
02 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Agent-based Computational Demography and Beyond using JAS-mine

Publisher:

Published version:

DOI:10.1007/978-3-319-32283-4_4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1617654 since 2016-11-28T16:33:10Z

1

Agent-based Computational Demography and Microsimulation using JAS

Matteo Richiardi
Institute for New Economic Thinking at the Oxford Martin School, University of Oxford

Nuffield College, Oxford
Collegio Carlo Alberto, Moncalieri

Ross Richardson

Institute for New Economic Thinking at the Oxford Martin School, University of Oxford
Mathematical Institute, University of Oxford

This draft: January 2015

Abstract:

In this chapter we provide a hands-on guide on how to build a microsimulation using JAS, a Java-based
platform that provides unique simulation tools for discrete-event simulations, including both agent-based and
microsimulation models. After presenting the rationale for the recent developments of the JAS project and
the main architectural choices made, we illustrate a step-by-step implementation of a rich dynamic
microsimulation, which includes demographic processes (birth, death, household formation and dissolution)
and other life course events (educational choices, labour market participation and employment outcomes).

Acknowledgements:

Matteo Richiardi has benefited from financial support by the European Commission within a Marie Curie IE

fellowship, and from support by Piedmont Region (research project: “From work to health and back: The

right to a healthy working life in a changing society”) and Collegio Carlo Alberto (research project: “Causes,

Processes and Consequences of Flexsecurity Reform in the EU: Lessons from Bismarkian Countries”).

Michele Sonnessa is the main developer of the JAS library and has contributed to the coding of the

microsimulation model.

Keywords: simulation platform, microsimulation, agent-based, software, open-source.

JEL codes: C63, C88

2

1. Introduction

In this paper, we present the implementation of a dynamic microsimulation with a rich set of demographic

processes (birth, death, household formation and dissolution) and other life course events (educational

choices, labour market participation and employment outcomes), using the recently upgraded JAS simulation

platform (Richiardi and Sonnessa, 2013).

The chapter is meant to provide a step-by-step guide to the development of dynamic

microsimulations. From a practical perspective, the model presented here is highly reusable and can be easily

modified in order to develop other microsimulation models.1 This is thanks to the JAS architecture, which

envisages a neat separation between data (parameters and coefficients) and code, and a clear distinction

between modelling objects, which specify the structure of a model and should be the primary concern of a

researcher, and auxiliary objects, which perform useful tasks such as input-output communication, real-time

visualization, etc.

 The chapter is structured as follows. Section 2 motivates the need for a unique platform for agent-

based and dynamic microsimulations, integrating tools used by both modelling approaches. The section also

lists other requirements that were specified for the platform. Section 3 briefly describes the technical

solutions that were adopted to meet these requirements. Section 4 presents the general structure of a JAS

project. Section 5 describes the specific simulation model implemented. Section 6 illustrates the JAS

implementation. Section 7 concludes.

2. Convergence between agent-based and microsimulation models

Microsimulation is a technique used in a large variety of fields to simulate the states and behaviors of

different units (individuals, households, populations, etc.) as they evolve in a given environment (a market, a

region an institution). The word “dynamic” refers to the fact that the population being simulated is also

changing, as opposed to “static” microsimulations (such as tax and benefit simulators) which examine the

impact of a policy change on a given population (Li and O’Donoghue, 2012). The modelling of demographic

processes is therefore the salient characteristic of dynamic microsimulations.

Agent-based models are also computational models with individuals as the primary object of

analysis. They mainly differ from microsimulations for their emphasis on the role of interaction and from

explicit departures from the standard assumptions of economic models: rational expectations, perfect

knowledge about the environment, infinite computational ability, absence of centralised “top down”

coordination devices (Richiardi, 2012).

Agent-based (AB) and microsimulation (MS) models share many features and can be described as

belonging to the same class of discrete-event simulations. Indeed, from a mathematical and computational

perspective the two approaches are identical. Both AB and MS models are recursive models, where the

number and individual states of the agents in the system are evolved by applying a sequence of algorithms to

an initial population. As computer-based simulations, they face the problem of reproducing real-life

phenomena, many of which are temporally continuous processes, using discrete microprocessors. The

abstract representation of a continuous phenomenon in a simulation model requires that all events be

presented in discrete terms, hence the label discrete-event simulation.

However, in their historical development AB models and microsimulations have followed different

trajectories (Richiardi, 2013): AB models have focused more on theory, while MS models have evolved as

more data oriented, with the processes generally specified as probabilistic regression models. As a

generalisation, AB models are structural models with a primary concern on understanding, while

1 The model and the supporting documentation can be downloaded from the JAS website (www.jasimulation.org).

3

microsimulations are reduced-form models (as such, they often focus on one side of a market only), with a

primary concern on forecasting.2 However, a trend is currently undergoing towards a convergence of the two

approaches, with AB models becoming increasingly empirically oriented, and MS models including more

feedback effects (see again Richiardi, 2013). An example of this fruitful integrated approach is the recent

field of agent-based computational demography (Billari and Prskawetz, 2003).

 The differences in scope and perspective between the two approaches have however impinged on the

structure of the computer models used within each community. AB models lead naturally to an explicit

object-oriented representation, while MS models are generally built around a database which is evolved

forward in time. This has led to the development of simulation toolkits which are specific to each field, as for

instance NetLogo (Wilenski 1999), RePast (North et al. 2013), Mason (Luke et al. 2005) for AB modelling,

and Modgen (Statistics Canada, 2009), LIAM2 (De Menten et al. 2012) and JAMSIM (Mannion et al., 2012)

for MS modeling – to name just a few.3

JAS was created to make the development of “hybrid” AB-MS models easier, and to allow

researchers to use the same tools for both approaches, to exploit economies of scales in learning and coding.

Its combination of features distinguish it from all the above platforms.

3. The JAS architecture

JAS is an object-oriented Java-based platform for discrete-event simulations. The philosophy of JAS is to

favour clarity, transparency and flexibility, even at the expense of brevity and speed of execution. The

rationale behind this is the belief that the real bottleneck in agent-based and dynamic microsimulation

modelling comes from humans, rather than machines: minimizing modelling time then becomes more

important than minimizing computing time. In turn, minimizing modelling time can be achieved by 1) using

more transparent and better organized functions, and 2) adhering to a strict modelling discipline that

maintains the separation between things that are conceptually separate. This not only speeds up the

development of a model, but simplifies modular development and subsequent extensions and modifications.

With respect to the first issue, two key choices were made. First, a strict adherence to the open source

paradigm was enforced, which makes it less of a black-box with respect to proprietary software and

encourages cooperative development of the platform by the community of users: all functions can be

inspected and, if necessary, modified or extended. Second, it was decided not to develop an ad-hoc grammar

and syntax –as in Netlogo and LIAM2– but to allow the user to choose from a wide range of classes and

interfaces which extend the standard Java language. The JAS libraries therefore provide open tools to

“manufacture” a simulation model, making use whenever possible of solutions already available in the

software development community (external functions can also be easily added as plug-ins). This also ensures

a maximum amount of flexibility in model building.

