier areas (Magri et al. 2015). The superposition of climatic gradients, post-glacial 173 

migration routes, and complex orography has produced for most tree species in the Apennines a 174 

fragmented distribution, which has promoted reproductive isolation and high genetic diversity (Magri et 175 

al. 2006, Leonardi et al. 2012). 176 

 177 

4. Human history and impacts on vegetation 178 

Anthropogenic land use has had a profound effect on forests of the Apennine region and, in most cases, 179 

outweighted by far the effects of macroecological constraints (Brown et al. 2013). 180 

Even before the advent of agriculture, the presence of humans has severely influenced the composition 181 

and distribution of forests. This is exemplified by the late Holocene dynamics of fir and beech. During 182 

the early Holocene (9000–6000 years BP), fir became abundant from the sea level to the mountains 183 

(Montanari 1989). After 6,000 years BP, however, its presence declined in many sites (Magri et al. 184 

2015), leading to the current reduced distributions. The reasons for such decline, and the reltive 185 

importance of climate, competition, and anthropogenic impact, are debated. On one hand, fir has 186 

retreated into more or less the same areas where it was found at the beginning of the present interglacial 187 

(Muller et al. 2007), supporting the hypothesis that its Holocene dynamics are driven by long-term 188 

climatic and edaphic patterns (Joannin et al. 2012). On the other hand, multiple palaeoecological 189 

evidence shows a synchrony between the reduction of fir at 6,000-3,000 years BP and an increase in 190 
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human activity, especially from pastoralism and fire (Henne et al. 2013). These dynamics would imply a 191 

much wider climatic niche than previously thought for fir, which could have been part of sub-192 

Mediterranean oak forests, as suggested also from Pleistocenic pollen evidence (Tinner et al. 2013).  193 

At the same time, beech, which had started expanding into southern and central Italy already 18,000 194 

years BP (Joannin et al. 2012), reached its maximum spread between 8,000 and 4,000 years BP (Branch 195 

and Marini 2014), i.e. simultaneously to the decline of fir, leading to a mixed Abies-Fagus association in 196 

the upper belt between from 5,200 yBP and then to a dominance of beech from around 2,900 years BP 197 

(Watson 1996). The expansion of beech in the Northern Apennines may have been favored by a 198 

decrease in summer insolation (Berger 1978) and a smoothing of seasonal climate extremes (Huntley et 199 

al. 1989; Watson 1996), but also facilitated by human activities. Since beech seedlings require moderate 200 

light intensity for development (Ellenberg 1986), it is reasonable that clearing of the pre-existing dense 201 

fir forest has determined a shift in dominance between the two species (Valsecchi et al. 2008).  202 

The transition of the first human communities out of hunting-gathering occurred around the start of the 203 

second millennium BC. From this time, semi-nomadic agriculture and herding were accompanied by 204 

widespread slash-and-burn deforestation (Watson 1996), a higher hydrogeologic instability (Cremaschi 205 

et al. 2008) and an increase in soil erosion, which favored some pioneer tree species, e.g., Calabrian pine 206 

(Pinus nigra subsp. laricio) (Nicolaci et al. 2014).  Starting from the 8
th

 century BC, under the Roman 207 

influence, Apennine forests were used for timber, fuelwood, and cleared for agriculture and pastures. 208 

Forests in the vicinity of the sea or major rivers were harvested and floated to the nearest ports as civil 209 

and naval timber (silva incaedua); the others were coppiced (silva caedua), harvested by hand or 210 

animals, and used for tools and small crafts, or as energy wood. This system is believed to be 211 

responsible for the degradation of forests along coasts (Calò et al. 2012), and on major river basins 212 

(Mercuri and Sadori 2013). However, recent evidence (Sadori et al. 2015) shows that at least beech-fir 213 

forests were more widely distributed than today, despite the fact that fir was the most desirable species 214 

for ship hulls, construction timber, and furniture (Allevato et al. 2010). Another source of forest 215 
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degradation was transhumant sheep herding, which was favored in southern Italy by the territorial 216 

unification brought about by the Romans, and was practiced up to the beginning of the 20
th

 century. At 217 

its apex (5.5 million sheep in year 1604: Venanzoni et al. 1993), the newtwork of seasonal transhumance 218 

