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Multi-armed bandit for species discovery: a Bayesian

nonparametric approach

Marco Battiston, Stefano Favaro and Yee Whye Teh⇤

ABSTRACT. Let (P1, . . . , PJ) denote J populations of animals from distinct regions.

A priori, it is unknown which species are present in each region and what are their

corresponding frequencies. Species are shared among populations and each species can

be present in more than one region with its frequency varying across populations. In

this paper we consider the problem of sequentially sampling these populations in order

to observe the greatest number of di↵erent species. We adopt a Bayesian nonparamet-

ric approach and endow (P1, . . . , PJ) with a Hierarchical Pitman-Yor process prior. As

a consequence of the hierarchical structure, the J unknown discrete probability mea-

sures share the same support, that of their common random base measure. Given this

prior choice, we propose a sequential rule that, at every time step, given the informa-

tion available up to that point, selects the population from which to collect the next

observation. Rather than picking the population with the highest posterior estimate

of producing a new value, the proposed rule includes a Thompson sampling step to
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better balance the exploration-exploitation trade-o↵. We also propose an extension of

the algorithm to deal with incidence data, where multiple observations are collected

in a time period. The performance of the proposed algorithms is assessed through a

simulation study and compared to three other strategies. Finally, we compare these

algorithms using a dataset of species of trees, collected from di↵erent plots in South

America.

KEYWORDS. Bayesian nonparametric statistic; discovery probability; hierarchical

Pitman-Yor process; multi-armed bandit; species sampling models; Thompson Sam-

pling.

1. INTRODUCTION

Species sampling problems have a long history in ecological and biological studies

and interest in them has recently grown in many other fields, like machine learning,

linguistics and genetics. The setting of these problems is very general. Specifically, a

sample of size n is collected from a discrete population, denoted by P , and interest

lies either in predicting the realization of future observations or in estimating some

particular feature of P . Using a species metaphor, we can think of P as a population

of animals of di↵erent species. Each observation is an animal and its realized value is

its specific species. Statistical issues common in species sampling problems are, for in-

stance, making inference on the number of unseen species or estimating the probability

that in a further sample of m units k new distinct species will be observed. Starting

from the seminal works of Good (1953), Good and Toulmin (1956) and Efron and

Thisted (1976), a full range of statistical approaches, parametric and nonparametric as

well as frequentist and Bayesian, have been proposed for making inference in species

sampling problems. See, e.g., Chao (1981), Chao and Lee (1992), Mao and Lindsay

(2002), Mao (2004), Lijoi et al. (2007), Ionita-Laza et al. (2009), Barger and Bunge

(2010) and Favaro et al. (2012a).
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In this work we consider a di↵erent setting for species sampling problems. Let

(P1, . . . , PJ) denote J populations of animals of distinct regions. Each population Pj

is assumed to contain a large number of species of animals, but both the represented

species and their frequencies are unknown a priori. Also, the J populations are allowed

to share the same species of animals and each species can have di↵erent frequencies

in distinct regions. In this paper we consider the problem of sequentially sampling

these populations with the goal of maximizing the number of distinct species observed.

In ecology and biology this problem arises naturally when di↵erent environments are

explored in search of new species. In order for the exploration to remain cost-e↵ective,

redirecting it to a di↵erent environment is necessary whenever the probability of dis-

covering a new species at the next draw becomes unacceptably low in the current

environment. Similarly, in genetics the goal is to increase the number of genetic vari-

ants one expect to discover. See, e.g., Ionita-Laza et al. (2009) and Ionita-Laza and

Laird (2010) where it has been shown that combining data from multiple populations in

a discovery study increase the number of genetic variants identified relative to studies

on single populations. Other applications aries in electrical engineering, in the context

of security analysis of electrical power systems, and in software engineering, in the

context of bug discovery. See, e.g, Fonteneau-Belmudes et al. (2010), Bubeck et al.

(2013b) and references therein.

The framework of our species sampling problem resembles that of stochastic multi-

armed bandit (MAB) problems. These are problems in reinforcement learning which

can be described using a gambling metaphor. We imagine a gambler facing J slot ma-

chines (“one armed bandit” is the colloquial term for a slot machine in American slang)

with di↵erent unknown reward distribution functions. At every step, given the history

of plays and realized rewards, the player can choose on which machine to play next and

he will receive a random reward from the distribution of that arm. In the bandit lit-
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erature the most common formalization of the problem is that of independent rewards

from J unknown distributions. In this setting the two most popular sequential strate-

gies are the Upper Confidence Bound (UCB) algorithm, introduced in Lai and Robbins

(1985) and further developed by Auer et al. (2002), and the Thompson sampling (TS),

proposed by Thompson (1933). The former solves the classical exploration-exploitation

trade-o↵ inherent in any bandit problem by constructing deterministic upper bounds

for the expected reward in each arm, and then playing the arm with the highest bound

value. The latter is a Bayesian algorithm which assigns priors to the unknown pa-

rameters and plays an arm according to its posterior probability of being the best

one.

The problem analyzed in this paper can be traced back to a similar bandit for-

malization. In our setting, at every time step, a reward of one unit is received if a

new species is observed and zero otherwise. Hence, rewards are Bernoulli distributed,

but with dependent and time varying success probabilities. Indeed every time a new

species is observed the probability of observing another new species in the next steps

decreases. We propose a sequential rule that, given the information available up to a

point, select the population from which to collect the next observation, with the goal

of discovering as many distinct species as possible. Our sequential rule contains two

elements: a Bayesian nonparametric procedure for the estimation of the (P1, . . . , PJ),

seen as random discrete probability measures on a suitable space of species of animals,

together with a TS strategy for the sequential choice of the best arm. We choose a

Hierarchical Pitman-Yor (HPY) process as nonparametric prior for the unknown pop-

ulations (P1, . . . , PJ). This prior choice induces a prior also for the J mean parameters

of the Bernoulli reward distributions. Given the induced prior and given a set of data

from (P1, . . . , PJ), we derive the corresponding posterior, which is then used to im-

plement the TS strategy. We refer to this strategy as HPY-TS. In addition, we also
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propose an extension of it, to deal with incidence data, in which animals are collected

in groups.

There is a connection between our strategy and adaptive sampling techniques.

These are modifications of stratified random sampling, see e.g. Cochran (1977) chapter

5, in which the choice of the sampling units are not fixed prior to making observations,

but units are sequentially chosen depending on previously observed values of some

variable of interest. Theoretical advantages of adaptive selection designs were already

pointed out in Basu (1969) and Zacks (1969) and can be remarkable, particularly when

dealing with rare or elusive species. The first successful adaptive sampling procedure

was by Thompson (1990), who proposed adaptive cluster sampling. With this tech-

nique, biologists search for rare species of interest close to locations where the species

was previously observed. Extensions and refinements of Thompson’s work can be

found in subsequent papers, e.g. Thompson (1991a), Thompson (1992) and Thompson

(1991b). Two good references for adaptive sampling techniques are Thompson (2002)

and Thompson and Seber (1996). Our algorithms have a similar flavor, but rather

than focusing on re-observing a particular rare species, the goal is now to detect new

ones.

We assess the performances of the proposed HPY-TS algorithms through simula-

tions and using a dataset from biology. We compare the HPY-TS algorithms to three

other strategies: an Oracle strategy in which the composition of the (P1, . . . , PJ) are

known; a Uniform strategy that selects at every step a population uniformly at random;

a rule recently proposed in Bubeck et al. (2013b) based on the Good-Turing missing

mass estimator introduced in Good (1953). Our simulation study considers di↵erent

scenarios, by varying the level of heterogeneity in species variety among populations.

Simulated results show that the HPY-TS performs better than the Uniform and the

strategy of Bubeck et al. (2013b) in all scenarios, discovering more new species both in
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the abundance and in the incidence case. These results suggests also that the HPY-TS

algorithms are robust to changes in the level of heterogeneity in species variety across

the J populations, without the need of tuning parameters to regulate the exploration

rate. We also compare the algorithms using a dataset of species of trees, collected

in di↵erent plots in South America, analyzed in Pyke et al. (2001) and Condit et al.

(2002).

This work is organized as follows. Section 2 reviews the Pitman-Yor process, its

hierarchical counterpart, and the MAB problem. Section 3 introduces HPY-TS algo-

rithms for abundance and incidence data. Section 4 describes the setting and reports

the results of the simulation study and of the real data illustration. Concluding re-

marks close the work. Proofs, the MCMC sampler used to estimate the parameters of

the HPY model, and additional numerical results are available as online supplementary

material.

2. PRELIMINARIES

2.1 The Pitman-Yor process

The two parameter Poisson-Dirichlet process, now known as the Pitman-Yor (PY)

process, was introduced in Pitman and Yor (1997) as a generalization of the Dirichlet

process by Ferguson (1973). Like the Dirichlet process, the PY process is a proba-

bility measure that assigns probability one to the set of discrete distributions. It is

parametrized by (�, ✓, P0), where P0, called base distribution, is a distribution on the

sample space, and � and ✓ are two scalars satisfying 0  � < 1 and ✓ > ��, respectively

called the concentration and the mass parameter. The Dirichlet process corresponds to

the special case � = 0. The PY process admits a stick breaking representation. Specif-

ically, if P is a random probability measure distributed according to PY(�, ✓, P0), then

P
d
=
P

i�1 pi�Y ⇤
i
, where (Y ⇤

i )i�1 are i.i.d. random variables with distribution P0, and
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(pi)i�1 are such that pi = Vi

Q
1ki�1(1 � Vk), with Vi ⇠ beta(1 � �, ✓ + i�) for all

i � 1.