With respect to the second issue, a clear distinction is made between objects with a modelling content,

which specify the structure of the simulation, and objects which perform useful but auxiliary tasks, from

enumerating categorical variables to building graphical widgets, from creating filters for the collection of

agents to computing aggregate statistics to be saved in the output database. Moreover, a separation is made

between code and data, with all parameters and input tables stored either in an input database or in specific

MS Excel files. The regression package provides tools for simulating outcomes from standard regression

models (OLS, probit/logit, multinomial probit/logit): in particular, there is no need to specify the variables

2 Structural models often include unobservable parameters that help describe individual behaviour at a deep level (say,
in terms of utility maximisation); reduced-form models aim more simply at identifying statistical relationships between
observable characteristics.
3 Though it should be noted that the popular NetLogo environment is not object-oriented.

4

that enter a regression model, as they are directly read from the data files. This greatly facilitates exploration

of the parameter space, testing different econometric specifications, and scenario analysis.

From a modelling viewpoint, from version 2 JAS extends the Model-Observer paradigm introduced by

the Swarm experience (Minar et al. 1996) and introduces a new layer in simulation modeling, the Collector.

The Model deals mainly with specification issues, creating objects, relations between objects, and defining

the order of events that take place in the simulation. The Observer allows the user to inspect the simulation in

real time and monitor some pre-defined outcome variables as the simulation unfolds. The Collector collects

the data and compute the statistics needed both by the simulation objects and for post-mortem analysis of the

model outcome, after the simulation has completed. This three-layer methodological protocol allows for

extensive re-use of code and facilitates model building, debugging and communication.

As for input/output (I/O) communication, building on the vast number of software solutions available,

JAS allows the user to separate data representation and management from the implementation of processes

and behavioral algorithms. The management of input data persistence layers and simulation results is

performed using standard database management tools, and the platform takes care of the automatic

translation of the relational model of the database into the object-oriented simulation framework, through

object-relational mapping (ORM).4 This also allows to separate data creation from data analysis, which is

crucial for understanding the behavior of the simulation model. As the statistical analysis of the model output

is possibly intensive in computing time, performing it in real time might be an issue, in large-scale

applications. A common solution is to limit it to a selected subset of output variables. This, however, requires

identifying the output of interest before the simulation is run. If additional computations are required to

better understand how the model behaves, the model has to be run again: the bigger the model, the more

impractical this solution is. On the other hand, the power of modern relational database management systems

(RDBMS) makes it feasible to keep track of a much larger set of variables, for later analysis. Also, the

statistical techniques envisaged, and the specific modeler’s skills, might suggest the use of external software

solutions, without the need to integrate them in the simulation machine. Finally, keeping data analysis

conceptually distinct from data production enhances brevity, transparency and clarity of the code.

The main architectural characteristics of JAS are discussed in detail in (Richiardi and Sonnessa, 2013)

and on the JAS website (www.jasimulation.org). To summarise, the main features of the platform are:

 a discrete-event simulation engine, allowing for both discrete-time and continuous-time simulation

modeling5;

 a Model-Collector-Observer structure (see below);

 interactive (GUI based) batch and multi-run execution modes, the latter allowing for detailed design

of experiments (DOE);

 a library implementing a number of different matching methods, to match different lists of agents;

4 ORM is a programming technique for converting data between incompatible type systems in object-oriented
programming languages. This creates, in effect, a “virtual object database” that can be used from within the
programming language.
5 Discrete-event simulations can be organized in two categories, depending on how time is treated. Continuous-time
simulations break up time into regular time slices (∆t), while the simulator calculates the variation of state variables for
all the elements of the simulated model between one point in time and the next. Nothing is known about the order of the
events that happen within each time period: discrete events (marriage, job loss, etc.) could have happened at any
moment in ∆t while inherently continuous events (aging, wealth accumulation, etc.) are often thought to progress
linearly between one point in time and the next. By contrast, discrete-time simulations are characterized by irregular
timeframes that are punctuated by the occurrence of the events. What is modelled is not whether an event occurs or not
in the reference period, in a discrete-choice setting, but rather the time elapsed before its occurrence (duration models).
Between consecutive events, no change in the system is assumed to occur; thus the simulation can directly jump in time
from one event to the next. Inherently continuous events must then be discretised.

5

 a library implementing a number of different alignment methods, to force the microsimulation

outcomes meeting some exogenous aggregate targets (Li and O’Donoghue, 2014);

 a library implementing a number of common econometric models, from continuous response linear

regression models to binomial and multinomial logit and probit models;

 a statistical package based on the cern.jet package;

 an embedded H2 database;

 MS Excel I/O communication tools;

 automatic GUI creation for parameters by using Java annotation;

 automatic output database creation;

 automatic agents’ sampling and recording;

 powerful probes for real-time statistical analysis and data collection;

 a rich graphical library for real-time plotting of simulation outcomes;

 Eclipse plugin, which allows to create a JAS project in just a few clicks, with template classes

organised in the JAS standard package and folder structure;

 Maven version control.

4. The structure of a JAS project

In the JAS architecture, agents are organized and managed by components called managers. As already

mentioned, there are three types of managers in this architecture: Model, Collector and Observer. Models

serve to build artificial agents and objects, and to plan the time structure of events. Collectors are managers

that build data structures and routines to calculate (aggregate) statistics dynamically, and that build the

objects used for data persistence. The definition of a Collector’s schedule specifies the frequency of

statistics updating and agent sampling, and consequent storage in the output database. Observers are

managers that serve to build graphical widget objects that indicate the state of the simulation in real time, and

define the frequency with which to update these objects.

JAS allows multiple Models (and multiple Collectors and Observers) to run simultaneously, since they

share the same scheduler.6 This allows for the creation of complex structures where agents of different

Models can interact. Each Model is implemented in a separate Java class that creates the objects and plans

the schedule of events for that Model. Model classes require the implementation of the SimulationManager

interface, which implies the specification of a buildObjects method to build objects and agents, and a

buildSchedule method for planning the simulation events. Analogously, Collector classes must implement

the CollectorManager interface, and Observer classes must implement the ObserverManager interface.

When a new JAS project is created using the JAS Eclipse plugin, several packages are created:

 data: a package containing the classes that describe the structure of coefficients, parameters and

agent population tables contained in the database to be loaded by the ORM. When using Excel files

to specify input data, no specific classes need to be included in this package.

 model: a package containing the classes that specify the model structure; in particular, it contains the

Model manager class(es) and the class(es) of agents that populate the simulation.

 model.enums: a subpackage containing the definition of the enumerations used (if any).7

6 Technically, the scheduler is a “singleton”. In software engineering, the singleton pattern is a design pattern that
restricts the instantiation of a class to one object.
7 Enumerations specify a set of predefined values that a property can assume. These values might be categorical
(strings, e.g. sex), quantitative (discrete numbers, e.g. age) or even objects with their set of characteristics and properties
(e.g. a predefined set of banks to which a firm can be linked). The ORM detects that a value is an enumeration when the

6

 experiment: a package containing the classes that deal with running the simulation experiment(s); it

contains, in particular, the Start class where the main method and the type of the experiment

(interactive vs. batch mode, single run vs. multiple runs) are defined. The package might also

contain one or more Observer manager classes for online statistics collection and display, and a

MultiRun class that manages repeated runs for parameter exploration.

 algorithms: a package containing classes that implement algorithms for determining events and

applying processes to the agents. These implementations, in a cooperative effort of users, are

potential candidates to extend the set of standard functions included in the JAS libraries.

