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Abstract

In this paper, we address distributed convergence to fair allocations of CPU resources for time-sensitive applications. We
propose a novel resource management framework where a centralized objective for fair allocations is decomposed into a pair of
performance-driven recursive processes for updating: (a) the allocation of computing bandwidth to the applications (resource
adaptation), executed by the resource manager, and (b) the service level of each application (service-level adaptation), executed
by each application independently. We provide conditions under which the distributed recursive scheme exhibits convergence
to solutions of the centralized objective (i.e., fair allocations). Contrary to prior work on centralized optimization schemes,
the proposed framework exhibits adaptivity and robustness to changes both in the number and nature of applications, while
it assumes minimum information available to both applications and the resource manager. We finally validate our framework
with simulations using the TrueTime toolbox in MATLAB/Simulink.
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1 Introduction

The current trend in embedded computing demands that
the number of applications sharing the same execution
platform increases. This is due to the increased capacity
of the new hardware platforms, e.g., through the use of
multi-core techniques. An example includes the move
from federated to integrated system architectures in the
automotive industry [9].

In such scenarios, the need for better mechanisms for
controlling the rate of execution of each application be-
comes apparent. To this end, virtualization or resource
reservation techniques [1, 17] are used. According to
these techniques, each reservation is viewed as a virtual
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processor (or platform) executing at a fraction of the
speed of the physical processor, i.e., the bandwidth of
the reservation. An orthogonal dimension along which
the performance of an application can be tuned is the
selection of its service level. It is assumed that an appli-
cation is able to execute at different service levels, where
a higher service level implies a higher quality-of-service
(QoS). Examples include the adjustable video resolu-
tions and the adjustable sampling rates of a controller.

Typically this problem is solved by using a resource man-
ager (RM), which is in charge of: (a) assigning virtual
processors to the applications, (b) monitoring the use of
resources, and (c) assigning the service level to each ap-
plication. The goal of the RM is to maximize the overall
delivered QoS. This is often done through centralized op-
timization and the use of feedback from the applications.

RM’s that are based on the concept of feedback, moni-
tor the progress of the applications and adjust the vir-
tual platforms based on measurements [10, 21]. In these
early approaches, however, quality adjustment was not
considered. Instead, reference [8] proposed an inner loop
to control the resource allocation nested within an outer
loop that controls the overall delivered quality.

Optimization-based resource managers have also re-
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ceived considerable attention [15, 19]. These approaches,
however, rely on the solution of a centralized op-
timization that determines both the amount of as-
signed resources and the service levels of all applica-
tions [3, 19, 20]. In the context of networking, refer-
ence [13] models the service provided by a set of servers
to workloads belonging to different classes as a utility
maximization problem. However, there is no notion of
adjustment of the service level of the applications.

An example of a combined use of optimization and feed-
back was developed in the ACTORS project [2, 3]. In
that project, applications provide a table to the RM
describing the required amount of CPU resources and
the expected QoS achieved at each supported service
level [2, 3]. In the multi-core case, applications are par-
titioned over the cores and the amount of resources is
given for each individual partition. Then, the RM de-
cides the service level of all applications and how the
partitions should be mapped to physical cores using a
combination of Integer Linear Programming (ILP) and
first-fit-decrease (FFD) for bin packing.

On-line centralized optimization schemes have several
weaknesses. First, the complexity of the solvers used to
implement the RM (such as ILP solvers) grows signif-
icantly with the number of applications. It is imprac-
tical to have a RM that optimally assigns resources at
the price of a large consumption of resources by the RM
itself. Second, to enable a meaningful formulation of a
cost function in such optimization problems, the RM
must compare the quality delivered by different applica-
tions. This comparison is unnatural because the concept
of quality is extremely application dependent. Finally, a
proper assignment of service levels requires application
knowledge. In particular, applications must inform the
RM about the available service levels and the expected
consumed resources at each service level, increasing sig-
nificantly communication complexity.

To this end, distributed optimization schemes have re-
cently attracted considerable attention. Reference [22]
considered a cooperative game formulation for job al-
location to service providers in grid computing. Refer-
ence [23] proposed a non-cooperative game-theoretic for-
mulation to allocate computational resources to a given
number of tasks in cloud computing. Tasks have full
knowledge of the available resources and try to maxi-
mize their own utility function. Similarly, in [11] the load
balancing problem is formulated as a non-cooperative
game.

Contrary to the grid computing setup of [22] or the load
balancing problem of [11, 23], this paper addresses a
lower-level resource allocation problem, that is, the es-
tablishment of fair allocations of CPU bandwidth among
time-sensitive applications which adjust their own ser-
vice levels. Contrary to the cloud computing setup of
[23], a game-theoretic formulation may not easily be

motivated practically when addressing such lower-level
(single node) resource allocation problems. Instead, we
propose a distributed optimization scheme, according to
which a centralized objective for fair allocations is de-
composed into a pair of performance-driven recursive
processes for updating: (a) the allocation of comput-
ing bandwidth to the applications (resource adaptation),
executed by the RM, and (b) the service level of each
application (service-level adaptation), executed by each
application independently. We provide conditions under
which the distributed recursive scheme exhibits conver-
gence to fair allocations).

The proposed scheme introduces a design technique for
allocating computing bandwidth to time-sensitive appli-
cations, i.e., applications whose performance is subject
to strict time deadlines, such as multimedia and control
applications. In particular, the proposed scheme: (a) ex-
hibits linear complexity with the number of applications,
(b) drops the assumption that the RM has knowledge of
application details, and (c) exhibits adaptivity and ro-
bustness to the number and nature of applications. This
paper extends the theoretical contributions of [6] by ad-
dressing global convergence and asynchronous updates.
Furthermore, reference [16] presents the full implemen-
tation framework in Linux.

The paper is organized as follows. Section 2 provides
the overall framework, while Section 3 presents the
distributed scheme for resource allocation. Section 4
presents the convergence behavior for the synchronous
and asynchronous case. Section 5 presents technical
details required for the derivation of the main results
in Section 4. Section 6 provides selective simulations.
Finally, Section 7 presents concluding remarks.

Notation:

• Π[a,b] is the projection onto the set [a, b].
• For some finite sequence {x1, x2, ..., xn} in R, define

col{x1, x2, ..., xn} to be the column vector in Rn with
entries {x1, x2, ..., xn}.
• For any x ∈ R, define the operator [x]− as follows:

[x]− ,

{
x, x ≤ 0

0, x > 0.

• For any x ∈ Rn and set A ⊂ Rn, define dist(x,A)
.
=

infy∈A ‖x−y‖,where ‖·‖ denotes the Euclidean norm.
• For some finite set A, |A| denotes the cardinality of A.