A description of the posterior distribution of the PY process was derived in Pitman

(1996). Given a sample Yn = (Y1, . . . , Yn), such that Yi|P
iid⇠ P for all 1  i  n

and P ⇠ PY (�, ✓, H), the posterior of P given Yn satisfies the following distributional

equation

P |Yn
d
=

KnX

i=1

wi�Y ⇤
i
+ w0P̃ , (1)

where Kn is the number of distinct values in the sample Yn, denoted by (Y ⇤
1 , . . . , Y

⇤
Kn

)

and having multiplicities (n1, . . . , nKn), (w0, w1, . . . , wKn) is a random vector distributed

according to Dir (✓ +Kn�, n1 � �, . . . , nKn � �) and P̃ ⇠ PY(�, ✓+Kn�, H). Using this

posterior representation, it is also possible to derive the so called Chinese Restaurant

representation of the PY process, which describes the conditional distribution of the

next observation, when the underlying random distribution P has been integrated out,

that is

Yn+1|Yn, �, ✓, P0 ⇠
KnX

i=1

ni � �

✓ + n
�Y ⇤

i
+

✓ +Kn�

✓ + n
P0.

Following this predictive distribution, the observation Yn+1 is assigned to an old cluster

with value Y ⇤
i with probability proportional to ni � �, or it is sampled from P0 and

forms its own cluster with probability proportional to ✓+Kn�. See Pitman (1996) for

details.

The base distribution P0 corresponds to the mean of the process P , i.e, E[P (·)] =

P0(·). Furthermore, from the stick breaking representation it is clear that it is also the

distribution of the locations of support points of the random distribution P . The mass

parameter ✓ regulates the variance of the prior around the prior mean P0. Specifically,

with high ✓, the prior guess is strong, i.e. the variance of the prior is small, whereas

with low ✓ there is more uncertain about possible values of P . A posteriori, a high ✓

implies more weight on prior information, while a low ✓ more weight on the informa-
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tion given from the sample. This fact can also be read from the Chinese Restaurant

representation. In fact, the weight of the prior mean is higher when ✓ is high. The

concentration parameter � a↵ects how the total mass of P is spread across its support

points. When � is low, the prior samples with high probability distributions with few

points of very high mass. With a value of � close to 1, distributions with the total

mass evenly spread across many support points are more likely to be sampled.

The PY process o↵ers more flexibility than the Dirichlet process and it has desirable

properties when dealing with species sampling problems. In particular, it o↵ers a

flexible predictive structure in which the probability of observing a new species depends

not only on the sample size, like for example in Dirichlet process, but also on the

number of distinct values observed in the sample. At the same time, it maintains

mathematical tractability. Moreover, di↵erently from the Dirichlet process, with a PY

process the number of distinct observationsKn grows following a power law behavior as

the sample size increases, a feature common to many real world datasets, as observed

in Mitzenmacher (2004) and Goldwater et al. (2006). It is a useful prior when the

population size is large but unknown and the number of species in the population is

also unknown. However, it is not an adequate prior when the goal is estimating the total

number of species in the population. Indeed, from the stick-breaking representation,

a sample from a PY process has an infinite number of atoms with probability one.

Hence, a point estimate for the total number of species in the population is always

infinite.

2.2 The Hierarchical Pitman-Yor process

The HPY process was introduced in Teh (2006). See also the review by Teh and

Jordan (2010). This is a useful model in problems in which multiple groups of data are

available and where we wish to introduce probabilistic dependence across populations.

In particular, it is an appropriate model when data incorporates a discrete variable
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of unknown cardinality. The discrete variable can either be at the observations level,

as in our context, or at the latent level, like when it parametrizes the distribution of

continuous observations or when it works as a classification variable in mixture models

settings.

To describe the HPY process we use a similar notation as in Teh and Jordan (2010).

Specifically, Ynj·· =
�
Yj,1, . . . , Yj,nj··

�T
denotes the column vector of observations from

the j-th population, K stands for total number of distinct values (Y ⇤⇤
1 , . . . , Y ⇤⇤

K ) ob-

served in the joined sample containing observations from all populations, njtk denotes

the number of observations in population j, belonging to cluster t and having value

Y ⇤⇤
k , whilemjk is the number of clusters in population j with value Y ⇤⇤

k , (Y ⇤
j,1, . . . , Y

⇤
j,mj·)

are the values of the mj· clusters in population j. As in Teh and Jordan (2010), dots

in the indexes denote that we are summing over that index, e.g. nj·· is the number of

observations from the j-th population.

The HPY process is described by the hierarchical representation

Yj,i|Pj
iid⇠ Pj j = 1, . . . , J i = 1, . . . , nj··

Pj|�j, ✓j, P0
ind⇠ PY (�j, ✓j, P0) j = 1, . . . , J

P0|↵, �, H ⇠ PY (↵, �, H) ,

where H is a fixed and di↵use probability measure and the J + 1 couples of hyperpa-

rameters (�j, ✓j) and (↵, �) are chosen to satisfy the conditions �j,↵ 2 [0, 1), ✓j > ��j

and � > �↵, for all j 2 {1, . . . , J}. Also, the hyperparameters �j, ✓j, ↵ and � are

usually assumed to be unknown and endowed with priors. In the HPY process, obser-

vations from the j-th group, when conditioned to the realization of the unknown Pj,

are independent and identically distributed with distribution Pj. Moreover, they are

conditionally independent of observations from other populations. The Pj’s are treated

as random objects and endowed with PY processes with the same base measure P0.

This latter hyperparameter is not fixed by the modeler, but is considered as a random

9



element to be inferred from data. Another PY process is used as nonparametric dis-

tribution for P0. Due to the almost sure discreteness of P0, this recursive construction

has the e↵ect that the support of the Pj’s is contained in that of P0. As a consequence,

all populations share the same random support of P0.

The HPY process admits a useful representation in terms of the so-called Chinese

Restaurant Franchise process. See Teh and Jordan (2010) for details on this culinary

metaphor. The Chinese Restaurant Franchise representation of the HPY process is

summarized by the following predictive distributions for the observables and for the

cluster values in population j

Yj,i+1|Yj,1, . . . , Yj,i, �j, ✓j, P0 ⇠
mj·X

t=1

njt· � �j

✓j + nj··
�Y ⇤

j,t
+

✓j +mj·�j

✓j + nj··
P0 (2)

and

Y ⇤
j,mj·+1|Y ⇤

1,1, . . . , Y
⇤
J,mJ·

,↵, �, H ⇠
KX

k=1

m·k � ↵

� +m··
�Y ⇤⇤

k
+

� +K↵

� +m··
H. (3)

Equation (2) is the Chinese Restaurant representation of Pj. The new observation

Yj,i+1 belongs to an old cluster Y ⇤
j,t with probability proportional to njt·��j or it forms

a new cluster and it is sampled from P0 with probability proportional to ✓j + mj·�j.

The sequence of cluster values is sampled from P0, which, being distributed as a PY

process, also admits a Chinese Restaurant representation, summarized by Equation

(3). The new cluster in population j has the same value as one already observed in the

joined sample with probability proportional to m··�K↵ or it has a new value, sampled

from H, with probability proportional to � +K↵.

In the HPY process, the hyperparameters (�j, ✓j) have the same interpretation as

in the PY case. By contrast, the hyperparameters (↵, �) regulate the total number and

the sharing of cluster values among populations. If � is low, the total number of cluster

values K will be very low on average and, when a new sample from P0 is needed, it will

coincide with high probability with an already observed one. If ↵ is high, the sharing
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of cluster values among populations is low, while, with ↵ low, there is a small set of

popular cluster values which are seen many times among all populations.

2.3 The multi-armed bandit problem and Thompson sampling

A MAB problem is a sequential allocation problem under limited information. We

imagine J slot machines with unknown reward distributions. The goal is to maximize

the expected pay-o↵ by exploiting machines that give high profits while exploring

machines for which we have limited information. See Bubeck and Cesa-Bianchi (2012)

for a review. In the stochastic formalization, the J slot machines have unknown reward

distributions functions and, at every time step, a draw from the distribution of the

chosen machine is collected. A strategy is a sequential rule that, given the history up

to that point, chooses the next arm to play. To evaluate its performances, its expected

total reward is usually compared with that of an “Oracle” strategy, the strategy that

chooses the arm with the highest expected payo↵, when uncertainness about the reward

distributions is removed. The di↵erence from their total rewards is termed regret. The

goal is to find strategies that minimize the expected regret.

Two popular strategies have been shown to e↵ectively address the stochastic bandit

problem: the UCB algorithm and TS. The UCB algorithm was initially suggested by

Lai and Robbins (1985) and further developed by Auer et al. (2002). This algorithm

constructs a deterministic upper confidence bound for the expected reward of each

arm and then plays the arm with highest bound. This algorithm has good theoretical

guarantees for the i.i.d. case: Auer et al. (2002) proved that its expected regret matches,

up to a constant factor, the lower bound of Lai and Robbins (1985). This is a lower

bound for the expected regret of any strategy satisfying mild conditions, in the i.i.d.

context. TS was initially proposed by Thompson (1933) as a randomized Bayesian

algorithm to minimize regret in a clinical trial setting. The idea is to assume a prior

for the unknown parameters in the distributions of each arm and, at every time step,
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play an arm according to its posterior probability of being the best one. Its most

canonical examples are for Bernoulli bandits. In this setting, a Bernoulli distribution

with unknown parameter is set as reward distribution for each arm, and the unknown

reward means are endowed with a Beta prior distributions. TS thus consists in sampling

a draw from each of these J Beta distributed posteriors and then play the arm with

the highest realization.