“highways” had a cumulative length of more than 3000 km. Some Apennine forests still show the legacy 219 

of their past use as wooded pastures, e.g., simplified vertical structure (Mancini et al. 2016). 220 

The demographic decline that followed the fall of the Roman Empire favored a partial recovery of forest 221 

vegetation. In the year 410, emperor Constantine entrusted to the catholic Church all forests that 222 

surrounded former sacred temples. Among the general forest abandonment of the early Middle Ages, 223 

religious orders (Benedectins, Camaldolese, Carthusians, Vallombrosans) were the only subjects that 224 

carried out forest management and conservation (Piccioli 1923), with long-lasting effects on forest 225 

structure and composition, e.g., in most present-day pure fir forests of the Apennines (Costantini et al. 226 

2010).  The population increased again starting from the Late Middle Ages, with the exception of the 227 

period 1350-1450 AD (i.e., a period of both climatic, economic, and demographic crisis: Sadori et al. 228 

2016, when forests expanded again: Mensing et al. 2013), and clearing was resumed in community 229 

forests (Guido et al. 2013), while those belonging to the noblety were restricted to all uses (foris stare – 230 

“stay outside” edicts may have originated the word forest) and preserved as hunting grounds. In 231 

response to increasing forest clearing, some states such as the Republic of Venice, the Papal States, and 232 

the Granduchy of Tuscany started preserving public forests as a strategic resource for ship and 233 

household building (Di Filippo et al. 2007). 234 

Around year 1500, most oak high forests had been replaced by chestnut (Castanea sativa Mill.) 235 

orchards, an important source of food, whose cultivation started during the Roman Age (Di Pasquale et 236 

al. 2010) and rapidly spread outside the ecological niche of the species starting from the early Middle 237 

Ages (Conedera et al. 2004). The introduction of chestnut coincided with a radical change in local use of 238 

land. Fire was no longer used systematically to clear open spaces in forests. Instead, many wooded areas 239 
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were actively managed as chestnut groves and managed in coppices for pole production (Tinner and 240 

Conedera 1995).  241 

 242 

5. Land use changes in the last 200 years  243 

The decline of forest cover continued in the 17-19
th

 centuries and was finally exacerbated by the needs 244 

of the newborn railway network (Zanotti Cavazzoni 1907). The recognition of the link between 245 

deforestation and hydrogeologic instability resulted in measures to restore forest cover; between national 246 

unification (1861) and 1950, 200,000 hectares of forests were planted (Patrone 1953), and a further 247 

560,000 hectares between 1950 and 1980 as a consequence of occupational policies (Romano 1987). At 248 

the same time, the abandonment of rural and mountain settlements (Munafò et al. 2015) caused a strong 249 

increase in forest cover, ranging from +0.1% and +27% per decade (average: +10.3%) (Fig. 3). The rate 250 

of change seems more dependent on local socio-economic changes than on the period, location, or 251 

topographic features: forest and shrubland expansion were inversely related to population density 252 

(Falcucci et al. 2007; Corona et al. 2008) and occurred mainly at elevations below 1,000 m, on moderate 253 

slope gradients (< 40%), and near forest edges and roads (≤ 500 m) (Cimini et al. 2013). In most cases, 254 

the process has been related to abandonment of traditional farming or grazing activities (e.g., De Sillo et 255 

al. 2012). The period needed for tree canopy closure on former unforested land ranged from 25 to 50 256 

years (e.g., Bracchetti et al. 2012). The mode of natural afforestation depended on previous landscape 257 

configuration, species composition, and topography. In former agricultural areas, closure of open spaces 258 

resulted in homogeneization of the landscape mosaic, while in former pastures complexity increased 259 

with incoming forest cover (e.g., Corso et al. 2005; De Sillo et al. 2012). The density and complexity of 260 

edges, however, has often increased due to non-homogenous colonization patterns of the incoming 261 

forest.  262 

Nine studies have addressed treeline shift, a much less researched issue than e.g. on the Alps (Gehrig-263 

Fasel et al. 2007; Leonelli et al. 2011; Bebi et al. 2016). Even though on the Apennines the treeline had 264 
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been depressed by human activity (fire, grazing) since the Late Holocene (Compostella et al. 2014), 265 

recent change was less clearcut. The only reported figures were an increase of 1m per year upwards and 266 