2 Framework & Problem Formulation

2.1 Resource manager & applications

The overall framework is illustrated in Figure 1. A set I
of n (time-sensitive) applications are sharing the same
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Fig. 1. Resource management framework.

CPU platform. Let i be a representative element of this
set. Since we allow applications to dynamically join or
leave, the number n may not be constant over time.

The resources are managed by a RM that allocates re-
sources through a Constant Bandwidth Server (CBS) [1]
with period Pi and budget Qi. Hence, application i is
assigned a virtual platform with bandwidth vi = Qi/Pi
corresponding to a fraction of the computing power (or
speed) of a single CPU. Obviously, not all virtual plat-
forms vi are feasible, since their sum cannot exceed the
number κ of available CPU’s. Formally, we define the set
of feasible virtual platforms, (v1, . . . , vn), as

V .
=
{
v = (v1, ..., vn) ∈ [0, 1]n :

n∑
i=1

vi ≤ κ
}
. (1)

In this study, the main concern is the computation of
the allocation v in real time such that a centralized ob-
jective is achieved. However, we will not be concerned
with the exact mapping of this allocation onto the avail-
able cores. Such mapping can be performed by a stan-
dard first-fit-decrease algorithm. Furthermore, in prac-
tice, more constraints might be present, especially if ap-
plications are single-threaded (i.e., they may only run
on a single core). In this case, the above feasibility con-
straint will be a relaxed version of the original problem,
however, the forthcoming analysis can be modified in a
straightforward manner to incorporate additional con-
straints on V.

Furthermore, each application i ∈ I may change its
service level, si. It represents a qualitative indicator of
the delivered quality of application i, assuming sufficient
amount of resources vi. Naturally, it can be represented
by a real number si ∈ Si .= [si,∞) ⊂ R, where si > 0 is
the minimum possible service level of application i. The
domain Si inherits the partial ordering from R, accord-
ing to which s′i ≤ s′′i implies that the quality delivered at
service level s′i is smaller than or equal to the correspond-
ing quality delivered at s′′i . The physical interpretation
of the service level may only be realized in the context of

a specific application. It may represent any quality indi-
cator of the application, e.g., the inverse of the accuracy
of an iterative optimization routine, the details of an
MPEGplayer and the sampling frequency of a controller.
We denote s

.
= col{s1, ..., sn} the service level profile of

all applications evolving within S .
= S1 × ...× Sn.

We implicitly assume here that an application may al-
ways increase its service level providing the necessary
resources, however, in practice it will always be con-
strained due to the constraints imposed in vi. Note, fi-
nally, that the service level si is an internal state of ap-
plication i, i.e., it can be written/read only by i.

2.2 The matching function

To be able to assess the performance of a time-sensitive
application, it is necessary to introduce a performance
function. The RM is able to measure at any time t ≥ 0,
(a) the soft-deadline of each application i,Di(t), which is
the time duration of its last CPU reservation, and (b) the
corresponding job-response time,Ri(t), which is the time
elapsed from the start time to the finishing time of a job
during its last reservation. A natural definition of such
performance function for time-sensitive applications is
the following matching function:

fi(t)
.
=
Di(t)

Ri(t)
− 1, (2)

Note that fi ≥ −1, a property that will be used often.

Based on the above definition, we define a perfect match-
ing between Di and Ri to be the situation at which
|fi| ≤ δ, for some small δ > 0. This is the case when
application i has the correct amount of resources. In-
stead, a scarce matching describes a situation at which
fi < −δ, i.e., when application i does not have enough
resources, and an abundant matching describes a situa-
tion at which fi > δ, i.e., when application i has more
than enough resources.

2.2.1 Nominal matching function

The matching function depends indirectly on the virtual
platform vi and the service level si of application i. For
a large class of applications, we may derive a nominal
representation of the matching function, denoted ϕi, as
a function of si and vi as follows:

ϕi(si, vi)
.
= βi

vi
si
− 1, (3)

for some positive constant βi. For example, for multi-
media applications, the soft deadline Di can be consid-
ered constant, while the response time can be defined as
Ri = Ci/vi, where Ci = αisi is the execution time per
job (at a service level si) and vi is the speed of execution.
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Similarly, in control applications, Ri = Ci/vi where Ci
denotes nominal time of execution, while the soft dead-
line Di is considered inverse proportional to the sam-
pling frequency (or service level) si, i.e.,Di = αi/si. Both
cases lead to a matching function with the form of (3).

It is evident that the nominal matching function (3)
satisfies the following properties: For some si, s′i ∈ Si
and vi, v

′
i ∈ V: (P1) si 6= 0 ⇒ ϕi(si, 0) < 0, that is,

the matching must certainly be scarce if no resources
are assigned; (P2) si ≥ s′i ⇒ ϕi(si, vi) ≤ ϕi(s

′
i, vi), if

application i lowers its service level, then the perfor-
mance should not decrease; (P3) vi ≥ v′i ⇒ ϕi(si, vi) ≥
ϕi(si, v

′
i), if the bandwidth of application i decreases,

then the performance should not increase.

2.3 Application weights

The RMmay also assign weights to the applications. We
introduce the weight λi ∈ (0, 1] to represent the impor-
tance that the RM assigns to application i when adjust-
ing its virtual platform vi. As we shall see in a forthcom-
ing section, the weights {λi} will determine the direction
of adjustment of the virtual platforms {vi} by the RM.
The weights {λi} are considered given and determined
by the RM.

2.4 Fair allocations & objective

To define fair allocations, for each application i, we in-
troduce the following nominal fairness measure :

Φi(s,v)
.
=

−(1− v̄i)λi [ϕi(si, vi)]− + v̄i
∑
j 6=i

λj [ϕj(sj , vj)]− , (4)

where v̄i
.
= vi/κ is the normalized virtual platform of i

over the number of cores.

The function Φi captures the deficiency in resources of
application i compared to the rest of applications. When
application i is not performing well, i.e., ϕi(si, vi) < 0,
and its available resources vi are small, while the rest of
applications are performing well, we should expect large
values for Φi.

Definition 2.1 (Fair allocation) For some service
level profile s ∈ S, a virtual platform profile v∗ ∈ V is
fair or balanced if Φi(s,v

∗) ≡ 0 for all i ∈ I.

According to Definition 2.1, an allocation of virtual plat-
forms v∗ is fair for application i only if v∗i 6= 0, since
at zero resources ϕi(si, 0) < 0 and Φi(s,v) < 0. Thus,
an allocation v∗ is fair if either (a) [ϕi(si, v

∗
i )]− ≡ 0 for

all i or (b) [ϕi(si, v
∗
i )]− < 0 for all i and the ratio of re-

sources v̄∗i/1−v̄∗i coincides with the corresponding ratio of
weighted matching functions. Since [ϕi]− ∈ [−1, 0], case

(b) implies that the resources are balanced with the neg-
ative performances. For example, if v̄∗i is large compared
to the rest 1− v̄∗i , then [ϕi]− has to be sufficiently nega-
tive, i.e., application i should not perform so well com-
pared to the rest. Informally, there could not be applica-
tion i that monopolizes the resources at a fair allocation
when i performs well and the others do not.