In addition to sources, the project also contains two folders for data input-output. The input folder

contains data on database inputs in excel or H2 embedded formats. The output folder contains the output of

different simulation experiments. At the beginning of each run, JAS creates a sub-folder that is labeled

automatically8 with a copy of the input files plus an empty output database, with the same structure of the

input database as defined by the annotations added to the model classes. Coherence between the input

database (if any), the output database and the classes representing the agents in the simulation (known as

entity classes) is guaranteed by the ORM.

By default, JAS executes the simulations in embedded mode: the databases are modified directly by

the JDBC driver included in JAS.9 The standard database uses a H2 database engine. Other databases

supporting embedding can be used, such as Microsoft Access, Hypersonic SQL, Apache Derby, etc.

5. The dynamic microsimulation model

The dynamic microsimulation model that we implement is inspired by the demo07 sample model included in

LIAM2.10 It is not meant to reproduce the actual dynamics of any existing population, and it works only for

illustrative purposes. It features a population of 20,200 persons grouped in 14,700 households undergoing a

number of demographic and other life course events on an annual basis between the years 2002 to 2061:

 Birth: all women aged between 15 and 50 (inclusive) in any simulation year can give birth to a

child, with a probability which is year- and age-specific and is reported in the file p_birth.xls.

 Education: education (lower secondary, upper secondary or tertiary) is predetermined at birth.

Individuals exit lower secondary education at age 16, upper secondary education at age 19, and

tertiary education at age 24.

 Exit from parental home: individuals aged 24 or over who are not yet married leave their parental

home to set up a new household.

 Marriage: all individuals aged 18 or over whose civil state is either single, divorced or widowed, are

eligible for getting married in any given simulation year. The probability of marriage depends on

age, gender and civil state, and is stored in the al_p_mmkt.xls file. Given these probabilities, a subset

of the unmarried population is sampled and those chosen are entered into the matching algorithm.

Actual matching involves ordering all the females first; then starting with the top ranked female, all

property is declared with the annotation @Enumerated (see below). Through enumerations the ORM automatically
manages reading/writing operations in both text and numerical format.
8 The folder name can be modified dynamically through labels set by the user.
9 A JDBC driver is a software component enabling a Java application to interact with a database.
10 The model differs from the LIAM2 version in that it collapses the work states of unemployment and inactivity into a
single non-employment state. This is done by removing the unemployment module from the corresponding LIAM2
simulation, with everything else staying the same. The change is motivated by the fact that the distinction between
unemployment and inactivity was implemented in a very unnatural way in LIAM2, and did not affect any subsequent
choice on the part of the agents.

7

males are ordered and the best available male is matched. Then for the second ranked female, the

remaining males are ordered and the best available male is matched, and so on until no more

matches can be made (because there are either no more males or females to match). Females are

ordered according to their age difference (in absolute value) with respect to the average age in the

pool of females to be matched, |age-mean(age)|: females with an age closer to average “choose”

first, while older or younger females “choose” later. For each female, males are ranked by looking at

how their age and work status compares with the female’s age and work status: regression

coefficients are stored in the reg_mariage_score.xls file.

 Divorce: divorce probability depends on age difference between the partners, elapsed marriage

duration, number of children and work status of both partners: regression coefficients are stored in

the reg_divorce.xls file.

 Employment: all individuals who are of working age (males: between 15 and 65; females: between

15 and 61) and whose previous work state was neither student nor retired are considered to be

available to work. Conditional on this, individuals are employed with a probability which depends

on age, lagged work state (either employed, unemployed or inactive), gender and marital status:

regression coefficients are stored in the reg_inwork.xls file . The model does not distinguish between

unemployment and non-employment.11

 Death: death is also a probabilistic event, with year- and age-specific death probabilities contained

in the files p_death_m.xls and p_death_f.xls, for males and females respectively.

The divorce and employment processes are subject to alignment. This is a technique widely used in

(dynamic) microsimulation modeling to ensure that the simulated totals conform to some exogenously

specified targets, or aggregate projections (Baekgaard, 2002; Klevmarken, 2002, Li and O'Donoghue, 2014).

Alignment is a way to incorporate additional information which is not available in the estimation data. The

underlying assumption is that the microsimulation model is a poor(er) model of the aggregate, but a good

model of individual heterogeneity: by forcing the microsimulation outcomes to match the targets in a way

that is as least distortive as possible, the microsimulation model is left with the task of distributing the totals

in the population. In general, the above assumption is very dangerous and unwarranted, and alignment

should be looked at with great suspicion. Here, we do not dig into this discussion, and simply replicate the

LIAM2 implementation, using the JAS alignment libraries. Alignment targets (aggregate frequencies) are

stored in the p_divorce.xls and p_inwork.xls respectively for divorce and employment.

One important thing to note is that the processes to be aligned are executed at an individual level, while

alignment always takes place at the population level. That is, individual outcomes or probabilities are

determined for each individual based on the chosen econometric specification and the estimated coefficients.

This in general leads to a mismatch between the simulated (provisional) totals and the aggregate targets,

which can of course be assessed only at the population level. The alignment algorithm then directly modifies

the individual outcomes or probabilities of occurrence.

The specific algorithm used in the LIAM2 implementation is called “Sorting by the difference between

the predicted probability and a random number” (SBD, see Li and O’Donoghue, 2014), and – though quite

common in the microsimulation literature – can be criticised over many theoretical grounds (see Stephensen,

2014). The JAS alignment library implements it for completeness, though its use is deprecated. Here we use

it to remain as close as possible to the original LIAM2 version (the reader does not need to understand how

precisely it works).

11 According to the International Labour Organization (ILO), the unemployed comprise all persons above a specified
age who during the reference period were: (i) without work, that is, were not in paid employment or self employment;
(ii) currently available for work, that is, for paid employment or self-employment; and (iii) seeking work, that is, had
taken specific steps in a specified recent period to seek paid employment or self-employment. Non-employment
includes inactive people of working age (either because they do not wish to work or because they are not actively
seeking work).

8

6. The JAS implementation

The JAS class structure of the demo07 model is organised as in Table 1.

Package Class

algorithms MapAgeSearch

data Parameters

data.filters ActiveMultiFilter

 FemaleFilter

 FemaleToCoupleFilter

 FemaleToDivorce

 MaleFilter

 MaleToCoupleFilter

experiment PersonsCollector

 PersonsObserver

 StartPersons

model Household

 Person

 PersonsModel

model.enums CivilState

 Education

 Gender

 WorkState

Table 1. Class structure

The core of the simulation lies in the model package, which contains the classes PersonModel,

Person and Household. The experiment package contains the StartPerson class that specifies to run the

simulation in interactive mode, the PersonsCollector class that collects all the statistics needed to monitor

the simulation and updates the output database, and the PersonsObserver class that creates and manages the

graphical object for runtime monitoring. Parameters and coefficients are loaded into the Parameters class in

the data package. All filters used to filter collections are grouped in the data.filters subpackage. The

categories used for gender, educational levels, civil state and work state are stored as Enums in the

model.enums subpackage. Finally the algorithms package contains classes that perform technical tasks (in

the example, MapAgeSearch searches age- and gender- specific values in a map of coefficients, with age and

gender as keys). Classes in the algorithms package are meant to be of general use beyond the specific model

being developed, and are candidates for inclusion in the core libraries in future releases of JAS.

The project is organised in the standard JAS folder structure, as described in Table 2.