3m downwards in dwarf pine (Pinus mugo Turra) (Palombo et al. 2013) and an expansion of 1% per 267 

year at the beech treeline (van Gils et al. 2008). The relative importance of recent climate warming and 268 

land use change was debated, with the first factor playing out at regional level (e.g., simultaneous 269 

increases in black pine treeline in the last 30-40 years in the Central Apennines: Piermattei et al. 2016) 270 

and the second at local scale (Palombo et al. 2014). Where grazing is still active, it may prevent 271 

establishment of shrubs that could subsequently act as nurse sites for beech seedlings (Catorci et al. 272 

2012), such that the treeline is actually stable (Pezzi et al. 2007). 273 

 274 

6. Changes in forest structure 275 

Abandonment of forest management and rural landscapes has also determined a widespread ageing of all 276 

Apennine forests (Tellini Florenzano 2004) and an increase of living and dead biomass (Marchetti et al. 277 

2010; Motta et al. 2013). Many coppices have been subject to active conversion into high forest, while 278 

forest regulations have been issued in many regions imposing a maximum coppice age above which 279 

vegetative regeneration was forbidden in order to avoid exhaustion of stumps and fertility declines 280 

(usually at 35-40 years, e.g., Regione Toscana 2003). Abandoned coppices of many species transitioned 281 

spontaneously to high forest, e.g. in beech (Nocentini et al. 2009), birch (Bagnato et al. 2014), and 282 

chestnut stands, which have undergone succession by more shade-tolerant broadleaves such as beech, 283 

hop-hornbeam, and downy oak (Pezzi et al. 2011). More intensive silvicultural systems, e.g., uneven-284 

aged coppicing, are all but lost (Coppini and Hermanin 2007). Re-naturalization dynamics and late-seral 285 

succession were observed also in former black pine plantations (Tonon et al. 2005). 286 

Land abandonment and decrease of forest harvesting has also raised the interest for forests with old-287 

growth characteristics (Marchetti and Blasi 2010; Chirici and Nocentini 2013). These stands, prevalently 288 

dominated by beech, house some of the tallest and oldest trees in Europe; they have a significantly 289 



 13 

higher deadwood volume than ordinarily managed forests with similar composition (Lombardi et al. 290 

2013), and a living biomass comparable or higher than central European old-growth forests, in both pure 291 

beech (302-1383 m
3
 ha

-1
) and mixed beech-fir stands (570-1189) (Calamini et al. 2011). Differences 292 

between these old growth stands and managed one are very evident also in terms of genetic diversity 293 

(Paffetti et al. 2012), lichen flora (Brunialti et al. 2010), forest dynamics (Travaglini et al. 2012), and 294 

structural diversity (Alessandrini et al. 2011). All these factors have a preminent importance as 295 

indicators of habitat and biodiversity (Schulz et al. 2014). 296 

 297 

7. Disturbance regimes 298 

Besides macroecological and anthropic drivers, natural disturbance regimes are one of the main factors 299 

shaping the composition, structure, and patterns of forest ecosystems both at the local and at the regional 300 

level (Kulakowski et al. 2016). However, the natural disturbance regimes of Southern European forests 301 

have been long since masked by human modification to forest cover, composition, structure, and 302 

continuity (Bengtsson et al. 2000). Whereas actual disturbance regimes have started to be addressed by 303 

ecological research in the Italian Alps (Valese et al. 2014, Vacchiano et al. 2016), data and studies from 304 

Apennine forests are conspicuously lacking, so that the properties of disturbance regimes and its 305 

historical range of variability (Kulakowski et al. 2016) are still largely unknown. 306 

Fire is the most common disturbance agent in peninsular Italy. In the period between 1980 and 2012 the 307 

average burned area in Italy was 113,496 ha per year (EC 2013), with a mean yearly frequency of 9,736 308 

fires, i.e., 3.2 fires per km
2
 (Spain: 3, Greece: 1.2). With the exception of climatically unfavorable years 309 

(e.g., 227,729 ha burned in 2007), the five-year average burned area has decreased steadily (from 46,800 310 

ha in 1990-1995 to 36,800 ha in 2005-2010) due to improvements in fire policies and prevention (FAO 311 

