
04 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Introduction to the track on variability modeling for scalable software evolution

Publisher:

Published version:

DOI:10.1007/978-3-319-47169-3_35

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer International Publishing

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1614389 since 2017-10-01T15:45:55Z



 

 

This is the author's  version of the contribution published as: 

Ferruccio Damiani, Christoph Seidl, Ingrid Chieh Yu. 

Introduction to the Track on Variability Modeling for Scalable Software Evolution. ISoLA (2) 2016: 423‐432. 

DOI: 10.1007/978‐3‐319‐47169‐3_35 

The publisher's version is available at: 

http://link.springer.com/chapter/10.1007%2F978‐3‐319‐47169‐3_35  

When citing, please refer to the published version. 

 

The final publication is available at  

link.springer.com 

 

 



Introduction to the Track on Variability
Modeling for Scalable Software Evolution

Ferruccio Damiani1, Christoph Seidl2(B), and Ingrid Chieh Yu3

1 University of Torino, Turin, Italy
ferruccio.damiani@unito.it

2 Technische Universität Braunschweig, Braunschweig, Germany
c.seidl@tu-braunschweig.de

3 University of Oslo, Oslo, Norway
ingridcy@ifi.uio.no

Abstract. Information and communication technology today is increas-
ingly integrated into the environment we live in, distributed on cars,
appliances and smart infrastructures. The software running on these
devices is increasingly individualized, adapted to the preferences and
needs of the specific customer and must be able to evolve after deploy-
ment by means of software patches. Upgrades are becoming individu-
alized; software patches used to upgrade the software are selected and
adapted depending on the configuration and external constraints of the
host device. The objective of the European project HyVar is to develop
techniques and tools for fast and customizable software design, for the
management of highly distributed applications, for continuous software
evolution of remote devices, and scalable infrastructure to accommo-
date a large number of devices. The track Variability Modeling for Scal-
able Software Evolution aims to foster cooperation opportunities and
create synergies between related research directions to address chal-
lenges stemming from software variability, evolution, and cloud technol-
ogy for highly distributed applications in heterogeneous environments.
This paper introduces the track and its individual contributions.

1 Context and Background

Software is an essential part of information and communication technology so
that it is becoming increasingly integrated into our everyday environment, dis-
tributed on cars, appliances and a wide variety of devices. The struggle between
the ideal fit of software resulting from individual development and the low cost
of off-the-shelf software creates tension for developers and customers of software
products alike. With the advent and rise of the Internet of Things (IoT) [2] and
its devices (e.g., smartphones, tablets), the need for software that can be used
on many similar yet slightly different devices and that can be individualized in

This paper contains an introduction to the ISoLA’16 track organized in the context
of the EU H2020 project 644298 HyVar: Scalable Hybrid Variability for Distributed
Evolving Software Systems (http://www.hyvar-project.eu).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part II, LNCS 9953, pp. 423–432, 2016.
DOI: 10.1007/978-3-319-47169-3 35



424 F. Damiani et al.

functionality has further increased this tension towards favoring customizable
software but still having to keep development costs at a reasonably low level.
Furthermore, highly configurable software systems are a major asset in a wide
range of areas from business software (e.g., SAP ERP1 with its configurable mod-
ules for enterprise resource planning) to the transportation domain (e.g., cars
with different on board electronics and specific integrated navigation systems
desired by customers). Due to the sheer number of variants resulting from the
configuration options, it is infeasible to develop, maintain or test all individual
variations of the respective software families independent of one another and in
isolation.

A Software Product Line (SPL) [18,21,22] is an approach to software reuse in
the large where a set of related software systems is perceived as a software family
consisting of a common core and variable parts often referred to as features [14].
A product or variant of the SPL is created by combining the common core with
the functionality associated with a set of selected features. However, not all com-
binations of features form valid products, e.g., due to technical incompatibilities
of the features’ realization or due to business constraints that do not allow com-
bining certain features. To define the principally valid constellations of features,
a variability model, such as a feature model [14] is employed, which represents
all valid configurations (sets of selected features) in a compact representation on
a conceptual level. To create executable software system from this selection of
conceptual features, a variability realization mechanism collects the realizations
associated with each feature (e.g., source code or design models) and assembles
them with the common core. Delta modeling [4,20] is a transformational vari-
ability realization mechanism that realizes variation of a software artifact by
adding, modifying or removing parts of a software artifact in accordance with
a feature’s functionality, e.g., a feature might add certain methods to a class
written in Java to realize additional functionality.