Even though it was proposed eighty years ago, TS has attracted attention only

recently. Several recent studies have empirically demonstrated the e�cacy of TS.

Chapelle and Li (2011) have empirically demonstrated that TS achieves regret com-

parable to the lower bound of Lai and Robbins (1985). In addition, the algorithm

is more robust to delayed or batched feedback than other methods. Chapelle and Li

(2011) also show that TS performs equally or better of popular methods, such as UCB

algorithms, in applications like display advertising and news article recommendation.

Other empirical works on TS or randomized probability matching algorithm (to which

TS belongs) are Granmo (2010), Scott (2010) and May and Leslie (2011). Theoretical

investigations of the TS are in Agrawal and Goyal (2012), Kaufmann et al. (2012),

Russo and Van Roy (2014) and Szabo and Tran-Thanh (2015). A recent promising

theoretical result for TS is in Russo and Van Roy (2016), where the authors provide

Baysian regret bounds for a broad range of on-line optimization algorithms, with TS

being a particular case.

3. HPY-TS ALGORITHM

The problem of sequential species discovery in presence of many populations can

be cast as a stochastic bandit problem by imagining each population produces a re-

ward when sampled: 1 if a new species is discovered and 0 otherwise. It is thus a

Bernoulli bandit problem with reward probabilities that depend on past observations.
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The reward probabilities are non-increasing functions of the number of draws, because

every time a new species is observed the remaining missing mass will be lower in fol-

lowing time steps. Subsection 3.1 derives the joint posterior of these J Bernoulli means

and introduces the HPY-TS algorithm in the case of abundance data. Subsection 3.2

proposes an extension of this algorithm to deal with incidence data.

3.1 Abundance data

In the abundance data scenario, a single animal is observed at each sampling time.

Given a model choice, the TS draws a value for each population from its posterior

probability of being the best arm. In the species discovery problem with many popu-

lations, this posterior distribution is given by the joint distribution of the J random

probabilities of observing a new value in each arm, given all observations. Proposition

1 derives the relevant probability in the case of a HPY process for (P1, . . . , PJ). In

particular, denoting with Ynj·· =
�
Yj,1, . . . , Yj,nj··

�T
the vector of observations from

the population j taking values on a measurable space Y , with Yn = (Yn1·· , . . . ,YnJ··)

the joint sample (the array containing observations from all populations) and with

A = {y 2 Y : y /2 Yn} the set of possible new species, what is needed is the distribu-

tion of

(P1 (A) , . . . , PJ (A))|Yn, �1, . . . , �J , ✓1, . . . , ✓J ,↵, �, H.

For ease of notation, from now on we omit the reference to the hyperparameters of the

HPY process, �j, ✓j,↵, �, H when conditioning on them. The density function of this

joint distribution is provided in the following proposition, whose proof is available in

the on-line supplementary material. In its statement, we adopt the notation for table

counts and distinct values previously introduced for the Chinese Franchise Represen-

tation of the HPY process. Also, beta (p|a, b) stands for a beta density function with

parameters a and b, evaluated at p.

Proposition 1. Let Yn denote the joined sample from a HPY proces and let A =

13



{y 2 Y : y /2 Yn}. Then, (P1 (A) , . . . , PJ (A))|Yn admits the following multivariate

density

f(P1(A),...,PJ (A))|Yn (p1, . . . pJ) =

Z 1

0

JY

j=1

fj (pj|�0,mj·, nj··) f0 (�0|K,m··) d�0,

where

fj (pj|�0,mj·, nj··) = beta (pj| (✓j +mj·�j) �0, (✓j +mj·�j) (1� �0) + nj·· � �jmj·)

and

f0 (�0|K,m··) = beta (�0|� +K↵,m·· � ↵K) .

The following corollary provides a Bayesian nonparametric point estimate of the

missing mass for each populations. This result follows by a direct application of Propo-

sition 1.

Corollary 1. Under squared loss function, the Bayesian nonparametric point es-

timate for the probability of discovering a new value in population j,given the joined

sample Yn, is

E [Pj (A) |Yn] =

✓
✓j +mj·�j

✓j + nj··

◆✓
� +K↵

� +m··

◆
.

With the posterior distribution obtained in Proposition 1, HPY-TS strategy pre-

scribes to sample a draw from it and to select the population with the highest realized

value. This strategy usually outperforms the greedy strategy that selects the arm with

the highest posterior point estimate, jgreedy = argmax{E [Pj (A) |Yn] : j 2 {1, . . . , J}},

since it better balances the exploration step. Intuitively, suppose to have only a few

observations, with an unlucky sample, from a “winning” arm (a population with a

very high species variety), resulting in a low point estimate for its missing mass. This
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population will not be chosen by the greedy strategy, which only exploits arms with

good past behavior. Whereas, with HPY-TS strategy, the posterior distribution of the

missing mass of this population will have high variance, due to the small sample size.

This implies a positive probability for that arm to be chosen, if its Thompson draw

results in a high value. The HPY-TS strategy for abundance data is summarized in

Algorithm 1.

Algorithm 1: HPY-TS - Abundance Data

for i in 1:additional sample do

draw �0 ⇠ beta (� +K↵,m·· � ↵K) ;

for j in 1:J do

draw pj ⇠ beta ((✓j +mj·�j) �0, (✓j +mj·�j) (1� �0) + nj·· � �jmj·) ;

end

Compute j⇤ = argmax{pj : j 2 {1, . . . J}} ;

Sample the next observation from population j⇤;

Update table counts and estimates of the HPY hyperparameters;

end

Note that in Algorithm 1 the parameters of the beta distributions depend on the

counts in the Chinese Franchise Representation of the HPY process. In particular,

they depend on the number of observations for each population (nj·· : j 2 {1, . . . , J}),

the number of clusters in each population (mj· : j 2 {1, . . . , J}) and the total number

of distinct species observed in the joint sample, K. We must remark that the collection

clusters counts, (mj· : j 2 {1, . . . , J}), are latent variables, namely they are not directly

observed. Hence, if an initial sample is available, we must estimate these components

before running the algorithm. In the on-line supplementary material, we describe

a MCMC procedure to handle this problem, together with the problem of inferring

the hyperparameters ((�j, ✓j) : j 2 {1, . . . , J}) and (↵, �), in case they are treated as
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unknown components.

3.2 Incidence data

There are applications where we cannot sample an animal at a time. Instead,

multiple individuals are jointly collected in the sample. In these situations an extension

of Algorithm 1 is needed. Suppose that, as in the case of abundance data, at every time

step we can choose the next population to sample from, but now, instead of one animal,

a collection z animals are observed from that population. In such a context, what must

be maximized is the expected number of new distinct values observed in an additional

sample of size z. In particular, given the array of data Yn, let us denote by K
(z)
j |Yn

the random number of new distinct species observed in a new sample of size z, collected

from population j. By new distinct species, we mean species that are observed in the

additional sample, but which were not previously observed in any of the J populations.

In such a context, the reward distribution for arm j is the distribution of the random

variable E[K(z)
j |Yn]. Note that E[K(z)

j |Yn] is a random variable (since Pj is random),

but if conditioned to Pj|Yn, it becomes a number. Another remark is that, when z = 1,

we are back to the abundance case. In fact, E[K(1)
j |Yn] = E[I

�
Ynj··+1 2 A

�
|Yn] =

Pj (A) |Yn, where I is the indicator function and A = {y 2 Y : y /2 Yn}. In Proposition

2, we derive the distribution of (E[K(z)
1 |Yn], . . . ,E[K(z)

J |Yn]). Its proof is available in

the on-line supplementary material.

Proposition 2. Conditionally to �0|Yn ⇠ beta (�0|� +K↵,m·· � ↵K) and condi-

tionally to Pj (A) |Yn, �0 = pj, where

Pj (A) |Yn, �0 ⇠ beta (pj| (✓j +mj·�j) �0, (✓j +mj·�j) (1� �0) + nj·· � �jmj·) ,

E[K(l)
j |Yn] is a constant, independent of the other arms and E[K(l)

j |Yn, �0, pj] can be

computed as

lX

k=0

k
lX

i=k

✓
l

i

◆
pij (1� pj)

l�i
iX

m̃=k

F (m̃, k,↵, � +K↵)F (i, m̃, �, (✓ +mj.) �0) ,
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where the function F (n, k, �, ✓) (recalled in the supplementary material) is the prob-

ability of having k distinct values in a sample of size n sampled from a Pitman-Yor

process with hyperparameters (�, ✓).

HPY-TS for incidence data, prescribes to sample a draw from the joint distribu-

tion of (E[K(z)
1 |Yn], . . . ,E[K(z)

J |Yn]) and to choose the population corresponding to the

highest value. A schematic description of the algorithm for incidence data is summa-

rized in Algorithm 2.

Algorithm 2: HPY-TS - Incidence Data

for i in 1: number of new samples do

fix z equal to its posterior estimate ;

draw �0 ⇠ beta (� +K↵,m·· � ↵K) ;

for j in 1:J do

draw pj ⇠ beta ((✓j +mj·�j) �0, (✓j +mj·�j) (1� �0) + nj·· � �jmj·) ;

compute E[K(z)
j |Yn, �0, pj] as in Proposition 2 ;

end

Compute j⇤ = argmax{E[K(z)
j |Yn, �0, pj] : j 2 {1, . . . , J}} ;

Sample the next group of observations from population j⇤;

Update table counts and estimates of the HPY hyperparameters;

end

A remark is that, up to now, we considered the additional sample size z as fixed.