2010). Long-term data are not available at a regional detail; in year 2015, Apennine regions (i.e., 312 

excluding the Alpine space, Puglia, and islands) included 61% of all forest fires and 70% of total 313 

forested burned area of the country (Corpo Forestale dello Stato 2016). The percent of wooded area 314 
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burned yearly is 1.14% nationally, i.e., the highest in Mediterranean Europe after Portugal (FAO 2010). 315 

Mediterranean pine forests have a disproportionately high fire occurrence relative to their area, followed 316 

by Mediterranean montane forests and evergreen broadleaves forests (Corona et al. 2014). Most fires are 317 

anthropogenic: negligent motives are common, especially agricultural (stubbe burning, land cleaning 318 

after harvesting) and pastoral burning (Lovreglio et al. 2010).  319 

The National Forest Inventory of 2005 reports the following surfaces for other forest disturbance agents 320 

in the Apennine regions: biotic agents 508,803 ha, browsing and grazing 160,965 ha, weather extremes 321 

220,223 ha, i.e., respectively 11%, 3%, and 5% of total forest cover (MIPAAF 2007). Abiotic 322 

disturbances have been analyzed mostly in relation to the ecology of beech forests; a common feature of 323 

such studies is that, contrary to expectations, beech preserves its dominance over competitor species 324 

even after low- and medium severity disturbance (van Gils et al. 2010). The high structural complexity 325 

of overmature beech forests in the central Apennines has been related to frequent low-severity gap-326 

forming events (Ziaco et al. 2012) (Fig. 4), similarly to central European old-growth beech forests 327 

(Westphal et al. 2006). However, recent large stand-replacing windthrows in fir forests (Bottalico et al. 328 

2015) suggest that the wind disturbance regime might be composed also by rarer, more intense events. 329 

A much common form of disturbance is landslides, which occur in 9% of all Apennine areas (Triglia 330 

and Iadanza 2014), with somewhat positive consequences for forest diversity (e.g., exposure of mineral 331 

soil) but catastrophic results for society (e.g., the mudflow events in Sarno in 1998 or Genova in 2015).  332 

No systematic assessment exists on the extent and severity of biotic disturbances in Apennine forests. 333 

Historical evidence (e.g., chestnut blight) and case studies highlight the potential for high-severity 334 

events from both native (Puddu et al. 2003; Luchi et al. 2014) and alien pathogens (Vettraino et al. 2005; 335 

Luchi et al. 2016). Evidence of insect outbreaks is also limited, mostly to artificial tree plantations 336 

(Vignali et al. 2015). However, it has been hypothesized that climate warming might exacerbate tree 337 

drought stress, which is already inducing tree decline in sensitive populations (Piovesan et al. 2008; Di 338 
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Filippo et al. 2010), and hence facilitate the outbreaks of secondary insects and pathogens, especially in 339 

southern, low-elevation beech stands (Luchi et al. 2015).  340 

 341 

8. Management implications 342 

Land use change is currently the dominant driver of forest dynamics in the Apennine, relative to both 343 

climate and natural disturbances. If the urbanization trend and the abandonment of marginal lands 344 

persist, forests in mountain areas will keep on accumulating live and dead biomass, and the connectivity 345 

between old-growth patches will likely increase with ongoing secondary succession in fallow lands. 346 

While this might lead to increased provision of some important forest ecosystem services, e.g., timber, 347 

carbon stocking, avalanche and rockfall mitigation, or even carnivore habitat (Fabbri et al. 2007, Ciucci 348 

and Boitani 2008), some other forest functions are expected decrease, e.g., recreational use, mechanical 349 

stability, landscape diversity, and habitat for open-areas plant and animal species (Casanova et al. 2005). 350 

Forest planning therefore needs to embrace a comprehensive zonation approach, building on science-351 

based forecasts of forest structure and composition (Vacchiano et al. 2012b), and assigning spatially-352 

explicit priorities to management alternatives needed to maximize each of the desired ecosystem service. 353 

We also argue that the ongoing shift from segregation (i.e., each forest accomplishes a single 354 

management objectives) to integration (multiple management objectives are sought in the same forest 355 

area) should be strengthened, especially for what concerns biodiversity-oriented forest management 356 