Modern software systems outgrow the scope of a traditional SPLs. When a
software family consists of multiple SPLs, the software family may be managed
by a Multi-software Product Line (MSPL) [10,12]. In a MSPL, several SPLs are
composed in order to build a larger system of configurable components. These
variable components need to be configured together to build a common system
configuration but still depend on a common notation for a variability model.
A Software Ecosystem (SECO) [5,26] is similar to an SPL or even a MSPL in
the sense that it also manages a set of closely related software systems. However,
a SECO is different from an SPL, in the sense that it does not have a variability
model as central configuration knowledge and that multiple independent devel-
opers create and maintain the variable parts of the SECO.

SPLs, MSPLs and SECOs are subject to change over the course of time when
their products have to adapt to altered or new requirements. This procedure is
called software evolution [16] and poses a major challenge for SPLs, MSPLs and
SECOs as not only single software systems but entire families of software systems
have to be evolved [23,24]. Software evolution is especially difficult for SECOs

1 http://go.sap.com/product/enterprise-management/erp.html.



Variability Modeling for Scalable Software Evolution 425

where independent developers release new features or versions thereof in unsyn-
chronized intervals and, possibly, without explicitly notifying other developers
or users so that awareness of the current state of evolution of a SECO becomes a
further challenge. As both configuration and evolution are sources of variability
within the set of related software systems, it is also customary to denote them
as variability in space and variability in time, respectively [18].

Due to the level of maturity of cloud technology and the wide variety of
offered services, SPLs, MSPLs and SECOs become heavily based on cloud tech-
nology. Features may be realized as webservices [1] accessible by customers over
the web and end-users may contribute features to shared platforms for various
domains similar to apps for smartphones. In the automotive domain, utilizing
the web for over-the-air update of entire products as well as individual features
receives increasing attention.2

This combination of challenges stemming from configuration, evolution and
cloud technology is at the center of the research conducted within the European
Union H2020 project HyVar. To foster opportunities for cooperation on the top-
ics of HyVar and to capitalize on synergies of related research directions, we
organized the special track Variability Modeling for Scalable Software Evolution
at the International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA). This paper introduces the track and
provides and overview of its sessions and their respective contributions.

2 The European Union H2020 Project HyVar

The EU H2020 project HyVar plans to integrate and enhance state-of-the-art
techniques for the management of complex software systems from software prod-
uct lines with cutting edge technology for over-the-air software upgrades and
scalable cloud solutions from European industry to support highly individual-
ized and reconfigurable distributed applications. HyVar’s objectives are:

1. To develop a Domain Specific Variability Language (DSVL) and a tool
chain to support software variability of highly distributed applications in
heterogeneous environments, which allows developers to encompass unantic-
ipated evolution as a standard feature of software systems in production.

2. To develop a cloud infrastructure that exploits the software variability sup-
ported by the DSVL and a tool chain to track the exact software configura-
tions deployed on remote devices to enable the collection of data from the
devices to monitor their behavior and perform statistical analyses.

3. To develop a technology for supporting over-the-air updates of distributed
applications in heterogeneous environments and enabling continuous software
evolution after deployment on complex remote devices that incorporate a
system of systems.

4. To test HyVar’s approach as described in the above objectives in an industry-
led demonstrator in the automotive domain to assess in quantifiable ways the
benefits of the approach.

2 http://www.wired.com/2014/02/teslas-air-fix-best-example-yet-internet-things/.



426 F. Damiani et al.

HyVar aims to create a development framework for continuous and highly
individualized evolution of distributed software applications, which can be inte-
grated into existing software development processes. The framework, which is
currently under development, will consist of advanced methods and tools that
support

– modeling of both variability in space and time in all phases of the software
lifecycle,

– scalable, elastic solutions to accommodate numerous individualized applica-
tion instances, and

– secure and efficient over-the-air software update on remote devices.

This framework will be realized by combining variability modeling from SPL
engineering with formal methods and software upgrades for distributed appli-
cations. HyVar goes beyond the state-of-the-art in devising and assessing the
feasibility of the notion of hybrid variability, i.e., the automatic generation and
deployment of software updates by relying on both

1. the variability model that describes the possible software variants that may
be deployed to a remote device; and

2. the sensor data collected from that device.

The selection of features (and parameters) that will trigger the automatic gen-
eration and deployment of the most appropriate upgrades to a specific remote
device depends on sensor data from that device (e.g., its location, and/or other
things).