9

Folder Files Notes

input p_birth.xls Birth probabilities, by age and (simulated) year

 p_death_f.xls Death probabilities, by age and (simulated) year, for females

 p_death_m.xls Death probabilities, by age and (simulated) year, for males

 al_p_mmkt.xls Marriage probability, by age group, gender and civil state

 p_divorce.xls Divorce probability, by age group and (simulated) year

 coeff_marriage_fit.xls Marriage score coefficients: determine how well a specific

male fits a given female

 coeff_divorce.xls Divorce coefficients: determine the (unaligned) probability

of divorcing

 coeff_inwork.xls Employment coefficients: determine the (unaligned)

probability of being employed

 input.h2 Initial population

output (empty)

src (all java classes) See table 1

target (compiled classes, JARs etc.)

libs (external libraries, empty)

(root) pom.xml

Table 2. File structure

The Java classes are contained in the src folder. The input folder contains the MS Excel parameter

files and the initial population, stored as an h2 database (input.h2). The output folder is initially empty. For

each new simulation experiment, a new subfolder is created with the appropriate time stamp, so as to

uniquely identify the experiment (e.g. 20141218151116, for experiments initiated on the 18th December

2014, at 16 seconds after 3.11pm). The subfolder contains a copy of all the input files (in the input directory)

and an output database (out.h2, in the database directory).

The target and lib folders contain technical content of no immediate interest to the modeller. The root

folder also contains a pom (project object model) file, which contains information on the JAS version used

for the project. Apache Maven, an open source software project management and comprehension tool uses

this information to manage all the project's build, reporting and documentation. In particular, by specifying

in the pom file the desired release for each library used (including the JAS libraries), Maven automatically

downloads the relevant libraries from the appropriate repositories.12

6.1 Parameters

As JAS supports a clear distinction between modelling classes and data structures, parameters are

loaded and stored in a specific class, Parameters.java. The class makes use of the

ExcelAssistant.loadCoefficientMap() method to read the parameters from MS Excel files: this requires to

specify a .xls file, a sheet name, the number of key columns and the number of value columns.13 Parameters

12 This implies that each JAS project has its own copy of all the libraries used, ensuring that the project is self-contained
and that it keeps working exactly as intended even when new versions of the libraries are released (and even if
backward compatibility is not respected).
13 It is also possible to load the parameters from a table in the input database. See the online documentation for further
details.

10

are then stored in MultiKeyCoefficientMap objects, which are basically standard Java maps with multiple

keys (Box 1).

 public static void loadParameters() {

 // probabilities

 pBirth = ExcelAssistant.loadCoefficientMap("input/p_birth.xls", "Sheet1", 1, 59);

 pDeathM = ExcelAssistant.loadCoefficientMap("input/p_death_m.xls", "Sheet1", 1, 59);

 pDeathF = ExcelAssistant.loadCoefficientMap("input/p_death_f.xls", "Sheet1", 1, 59);

 pMmkt = ExcelAssistant.loadCoefficientMap("input/al_p_mmkt.xls", "Sheet1", 3, 4);

 pDivorce = ExcelAssistant.loadCoefficientMap("input/p_divorce.xls", "Sheet1", 2, 59);

 pInWork = ExcelAssistant.loadCoefficientMap("input/p_inwork.xls", "Sheet1", 3, 59);

 // coefficients

 coeffMarriageFit = ExcelAssistant.loadCoefficientMap(

 "input/reg_marriage_fit.xls", "Sheet1", 0, 9);

 coeffDivorce = ExcelAssistant.loadCoefficientMap(

 "input/reg_divorce.xls", "Sheet1", 0, 6);

 coeffInWork = ExcelAssistant.loadCoefficientMap(

 "input/reg_inwork.xls", "Sheet1", 2, 5);

 // definition of regression models

 regMarriageFit = LinearRegression(coeffMarriageFit);

 regDivorce = ProbitRegression(coeffDivorce);

 regInWork = ProbitRegression(coeffInWork);

 }

Box 1. The Parameters.loadParameters() method.

There are two types of parameters in demo07: probabilities and regression coefficients.

Birth and death probabilities have one key (age), while the value columns refer to different simulation

years: birth and death probabilities are therefore age- and year-specific.

Divorce probabilities have two keys (the lower and upper bounds defining age groups), while value

columns refer again to different simulation years: divorce probabilities are therefore age group- and year-

specific.

Marriage and employment probabilities have three keys (the lower and upper bounds defining age

groups and gender), while value columns refer to different civil states: marriage and employment

probabilities are therefore age group- and civil state-specific.

Table 3 shows how the p_birth.xls file looks like.

 Simulation year

age 2002 … 2061

15 0.00068 … 0.00075

16 0.00186 ... 0.00167

17 0.00595 … 0.00557

18 0.01141 … 0.01158

…

50 0.00010 … 0.00021

Table 3. Extract from the p_birth.xls file

11

Regression coefficients have one key which is the variable name, and a corresponding value with the

estimated coefficient. They might have additional keys, as in reg_inwork.xls, if the coefficients are

differentiated by some other variables (gender and employment state, in this example). Table 4 shows how

the reg_inwork.xls file looks like.

vble name gender work state coeff

age Male Employed -0.19660

married Male Employed 0.18928

const Male Employed 3.55461

…

age Male NotEmployed 0.97809

const Male NotEmployed -12.39108

…

age Female Employed -0.27405

married Female Employed -0.09068

const Female Employed 3.64871

…

age Female NotEmployed 0.82176

married Female NotEmployed -0.55910

constant Female NotEmployed -10.48043

…

Table 4 Extract from the coeff_inwork.xls file

The appropriate regression models are then defined based on the regression coefficients.

6.2 The PersonsModel class

6.2.1 Objects

The Model extends the AbstractSimulationManager class. This requires implementing the buildObjects and

the buildSchedule methods. The buildObjects method contains the instructions to create all the agents and the

objects that represent the virtual environment for model execution (Box 2).14 In demo07, this involves

loading the parameters for the simulation and the initial population, made of persons and households. Three

other methods complete the simulation setup: initializeNonDatabaseAttributes() initializes attributes that do

not appear in the input database, such as the education level; addPersonsToHouseholds() registers household

members, and cleanInitialPopulation() checks the internal consistency of the initial population and removes

errors, making sure that all marriage partnerships are bilateral, that all partners belong to the same household,

and that no empty households exist.15

14 The @Override annotation is used by the Java interpreter to ensure that the programmer is aware that the method
declared is overriding the same method declared in the superclass.
15 This method is absent in the LIAM2 implementation, which does not get rid of all the errors in the initial database.

12

@Override

public void buildObjects() {

 Parameters.loadParameters();

 System.out.println("Parameters loaded.");

 persons = (List<Person>) DatabaseUtils.loadTable(Person.class);

 households = (List<Household>) DatabaseUtils.loadTable(Household.class);

 System.out.println("Initial population loaded.");

 initializeNonDatabaseAttributes();

 addPersonsToHouseholds();

 cleanInitialPopulation();

}

Box 2. The PersonsModel.buildObjects() method.

As we have seen, the general rule is that parameters should not be hard-coded in the simulation. The

only exception is with control parameters that can be changed from the GUI before the simulation starts or

while the simulation is running in order to experiment with the model behavior in interactive mode. Control

parameters are properties of a simulation, they are annotated with @ModelParameter and are automatically

loaded into the JAS GUI. In demo07 there are just three such parameters, as described in Box 3.