However, in some applications it could not be the case. For instance, if we capture

animals using traps, we could not know in advance how many animals will be captured

in the next step. In these circumstances, the approach can be extended to handle this

case by incorporating the distribution of z into to posterior sampler. For example, we

can assume independence of the rest of the model, adopt a simple parametric model

for z and, at every time step, use its posterior point estimate to compute E[K(z)
j |Yn].
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4. APPLICATIONS

4.1 Simulated results

In the following simulations, the true distribution of each arm is supported on a

subset of size 2500, randomly chosen from a total number of 3000 possible species,

hence allowing for a partial sharing of the supports. These J distributions are assumed

to follow Zipf laws. The mass assigned to the k-th most common species in population

j, is

pj (k; sj) =
1/ksj

P2500
n=1 (1/n

sj)

where sj > 1 is a real parameter controlling how the total mass is spread along the

support points. When sj is high, the total mass is concentrated on a few points and

the ordered masses steeply decrease toward zero. As sj approaches 1, the total mass

is more spread, with many points of high mass.

In the bandit context, an arm with low parameter sj can be viewed as a “winning

arm”, an arm with high species variety. Whereas, a high value for sj implies that, after

the few very common species have been discovered, the discovery probability for that

arm will be very close to zero.

The three competing strategies, used as a term of comparison, are the following:

• an Oracle strategy : this strategy knows the (P1, . . . , PJ) that generates the data.

Hence, uncertainty on the underlying data generating process is removed and, at

every time step, this strategy selects the arm with the highest missing mass, so

maximizing the probability of observing a new value in the next observation.

• a Uniform strategy : this strategy, at every time step, picks an arm uniformly at

random, i.e. every arm has probability 1/J of being played next. Another similar

strategy can be a deterministic strategy that cycles through the experts, i.e., at

time t, it draws from population (t mod [J ]).
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• a UCB algorithm, recently proposed by Bubeck et al. (2013b), based on the

Good and Turing missing mass estimator, derived in Good (1953). We refer to

this algorithm as Good-Turing strategy for simplicity. It is an UCB-like algorithm

introduced to solve the issue of security analysis of a power system. This algo-

rithm uses an adaptation of Good and Turing missing mass estimator of Good

(1953) to produce a point estimate of the probability of observing a new item, in

each arm. Then, it constructs a deterministic upper bound for this estimate, in-

versely proportional to the number of times that that arm has been played. The

chosen arm is the one with the highest upper bound. More precisely, the adapted

Good and Turing estimator counts the number of items with frequency one in

joined sample that has been observed in arm j and divides it by the number of

plays of that arm. This ratio is the point estimator of the missing mass in arm

j. The upper bound is constructed by summing C(log(4n)/nj··)1/2 to the point

estimate, where n =
PJ

j=1 nj·· is the total number of plays and C is a tuning

parameter to be fixed.

We consider three di↵erent scenarios, corresponding to di↵erent levels of hetero-

geneity or homogeneity in species variety across arms. Heterogeneity in species variety

depends on how di↵erent the parameters of the Zipf laws are across arms. When het-

erogeneity is high, “winning” and “losing” arms emerge. Winning arms are those with

high species variety (with a low Zipf parameter), while the losing ones (those with high

Zipf parameters) are those in which the mass will be concentrated on just a few dom-

inating species. In presence of heterogeneity, a good strategy must be able to detect

winning arms soon and play them only. Whereas, in presence of homogeneity, there

will not be “winning” arms and all arms will have similar probabilities of producing

new species. In this case, a strategy must be able not to get stuck exploiting only a

few arms, but to carefully explore all of them. In our simulations, we fix J = 8 and
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consider the following three scenarios:

1. Pure Exploitation, Zipf parameters=(1.3,1.3,2,2,2,2,2,2): in this scenario, there

are two “winning” arms. A good strategy should be able to intensively exploit

these two arms, without exploring much the other six suboptimal arms.

2. Pure Exploration, Zipf parameters=(1.3,1.3,1.3,1.3,1.3,1.3,2,2): in this scenario,

the majority of arms are equally profitable. A good strategy should not get stuck

exploiting just a few of them, but continue to explore all the six good arms.

3. Exploration plus Exploitation, Zipf parameters=(1.3,1.3,1.3,1.3,2,2,2,2): in this

scenario, there are four good arms and four bad ones. A good strategy should

adequately balance exploitation and exploration, by stopping to play the four

suboptimal arms soon, but continuing to play all the other four.

Figure 1, 2 and 3 report the results of simulations in the three scenarios just de-

scribed for both abundance and incidence data. Each figure displays the average num-

ber of species discovered by the four algorithms as a function of the additional samples

observed. In particular, results are averages of 60 runs. For each run, we assume an

initial sample of 30 observations per arm to be available and collect further 300 obser-

vations, following the four possible strategies. In the abundance case, new observations

arrive one at a time. In the incidence one, they arrive as 30 bunches of size 10. The

hyperparameters of the HPY are endowed with priors, ↵, �1, . . . , �J
iid⇠ beta (1, 2) and

�, ✓1, . . . , ✓J
iid⇠ exp (1), and then estimated using the MCMC described in the on-line

supplementary material. In this on-line section, we also provide Tables containing the

weights given to each arm by the four algorithms in the first 10 simulations of each

scenario, i.e. the number of times each arm has been chosen by the four algorithms in

each simulation.
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(Figure 1, Figure 2 and Figure 3 about here)

In the simulations, the HPY-TS algorithm performs well in all scenarios, discovering

fewer new species than the Oracle strategy, but more than the Uniform and the Good-

Turing strategy. Figure 1, 2 and 3 show how these latter strategies seem to balance

the exploration-exploration trade-o↵ worse than HPY-TS. They perform relatively well

only in the two extreme cases of pure exploration or pure exploitation, Figure 1 and 2.

This guess is strongly confirmed by looking at the Tables in the on-line supplementary

material providing the weights of each arm. On the one hand, the Good-Turing strategy

does too much exploitation. It selects the arm that seems the most profitable at initial

time point and exploits it only, without exploring the others. This behaviour is evident

by looking at the Tables with the weights. The algorithm performs well only in the

pure exploitation scenario, Figure 1, in which exploiting just one arm is a profitable

strategy. However, this strategy becomes suboptimal in presence of more “winning”

arms, as displayed in Figure 2 and 3. On the other hand, as expected, the Uniform

strategy does too much exploration. It continues to play all arms, irrespectively of their

past behaviors. Its performances are very poor, except in the extreme scenario of pure

exploration, Figure 2. Instead, the HPY-TS algorithm seems to be robust to changes

in species variety across arms. In all scenarios, it performs well, standing behind only

to the Oracle strategy. In particular, in the intermediate scenario, Figure 3, its results

are very close to the Oracle’s ones, while in the extreme cases, Figure 1 and 2, it is

still as good as or better than both the Uniform and the Good-Turing strategies.

4.2 Illustration using species of trees in South America

In this section, we compare the HPY-TS algorithm with the three competing al-

ternatives previously described, using a dataset of species of trees, collected in South

America. This dataset was studied in Pyke et al. (2001) and Condit et al. (2002) and

contains species of trees observed in 100 plots near the Panama Canal, in Ecuador’s
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Yasuǹı National Park and in Perù’s Manu Biosphere Reserve. All plots were in terra

firme forests and, in each of these plots, trees of � 10-cm stem diameter were tagged,

measured and sorted to morphospecies. A total of 41688 trees have been observed,

displaying totally 802 distinct species. The dataset is freely downloadable in the sup-

plementary on-line section of Condit et al. (2002).

In Condit et al. (2002), this dataset has been used to study �-diversity in tropical

forest trees. This is a measure of how species composition changes with distance. This

notion was firstly introduced by Whittaker (1960) together with the terms ↵ and �-

diversities to describe species variety in a landscape. In particular, the total species

variety (�-diversity) can be viewed as the product of the mean species diversity in the

habitat level (↵-diversity) times the di↵erentiation among habitats (�-diversity). ↵-

diversity has been studied in many locations, in particular a high ↵-diversity has been

amply documented for tropical forests under consideration. Using this dataset, Condit

et al. (2002) study their �-diversity by comparing the actual data with those predicted

by a neutral model in which habitat is uniform and only dispersal and speciation

influence species turnover. The result of their study is that the data is inconsistent

with the neutral model and a high level of �-diversity is observed. In particular, they

show that �-diversity is higher in Panama than in western Amazonia.

We use the same dataset of counts of species to test the performances of the two

HPY-TS algorithms against the three alternative strategies. In order to test HPY-TS

algorithm, we aggregated the 100 individual plots into 4 bigger groups, according to

spatial location. In particular, we joined columns in the dataset with code starting

with BCI, P, S and C. In Table 1, we computed the Sorensen similarity index. This

similarity index measures the fraction of species shared in two plots and is computed as

2A/(2A+B+C), where A is the number of species shared between plots and B and C

are the number of species unique to each plot. As a measure of similarity, the Sorensen
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index has the feature that it weights all species equally. Also, we computed in Table 2,

the Shannon and Simpson indexes for the four aggregated plots. These two indexes

measure species variety in a location and, given a (finite or infinite) discrete probability

vector p = (p1, p2, . . .), are computed as SShan(p) = �
P

j pjlog(pj) and SSimp(p) =

1 �
P

j p
2
j . Both indexes suggest a high species variety in the four plots. Given the

four aggregated plots, we used their empirical distributions as data generating process.