(Schulz et al. 2014). 357 

So far, the pressure posed by climate warming on forest ecosystems has been buffered or even countered 358 

by forest expansion following land abandonment. However, while large uncertainties still exist 359 

regarding the climate resilience of several important tree species (see below), adaptive management 360 

strategies such as intensification of thinning regimes or assisted migration (Temperli et al. 2012) need to 361 

be further explored to provide means to counter the negative effects of climate change, e.g. forest 362 

decline in drought-prone conifer forests (Vacchiano et al. 2012a). However, the actual outcomes of 363 
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climate change, and the adaptive management actions needed, will be determined by its interactions with 364 

past and future land use, changes in disturbance regimes (e.g., van Gils et al. 2010) and legacies 365 

(Vacchiano et al. 2014), endogenous stand dynamics (Long and Vacchiano 2014), resilience drivers 366 

(e.g., reproduction dynamics: Ascoli et al. 2015), and novel communities (e.g., Benesperi et al. 2012). 367 

In particular, the interplay of climate warming and forest expansion will exacerbate damages by extreme 368 

events such as windthrow, forest fires, and insect outbreaks (Seidl et al. 2014). This is particularly 369 

troubling where forests play important social functions, such as protection of infrastructure from rockfall 370 

or debris flows. Apennine forest seem to have experienced low- to moderate-severity disturbance 371 

regimes in the recent past, but managers should be prepared to plan and carry out forest restoration 372 

measures on larger scales following the likely increase in frequency of stand-replacing events, as well as 373 

measures to increase the resistance and resilience of forest ecosystems to such events.  374 

The abundance of coppices due to the prevalent use of small, private forest lots as a source of energy 375 

wood, and their subsequent abandonment, raise many question about the best silvicultural practices to 376 

preserve the provision of such cultural landscape and its functions, especially soil protection and 377 

biodiversity. Current forest regulations forbid clearcutting in overmature coppices; variable retention 378 

systems that have recently been proposed for Alpine beech forests could be adopted to foster structural 379 

differentiation and avoid vertical and horizontal simplification, which might lead to loss of habitat and 380 

productivity (Negro et al. 2015). 381 

The reduction of open meadows has also modified the feeding behaviour of wild ungulates, which have 382 

increasingly browsed forest regeneration. As repeated and selective browsing threatens the regeneration 383 

of forest stands and triggers a loss of ecosystem resilience (Cutini et al. 2011), forest management and 384 

wildlife management must be planned together, with an increased communication between stakeholders 385 

from the two sectors.  386 

 387 

9. Directions for research 388 
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This review illustrates how cultural factors had a profound effect on forests of the Apennine region and, 389 

in most cases, outweighed by far the effects of macroecological constraints. The millennia-long uses of 390 

the forest by man, as well as more recent socio-economic changes, seem to play a more important role 391 

for current forest structure and dynamics than natural processes driven by geology and climate. 392 

Disturbance regimes have also been masked by the pervasive human influence, and their range of 393 

variability still represent a large knowledge gap. Finally, the climate plasticity of some important forest 394 

species has still to be completely understood (e.g., fir); the high specific and genetic diversity of 395 

Apennine forests will have to be leveraged as an important source of resilience and adaptive potential. 396 

The future extent, composition and functioning of Apennine forests is therefore dependent on the 397 

changes in land use, disturbance regimes, and climate, but only the latter have been subject to rigorous 398 

study or simulation. Prediction of future forest will need to incorporate future land use and disturbance 399 

scenarios and the complex and spatially-explicit feedbacks between them.  400 

 401 

 402 
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Figure captions 765 

Fig. 1 Mountain systems of the Italian peninsula, bounded by the 600 m a.s.l. elevation line 766 

Fig. 2 Simplified pollen diagram (% total pollen) from Lagdei, northern Apennines (modified from 767 

Ravazzi 2002; attribution of periods by Bertoldi 1981).  768 

Fig. 3 Forest cover change in the 20
th

 century in the Apennine from selected studies.  769 

Fig. 4 Disturbance chronologies produced for Valle Cervara using the boundary line method for high 770 

mountain beech populations in the Apennines. Moderate and major growth releases are those falling 771 

within 20–49.9% and 50–100% of the boundary line, respectively. Disturbance event dates (only when 772 

>=20 sampled trees) grouped into 5-year intervals (modified from Ziaco et al. 2012) 773 
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