@ModelParameter(description="Simulation begins at year [valid range 2002-2060]")

private Integer startYear = 2002;

@ModelParameter(description="Simulation ends at year [valid range 2003-2061]")

private Integer endYear = 2061;

@ModelParameter(description="Retirement age for women")

private Integer wemra = 61;

Box 3. PersonsModel: scenario parameters.

6.2.2 Schedule

The buildSchedule() method contains the plan of events for the simulation. Events are planned based on a

discrete event simulation paradigm. This means that events can be scheduled dynamically at specific points

in time. The frequency of repetition of an event can be specified in the case of periodic events. An event can

be created and managed by the simulation engine (a system event e.g. terminating the simulation), it can be

sent to all the components of a collection or list of agents or it can be sent to a specific object/instance.

Events can be grouped together if they share the same schedule.

In demo07, all events are scheduled right from the beginning of the simulation (no dynamic

scheduling), and occur on a yearly basis. They are grouped in an EventGroup called s, which is scheduled at

every simulation period starting at 0 with the schedule(Event event, long atTime, int withLoop) method:

getEngine().getEventList().schedule(s, 0, 1);

The events of demo07 are typically directed to a collection of objects – persons or households – and

are inserted into an EventGroup with the instruction

s.addCollectionEvent(Object object, [some action the object must perform]);

13

The actions to be performed can be specified in two ways. The simplest is to use Java reflection and

simply specify the object’s method name to be invoked. For instance, asking all persons to perform the

aging() method would require the instruction:

s.addCollectionEvent(persons, “ageing”);

Use of Java reflection however is quite slow. A better approach is to use the EventListener interface.

When an object implements this interface, it must define an onEvent() method that will receive specific

enumerations to be interpreted. We will describe how the Person and Household classes implement the

onEvent() method in due time. For now, we simply note that by using the EventListener interface, the

scheduling of the ageing() method becomes:

s.addCollectionEvent(persons, Person.Processes.Ageing);

By default, the broadcasting of an event to a collection of objects is performed in safe mode (read

only), and does not allow the concurrent modification of the collection itself. This is not a problem with the

ageing() process, as ageing per se does not entail any modification in the list of persons, that is, it does not

add nor remove anyone. This is not true with other processes, like birth() or death(). In order to allow the

collection to be changed while iterated by the simulation engine, this feature has to be switched off, as in

s.addCollectionEvent(persons, Person.Processes.Death, false);

The last argument specifies that the collection is subject to changes while iterated, and the JAS engine treats

it accordingly.

The order of the events in the simulation follows the original LIAM2 implementation and is

specified as in Box 4: there is a first set of demographic events (ageing, death, birth, marriage, exit from

parental home, divorce, household composition) and then a set of events that define the work status (whether

in education, retired, other non-employed, or employed).

 @Override
 public void buildSchedule() {

 EventGroup s = new EventGroup();
 // 1: Ageing
 s.addCollectionEvent(persons, Person.Processes.Ageing);

 // 2: Death
 s.addCollectionEvent(persons, Person.Processes.Death, false);

 // 3: Birth
 s.addCollectionEvent(persons, Person.Processes.Birth, false);

 // 4: Marriage
 s.addCollectionEvent(persons, Person.Processes.ToCouple, false);
 s.addEvent(this, Processes.MarriageMatching);

 // 5: Exit from parental home
 s.addCollectionEvent(persons, Person.Processes.GetALife, false);

 // 6: Divorce
 s.addEvent(this, Processes.DivorceAlignment);
 s.addCollectionEvent(persons, Person.Processes.Divorce, false);

 // 7: Household composition
 // (for reporting only: household composition is updated whenever needed throughout
 // the simulation)
 s.addCollectionEvent(households, Household.Processes.HouseholdComposition);

 // 8: Education
 s.addCollectionEvent(persons, Person.Processes.InEducation, false);

14

 // 9: Work
 s.addEvent(this, Processes.InWorkAlignment);

 getEngine().getEventList().schedule(s, 0, 1);

 getEngine().getEventList().schedule(
 new SingleTargetEvent(this, Processes.Stop), endYear - startYear);

 }

Box 4. The PersonsModel.buildSchedule() method.

Marriage is performed in two steps. First, a subset of suitable males and females are selected for

matching by invoking the method Person.toCouple() 16 ; then, matching takes place. As we have seen,

matching uses a “centralised” algorithm and is therefore performed by the Model itself. Consequently, this

event is a single target event, rather than a collection event, and is inserted into our EventGroup s with the

instruction

s.addEvent(this, Processes.MarriageMatching);

Similarly, the divorce and work events are subject to alignment and are managed directly by the

Model, with the methods divorceAlignment() and inWorkAlignment(), though divorce also requires some

actions taken by the individuals themselves – with the method divorce() – after they have been selected to

divorce. householdComposition() is the only method which is directed to the collection of households. It

simply updates the number of adults and children in each household for reporting purposes. A final single

target event is scheduled for the last year of the simulation with the method schedule(Event event, long

atTime): its target is the Model itself and brings the simulation to a halt:

getEngine().getEventList().schedule(

 new SingleTargetEvent(this, Processes.Stop), endYear - startYear);

6.2.3 The EventListener interface

Since the Model performs actions during the simulation, as with the Person and Household classes, it

implements the EventListener interface. This requires first to enumerate all the actions that the Model is

supposed to perform (this is done by defining the specific enum Processes), and then to specify the method

onEvent() – see Box 5.

public enum Processes {
 MarriageMatching,
 DivorceAlignment,
 InWorkAlignment,
 Stop;
 }

 @Override
 public void onEvent(Enum<?> type) {
 switch ((Processes) type) {
 case DivorceAlignment:
 divorceAlignment();
 break;
 case InWorkAlignment:
 inWorkAlignment();
 break;
 case MarriageMatching:
 marriageMatching();
 break;
 case Stop:

16 See section 6.3 below.

15

 log.info("Model completed");
 getEngine().pause();
 break;
 }
 }

Box 5. Implementation of the EventListener interface in PersonsModel.

We now dig into the matching and alignment methods performed by the Model.

6.2.4 The matching algorithm

Prior to matching, a sample of the population to marry at this time is determined randomly using the

Person.toCouple() method. Subsequently, matching involves first ordering all the females; then, for each

female starting from the top of the ranking, all males are ordered and the most suitable male is matched. This

continues until there are either no more females or males to match. Females are ordered according to their

age difference (in absolute value) with respect to the average age in the pool of females to be matched, |age-

mean(age)|; the female whose age is closest to the average is ranked first. To compute this ranking, the

average age of the subset of females selected for matching is required. There are a number of ways to

perform this computation, which is preliminary to the application of the matching algorithm. The one that is

implemented in demo07 makes use of Java closures (Box 6).17

 final AverageClosure averageAge = new AverageClosure() {
 @Override
 public void execute(Object input) {
 add(((Person) input).getAge());
 }
 };

 Aggregate.applyToFilter(getPersons(), new FemaleToCoupleFilter(), averageAge);

 Box 6. Computing the average age for the would be spouses in PersonsModel.MarriageMatching().

The JAS collection package defines an AverageClosure as a closure that receives values from objects as an

input and returns the mean of these values as an output. Here, it is used to compute the average age of a

given set of persons. The set is defined by applying the FemaleToCouple filter to the list of all persons, with

the instruction

Aggregate.applyToFilter(getPersons(), new FemaleToCoupleFilter(), averageAge);

The averageAge closure now contains the average age of all filtered females. In turn, the FemaleToCouple

filter simply selects the female persons who have the toCouple flag switched on (Box 7).

public class FemaleToCoupleFilter implements Predicate {

 @Override
 public boolean evaluate(Object object) {
 Person agent = (Person) object;
 return (agent.getGender().equals(Gender.Female) && agent.getToCouple());
 }

}

 Box 7. The FemaleToCouple filter.