As for simulated results, we consider a small sample of 30 observations for each arm as

initial sample and then we let the four competing algorithms choose where to collect

further observations. These 300 additional observations are sampled one at a time in

the abundance data case and as 30 bunches of size 10 when dealing with incidence

data. The average results over 60 runs are displayed in Figure 4. Tables 3 and 4 report

the weights given to each region by the four algorithms in the first 10 runs.

(Table 1 and Table 2 about here)

(Figure 4 about here)

Figure 4 shows how the Oracle strategy outperforms the three other algorithms.

The HPY-TS algorithm performs slightly better than the Good-Turing and better than

the Uniform strategy, discovering on average more new species both in the abundance

and in the incidence case. As shown in Condit et al. (2002), the level of species

variety in the four regions is very di↵erent, with the plots of Panama having a species

variety much higher compared to the other three locations. Therefore this example

is a quite extreme scenario and it is similar to scenario 1 of the simulated results,

what we called pure exploitation scenario, with the arm P being the “winning” one.

As in the simulated case in this scenario results of the HPY-TS algorithms and Good-

Turing are not too di↵erent, with the HPY-TS discovering on average just a few species
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more than the Good-Turing strategy. However, from the tables with the weights we

note that the behaviours of the two algorithms are completely di↵erent. On the one

side, the HPY-TS does exploration until it starts sampling only from region P. On

the other side, the Good-Turing picks one arm at the beginning and exploits it only.

Hence, in some simulations the Good-Turing algorithm selects the suboptimal arm BCI

and remains stuck exploiting it, without doing any exploration and without realizing

that indeed the best arm is P. In presence of more “winning” arms, this greedy

behaviour would turn out to be much less profitable than in this example. Moreover,

we remark that a big advantage of the HPY-TS algorithm is that it does not require

any tuning parameter to regulate the exploration rate, but it balances exploration and

exploitation automatically. This feature is very important because the right exploration

rate depends on the level of heterogeneity in species variety in the populations, which

is usually not known in advance. The HPY-TS seems robust to changes in the level

of heterogeneity among populations and it is able to correctly balance the level of

exploration and exploitation. Finally, as expected, the Uniform strategy performs

worse than all the other strategies. However, the di↵erences in performances among

algorithms are now less remarked than in the simulated results, since, having only four

arms rather than eight, the probability of picking suboptimal arms is lower in this

context.

(Table 3 and Table 4 about here)

CONCLUDING REMARKS

In this work we have introduced a new methodology to choose where to allocate

resources when J distinct locations are available. This procedure works sequentially,

suggesting at every time step from which location to collect the next sample. This sam-

ple can be composed of one observation only or by a group of them and the group sizes
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can be either fixed or random. For both cases we have provided HPY-TS algorithms,

based on a joint use of tools from the Bayesian nonparametric and the multi-armed

bandit literature. In particular a HPY is used to estimate the unknown probability

measures (P1, . . . , PJ) and TS for the sequential allocation problem. Up to our knowl-

edge, this is the first instance that such tools have been used together, particularly

with the aim of discovering items from multiple populations. Results from simulated

and real data are good, showing that the HPY-TS algorithms are competitive or better

than other strategies already proposed, both when dealing with abundance and with

incidence data.

These good empirical results encourage to continue the research in this direction,

also in consideration of the wide applicability of the algorithm in a variety of fields,

like ecology, biology or genetics. Moreover, the proposed HPY-TS algorithm can be

easily adapted to deal with other problems in species sampling. For instance it can

be used to solve the problem of detecting rare or elusive species, as studied in the

adaptive sampling literature started with Thompson (1990). In this problem we are

interested in re-observing a particular rare species, labeled by Y ⇤⇤
k , we already observed

in an initial sample. We can modify Algorithm 1 by sampling from the distribution of

(P1({Y ⇤⇤
k }), . . . , PJ({Y ⇤⇤

k }))|Yn. This joint posterior distribution can be derived in the

same manner as in the proof of Proposition 1 and is still a mixture of a product of j

beta distributions, with mixing measure another beta distribution, but with di↵erent

parameters, depending also on table counts relative to the label Y ⇤⇤
k .

Another possible adaptation of the algorithm is to the case in which we want to

maximize the sum of the distinct values observed in each location. In this problem,

the target function is a↵ected when we observe a species that we have not observed

in that location before, irrespectively of the fact that that species has already been

observed it in other location. Proposition 1 and Algorithm 1 can be easily adapted
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to this problem. Denoting by Aj =
�
y 2 Y : y /2 Ynj··

 
the set of species not ob-

served in population j and following the same steps of the proof of Proposition 1, we

derive the posterior density of (P1 (A1) , . . . , PJ (Aj)) |Yn as a mixture of the prod-

uct of J beta densities with parameters of the j-th factor being (�0(✓j + mj·�j) +
P

k:Y ⇤⇤
k /2Ynj··

((✓j+mj·�j)�k+nj·k��jmjk),
P

k:Y ⇤⇤
k 2Ynj··

((✓j+mj·�j)�k+nj·k��jmjk)),

and with mixing measure for (�0, . . . , �K) being a Dirichlet distribution of parameters

(� +K↵,m·1 � ↵, . . . ,m·K � ↵). A HPY-TS algorithm can easily be implemented by

substituting the joint posterior of Proposition 1 with this posterior density in Algorithm

1.

Another possible direction of research is to improve the proposed models by includ-

ing spatial and covariate dependence. Indeed, the HPY model assumes exchangeability

of the J distributions (P1, . . . , PJ). In applied settings, this assumption may not be

adequate, because the marginal distribution of each Pj could be di↵erent from place

to place, depending on spatial or environmental factors. A possible extension of the

proposed strategy can be to use dependent spatial models. In particular, in Bayesian

nonparametric literature, a set of spatial models have been proposed as particular

cases of the general Dependent Dirichlet Processes (DDPs) of MacEachern (1999).

The DDPs are extensions of the Dirichlet Process to account for spatial or temporal

dependence, but the same kind of generalization can be applied to any nonparametric

prior admitting a stick breaking representation. The dependence on time or location

is introduced by indexing the weights, the locations or both by a temporal or spatial

variable. The most popular bayesian nonparametric spatial models are the spatial de-

pendent Dirichlet process in Gelfand et al. (2005), and its generalizations in Duan et

al. (2007) and Gelfand et al. (2007), the hybrid Dirichlet mixture model of Petrone

et al. (2009), the order-based dependent Dirichlet drocess of Gri�n and Steel (2006),

and the spatial kernel stick-breaking prior of Reich and Fuentes (2007). For a concise
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description of all of these models, the reader is referred to Steel and Fuentes (2010),

section 11.2.

What is surely missing in this work is a theoretical analysis of the algorithm, which

assures, not just empirically, its good properties. We think the next step is to ana-

lytically study the behavior of the HPY-TS algorithm, trying to provide a finite time

bound for its regret. However, our context seems to be more challenging than that

of the classical multi-armed bandit problem, due to the dependence of rewards both

across time and populations. We think it could be helpful to substitute TS with an

UCB strategy, in which the upper bound for the missing mass of each arm is con-

structed as a credible interval around the point estimate of Corollary 1, using the joint

posterior distribution derived in Proposition 1. A concentration inequality providing

an upper bound for the probability that the true missing mass of that arm is outside

the credible interval, would then be very helpful to prove a finite time regret bound for

the new HPY-UCB strategy.
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Table 1: Sorensen Index

Aggr.Plots BCI P S C

BCI 1 0.97 0.358 0.44

P 0.97 1 0.196 0.267

S 0.358 0.196 1 0.134

C 0.44 0.267 0.134 1

Table 2: Shannon and Simpson Indeces

Aggr.Plots Shannon Simpson

BCI 4.27 0.974

P 5.25 0.988

S 3.412 0.936

C 3.953 0.97

Figure 1: Simulated results. Pure Exploitation Scenario. Zipf parame-

ters=(1.3,1.3,2,2,2,2,2,2).
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Figure 2: Simulated results. Pure Exploration Scenario. Zipf parame-

ters=(1.3,1.3,1.3,1.3,1.3,1.3,2,2).

Figure 3: Simulated results. Exploitation plus Exploration Scenario. Zipf parame-

ters=(1.3,1.3,1.3,1.3,2,2,2,2).
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Figure 4: Real data example. Species of trees in South America
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Table 3: Real Data Example. Abundance data.

HPY-TS Good-Turing

Runs/Aggr.Plots BCI P S C BCI P S C

1 58 129 41 72 294 3 2 1

2 45 182 13 60 0 299 0 1

3 41 211 23 25 20 273 3 4

4 67 148 20 65 3 292 1 4

5 76 104 51 69 1 296 2 1

6 47 170 14 69 2 296 1 1

7 39 210 8 43 1 297 1 1

8 44 202 4 50 3 289 3 5

9 74 148 1 77 300 0 0 0

10 72 131 26 71 291 5 2 2

Uniform Oracle

Runs/Aggr.Plots BCI P S C BCI P S C

1 75 73 64 88 0 300 0 0

2 72 85 69 74 0 300 0 0

3 93 65 69 73 0 284 0 16

4 86 73 68 73 0 300 0 0

5 73 79 73 75 0 298 0 2

6 78 92 70 60 5 285 0 10

7 81 60 83 76 0 278 0 22

8 84 64 88 64 0 300 0 0

9 60 91 58 91 0 284 0 16

10 77 81 54 88 0 293 0 7
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Table 4: Real Data Example. Incidence data.