The above fairness definition introduces a potential cen-
tralized problem for fair allocations.{

mins∈S,v∈V
∑
i∈I |Φi(s,v)|

s.t. ϕi(si, vi) = 0, ∀i ∈ I.
(5)

However, neither the RM nor application i has complete
knowledge of the details of the nominal matching func-
tion ϕi(si, vi). Thus, on-line centralized optimization is
highly prohibited. Instead, optimization may only be
based on measurements collected during run-time.

3 Adjustment Dynamics

In this section, the centralized objective of fair alloca-
tions is decomposed into a pair of performance-driven
recursive schemes, executed independently by the RM
and the applications, thus avoiding the computation and
communication complexity of centralized optimization.

3.1 Resource adaptation

The RM updates the bandwidth v̄i = vi/κ, normalized
with respect to the number of cores κ. The unused band-
width is vr = κ−∑n

i=1 vi, and its normalized version is
v̄r = 1−∑n

i=1 v̄i. At time instances tk, k = 0, 1, . . . the
RM assigns resources as follows:

(1) It measures the matching function fi = fi(tk) for
each i ∈ I, and computes [fi(tk)]−.

(2) It updates the normalized resource allocation vec-
tor v̄ .

= (v̄1, ..., v̄n) as follows:

v̄i(tk+1) = ΠVi

[
v̄i(tk) + εFi(tk)

]
(6)

for each i = 1, ..., n, where Vi .= [0, 1/κ] and Fi(tk)
is the observed fairness measure defined as follows:

Fi(tk)
.
=

−(1− v̄i(tk))λi[fi(tk)]− + v̄i(tk)
∑
j 6=i

λj [fj(tk)]−.

Furthermore, the unused bandwidth is updated ac-
cording to v̄r(tk+1) = 1−∑n

i=1 v̄i(tk+1).
(3) It computes the original bandwidths by setting

vi(tk+1) = κ v̄i(tk+1).
(4) It updates the time index k ← k + 1 and repeats.
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Note that according to the definition of Fi(tk), if there
is a deficiency of resources for i, i.e., Fi(tk) > 0, then
v̄i will increase, otherwise it will decrease. We consider
a constant step size ε > 0, since it provides an adaptive
response to changes in the number of applications. In
some cases, we will use vector notation, denoting v̄

.
=

col{v̄1, ..., v̄n} which evolves over V .
= V1 × ...× Vn.

Recursion (6) for the adjustment of resources was mo-
tivated by the standard replicator dynamics (cf., [24,
Chapter 3]) and in particular the discrete-time equiva-
lent (namely reinforcement learning) introduced in [7].
Note that the RM time complexity is linear with respect
to the number of applications, as demonstrated in [16].

3.2 Service level adaptation

The RM provides information to each application i
through an observation signal Yi(tk), k = 0, 1, ..., that
captures its performance. Applications are designed to
adjust their service levels based on Yi(tk) as follows:

si(tk+1) = ΠSi [si(tk) + εYi(tk)] , i ∈ I. (7)

A natural selection for the observation signal is to set
Yi(tk) ≡ fi(tk), i.e., the observed matching function. In
this scenario, the application i will increase its service
level if fi(tk) > 0, otherwise it will decrease it. Alterna-
tive observation terms can also be defined with similar
properties as demonstrated in [6].

4 Convergence

In this section, a characterization of the convergence
properties of the proposed distributed scheme is pro-
vided in case of (a) synchronous applications’ updates,
and (b) asynchronous applications’ updates. Asyn-
chronous updates constitute a form of perturbation of
the nominal synchronous behavior which may alter sig-
nificantly the performance of the scheme. Perturbations
due to measurement noise are not present, since the RM
has direct access to the response time of each applica-
tion. However, internal uncertainties of an application
may result in small deviations from its nominal match-
ing function. Due to the small probability density of
such events, we will not discuss robustness with respect
to such uncertainties, i.e., for the remainder of the
paper, we consider fi(t) ≡ ϕ(si(t), vi(t)), where the
nominal matching function satisfies (3).

4.1 Feasibility

The first property of the proposed adjustment process
is the feasibility of the resulting virtual platforms.

Proposition 4.1 (Feasible allocations) For suffi-
ciently small step size ε = ε(n) > 0, the update recursion

of projected virtual platforms (6) leads to a sequence of
virtual platforms {v(tk)} which satisfies v(tk) ∈ V for
all k = 0, 1, ... as long as v(t0) ∈ V.

Proof. See Appendix A. �

4.2 Minimum guarantees

The adjustment process guarantees starvation avoid-
ance, i.e., a positive amount of resources (at least ε > 0)
to all applications with non-zero weight. Furthermore,
it guarantees a balance condition, according to which, in
overloaded CPU’s, no application is able to monopolize
resources.

Before stating formally these observations, define:

− L
.
= supi∈I,k∈N |Fi(tk)| <∞,

− λ
.
= mini∈I λi > 0.

Proposition 4.2 (Starvation avoidance) There ex-
ists ε∗ = ε∗(n) < 1/(L+1)κ with ε∗ → 0 as n → ∞, such
that for any step size ε ≤ ε∗, infk∈N v̄i(tk) > ε for all i.

Proof. See Appendix B. �

Proposition 4.3 (Balance) Pick 0 < ζ ≤ 1/κ such
that maxi∈I{βiκζ/si − 1} < 0. For any ε = ε(ζ) < ζ/L,
there exists a number of applications n∗ = n∗(ζ) such
that, for any set of applications I with |I| ≥ n∗ and for
any i ∈ I, the following hold:

(1) if v̄i(t0) > ζ, then v̄i(tk) ≤ ζ after a finite k;
(2) if v̄i(t0) ≤ ζ, then v̄i(tk) ≤ ζ for all k = 1, 2, ....

Also, as ζ → 0, n∗(ζ) → ∞ and ζn∗(ζ) → c, for some
positive constant c.

Proposition 4.3 states that if we pick ζ such that v̄i ≤ ζ
implies negative matching function for all i, and we con-
sider a sufficiently large number of applications n ≥ n∗,
then all applications will end up with a virtual platform
less than ζ within finite time. Informally, when the CPU
is overloaded, no application can monopolize the avail-
able resources. Proof. See Appendix C. �

4.3 Synchronous convergence

In the forthcoming convergence analysis, we will consider
either one of the following hypotheses:

(H1) Let βi/si < 1 for all i.
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(H2) Let the number of applications n be sufficiently
large such that, there exists 0 < ζ ≤ 1/κ satisfy-
ing properties (1) and (2) of Proposition 4.3 for
n∗(ζ) ≤ n.