17 Technically, a closure is a function that refers to free variables in their lexical context. A free variable is an identifier
(the identity of the person which is included in the evaluation set, in our example) that has a definition outside the
closure: it is not defined by the closure, but it is used by the closure. In other words, these free variables inside the
closure have the same meaning they would have had outside the closure.

16

Having the filters specified as separate classes, grouped in the separate package data.filters, might

look cumbersome at first (and there are other ways to do this, see the online documentation) but allows to

keep the core code clean while using the standard Apache Predicate approach to filtering – remember that the

JAS approach supports the use of existing software solutions whenever possible, and envisages to keep the

specificities of the JAS libraries to a minimum in order to minimise the “black box” feeling of many

simulation platforms.

Matching is then performed, following the LIAM2 implementation, by making use of a simple one-

way matching procedure (the agents in one collection – females in our example – choose, while the agents in

the other collection – males – remain passive) implemented in the SimpleMatching class:

matching(collection1, filter1, comparator1, collection2, filter2, matchingScoreClosure,

matchingClosure);

and it is invoked as

SimpleMatching.getInstance().matching(...);

The matching method requires 7 arguments:

1. collection1: the first collection (e.g. all individuals in the population);

2. filter1: a filter to be applied to the first collection (e.g. all females with the toCouple flag on);

3. comparator1: a comparator to sort the filtered collection, which determines the order that the agents

in the filtered collection will be matched.

4. collection2: the second collection, which can be the same as collection1 (e.g. all individuals in the

population) or a different one; the two collections do not need to have the same size;

5. filter2: a filter to be applied to the second collection (e.g. all males with the toCouple flag on);

6. matchingScoreClosure: a piece of code that assigns, for every element of the filtered collection1, a

double value to each element of the filtered collection2, as a measure of the quality of the match

between every pair;

7. matchingClosure: a piece of code that determines what to do upon matching.

As in the computation of the average age, the use of closures – which are relatively new to the Java

language – allows a great simplification of the code. While it is not required that the user knows about

closures, it is interesting to understand why they are so useful. In the example, suppose that the females in

the population are sorted according to some criterion, for example beauty: the prettiest woman is the first to

choose a partner, the second prettiest is the second to choose etc. The matchingScoreClosure sorts all

possible mates according to some other criterion, for example wealth. Hence, the prettiest woman gets the

richest man, the second prettiest gets the second richest, etc. In such a case, a comparator would suffice to

order the males in the population, as the ranking is the same irrespective of the female who is evaluating

them. But suppose now that the attractiveness of a man depends on the age differential between himself and

the potential partner: in such a case, the ranking is specific to each woman in the population. A simple

comparator would still do the job, but the comparator should be able to access the identity of the woman who

is making the evaluation as an argument, which requires a lot of not-so-straightforward coding. Closures

allow to bypass this technical requirement because they can pass a functionality as an argument to another

method; in other words, they treat functionality as method argument, or code as data.

Closures in the matching() method are easier used than explained: the 7 arguments are listed in Box 8.

17

 SimpleMatching.getInstance().matching(

 // collection1: the whole population
 getPersons(),

 // filter1:
 new FemaleToCoupleFilter(),

 // comparator1: a comparator that

 // assigns priority to the individual that has a lower difficulty in matching
 // (this is determined by an individual’s age in relation to the average)

 new Comparator<Person>() {

 @Override

 public int compare(Person female1, Person female2) {

 return (int) (Math.abs(o1.getAge() - averageAge.getAverage()) -
 Math.abs(o2.getAge() - averageAge.getAverage()));

 }
 },

 // collection2: same as collection1
 getPersons(),

 // filter2:
 new MaleToCoupleFilter(),

 // MatchingScoreClosure: a closure that, given a specific female,
 // computes for every male in the population a matching score
 new MatchingScoreClosure<Person>() {

 @Override
 public Double getValue(Person female, Person male) {
 return male.getMarriageScore(female);

 }
 },

 // matchingClosure: a closure that creates a link between a specific
 // female and a specific male, and sets up a new household.
 new MatchingClosure<Person>() {

 @Override
 public void match(Person female, Person male) {

 female.marry(male);
 male.marry(female);

 }
 }
);

 Box 8. The matching algorithm in PersonsModel.MarriageMatching().

6.2.5 Alignment

Alignment involves comparing the provisional outcomes of the simulation with some external aggregate

targets, and then modifying the simulation outcomes in order to match the external totals. We show how this

is implemented in demo07 by looking at the divorceAlignment() method; the inWork() alignment method

works similarly. When it comes to divorce, as in marriageMatching(), the focus is on females: males are

passive recipients of their partners’ choices. Different targets are specified for different age groups and

simulated years; as we have seen, these are read from the file p_divorce.xls and stored into the

MultiKeyCoefficientMap pDivorce in the Parameters class. The divorceAlignment() method works cell by

cell, that is, it aligns each age group of the population to its year-specific target: this means that the

alignment algorithm is applied once for every age group (as defined in the .xls parameter file). The structure

of the method is therefore as follows:

 For each age group: do alignment:

18

o Read target.

o Select the relevant subgroup of married females.

o Compute, for each of the selected females, a probability to divorce.

o Select the couples that divorce by applying the SBD algorithm: females are ranked according

to the difference between their divorce probability and a random number uniformly

distributed between 0 and 1; then, the number of couples equal to the target are selected to

divorce by starting with the top ranked female and going down the ranks until the target

number is reached.18

The MultiKeyCoefficientMap pDivorce, which contains the targets, has a three dimensional key: the

lower and upper bounds for the age group, and the year of the simulation. The age-group-specific and year-

specific targets are read with the instruction reported in Box 9.

 MultiKeyCoefficientMap map = Parameters.getpDivorce();

 for (MapIterator iterator = map.mapIterator(); iterator.hasNext();) {

 iterator.next();
 MultiKey mk = (MultiKey) iterator.getKey();
 int ageFrom = (Integer) mk.getKey(0);
 int ageTo = (Integer) mk.getKey(1);
 double divorceTarget = ((Number) map.getValue(
 ageFrom,
 ageTo,
 getStartYear() + SimulationEngine.getInstance().getTime())).doubleValue();
 […]

}

 Box 9. PersonsModel.divorceAlignment(): reading the targets.

The alignment methods require 4 arguments:

1. collection: a collection of individuals whose outcome or probability of an event has to be aligned

(e.g. all the population);

2. filter: a filter to be applied to the collection (e.g. all females selected to divorce);

3. alignmentProbabilityClosure or alignmentOutcomeClosure: a piece of code that i) computes for

each element of the filtered collection a probability for the event (in the case that the alignment

method is aligning probabilities, as in the SBD algorithm) or an outcome (in the case that the

alignment method is aligning outcomes), and ii) applies to each element of the filtered collection the

specific instructions coming from the alignment method used;

4. targetShare or targetNumber: the share or number of elements in the filtered collection that are

expected to experience the transition.