HPY-TS Good-Turing

Runs/Aggr.Plots BCI P S C BCI P S C

1 8 13 2 7 5 16 4 5

2 7 18 1 4 3 23 2 2

3 7 17 0 6 5 18 3 4

4 7 23 0 0 4 20 3 3

5 4 20 0 6 11 9 4 6

6 5 17 0 8 7 16 4 3

7 7 17 0 6 5 14 4 7

8 8 16 0 6 7 11 5 7

9 6 17 2 5 23 3 2 2

10 5 9 3 13 1 27 1 1

Uniform Oracle

Runs/Aggr.Plots BCI P S C BCI P S C

1 5 12 9 4 0 28 0 2

2 9 8 7 6 0 30 0 0

3 7 7 9 7 1 29 0 0

4 7 5 9 9 0 30 0 0

5 8 8 10 4 0 30 0 0

6 8 10 5 7 0 30 0 0

7 5 9 7 9 0 30 0 0

8 3 13 6 8 1 29 0 0

9 7 6 10 7 0 30 0 0

10 9 8 7 6 0 30 0 0
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Supplementary material to the paper “Multi-armed

bandit for species discovery: a Bayesian

nonparametric approach”

Marco Battiston, Stefano Favaro and Yee Whye Teh

1. PROOFS.

In the following proofs, we assume all random variables to be defined on a common

probability space, and we denote by P its probability measure and by E the correspond-

ing expectation operator. Furthermore, before proving Proposition 1 and Proposition

2, we recall the following result by Gnedin and Pitman (2006) that will be used in our

proofs.

Proposition Let P ⇠ PY (�, ✓, H) and let (Y1, . . . , Yn

) be a sample from it. Then,

the probability of observing k distinct values in (Y1, . . . , Yn

) is denoted by F (n, k, �, ✓)

and

F (n, k, �, ✓) =

Q
k�1
r=1 (✓ + r�)

�k (✓ + 1)
n�1

C (n, k, �)

where C is the generalized factorial coe�cient, defined for all n 2 N, k  n, 0  �  1

as C (n, k; �) = (1/k!) ·
P

0jk

(�1)j
�
k

j

�
(�j�)

n

, with the proviso C (0, 0; �) = 1 and

C (n, 0; �) = 0 8n and where (✓ + 1)
n�1 = (✓ + 1) (✓ + 2) · · · (✓ + n� 1) is the rising

factorial coe�cient.
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We also recall the characterization of the posterior distribution of the PY process

derived in Pitman (1996), and the Chinese Restaurant Representation of the HPY.

Given a sample Y

n

= (Y1, . . . , Yn

), such that Y
i

|P iid⇠ P for all 1  i  n and

P ⇠ PY (�, ✓, H), the posterior of P given Y

n

satisfies the following distributional

equation

P |Y
n

d

=
KnX

i=1

w
i

�
Y

⇤
i
+ w0P̃ (1)

where K
n

is the number of distinct values in the sample Y
n

, denoted by (Y ⇤
1 , . . . , Y

⇤
Kn

)

and having multiplicities (n1, . . . , nKn), (w0, w1, . . . , wKn) is a random vector distributed

according to Dir (✓ +K
n

�, n1 � �, . . . , n
Kn � �) and P̃ ⇠ PY(�, ✓ +K

n

�, H).

The Chinese Restaurant Franchise representation of the HPY process is described

by the following two predictive distributions for the observables and for the cluster

values in population j

Y
j,i+1|Yj,1, . . . , Yj,i

, �
j

, ✓
j

, P0 ⇠
mj·X

t=1

n
jt· � �

j

✓
j

+ n
j··
�
Y

⇤
j,t
+

✓
j

+m
j·�j

✓
j

+ n
j··

P0 (2)

and

Y ⇤
j,mj·+1|Y ⇤

1,1, . . . , Y
⇤
J,mJ·

,↵, �, H ⇠
KX

k=1

m·k � ↵

� +m··
�
Y

⇤⇤
k

+
� +K↵

� +m··
H. (3)

Proof of Proposition 1. From Equation (3), the franchise-wide distinct values

(Y ⇤⇤
1 , . . . , Y ⇤⇤

K

) are governed by P0 and P0 ⇠ PY (↵, �, H). Using formula (1), the

posterior distribution of P0, given the observations, satisfies the distributional equa-

tion

P0|Yn
d

=
KX

k=1

�
k

�
Y

⇤⇤
k

+ �0P
0

0

where

P
0
0|Yn ⇠ PY (↵, � +K↵, H)

�|Yn = (�0, . . . ,�K) |Yn ⇠ Dir (� +K↵,m·1 � ↵, . . . ,m·K � ↵)
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Similarly, from formula (2), we can apply formula (1) to P
j

to find a distributional equa-

tion for P
j

, conditionally on P0 and the data. Also, using the distributional equation

for the posterior of P0, we find the following distributional equation for P
j

P
j

|�, P 0

0,Yn
d

=
KX

k=1

⇡
j,k

�
Y

⇤⇤
k

+ ⇡
j,0P

0

j

(4)

where

P
0
j

|P 0
0,Yn ⇠ PY(�

j

, (✓
j

+m
j·�j)�0, P

0
0)

(⇡
j,0, . . . ,⇡j,K) |�,Yn ⇠ Dir((✓

j

+m
j·�j)�0, (✓j +m

j·�j)�1 + n
j·1 � �

j

m
j1, . . .

. . . , (✓
j

+m
j·�j)�K + n

j·K � �
j

m
jK

)

So, the distribution of P
j

(A) |Yn, P0 satisfies

P
j

(A) |�, P 0

0,Yn
d

=
KX

k=1

⇡
j,k

�
Y

⇤⇤
k

(A) + ⇡
j,0P

0

j

(A)

for all j 2 {1, . . . , J}, which implies

P
j

(A) |�0,Yn ⇠ beta ((✓
j

+m
j·�j

) �0, (✓j +m
j·�j

) (1� �0) + n
j·· � �

j

m
j·)

where we made use of the following facts:

1. �
Y

⇤⇤
k

(A) = 0 8k = 1, . . . , K: since {Y ⇤⇤
1 , . . . , Y ⇤⇤

K

} = Ac.

2. P
0
j

(A)
as

= 1: P
0
j

can be rewritten as P
0
j

=
P

i�1 �i�Xi for some weights {�
i

}
i�1

and atoms {X
i

}
i�1

iid⇠ H. Then, P (\
i�1 {Xi

2 A}) =
Q

i�1 P (X
i

2 A) =
Q

i�1 1 = 1,

since H is di↵use and Ac is a finite set of points. Finally, P (\
i�1 {Xi

2 A}) = 1 )

P
0
j

(A)
as

= 1.

3. ⇡
j,0|�0,Yn ⇠ beta ((✓

j

+m
j·�j

) �0, (✓j +m
j·�j

) (1� �0) + n
j·· � �

j

m
j·): by the ag-

gregation property of Dirichlet distribution.

Also, since we are conditioning on P0 (through �, P
0
0), Pj

(A) |�0,Yn is independent of

P
i

(A) |�0,Yn for all i, j 2 {1, . . . J}, i 6= j. Hence, their joint distribution is simply

the product of the marginals. The last step is to integrate �0 out

(P1 (A) , . . . , PJ

(A))|Yn =

Z 1

0

JY

j=1

P
j

(A) |�0,Yn · dF
�0 (�0)

3



where the distribution of �0 is another beta (again by aggregation of Dirichlet distri-

bution). So, (P1 (A) , . . . , PJ

(A))|Yn admits a density as stated.

Proof of Proposition 2. Using the distributional equation (4) for the posterior

of P
j

and working conditionally on �0|Yn ⇠ beta (� +K↵,m·· � ↵K), we compute

P(K(z)
j

= k|Yn, �0).

From the distributional equation, we know that, given

⇡
j,0|�0,Yn ⇠ beta ((✓

j

+m
j·�j

) �0, (✓j +m
j·�j

) (1� �0) + n
j·· � �

j

m
j·)

an observation Y
nj··+i

with i = 1, . . . , z does not coincide with any of the K distinct

species (in the joint sample) with probability ⇡
j,0. To have K

(z)
j

= k, at least k of the

z data Y
nj··+1, . . . , Ynj··+z

must be allocated to the k new distinct species that have not

previously observed. Hence,

P(K(z)
j

= k|Yn, �0, ⇡j,0) =
zX

i=k

✓
z

i

◆
⇡
j,0

i (1� ⇡
j,0)

z�i P (K
i

= k|�0)

where K
i

is now the number of distinct species in a sample of size i generated by a

PY(�
j

, (✓
j

+m
j·�j

) �0, P
0
0), where P

0
0 ⇠ PY (↵, � +K↵, H).

We need to find P (K
i

= k|�0). Using the Chinese Franchise Representation and the

result by Gnedin and Pitman (2006), denoting by M
i

the number of tables, we have

that, for m̃ = 1, . . . , i, P(M
i

= m̃) = F (i, m̃, �
j

, (✓
j

+m
j.

�
j

) �0). Moreover, condition-

ally on M
i

= m̃, for k = 1, . . . , m̃, P(K
i

= k|M
i

= m̃) = F (m̃, k,↵, � +K↵). Finally,

P(K(z)
j

= k|Yn, �0, ⇡j,0) can be computed as

zX

i=k

✓
z

i

◆
⇡
j,0

i (1� ⇡
j,0)

z�i

iX

m̃=k

F (m̃, k,↵, � +K↵)F (i, m̃, �
j

, (✓
j

+m
j.