3 Track Papers

The ISoLA track Variability Modeling for Scalable Software Evolution, organized
in the context of the EU H2020 project HyVar, is aimed at disseminating the
results of the HyVar project and at promoting fruitful collaborations on its topics
between researchers from academia and industry. Topics of special interest within
the track are:

– Mobility, mobile and cloud.
– Methodologies, languages and tools.
– Research on variability retrieval, reconfiguration and refactoring.

The track consists of papers that directly relate to the core challenges of
HyVar written by the consortium members [6,9,13,17,27] as well as papers
addressing issues extending beyond the scope of HyVar written by other
researchers [7,11,15,19,25] that contribute their insights to a joint effort of
combining highly configurable software with customizable upgrades and flexi-
ble cloud technology for over-the-air distribution.



Variability Modeling for Scalable Software Evolution 427

3.1 Keynote

Hähnle and Muschevici [11] outline an approach for formal modeling, sim-
ulation, and analysis of railway systems together with their requirements and
interoperability constraints. The approach is based on the Abstract Behavioral
Specification (ABS) language, which permits precise, executable specifications
as basis for efficient code generation. ABS permits to trace system updates from
requirements down to the implementation via delta modeling, thus allowing to
analyse functional and non-functional properties that may have have changed.
The specification of system updates in terms of SPL in ABS permits traceabil-
ity of features down to code. Together with the analysis tool suite of ABS, this
forms a feasible technological basis for an incremental verification and certifica-
tion process.

3.2 Session 1: Mobility, Mobile and Cloud

Mobile systems, such as smartphones or the electronic devices found in cars,
pose extensive challenges on software configuration and evolution. For one, this
class of systems is usually characterized by a large degree of hardware hetero-
geneity that has to be addressed through software configurability for drivers and
applications building upon the respective hardware, e.g., smarthpones by vari-
ous vendors may have a different screen size and cars may have different engines
or multimedia systems due to customer preferences, which the respective soft-
ware has to respect. Moreover, this class of systems poses significant challenges
in software evolution not only to frequent changes (e.g., updates to apps in
smartphones) but also be the means of transporting respective software updates
without having to call devices to service stations (e.g., performing updates to a
car’s software only in the garage). A cloud infrastructure is suitable for providing
solutions to these challenges as mass-customized products may be supplied by
scalable online servers and individualized updates from a version installed for
one user’s configuration to a newer version may be assembled and provided via
over-the-air updates. The contributions of Session 1 deal with variability-aware
design of services, designing and analyzing the architecture of highly configurable
software systems as well as the conscious choice of cloud technology regarding the
tradeoff between cost and performance, e.g., to create scalable cloud infrastruc-
tures for assembling and deploying updates of configurable software systems.

Ter Beek et al. [25] present a variability-based design of services for smart
transportation systems. The addressed research topic is at the intersection of
SPL engineering and machine learning. The key idea is to guide the design and
implementation of an SPL by measuring the effectiveness of certain features in
practice. The considered application domain is bike sharing, where the features
correspond to various user-assisting prediction services that improve over time
through machine learning. The investigation is based on concrete experiments
with data concerning the bike-sharing system of the city of Pisa.

Khalilov et al. [15] model and optimize automotive electric/electronic archi-
tectures by making the variability-aware modeling language Clafer [3] more



428 F. Damiani et al.

accessible to practitioners. At present, software architectures, e.g., as used in
the automotive domain, are nearing the point where the size and complexity of
the design prevent software architects from making assessments on the impact of
proposed changes. Tools of the variability-aware modeling language Clafer may,
principally, be used to evaluate effects of design decisions but the Clafer language
offers no dedicated support for modeling architectures. The authors present a
Domain-Specific Language (DSL) on top of Clafer to model architectures, which
embodies a reference architecture model and ensures that practitioners apply it
adequately so that typical errors in the specification process can be caught early.

Johnsen et al. [13] compare different deployments on Amazon Web Ser-
vices (AWSs) using model-based predictions. With the plethora of cloud ser-
vices offered on the market today, it is challenging for a user to select a solution
which best balances performance and incurred cost for a particular application.
This paper builds upon ABS and Yet Another Resource Negotiator (YARN) by
showing how the ABS-YARN framework enables users to assess the impact of
different deployment decisions on the performance, operational cost, and work-
load completion of their software. Several workload scenarios are used to com-
pare the cost-performance tradeoffs between different AWS on-demand resource
purchasing options. The presented AWS instance study is based on MapReduce
benchmarks of varied length, time requirements and distribution. Based on the
simulation results, one may identify non-trivial tradeoffs early at the design
phase of a software development process.