Box 10 shows how the alignment method is implemented in demo07.

 new SBDAlignment<Person>().align(

 // collection:
 getPersons(),

 // filter:
 new FemaleToDivorce(ageFrom, ageTo),

18 The ranking involves a stochastic component (the random number that is subtracted from the divorce probability
score) in order to give individuals with a low predicted probability some chance to experience the event. As we have
already noted, the SBD algorithm is quite distortive and its use is deprecated in JAS; it is employed here only for
consistency with the LIAM2 implementation.

19

 // alignmentProbabilityClosure:
 new AlignmentProbabilityClosure<Person>() {

 // i) compute the probability of divorce
 @Override
 public double getProbability(Person agent) {
 return agent.computeDivorceProb();
 }

 // ii) determine what to do with the aligned probabilities

 @Override
 public void align(Person agent, double alignedProbability) {

 boolean divorce = RegressionUtils.event(
 alignedProbability,
 SimulationEngine.getRnd()
);

 agent.setToDivorce(divorce);

 }
 },

 // targetShare:
 divorceTarget

);

 Box 10. PersonsModel.divorceAlignment(): applying the SBD alignment algorithm.

6.3 The Person class

 6.3.1 Entities

The Person class is an Entity class, as specified by the @Entity annotation:

@Entity
public class Person implements Comparable<Person>, EventListener {

[…]

}

This implies that the class is linked to a table in the database with the same name, and that all properties

which are not annotated as @Transient are persisted in the database, when the simulation output is dumped.

Entity classes must specify a PanelEntityKey (annotated as @Id), which is a three-dimensional object which

identifies the agent id, the simulation time and the simulation run. These three keys uniquely identify each

record in the database:

 @Id
 private PanelEntityKey key;

The ORM expects that the field names in the database are the same as the property names in the Java class,

except when a different name is specified as in

 @Column(name="dur_in_couple")
 private Integer durationInCouple;

Enumerations can be interpreted by the ORM both as a string and as ordinal values (0 for the first enum, 1

for the second, etc.), depending on how they are annotated:

 @Enumerated(EnumType.ORDINAL)
 private WorkState workState;

20

 6.3.2 Methods

The Person class implements the EventListener interface and is therefore able to be activated by the

scheduler with the onEvent() method. The calls that a Person is able to respond to – enumerated in a specific

Enum (Box 11) – are:

 Ageing: age and marriage duration are increased; work status is set to retired if retirement age is

reached.

 Death: an age-, gender- and time-specific death probability is read from the

MultiKeyCoefficientMaps pDeathM and pDeathF stored in the Parameters class; this probability is

then compared with a uniformly distributed random number between 0 and 1 to determine the

occurrence of the event:

RegressionUtils.event(deathProbability)

If death occurs, the partner’s status is updated to widow and the person is removed from all the lists
(that is, from his/her household and from the model).

 Birth (applied to all females aged between 15 and 50 included). An age- and time-specific

probability of having a baby is read from the MultiKeyCoefficientMap pBirth stored in the

Parameters class; then the occurrence of the event is determined in a similar fashion to the death()

process. No multiple births such as twins can occur. Newborns are given a potential educational

level that will be reached with certainty. Following the LIAM2 implementation, the person is

assumed to be a student until completion of their studies (at age 16 for lower secondary education,

19 for upper secondary education, and 24 for tertiary education).

 ToCouple (applied to all individuals aged between 18 and 90 included who are not married). This

method reads a probability of forming a partnership and determines whether the Boolean flag

toCouple is switched on (i.e. set to true), to be used by the matching algorithm.

 GetALife (leave parental home): a new household is created if the individual is aged 24 or over,

unmarried and still leaving in the parental household.

 Divorce: after divorce is decided by the Model’s alignment method, links are broken and new

households are created.

 InEducation: this method determines whether an individual is still in education or exits education

and enters the labour market as unemployed.

 public enum Processes {
 Ageing,
 Death,
 Birth,
 ToCouple,
 Divorce,
 GetALife,
 InEducation;
 }

Box 11. The Person.Processes Enum, defining the processes a Person undertakes when activated by

the scheduler.

Other methods of the Person class are:

 getMarriageScore(): computes the score of each male in the marriage pool, for a given female,

based on a linear regression model; it is used by the matching method in the Model.

 marry(): creates a link between the two partners and sets up a new household; it is used by the

matching method in the Model.

 computeDivorceProb(): computes the divorce probability, based on a probit regression model; it is

used by the alignment method in the Model.

21

 computeWorkProb(): computes the employment probability, based on a probit regression model; it

is used by the alignment method in the Model.

Simulation of outcomes or probabilities based on regression models is straightforward:

marriageFit = Parameters.getRegMarriageFit().getScore(this);
divorceProb = Parameters.getRegDivorce().getProbability(this);
workProb = Parameters.getRegInWork().getProbability(this);

If the specification of the model is changed by adding or removing covariates, or if new estimates become

available, nothing has to be changed in the code.

6.4 The Household class

This class contains a list of all household members and is able to count the number of adults and children in

the household. It is defined as an Entity class and is therefore linked to a table with the same name in the

database.

6.5 The PersonsCollector class

The Collector collects statistics and manages the persistence of the simulation outputs on the database. It

extends the AbstractSimulationCollectorManager interface and requires, similarly to the Model, the

implementation of a buildObjects() method and a buildSchedule() method.

 The buildObjects() method creates several CrossSection objects, which collect specific values from

each individual in the population (Box 12).

 @Override
 public void buildObjects() {

 final PersonsModel model = (PersonsModel) getManager();
 ageCS = new CrossSection.Integer(model.getPersons(), Person.class, "age", false);
 nonEmploymentCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getNonEmployed", true);
 employmentCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getEmployed", true);
 retiredCS = new CrossSection.Integer(model.getPersons(), Person.class,

 "getRetired", true);
 inEducationCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getStudent", true);
 lowEducationCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getLowEducation", true);
 midEducationCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getMidEducation", true);
 highEducationCS = new CrossSection.Integer(model.getPersons(), Person.class,
 "getHighEducation", true);

 }

 Box 12. The PersonsCollector.buildObjects() method.

 The Collector’s schedule is made up of two events only, that take place at every simulation period:

the CrossSections are updated, and the persons and households are persisted in the database (Box 13).

 @Override
 public void buildSchedule() {

 EventGroup s = new EventGroup();

22

 s.addEvent(this, Processes.Update);
 s.addEvent(this, Processes.DumpInfo);

 getEngine().getEventList().schedule(s, 0, 1);
 }

 Box 13. The PersonsCollector.buildSchedule() method.

 Updating the CrossSection objects only involves simple instructions such as

ageCS.updateSource();

Similarly, dumping the simulation outputs only requires

DatabaseUtils.snap(((PersonsModel) getManager()).getPersons());
DatabaseUtils.snap(((PersonsModel) getManager()).getHouseholds());

6.6 The PersonsObserver class

The PersonsObserver builds the graphical objects that allow the monitoring and inspection of the
simulation outcome in real time. It extends the AbstractSimulationObserverManager interface and, similarly
to the other simulation managers (the Model and the Collector), requires the implementation of a
buildObjects() method and a buildSchedule() method.

The buildObjects() method creates three plot. The first one (agePlotter) depicts the evolution of the

average age of the simulated population: it takes the ageCS CrossSection from the Collector, with

information on the age of each individual, and computes its mean (by creating a MeanArrayFunction object).