Hypothesis (H1) corresponds to the case where the ap-
plications are highly demanding, while (H2) corresponds
to the case where the assigned resources is small com-
pared to the number of applications.

The asymptotic behavior of recursions (6)–(7) can be as-
sociated with the limit points of the following collection
of (nonlinear) ordinary differential equations (ODE):(

ṡi(τ)

˙̄vi(τ)

)
=

(
ϕi(si(τ), κv̄i(τ))

Φi(s(τ), κv̄(τ))

)
+ zi(τ), i ∈ I, (8)

as the step size ε approaches zero, where τ refers to the
time-index of the ODE. The vector zi(τ) represents the
vector of minimum length required to drive v̄i(τ) back
to Vi and si(τ) back to Si. Define (sτ0(·), v̄τ0(·)) to be
the solution of the ODE (8) starting at (s(τ0), v̄(τ0)).

Consider also the linear-time interpolation (si,ε(t), v̄i,ε(t))
of {(si(tk), v̄i(tk))}k, defined as follows: si,ε(t) = si(tk),
and v̄i,ε(t) = v̄i(tk), for every tk ≤ t < tk+1. In-
troduce also the vector notation sε

.
= col{si,ε}i and

v̄ε
.
= col{v̄i,ε}i.

Theorem 4.1 (Synchronous convergence) The fol-
lowing hold:

(1) If either (H1) or (H2) applies, the ODE (8) exhibits
stationary points (s∗, v̄∗), which satisfy:

s∗i = si, and
{

Φi(s
∗, κv̄∗) = 0, or

Φi(s
∗, κv̄∗) > 0, v̄∗i = 1/κ

∀i. (9)

(2) If either (i) βiκ/si → 0 for all i, or (ii) n→∞, then
(a) any stationary point of the ODE (8) satisfies:

s∗i = si, v̄∗i → min
{ 1

κ
,

λi∑
j λj

}
, ∀i ∈ I. (10)

(b) (si(tk), v̄i(tk))→ (s∗i , v̄
∗
i ) as k →∞ and ε→ 0. 1

Proof. The proof is an immediate implication of a se-
ries of propositions presented in detail in Section 5.1. �

In other words, Theorem 4.1 states that stationary
points of the ODE (8) are fair allocations (except for
trivial cases where a virtual platform is limited by the

1 By x(t)→ A for a set A, we mean limt→∞ dist(x(t), A) =
0.

appi

RM
m = 0

t0

1

t1

· · · m̄(ti
k̄−1

) m̄(ti
k̄
) m̄(t)

t

k = 0

ti0

1

ti1

· · · k̄ − 1

ti
k̄−1

k̄ = k̄(t, i)

ti
k̄

Fig. 2. Visualization of asynchronous applications.

size of the core). Furthermore, when the CPU is over-
loaded (i.e., either due to (i) a high demand, or (ii)
a large number of applications), then the unique fair
allocation is a global attractor of the distributed process.

4.4 Asynchronous convergence

So far, we have implicitly assumed that the adjustment
dynamics (6)–(7) have synchronized clocks. However,
the virtual platform, vi, indirectly determines applica-
tion i’s speed of execution. Hence, the update rate of the
service level si varies over time.

Under asynchronous updates, the asymptotic allocation
of virtual platforms may not necessarily be fair to all
applications. Consider, for example, the case where an
application i does not update its service level, while all
other applications do. Then, under limited available re-
sources, application i will retain a sufficiently negative
matching function fi, while the matching functions of
all other applications steadily approach zero. This situ-
ation may lead to application i getting asymptotically a
larger virtual platform independently of its weight λi.

To address asynchronous updates, we first introduce the
following notation, also visualized in Figure 2.

• t denotes the actual run time;
• tik denotes the update instances of application i;
• tm denotes the update instances of the RM;
• k̄(t, i)

.
= {k ∈ N : tik ≤ t < tik+1} denotes the most

recent to t update index of application i;
• m̄(t)

.
= {m ∈ N : tm ≤ t < tm+1} denotes the most

recent to t update index of the RM;
• ψi(m)

.
= max{m′ ≤ m : ∃ k s.t. tm′ ≤ tik < tm}

denotes the most recent update of the RM after which
the last update of application i occurred. For example,
in Figure 2, ψi(m̄(t)) = m̄(ti

k̄
). We set ψi(m) = 0 if

there exists no k such that tik < tm.
• Ni(k)

.
= m̄(tik+1)− m̄(tik) is the number of times that

the RM has updated within [tik, t
i
k+1), i.e., between

two consecutive updates of application i ∈ I.

Throughout this section, we also admit the design as-
sumption that 1 ≤ Ni(k) ≤ N̄ for all i ∈ I and k =
0, 1, ..., and for some N̄ ∈ N. In other words, (a) the fre-
quency at which the RM updates is larger than the fre-
quency of every application i, and (b) each application i
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updates with positive frequency. Without loss of gener-
ality, we will also assume that t0 = 0, i.e., the RM starts
updating first.

Given the above notation, the update recursion of each
application i can be written as follows:

si(t
i
k+1) = ΠSi [si(t

i
k) + εYi(tm̄(ti

k
))], (11)

since the computation of the observation signal Yi(·) of
each application i is based upon the most recent perfor-
mance measurements taken by the RM at m̄(tik).

Theorem 4.2 (Asynchronous convergence) Let
application i’s actual recursion be given by (11), with

Yi(t
i
k) = Ni(k) · Y ′i (tik), (12)

for each i ∈ I, where Y ′i (·) .
= fi(·). Then, the conclusions

of Theorem 4.1 continue to hold.

Proof. The proof will be shown in Section 5.2. �

5 Technical Derivation

In this section, the technical proofs of Theorems 4.1–4.2
are presented through a series of propositions.

5.1 Synchronous convergence (Theorem 4.1)

The proof of Theorem 4.1 is an immediate implication of
the following steps: (a) derivation of the ODE approxi-
mation of the adjustment dynamics (6)–(7), provided by
Proposition 5.1, (b) characterization and stability analy-
sis of its stationary points, provided by Propositions 5.2–
5.3.

5.1.1 ODE approximation

We begin by establishing a connection between the
asymptotic properties of the recursions (6)–(7) with the
locally asymptotically stable sets of the ODE (8).

Proposition 5.1 (Synchronous ODE) Consider the
recursions (6)–(7), according to which both the RM and
the applications update synchronously at fixed time in-
stances tk, k = 1, 2, .... If A is a locally asymptotically
stable set in the sense of Lyapunov 2 for the ODE (8),
then, for any initial condition (s(t0), v̄(t0)) in the do-
main of attraction of A, (s(tk), v̄(tk)) → A as k → ∞
and ε→ 0.