�
j

) �0)

The conditional mean E(K(z)
j

|Yn, �0, ⇡j,0) is found by averaging over {0, . . . , z} and,

being constant, they are trivially independent among arms. Hence, the joint distribu-

tion of (E(K(z)
1 |Yn), . . . ,E(K(z)

J

|Yn)) is found by integrating �0, (⇡j,0 : j 2 {1, . . . J})

out from the product of these J conditional (constant) distributions.
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2. IMPLEMENTATION ISSUES - MCMC ALGORITHM FOR THE HPY

PARAMETERS.

The number of clusters in each population m

J

= (m
j· : j 2 {1, . . . , J}) appearing in

the parametrization of the beta distributions in both Algorithms 1 and 2 of Section

3.1 and 3.2 of the paper, are latent variables. In subsection 2.1 we describe a simple

MCMC scheme to estimate them in case an initial sample is available. The MCMC

algorithm directly follows from paragraph 5.1 of Teh et al. (2006). Moreover if the

hyperparameters of the HPY model are unknown, they must added to the MCMC

sampler too, as outlined in subsection 2.2.

2.1. MCMC for m

J

: In principle a Gibbs sampler to estimate m

J

should sequen-

tially draw samples from the full conditionals ⇡(m
j·|m1·, . . . ,mj�1·,mj+1·, . . . ,mJ ·,Yn).

However both the joint ⇡(m1·, . . . ,mJ ·|Yn) and the full conditional posterior distribu-

tions are di�cult combinatorial objects and cannot be derived in closed form. A

possible solution is a Gibbs sampler that, rather than directly updating m
j·|m�j·,Yn,

updates the cluster allocations (t
ji

: i 2 {1, . . . , n
j··}) and then computes m

j·|m�j·,Yn.

As in Teh et al. (2006), the cluster allocation variable t
ji

specifies the cluster to which

the i-th observation of population j belongs. Let t

(i�1)
�jp

denote the array of cluster

allocations after iteration i�1 of the sampler and with the p-th observation of the j-th

population removed. Then t
(i)
jp

|(Yn, t
(i�1)
�jp

) is proportional to

X

t: jt= jtji

n
jt· � I

⇣
t = t

(i�1)
jp

⌘
� �

j

✓
j

+ n
j·· � 1

�
t

+
✓
j

+m
(i�1,p�1)
j· �

j

✓
j

+ n
j·· � 1

m
(i�1,p�1)
·kjp � ↵

� +m
(i�1,p�1)
··

�
⇣
m

(i�1,p�1)
j· + 1

⌘

where m
(i�1,p�1)
j· denotes the number of clusters in population j at the i-th iteration

after having updated the first p � 1 cluster allocations of that population,  
jt

is a

classification variable that tells us the species of the observations in the t-th cluster in

population j and k
jp

is the species of the observations in the p-th cluster in population

5



j. If n
jtjp· = 1 (i.e. the observation is forming its own cluster), before updating t

(i)
jp

we

must remove its cluster and subtract one to all the m’s. The updated value for m
(i)
j·

can also be taken as the highest t
(i)
jp

for p 2 {1, . . . , n
j··}, rather than the number of

distinct values in the t
(i)
jp

.

The algorithm is time expensive because at every iteration it re-samples the cluster

allocations of all populations and of all observations. However, we experienced that a

good choice of the starting value makes the chain converge to its stationary distribution

in just a few iterations. We suggest to run a Chinese Franchise given the data to find

the initial point for cluster allocations to start the Gibbs sampler.

When the HPY-TS algorithm is run, the vector m
J

can be updated by allocating

new observations to either old or new clusters using the Chinese Restaurant Franchise.

If the observation is new, it forms a new cluster. If it is old, say of type Y ⇤⇤
k

, then the

corresponding observation either will form a new cluster with probability proportional

to ((m·k �↵)/(�+m··))(✓j +m
j·�j

)/((✓
j

+n
j··)) or it will join an existing cluster (with

dish Y ⇤⇤
k

) with probability proportional to (n
j·k �m

jk

�
j

)/(✓
j

+ n
j··).

2.2. HPY Hyperparameters: If the hyperparameters are considered as unknown,

they must be included in the Gibbs sampler for the cluster sizes. Assuming indepen-

dent priors for hyperparameters of di↵erent Pitman-Yor processes, the full conditional

distributions can be derived from

⇡(↵, �|(m
jk

: j 2 {1, . . . , J}, k 2 {1, . . . , K}), (�
j

, ✓
j

: j 2 {1, . . . , J}),Yn) =

= ⇡(↵, �|m··, K) /
�( �

↵

+K)�(�)C(m··, K,↵)

�( �
↵

)�(� +m··)
⇡prior(↵, �)

and, for each couple ((�
j

, ✓
j

) : j 2 {1, . . . J}), from

⇡(�
j

, ✓
j

|(m
jk

: j 2 {1, . . . , J}, k 2 {1, . . . , K}), ��j

, ✓�j

,↵, �,Yn) =

= ⇡(�
j

, ✓
j

|n
j··,mj·) /

�( ✓j
�j

+m
j·)�(✓j)C(nj··,mj·, �j

)

�( ✓j
�j
)�(✓

j

+ n
j··)

⇡prior(�
j

, ✓
j

)
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3. SIMULATIONS RESULTS - TABLES OF WEIGHTS.

The following tables report the weights given to each arm by the four algorithms

in the simulation study. We consider the behaviour of the HPY-TS algorithm and of

the three other competing strategies in the 3 scenarios described in Section 4.1 of the

paper. Specifically, we consider the following three scenarios:

1. Pure Exploitation Scenario, corresponding to the Zipf parameter vector for the

true distributions equal to (1.3, 1.3, 2, 2, 2, 2, 2, 2);

2. Pure Exploration Scenario, corresponding to the Zipf parameter vector

(1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 2, 2);

3. Exploration-Exploitation Scenario, corresponding to the Zipf parameter vector

(1.3, 1.3, 1.3, 1.3, 2, 2, 2, 2).

For each scenario we run the four algorithms for 60 times. We report here only the

results of the first 10 simulations. Each row in the tables is the result of one simulation.

The columns correspond to the possible arms. Finally, we repeat the same simulations

both for abundance and for incidence data.

References

Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling trian-

gles. Journal of Mathematical Science, 138, 5674–5685.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In

Statistics, Probability andGame Theory (eds. T. S. Ferguson, L. S. Shapley and J.

B. MacQueen), 245–267. Institute of Mathematical Statistics, Hayward.

Teh, Y.W., Jordan, M., Beal, M. and Blei, D. (2006). Hierarchical Dirichlet processes.

Journal of the American Statistical Association, 101, 1566–1581.
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Table 1: Simulations: Pure Exploitation. Abundance data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 2 2 2 2 2 2 1.3 1.3 2 2 2 2 2 2

1 157 137 4 1 1 0 0 0 3 292 1 1 1 1 1 0

2 147 121 3 5 1 4 13 6 282 11 1 1 1 1 2 1

3 168 125 0 0 0 4 2 1 2 298 0 0 0 0 0 0

4 10 279 2 0 6 0 2 1 5 269 4 4 4 5 4 5

5 216 66 0 0 5 3 0 10 293 1 1 1 1 1 1 1

6 134 150 0 1 0 12 0 3 1 298 0 0 0 1 0 0

7 147 100 1 9 1 35 0 7 291 2 1 1 1 2 1 1

8 137 161 0 2 0 0 0 0 290 5 1 1 0 1 1 1

9 146 149 1 0 0 4 0 0 299 1 0 0 0 0 0 0

10 134 111 8 3 4 6 13 21 288 5 1 1 1 1 1 2

Uniform Oracle

Runs/Zipf 1.3 1.3 2 2 2 2 2 2 1.3 1.3 2 2 2 2 2 2

1 31 48 34 39 40 32 38 38 139 161 0 0 0 0 0 0

2 45 39 33 43 38 26 39 37 178 122 0 0 0 0 0 0

3 40 39 41 33 41 31 34 41 147 153 0 0 0 0 0 0

4 51 35 40 28 32 27 48 39 157 143 0 0 0 0 0 0

5 40 40 41 36 29 42 30 42 112 188 0 0 0 0 0 0

6 26 45 37 42 39 37 36 38 176 124 0 0 0 0 0 0

7 38 38 56 37 31 29 30 41 126 174 0 0 0 0 0 0

8 29 38 38 40 43 31 47 34 197 103 0 0 0 0 0 0

9 39 30 37 37 47 43 35 32 179 121 0 0 0 0 0 0

10 36 31 34 38 31 39 46 45 120 180 0 0 0 0 0 0
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Table 2: Simulations: Pure Exploitation. Incidence data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 2 2 2 2 2 2 1.3 1.3 2 2 2 2 2 2