3.3 Session 2: Methodologies, Languages and Tools

To successfully employ, foster and maintain an SPL or a SECO of highly con-
figurable software systems, a variety of methodologies, languages and tools are
required. For both SPLs and SECOs, a tool chain is required that allows struc-
tured reuse within a family of related software systems by supporting the spec-
ification of a variability model, the derivation of variants according to selected
configurations as well as the assembly and distribution of updates for the vari-
ants. For SECOs, a major challenge is to obtain on overview of the ongoing
development efforts of loosely coupled contributors of extensions. For deployed
variants running as individual software systems, runtime monitoring is a pre-
requisite to allow runtime adaptation for dynamic reconfiguration. The contri-
butions of Session 2 introduce methodologies, languages and tools to cope with
these challenges.

Chesta et al. [6] present a tool chain for delta-oriented modeling of SPLs.
The paper addresses the challenge associated with large-scale reuse of soft-
ware intensive systems by proposing an architecture and tool chain for cus-
tomizing and managing variability modeling, derivation of product variants and
scalable software repositories for distributed applications. The authors present
a component-based architecture including a model variant generator, a state-
diagram code generator, a source-code packager and a cross compiler as the
main components. The paper demonstrates the overall approach through an
industrial use case taken form the automotive domain.



Variability Modeling for Scalable Software Evolution 429

Stănciulescu et al. [7] present a technology-neutral role-based collaboration
model for Software Ecosystems (SECOs). Due to the independent development
efforts and the lack of a central steering mechanism in SECOs, largely similar
features may be developed multiple times by different developers, which increases
effort and creates redundancy. The authors present remedy to this problem by
contributing a role-based collaboration model for SECOs to make such implicit
similarities explicit and to raise awareness among developers during their ongoing
efforts, which fosters overview of the software ecosystem, analyses of duplicated
development efforts and information of ongoing development efforts.

Rosà et al. [19] applies the DiSL framework for runtime monitoring on the
Java Virtual Machine (JVM). DiSL is an aspect-oriented programming system
specialized for dynamic program analysis which offers additional join points,
pointcuts and advices. DiSL also uses partial evaluation in weaving and adaptive
runtime instrumentation. The paper explains how runtime adaptation can be
used for runtime monitoring and demonstrates the approach on an example
using stationary field analysis. Benchmarks from the Da Capo suite3 are used
to evaluate the approach.

3.4 Session 3: Variability Retrieval, Reconfiguration
and Refactoring

Choosing SPLs as a reuse strategy yields benefits in terms of reduced effort for
creating products and increased product quality. However, adopting and main-
taining an SPL strategy requires maintenance effort: (i) For adopting an SPL
strategy, the product line has to be created, e.g., by retrieving it from a set
of similar products that resulted from copying and then modifying an individ-
ual software system; (ii) For maintaining an SPL strategy, individual customer
concerns regarding product functionality have to be addressed through flexible
means of reconfiguration. Through the course of adapting an SPL to new or
altered requirements, specific properties of the SPL have to be maintained, e.g.,
through refactoring. The contributions to Session 3 deal with retrieval, reconfig-
uration and refactoring of SPLs.

Wille et al. [27] identify variability in object-oriented code using model-
based code mining. Companies often employ Object-Oriented Programming
(OOP) languages to create variants of their existing software by copying and
modifying individual products to changed requirements. While these so-called
clone-and-own approaches allow to save money in short-term, they expose the
company to severe risks regarding long-term evolution and product quality. The
authors introduce a model-based approach to identify variability information for
OOP code, which allows companies to better understand and manage variability
between their variants. This information allows to improve maintenance of the
variants and to transition from single variant development to the more elaborate
reuse strategy of an SPL.

3 http://www.dacapobench.org/.



430 F. Damiani et al.

Nieke et al. [17] incorporate user-preferences into the reconfiguration
process for products of an SPL by presenting user profiles for context-aware
reconfiguration in SPLs. Although user customization has a growing importance
in software systems and is a vital sales argument, SPLs currently only allow user
customization at deploy-time. The authors extend the notion of context-aware
SPLs by means of user profiles, containing a linearly ordered set of preferences
with priorities. Furthermore, they present a reconfiguration engine that checks
the validity of the current configuration and, if necessary, reconfigures the SPL
while trying to fulfill the preferences of the active user profile to provide the
most suitable configuration.