2 See [14, Definition 3.1].

Proof. The observation signal of the overall recursion is
uniformly bounded, and the vector field of the ODE (8)
is a continuous function on its domain. By [12, Theo-
rem 1.1] (which shows convergence of Euler’s method),
we have that for every τ > 0:

lim
ε→0

sup
k=0,...,bτ/εc

‖(sε(tk), v̄ε(tk))− (sτ0(τk), v̄τ0(τk))‖ = 0,

where (sτ0(τ0), v̄τ0(τ0)) = (s(t0), v̄(t0)) and τk
.
= εk.

Given that A is locally asymptotically stable and the
initial condition (s(t0), v̄(t0)) lies within the region of
attraction of A, the conclusion follows in a straight-
forward manner by the fact that any solution of the
ODE (8) with initial condition (s(t0), v̄(t0)) converges
to A. �

5.1.2 Stationary points

In this section, we characterize the stationary points of
the ODE (8). In general, if an allocation (s∗, v̄∗) exists
such that φi(s∗i , κv̄∗i ) ≡ 0 for all i, then such allocation
will be a stationary point of the ODE (8) and a fair allo-
cation according to Definition 2.1. In situations though
where the CPU is overloaded, there might not be such
allocations. The following proposition provides a char-
acterization of the stationary points in such cases.

Proposition 5.2 (Stationary points) Under either
(H1) or (H2), the ODE (8) exhibits stationary points
satisfying (9). Furthermore, as either (i) βi/si → 0 or
(ii) n→∞, any stationary point satisfies (10).

Proof. If hypothesis (H1) is satisfied, then φi(si, κv̄i) <
0 for all (s, v̄) and τ ≥ 0. In this case, any station-
ary point (s∗, v̄∗) satisfies (9) which equivalently implies
that: s∗i ≡ si and

v̄∗i = min
{ 1

κ
,

λiφi(s
∗
i , κv̄

∗
i )∑

j∈I λjφj(s
∗
j , κv̄

∗
i )

}
. (13)

The mapping defined by the second expression of v̄∗i is
well defined since φi(s∗i , κv̄∗i ) < 0 for all i. Furthermore,
according to Brower’s fixed point theorem [4, Corol-
lary 6.6], it exhibits at least one fixed point since it is a
continuous mapping defined on a compact set. The pos-
sibility that v̄∗i = 0 is excluded by Proposition 4.2. Fi-
nally, under hypothesis (H1), if we take βi/si → 0 for
all i, then φi(si, vi)→ −1 for all i, which further implies
property (10).

If, instead, hypothesis (H2) is satisfied, then, by Propo-
sition 4.3, there exists a finite k∗, such that, v̄i(tk) ≤ ζ
for all k > k∗. By convergence of Euler’s method,
φi(s

τ0
i (τ), κv̄τ0i (τ)) < 0 for all τ ≥ τk∗

.
= εk∗ and all i.

Thus, the fixed-point property (13) also applies. Fur-
thermore, if n → ∞, then by Proposition (4.3), ζ → 0,
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and φi(sτ0i (τ), κv̄τ0i (τ))→ −1 uniformly on τ ≥ τk∗ and
i, which implies (10). �

5.1.3 Global Asymptotic Stability (GAS)

The following proposition provides a strong convergence
property of the ODE (8).

Proposition 5.3 (GAS) If either (i) βi/si → 0 or (ii)
n→∞, then the unique stationary point of the ODE (8),
satisfying property (10), is globally asymptotically stable
in the sense of Lyapunov.

Proof. See Appendix D. �

5.2 Asynchronous convergence (Theorem 4.2)

The proof of Theorem 4.2 is a direct implication of estab-
lishing equivalence between the synchronous and asyn-
chronous update recursions satisfying property (12). In
particular, we define equivalence between two (determin-
istic) update recursions as follows.

Definition 5.1 (Equivalent updates) Two update
recursions of the form (11) and observation signals
{Yi(tik)} and {Y ′i (tik)}, i ∈ I, are equivalent if the cor-
responding linear-time interpolations of the updated
variables, si,ε(·) and s′i,ε(·), respectively, satisfy

lim
ε→0

sup
t≥0

∣∣si,ε(t)− s′i,ε(t)∣∣ = 0.

In other words, two deterministic update recursions of
the form (11) are considered equivalent when the corre-
sponding linear-time interpolations approach each other
uniformly in time as ε approaches zero.

We introduce the following fictitious recursion for each i,

s′i(tm+1) = ΠSi
[
s′i(tm) + εY ′i (tψi(m))

]
, (14)

for allm ≥ 0. This update is synchronized with the time
index of the RM and Y ′i (·) .

= fi(·). Note that the ficti-
tious observation signals are defined at times {tψi(m)},
i.e., at the most recent update of the RM prior to the
last update of application i. Since the RM starts up-
dating first, we also set Y ′i (tψi(m)) ≡ 0 for all m such
that ψi(m) = 0, since no performance measurements are
available at time t = 0.

The following proposition shows that, if we pick appro-
priately the observation signals of the (actual) asyn-
chronous update (11), then the asynchronous update be-
comes equivalent with the synchronous update of (7).

Proposition 5.4 (Equivalence) For each application
i ∈ I, assume that its actual update recursion is given
by (11), where Yi(tik) satisfies property (12). Then, the
following statements hold:

(1) The fictitious synchronous update (14) is equivalent
with the asynchronous update (11).

(2) The fictitious synchronous update (14) is equivalent
with the synchronous update (7).

Proof. See Appendix E. �

6 Experimental Evaluation

6.1 Simulation framework

To test the assignment of virtual platforms vi and
service levels si, the resource management frame-
work was implemented in TrueTime [5]. TrueTime is
a MATLAB/Simulink-based tool, embedded within
Simulink, that allows the simulation of tasks executing
within real-time kernels. TrueTime implements virtual
processors through the Constant Bandwidth Server
(CBS) [1]. Also, it is possible to adjust the CPU time
allocated to the running applications (the bandwidth
vi), as needed by our RM. Moreover, TrueTime offers
the ability to simulate memory management and pro-
tection, therefore being a perfect match to simulate our
resource management framework.

ATrueTime kernel simulates a single CPU that hosts the
execution of the RM and the CBS servers (virtual proces-
sors) on top of which the applications are running. The
RM observes the matching function, fi, of each appli-
cation i and computes the new reservation vi according
to (6). Observe in this case means that the RM is able to
read the start and finishing time of each job and it com-
putes the matching function according to (2). Then, it
updates the virtual platforms and communicates to the
applications the observations Yi(tik) ≡ fi(t

i
k) according

to (12).