1 14 16 0 0 0 0 0 0 5 9 2 2 3 3 3 3

2 15 14 0 0 0 1 0 0 3 15 1 2 2 2 2 3

3 22 6 0 0 0 0 2 0 7 6 3 3 2 3 3 3

4 9 19 0 2 0 0 0 0 24 1 1 1 1 0 1 1

5 11 19 0 0 0 0 0 0 14 3 2 2 3 2 2 2

6 10 20 0 0 0 0 0 0 14 4 1 2 3 2 2 2

7 16 13 0 0 0 0 0 1 4 13 2 2 2 3 2 2

8 17 12 0 1 0 0 0 0 6 11 3 2 2 2 2 2

9 16 14 0 0 0 0 0 0 18 2 2 2 1 2 1 2

10 13 16 0 0 0 0 1 0 11 5 2 3 2 2 2 3

Uniform Oracle

Runs/Zipf 1.3 1.3 2 2 2 2 2 2 1.3 1.3 2 2 2 2 2 2

1 4 5 6 3 3 0 7 2 15 15 0 0 0 0 0 0

2 4 4 3 3 2 6 4 4 15 15 0 0 0 0 0 0

3 2 4 6 4 3 5 2 4 13 17 0 0 0 0 0 0

4 4 8 3 2 3 2 4 4 20 10 0 0 0 0 0 0

5 5 2 1 3 5 3 6 5 12 18 0 0 0 0 0 0

6 3 10 1 2 4 4 3 3 12 17 1 0 0 0 0 0

7 3 2 2 4 3 4 6 6 15 15 0 0 0 0 0 0

8 7 5 4 0 2 2 4 6 12 18 0 0 0 0 0 0

9 2 2 9 1 2 5 3 6 13 17 0 0 0 0 0 0

10 2 6 4 2 7 5 2 2 16 14 0 0 0 0 0 0
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Table 3: Simulations: Pure Exploration. Abundance data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 1.3 1.3 1.3 1.3 2 2 1.3 1.3 1.3 1.3 1.3 1.3 2 2

1 43 47 41 68 30 71 0 0 2 4 1 1 1 290 1 0

2 1 61 37 15 100 86 0 0 0 2 295 1 1 1 0 0

3 11 40 148 57 40 3 0 1 2 287 4 2 2 1 1 1

4 46 114 15 47 64 14 0 0 298 0 0 0 2 0 0 0

5 4 112 1 43 37 103 0 0 2 286 1 3 2 5 0 1

6 56 47 48 21 100 28 0 0 2 2 289 1 5 1 0 0

7 42 53 9 67 98 31 0 0 6 2 1 3 286 2 0 0

8 58 25 31 51 34 101 0 0 285 2 7 3 1 1 1 0

9 36 68 107 37 1 51 0 0 1 3 293 1 1 1 0 0

10 36 35 44 68 41 76 0 0 2 2 1 2 280 12 1 0

Uniform Oracle

Runs/Zipf 1.3 1.3 1.3 1.3 1.3 1.3 2 2 1.3 1.3 1.3 1.3 1.3 1.3 2 2

1 31 43 31 34 38 49 30 44 83 41 30 58 54 34 0 0

2 45 24 29 36 32 40 50 44 73 41 74 77 5 30 0 0

3 43 47 32 36 38 28 35 41 38 31 61 78 48 44 0 0

4 27 44 37 45 41 30 41 35 46 30 60 42 54 68 0 0

5 33 40 49 44 34 30 35 35 52 45 42 49 35 77 0 0

6 39 36 42 40 33 36 33 41 75 57 75 36 10 47 0 0

7 31 36 43 54 30 42 30 34 38 60 108 19 51 24 0 0

8 49 32 31 36 39 42 35 36 37 72 19 86 53 33 0 0

9 33 39 42 36 36 40 34 40 53 52 51 17 69 58 0 0

10 40 33 30 33 40 45 39 40 55 73 47 36 61 28 0 0
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Table 4: Simulations: Pure Exploration. Incidence data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 1.3 1.3 1.3 1.3 2 2 1.3 1.3 1.3 1.3 1.3 1.3 2 2

1 0 14 5 6 2 3 0 0 2 2 5 15 2 2 1 1

2 6 8 5 5 6 0 0 0 2 5 15 2 2 2 1 1

3 1 3 4 7 7 8 0 0 3 1 19 1 1 3 1 1

4 7 4 0 5 4 10 0 0 5 2 2 2 8 9 1 1

5 6 8 7 7 2 0 0 0 2 7 6 7 2 3 2 1

6 1 16 2 5 2 4 0 0 1 1 1 25 1 1 0 0

7 10 1 6 1 9 3 0 0 1 1 24 1 1 2 0 0

8 5 12 1 2 2 8 0 0 3 1 1 1 2 21 0 1

9 7 5 10 2 0 6 0 0 4 4 2 1 1 16 1 1

10 3 0 15 0 6 6 0 0 1 1 3 3 18 2 1 1

Uniform Oracle

Runs/Zipf 1.3 1.3 1.3 1.3 1.3 1.3 2 2 1.3 1.3 1.3 1.3 1.3 1.3 2 2

1 4 4 3 5 4 3 3 4 6 5 1 6 7 5 0 0

2 3 4 4 3 6 4 3 3 5 8 4 4 4 5 0 0

3 4 4 3 5 3 5 2 4 6 10 3 7 2 2 0 0

4 7 0 4 3 6 5 2 3 4 2 5 6 9 4 0 0

5 3 5 3 2 3 6 3 5 3 4 4 3 10 6 0 0

6 4 6 3 3 8 2 1 3 5 5 5 5 6 4 0 0

7 3 3 1 3 5 7 6 2 8 4 3 3 4 8 0 0

8 3 7 5 2 4 3 1 5 3 4 3 6 6 8 0 0

9 3 4 2 7 5 4 2 3 3 7 6 4 6 4 0 0

10 6 3 2 3 6 2 6 2 5 5 7 4 4 5 0 0
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Table 5: Simulations: Exploration-Exploitation. Abundance data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 1.3 1.3 2 2 2 2 1.3 1.3 1.3 1.3 2 2 2 2

1 10 159 74 57 0 0 0 0 0 0 300 0 0 0 0 0

2 81 76 63 80 0 0 0 0 297 1 1 1 0 0 0 0

3 72 60 85 83 0 0 0 0 1 2 4 292 1 0 0 0

4 72 30 129 69 0 0 0 0 1 1 2 294 1 0 0 1

5 107 42 59 90 0 0 2 0 298 0 1 1 0 0 0 0

6 63 105 112 20 0 0 0 0 298 2 0 0 0 0 0 0

7 92 86 42 78 0 1 1 0 4 2 3 290 0 0 1 0

8 79 120 27 73 0 0 1 0 293 5 1 1 0 0 0 0

9 61 49 108 81 0 0 0 1 296 1 1 2 0 0 0 0

10 100 35 57 108 0 0 0 0 300 0 0 0 0 0 0 0

Uniform Oracle

Runs/Zipf 1.3 1.3 1.3 1.3 2 2 2 2 1.3 1.3 1.3 1.3 2 2 2 2

1 37 35 36 54 36 29 38 35 68 62 82 88 0 0 0 0

2 39 41 28 42 44 30 47 29 33 94 109 64 0 0 0 0

3 42 28 26 48 35 46 33 42 46 103 45 106 0 0 0 0

4 37 39 35 38 41 21 48 41 52 81 66 101 0 0 0 0

5 32 34 41 37 38 28 50 40 55 31 146 68 0 0 0 0

6 35 38 32 35 46 43 36 35 87 63 74 76 0 0 0 0

7 45 33 37 34 45 24 38 44 97 48 61 94 0 0 0 0

8 41 32 36 37 33 32 44 45 62 55 78 105 0 0 0 0

9 30 41 37 47 43 33 33 36 88 107 57 48 0 0 0 0

10 31 44 36 33 44 32 43 37 64 86 97 53 0 0 0 0
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Table 6: Simulations: Exploration-Exploitation. Incidence data.

HPY-TS Good-Turing

Runs/Zipf 1.3 1.3 1.3 1.3 2 2 2 2 1.3 1.3 1.3 1.3 2 2 2 2

1 5 5 6 14 0 0 0 0 3 8 4 9 2 1 2 1

2 5 14 7 4 0 0 0 0 18 2 2 4 1 1 1 1

3 6 6 9 9 0 0 0 0 2 6 2 16 1 1 1 1

4 9 8 1 12 0 0 0 0 3 3 1 18 2 1 1 1

5 1 6 8 15 0 0 0 0 3 3 5 12 2 1 2 2

6 1 9 4 16 0 0 0 0 3 16 3 3 2 1 1 1

7 4 9 9 8 0 0 0 0 2 1 2 21 1 1 1 1

8 5 6 12 7 0 0 0 0 7 2 14 3 1 1 1 1

9 6 7 9 8 0 0 0 0 27 1 1 1 0 0 0 0

10 4 6 8 12 0 0 0 0 4 3 2 16 1 2 1 1

Uniform Oracle

Runs/Zipf 1.3 1.3 1.3 1.3 2 2 2 2 1.3 1.3 1.3 1.3 2 2 2 2

1 7 2 0 1 7 7 2 4 8 8 7 7 0 0 0 0

2 5 2 4 2 4 3 5 5 7 7 11 5 0 0 0 0

3 4 7 3 3 2 5 6 0 7 5 12 6 0 0 0 0

4 6 4 4 1 2 3 6 4 7 3 10 10 0 0 0 0

5 4 3 4 6 3 3 3 4 8 8 9 5 0 0 0 0

6 4 2 2 6 5 6 4 1 10 6 8 6 0 0 0 0

7 1 3 2 5 9 4 5 1 10 5 10 5 0 0 0 0

8 2 5 2 0 3 8 5 5 5 11 6 8 0 0 0 0

9 4 4 3 5 4 5 2 3 5 8 10 7 0 0 0 0

10 7 4 3 1 2 4 3 6 5 9 8 8 0 0 0 0
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