Damiani and Lienhardt [9] refactor delta-oriented product lines to enforce
guidelines for efficient type-checking. Ensuring type safety in an SPL (i.e., ensur-
ing that all programs of the SPL are well-typed) is a computationally expensive
task. Recently, five guidelines to address the complexity of type checking delta-
oriented SPLs have been proposed by the same authors [8]. In this paper, the
authors present algorithms to refactor delta-oriented SPLs to follow the five
guidelines. Individual steps, complexity and correctness of the refactoring algo-
rithms are stated.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Atzori, L., Lera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. In: Software and Systems Modeling, pp. 1–35 (2014)

4. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-
oriented software product lines. Acta Informatica 50, 77–122 (2013). doi:10.1007/
s00236-012-0173-z

5. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC (2009)

6. Chesta, C., Damiani, F., Dobriakova, L., Guernieri, M., Martini, S., Nieke, M.,
Rodrigues, V., Schuster, S.: A toolchain for delta-oriented modeling of software
product lines. In: Proceedings of the International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA), ISoLA 2016,
Heidelberg (2016)

7. Stănciulescu, Ş., Rabiser, D., Seidl, C.: A technology-neutral role-based collabora-
tion model for software ecosystems. In: Proceedings of the International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), ISoLA 2016, Heidelberg (2016)

8. Damiani, F., Lienhardt, M.: On type checking delta-oriented product lines. In:
Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 47–62. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33693-0 4

9. Damiani, F., Lienhardt, M.: Refactoring delta oriented product lines to enforce
guidelines for efficient type-checking. In: Proceedings of the International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), ISoLA 2016, Heidelberg (2016)



Variability Modeling for Scalable Software Evolution 431

10. Damiani, F., Schaefer, I., Winkelmann, T.: Delta-oriented multi software product
lines. In: 18th International Software Product Line Conference, SPLC 2014, pp.
232–236 (2014)

11. Hähnle, R., Muschevici, R.: Towards incremental validation of railway systems. In:
Proceedings of the International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), ISoLA 2016, Heidelberg (2016)

12. Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an expert survey on
capabilities supporting multi product lines. Inf. Soft. Technol. 54, 828–852 (2012)

13. Johnsen, E.B., Lin, J.-C., Yu, I.C.: Comparing AWS deployments using model-
based predictions. In: Proceedings of the International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA), ISoLA 2016,
Heidelberg (2016)

14. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, DTIC document (1990)

15. Khalilov, E., Ross, J., Antkiewicz, M., Markus Völter, K.C.: Modeling and opti-
mizing automotive electric/electronic (E/E) architectures: towards makingclafer
accessible to practitioners. In: Proceedings of the International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
ISoLA 2016, Heidelberg (2016)

16. Lehman, M.M.: Programs, life cycles, and laws of software evolution. In: Proceed-
ings of the IEEE (1980)

17. Nieke, M., Mauro, J., Seidl, C., Yu, I.C.: User profiles for context-aware reconfigu-
ration in software product lines. In: Proceedings of the International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
ISoLA 2016, Heidelberg (2016)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering -
Foundations Principles and Techniques. Springer, Berlin/Heidelberg (2005)

19. Rosà, A., Zheng, Y., Sun, H., Javed, O., Binder, W.: Adaptable runtime monitoring
for the java virtual machine. In: Proceedings of the International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
ISoLA 2016, Heidelberg (2016)

20. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) Software Product
Lines: Going Beyond. LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

21. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. STTT 14(5), 477–495 (2012)

22. Schmid, K., Santana de Almeida, E.: Product line engineering. IEEE Softw. 4,
24–30 (2013)

23. Seidl, C., Schaefer, I., Aßmann, U.: Integrated management of variability in space
and time in software families. In Proceedings of the 18th International Software
Product Line Conference (SPLC), SPLC 2014 (2014)

24. Svahnberg, M., Bosch, J.: Evolution in software product lines. J. Softw. Maint.
Res. Pract. 11(6), 391–422 (1999)

25. ter Beek, M., Fantechi, A., Gnesi, S., Semini, L.: Variability-based design of ser-
vices for smart transportation systems. In: Proceedings of the International Sym-
posium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), ISoLA 2016, Heidelberg (2016)

26. van den Berk, I., Jansen, S., Luinenburg, L., Ecosystems, S.: A software ecosystem
strategy assessment model. In: Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, pp. 127–134. ACM (2010)



432 F. Damiani et al.

27. Wille, D., Tiede, M., Schulze, S., Seidl, C., Schaefer, I.: Identifying variability in
object-oriented code using model-based code mining. In: Proceedings of the Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA), ISoLA 2016, Heidelberg (2016)


	LNCS-ISoLA-2016_track-introduction-COPERTINA
	LNCS-ISoLA-2016_track-introduction