It is here assumed that applications are composed of
some time sensitive portions of code, called jobs. For
example, in a media encoder/decoder a job may be the
encoding/decoding of an MPEG frame. Applications are
requested to inform the RM about the desired duration
of each job. Below we report a template of the job code.
To ease the presentation, we omit some implementation
details, which can be found in [16].

1 /∗ j is the job index∗/
2 id = signal_job_start(j);
3 adjust = get_performance(j);
4 /∗ body of the job. If service aware, it should
5 modify its resource requirement by adjust ∗/
6 do_work(/∗ parameters ∗/);
7 signal_job_end(j);
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(b) RM does not deal with asynchronicity.

Fig. 4. TrueTime simulation of three applications that asynchronously update their service levels.
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Fig. 3. TrueTime simulation of five applications with differ-
ent weights that update their service levels.

As the application runs, it is asked to signal the start
and the end of a job. This signaling actions are per-

formed by invoking respectively signal_job_start and
signal_job_end, providing as parameter the index j of
the job. Within the job, the first action is the invocation
of the function get_performance. This function, which
is computed by the monitoring infrastructure, returns a
measurement of the service level adjustment required to
achieve a perfect matching between the service level and
the virtual platform. Jobs are assumed to be periodic.

To simulate service-aware applications, we developed a
synthetic test application, which performs some com-
putation depending on the service level si. All jobs of
the application have deadline Di and are executed in a
forever loop. The execution requirement of each job is
a linear function aisi + bi of the service level. Hence,
applications with a large ai are more service-sensitive
than applications with ai close to zero. All applications
parameters (Di, ε, ai, bi), which determine the appli-
cation behavior and its capacity to adapt, are set at
start time. This enables, for example, the coexistence
of fully service-aware applications together with service-
unaware ones (with ai = 0).

6.2 Synchronous updates

In the first scenario, we consider five applications run-
ning in a single core and updating synchronously with
the RM according to (7). We pick λ1 = 0.9, λ2 = 0.7,
λ3 = 0.5, λ4 = 0.3 and λ5 = 0.1. Each application i
has ai= 20, bi= 200 and job deadline Di = 1 msec.
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The initial service levels for the five applications is set
to 10 and the applications update their service levels ev-
ery time they perform a new job. Finally, we restrict the
maximum assignable bandwidth by the RM to 90% to
simulate the fact that the operating system should have
some space to execute on the same hardware.

Figure 3 reports the quantities measured during the ex-
periment. All applications are gradually reducing their
service levels as expected due to the negative matching
function fi. According to Theorem 4.1, app1 should re-
ceive a larger virtual platform compared to the rest of
the applications due to its larger weight. The final allo-
cation of virtual platforms may not correspond exactly
to the values assigned by condition (10), since the con-
ditions partially hold at the beginning of the simulation
when fi are significantly less than 0. Note though that
the relative importance of the applications is preserved
due to the synchronous updates.

6.3 Asynchronous updates

In this scenario, we investigate the effect of the asyn-
chronicity in the final allocation of virtual platforms. We
consider three different applications starting at the same
time, with weights λ1 = 0.1, λ2 = 0.5 and λ3 = 0.8. Each
application uses resources according to ai= 40, bi= 100.
Also they all have a job deadline Di = 10 msec. Appli-
cation app1 updates its service level after completing 10
jobs, while app2 and app3 update their service levels after
completing 1 job, i.e., asynchronous updates are intro-
duced. The initial service levels of the three applications
are set equal to 10 and the upper and lower bounds on
the service levels are set equal to 0 and 20, respectively.

Figure 4a reports the quantities measured during the
experiment, when applications apply the scheme pre-
scribed in the hypotheses of Theorem 4.2 for asyn-
chronous updates. Each application employs a constant
step-size sequence of ε = 0.03. It can be noticed that
the RM is able to maintain a virtual platform allocation
that is consistent with the weights of the applications,
while driving all matching functions to zero.

To strengthen the motivation for asynchronicity man-
agement, Figure 4b shows the same simulation when
applications do not employ the adjusted observation
signal introduced in Equation (12), and instead they
employ the originally introduced observation signal
of the synchronous scheme (7). Due to the slow up-
date rate of app1, it maintains a high service level for
longer period, which subsequently leads to maintain-
ing a smaller matching function f1 for longer period.
Thus, even though the weight of app1 is smaller com-
pared to the rest of applications, the RM favors this
application significantly by gradually providing more
resources. This simulation demonstrates that the origi-
nal scheme of Section 3 may not be fair to applications

under asynchronous updates, and it was the main moti-
vation for the development of the updated dynamics of
Theorem 4.2.

7 Conclusions

We proposed a distributed management framework for
allocating CPU resources to time-sensitive applications.
Given that future computing systems will have to ac-
commodate large number of applications of different de-
mand levels, resource allocation should not be indepen-
dent of the applications’ performance (a notion captured
through the matching function in this paper). Further-
more, given that resources are always finite, applications
with higher flexibility in adjusting their demands (or ser-
vice level) should decrease their service levels in overload
cases. This paper proposed a distributed scheme that
incorporates both these two elements, i.e., both mea-
surements of the applications’ performance, and appli-
cations’ service-level adjustment.

In this paper, service-level adjustment is performed by
prescribing certain dynamics to the applications. Such
prescribed response dynamics was the first step to-
wards the development of a fully distributed allocation
scheme. In a fully distributed setup, where applications
are not prescribed the response dynamics, the question
is whether a RM can still be designed that guarantees
fair allocation of resources independently of the type of
applications and their adjustment dynamics.

A Proof of Proposition 4.1

Let us first consider the unconstrained version of the ad-
justment dynamics (6), i.e., take κ = 1. (We will revisit
this assumption later.) In this case, the sum of the nor-
malized virtual platforms can be expressed as:

n∑
i=1

v̄i(tk+1)− 1 =

( n∑
i=1

v̄i(tk)− 1
)(

1 + ε

n∑
j=1

λj [fj(tk)]−
)
.

Given that −1 ≤ [fi(tk)]− ≤ 0, for sufficiently small
ε = ε(n) > 0, the second term of the right-hand side
is positive for all k = 1, 2, .... If

∑n
i=1 v̄i(tk) ≤ 1, then∑n

i=1 v̄i(tk+1) ≤ 1. Thus, for a bounded number of appli-
cations, we may pick sufficiently small ε = ε(n) such that
v̄i(tk) ∈ [0, 1] and

∑n
i=1 v̄i(tk) ≤ 1 for all k = 1, 2, ....

We consider now the constrained version of the recursion
(6). For some time t, let us assume that

∑n
i=1 v̄i(tk) ≤

1, i.e., the allocation is feasible at time tk. When we
update this allocation using (6), the projection operator
is activated only if v̄i(tk)+εFi(tk) > 1/κ for some i. Given
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that
∑n
i=1 v̄i(tk) + εFi(tk) ≤ 1 (as we showed for the

unconstrained dynamics), this quantity may only reduce
after applying the projection operator. Thus, feasibility
is also preserved under the constrained recursion.

B Proof of Proposition 4.2

First, note that
∑n
j=1 λj [fj(tk)]− ≥ −n, for all k =

0, 1, .... According to (6), the incremental difference of v̄i
for the unconstrained dynamics, satisfies:

∆v̄i(k)
.
= v̄i(tk+1)− v̄i(tk) ≥ ε (−λi[fi(tk)]− − nv̄i(tk))

(B.1)
Define the set Γi(ε)

.
= {v̄i ∈ Vi : v̄i ∈ (ε, (L+ 1)ε]}, and

pick ε sufficiently small such that ε < 1/(L+1)κ. Since
supk∈N |Fi(tk)| ≤ L, in order for v̄i(tk) to approach zero,
there should be a time k∗ at which v̄i(tk∗) ∈ Γi(ε). As-
suming that v̄i(tk) ∈ Γi(ε), if we pick ε sufficiently small,
we have [fi(tk)]− ≤ βiκ(L+ 1)ε/si− 1. Thus, the right-
hand side of (B.1) further satisfies:

ε (−λi[fi(tk)]− − nv̄i(tk)) ≥ ελ− (βiκ/si + n)(L+ 1)ε2.

For a given number of applications n, there exists ε∗ =
ε∗(n) < 1/(L+1)κ with ε∗(n)→ 0 as n→∞, such that, if
ε < ε∗, then the above quantity is strictly positive, i.e.,
∆v̄i(k) > 0. Since under the unconstrained dynamics the
lower bound of the projection operator is not reached,
the same will also hold for the constrained dynamics.
From (B.1), we conclude that if v̄i(t0) > ε for all i, then
infk∈N v̄i(tk) ≥ ε ∀i.

C Proof of Proposition 4.3

At time instance k, let I ′ ⊆ I be the set of applications
with resources greater than ζ, i.e., I ′ .= {i ∈ I : v̄i(tk) >
ζ}. Pick 0 < ζ ≤ 1/κ such that γ∗ .= maxI\I′{βiκζ/si −
1} < 0, i.e., all applications in I\I ′ have a negative
matching function. Pick also ε < ζ/L.

(1) For any i ∈ I ′, the incremental difference of v̄i at k is
defined as ∆v̄i(k)

.
= v̄i(tk+1)− v̄i(tk) = εFi(tk), assum-

ing that the projection operator in (6) is not activated.
Note that for all j ∈ I\I ′, v̄j(tk) ≤ ζ and∑

j∈I\i
λj [fj(tk)]− ≤

( ∑
j∈I\I′

λj

)
γ∗ ≤ |I\I ′| γ∗λ.

Hence, according to the definition of Fi(tk), we have:

∆v̄i(k)≤−ε(1− v̄i(tk))λi[fi(tk)]− + ε |I\I ′| γ∗v̄i(tk)λ
≤ ε(1− ζ) + ε(n− b(1− ζ)/ζc)ζγ∗λ,

where the last inequality results from the fact that
−λi[fi(tk)]− ≤ 1, v̄i(tk) > ζ, 1 − v̄i(tk) < 1 − ζ and

|I\I ′| ≥ n− b(1− ζ)/ζc. For any

n ≥ n∗1(ζ)
.
=

⌈⌊
(1− ζ)

ζ

⌋
+
−2 + ζ

ζγ∗λ

⌉
,

we have −ζ < −εL ≤ ∆v̄i(k) ≤ −ε < 0. In this case,
the initial assumption that the projection operator in
(6) is not activated is also valid. Furthermore, according
to [18, Theorem 5.1], the process v̄i(tk) will enter [0, ζ]
within finite k.

(2) For any application i ∈ I\I ′, the unconstrained in-
cremental difference ∆v̄i(k)

.
= εFi(tk) at time k satisfies:

∆v̄i(k) ≤ ε(1− v̄i(tk))+εv̄i(tk)γ∗λ(n−b(1− ζ)/ζc−1),

since −λi[fi(tk)]− ≤ 1,∑
j 6=i

λj [fj(tk)]− ≤
∑

j∈I\I′\i
λ[fj(tk)]− ≤ γ∗λ |I\I ′\i| ,

and |I\I ′\i| ≥ (n − b(1− ζ)/ζc − 1). In order for the
process v̄i(tk) to exit the set [0, ζ], there should be a
time instance k∗ at which v̄i(tk∗) ∈ (ζ − εL, ζ]. For any
v̄i(tk) ∈ (ζ − εL, ζ], we have:

∆v̄i(k) ≤ ε(1−ζ+εL)+ε(ζ−εL)γ∗λ(n−b(1− ζ)/ζc−1).

If the number of applications satisfy:

n ≥ n∗2(ζ)
.
=

⌈
1 +

⌊
1− ζ
ζ

⌋
+
−2 + ζ − εL
(ζ − εL)γ∗λ

⌉
,

then, ∆v̄i(k) ≤ −ε < 0, which implies that the uncon-
strained process {v̄i(tk)} will not exit [0, ζ] for all future
times. The same will hold for the constrained process.

Finally, by defining n∗(ζ)
.
= max{n∗1, n∗2}, both state-

ments (1) and (2) will hold for any n ≥ n∗. Note that
n∗ →∞ and ζn∗ → c as ζ → 0, for some c > 0.

D Proof of Proposition 5.3

Let (s∗, v̄∗) be a stationary point of the ODE (8), where
by property (9) satisfies s∗i = si. Define the function
W (s, v̄)

.
= 1/2(v̄ − v̄∗)T(v̄ − v̄∗) ≥ 0. The derivative of

W with respect to time τ satisfies:

Ẇ (s, v̄) =

n∑
i=1

(v̄i − v̄∗i )TΦi(s, κv̄). (D.1)

Note that at the stationary point and for every i, either
one of the following holds: (a) v̄∗i = 1/κ andΦi(s

∗, κv̄∗) >
0, or (b) Φi(s

∗, κv̄∗) = 0. Note that case (a) implies
(v̄i − v̄∗i )TΦi(s, κv̄) < 0 for all v̄i < 1/κ and all si > si.
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Thus, in case condition (a) is satisfied for some appli-
cations, the corresponding additive terms in (D.1) will
be strictly negative. Without loss of generality, it suf-
fices to investigate the derivative (D.1) when all appli-
cations satisfy condition (b). Furthermore, it suffices to
consider the case where si ≡ s∗i = si, since under hy-
pothesis (i) φi(si, vi) < 0 for all si ∈ Si, vi ∈ Vi and
i, and under hypothesis (ii) there exists a time τ∗ after
which φi(si(τ), κv̄i(τ)) < 0, for all τ ≥ τ∗ (according
to Proposition 4.3 and convergence of Euler’s method
shown in Proposition 5.1). Thus, for all τ ≥ τ∗, we have:

Ẇ (s∗, v̄)

=

n∑
i=1

(v̄i − v̄∗i ) (Φi(s
∗, κv̄)− Φi(s

∗, κv̄∗))

=−
( n∑
j=1

λj

) n∑
i=1

|v̄i − v̄∗i |2 −
n∑
i=1

λiβiκ

s∗i
|v̄i − v̄∗i |2

−
n∑
i=1

(v̄i − v̄∗i )

n∑
j=1

λjβjκ

s∗j

(
v̄∗i v̄
∗
j − v̄iv̄j

)
.

We denote by I1, I2 and I3 the three terms of
the r.h.s. of the above expression, i.e., Ẇ (s∗, v̄) ≡
I1 + I2 + I3. Note that: I1 = −(

∑n
j=1 λj) ‖v̄ − v̄∗‖22,

|I2| ≤ maxi∈I{βiκ/s∗i }‖v̄ − v̄∗‖22 and

|I3| ≤
n∑
i=1

|v̄i − v̄∗i |
n∑
j=1

λjβjκ

s∗j

∣∣v̄iv̄j − v̄∗i v̄∗j ∣∣
≤

n∑
i=1

|v̄i − v̄∗i |
n∑
j=1

λjβjκ

s∗j

( ∣∣v̄j − v̄∗j ∣∣ v̄i + |v̄i − v̄∗i | v̄∗j
)

≤ sup
i,τ≥τ∗

{v̄i}max
j∈I

{λjβjκ
s∗j

}
‖v̄ − v̄∗‖21+

max
j∈I

{λjβjκ
s∗j

} n∑
j=1

v̄∗j ‖v̄ − v̄∗‖22.

Given that ‖v̄− v̄∗‖1 ≤
√
n‖v̄− v̄∗‖2,

∑n
j=1 v̄

∗
j ≤ 1 and

λi ≤ 1 for all i, we have

|I3| ≤ max
j∈I

{βjκ
s∗j

}(
n sup
i,τ≥τ∗

{v̄i}+ 1

)
‖v̄ − v̄∗‖22.

Under hypothesis (i), i.e., as βi/si → 0 for all i, and
for some fixed size of applications n, the first term, I1,
dominates in size the term I2 + I3 uniformly in time.
Since I1 < 0 for any v̄ 6= v̄∗, we have that Ẇ (s∗, v̄) < 0
for any v̄ 6= v̄∗. Under hypothesis (ii), i.e., as n → ∞,
Proposition 4.3 implies that n supi,τ≥τ∗{v̄i(τ)} ≤ ζn(ζ)
approaches a positive constant. Thus, the first term I1
dominates in size the term I2 + I3 when n→∞. In this
case, Ẇ (s∗, v̄) < 0 for any v̄ 6= v̄∗ such that v̄i ≤ ζ for all
i. Thus, under either (i) or (ii), and by [14, Theorem 3.2],
we conclude that the unique stationary point (s∗, v̄∗),

satisfying (10), is globally asymptotically stable.

E Proof of Proposition 5.4

(1) Let us first consider the unconstrained versions of
the actual (11) and fictitious update (14). In this case,
the corresponding linear-time interpolations satisfy for
any run time t > 0:

si,ε(t)− s′i,ε(t)
= si(t

i
k̄(t,i))− s′i(tm̄(t))

=

k̄(t,i)−1∑
k=0

εYi(tm̄(ti
k
))−

m̄(t)−1∑
m=0

εY ′i (tψi(m))

=

k̄(t,i)−1∑
k=0

εYi(tm̄(ti
k
))−

m̄(t)−1∑
m=m̄(ti

k̄(t,i)−1
)+1

εY ′i (tψi(m))

−
k̄(t,i)−2∑
k=0

εNi(k)Y ′i (tψi(m̄(ti
k+1

))),

where the third summation of the r.h.s. summarizes
all the observation terms of the RM up to time index
m̄(ti

k̄(t,i)−1
), and the second summation summarizes all

the remaining terms, i.e., from m̄(ti
k̄(t,i)−1

) + 1 until
m̄(t)−1. For example, in Figure 2, the third summation
corresponds to all time indices up to m̄(ti

k̄−1
), while the

second summation corresponds to the remaining terms
up to time m̄(t) − 1. Since 1 ≤ Ni(k) ≤ N̄ , the latter
terms may be zero to maximum N̄ in numbers. Also,
ψi(m̄(tik+1)) = m̄(tik). Thus, we have:

si,ε(t)− s′i,ε(t) =
k̄(t,i)−2∑
k=0

ε
(
Yi(tm̄(ti

k
))−Ni(k)Y ′i (tm̄(ti

k
))
)

+

εYi(tm̄(ti
k̄(t,i)−1

))−
m̄(t)−1∑

m=m̄(ti
k̄(t,i)−1

)+1

εY ′i (tψi(m)).

From the last expression, we observe that if Yi(tik) =
Ni(k)Y ′i (tik), then, the first term in the r.h.s. becomes
identically zero. Given that supi,t≥0 |Y ′i (t)| ≤ `, for some
` > 0, we also have supi,t≥0 |Yi(t)| ≤ `N̄ . Hence,

|si,ε(t)− s′i,ε(t)| ≤ ε`N̄ + ε
(
m̄(t)− m̄(tik̄(t,i)−1)− 1

)
`

≤ ε`(3N̄ − 1),

which approaches zero as ε→ 0 uniformly in time. Thus,
we showed that si,ε(·) and s′i,ε(·) are equivalent accord-
ing to Definition 5.1. Since the corresponding projected
versions are simply truncations to the set Si ≡ [si,∞),
the same conclusion applies for the projected versions.
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(2) Let {s′′i (tik)}k denote the service level recursion un-
der the synchronous update (7) in order to distinguish
it from the actual asynchronous one (11). Let us also de-
note s′′i,ε(·) the corresponding linear-time interpolation.
Similarly to the proof of part (1), it suffices to consider
the unconstrained recursions. For every i and t ≥ 0, and
since 1 ≤ Ni(k) ≤ N̄ , we have:

|s′i,ε(t)− s′′i,ε(t)|= |s′i(tψi(m̄(t)))− s′′i (tm̄(t))|

≤
m̄(t)−1∑

k=ψi(m̄(t))

ε|Y ′i (tk)|

≤ ε(m̄(t)− ψi(m̄(t))` ≤ εN̄`,

which implies equivalence of s′i,ε(·) and s′′i,ε(·).
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