Similarly, the workPlotter plots the frequency of students, retired, other non-employed and employed

individuals in the population, and the eduPlotter plots the share of individuals with each educational level

(Box 14).

 @Override
 public void buildObjects() {
 final PersonsCollector collector = (PersonsCollector) getCollectorManager();

 agePlotter = new TimeSeriesSimulationPlotter("Age", "age");
 agePlotter.addSeries("avg", new MeanArrayFunction(collector.getAgeCS()));
 GuiUtils.addWindow(agePlotter, 250, 50, 500, 500);

 workPlotter = new TimeSeriesSimulationPlotter("Work status", "");
 workPlotter.addSeries("employed", new MeanArrayFunction(collector.getEmploymentCS()));
 workPlotter.addSeries("non-employed", new
 MeanArrayFunction(collector.getNonEmploymentCS()));
 workPlotter.addSeries("retired", new MeanArrayFunction(collector.getRetiredCS()));
 workPlotter.addSeries("students", new MeanArrayFunction(collector.getInEducationCS()));
 GuiUtils.addWindow(workPlotter, 750, 50, 500, 500);

 eduPlotter = new TimeSeriesSimulationPlotter("Education level", "");
 eduPlotter.addSeries("low", new MeanArrayFunction(collector.getLowEducationCS()));
 eduPlotter.addSeries("mid", new MeanArrayFunction(collector.getMidEducationCS()));
 eduPlotter.addSeries("high", new MeanArrayFunction(collector.getHighEducationCS()));
 GuiUtils.addWindow(eduPlotter, 1250, 50, 500, 500);
 }

 Box 14. The PersonsObserver.buildObjects() method.

23

 Other plots can be easily added. In particular, by building on the JFreeChart library, the

CollectionBarSimulationPlotter class in JAS allows to create histograms for representing distributions of

given variables in the simulated population, at any given simulation period.

The schedule of the PersonsObserver class simply manages the updating of these three plots. The

PersonsObserver class also defines an extra parameter which controls the frequency of update of the plots,

and which is loaded into the GUI:

@ModelParameter
private Integer displayFrequency = 1;

6.7 The StartPersons class

The Start class initialises the JAS simulation engine and defines the list of models to be used. In general, the

Start class is designed to handle three types of experiments:

 performing a single run of the simulation in interactive mode, through the creation of a Model and

related Collectors and Observers, with their GUIs;

 performing a single run of the simulation in batch mode, through the creation of the Model and

possibly the Collectors; this involves managing parameter setup, model creation and execution

directly, and is aimed at capturing only the simulation’s numerical output;

 performing a multi-run session (whose structure is defined in a class extending the MultiRun

interface) where the simulation is run repeatedly using different parameter values, so as to explore

the space of solutions and produce sensitivity analyses on the specified parameters.

The Start class implements the ExperimentBuilder interface, which defines the buildExperiment()

method. This method creates managers and adds them to the JAS engine. In demo07, the simulation is run in

interactive mode (Box 15).

public class StartPersons implements ExperimentBuilder {
 public static void main(String[] args) {
 boolean showGui = true;

 StartPersons experimentBuilder = new StartPersons();
 final SimulationEngine engine = SimulationEngine.getInstance();
 MicrosimShell gui = null;
 if (showGui) {
 gui = new MicrosimShell(engine);
 gui.setVisible(true);
 }

 engine.setExperimentBuilder(experimentBuilder);

 engine.setup();

 }

 @Override
 public void buildExperiment(SimulationEngine engine) {
 PersonsModel model = new PersonsModel();
 PersonsCollector collector = new PersonsCollector(model);
 PersonsObserver observer = new PersonsObserver(model, collector);

 engine.addSimulationManager(model);
 engine.addSimulationManager(collector);
 engine.addSimulationManager(observer);
 }

}

Box 15. The StartPerson class.

24

The Start class contains the standard main() method which allows a Java application to run. By

selecting the “run as Java application” option from the Eclipse menu, or by typing “java StartPersons” from

the Command Prompt, this procedure launches the JAS GUI, creates a model instance and gives it to the

simulation engine. It then creates a Collector and an Observer and calls the setup() method of the simulation

engine, which has the task of loading the experiment into memory.

The JAS GUI contains a mask for setting the specific Model parameters, another mask for defining the

specific Observer parameters and the three dynamic graphs defined in the Observer class. Figure 1 depicts

the graphical output of one simulation run.

 Figure 1. The graphical output of one simulation run.

The Tools > ‘Database explorer’ tab in the JAS GUI allows to browse the input and output databases.

By selecting a specific database and pressing the ‘Show database’ button, the data can be explored in the

default web browser using SQL commands. As an example, the output tables can be exported in CSV format

for subsequent analysis using specific statistical tools by typing:

CALL CSVWRITE('person.csv', 'SELECT * FROM PERSON ');

7. Conclusions

The JAS simulation platform achieves a convergence between agent-based and microsimulation tools. The

platform can be assessed both with respect to what it is, and with respect to what it is not. First, JAS is not a

tool to speed up simulation execution; rather, its goal is to speed up model development, facilitate model

documentation, and foster model testing and sharing. The rationale behind this choice lies in the observation

that computer power is always increasing, while researchers’ time is not. Also, large-scale simulation

projects are generally beyond the reach of a single scientist. Even when they remain under the control of a

restricted group of people, they generally require a prolonged effort, often on a stop-and-go basis. The

possibility of building on work done in the past by the same authors or by other researchers is crucial.

Simulation modeling needs cooperative development. The choice of an entirely open-source tool should also

be evaluated in this light. Moreover, JAS does not force the user to adopt predefined solutions to the

problems faced in simulation modeling. By offering a set of libraries that extend the capability of the

standard Java classes, JAS leaves entirely open the possibility of using other libraries and tools, either as an

alternative or on top of the JAS toolkit.In the trade-off between efficiency and transparency, JAS deliberately

opted for the latter.

25

In the paper, we have described some of the potential of the platform, by developing a rich dynamic

microsimulation with demographic and economic life-course events. We opted for replicating the most

complete sample application available in LIAM2, another microsimulation platform, to allow a better

evaluation of the JAS features. A more detailed (and quantitative) comparison of the two implementations, as

well as a comparison of JAS with other simulation platforms such as ModGen, RePast, MASON and

NetLogo is currently undergoing and will be available on JAS website.

26

References

Baekgaard H (2002). “Micro-macro linkage and the alignment of transition processes: some issues,

techniques and examples”. National Centre for Social and Economic Modelling (NATSEM) Technical

paper No. 25.

Billari F, Prskawetz A (2003). Agent-based computational demography. Springer, Berlin.

De Menten G, Dekkers G, Bryon G, Liègeois P, O’Donoghue C (2014). “LIAM2: a New Open Source

Development Tool for Discrete-Time Dynamic Microsimulation Models”. Journal of Artificial

Societies and Social Simulation, 17(3): art. 9.

Gilbert N, Terna P (2000). “How to build and use agent-based models in social science”. Mind & Society,

1(1): 57-72.

Keller AM, Agarwal S, Jensen R (1993). “Enabling The Integration of Object Applications With Relational

Databases”. ACM SIGMOD Proceedings.

Klevmarken A (2002). “Statistical inference in micro-simulation models: incorporating external

information”. Mathematics and Computers in Simulation, 59: 255-265.

Li J, O'Donoghue C (2012). “Simulating Histories within Dynamic Microsimulation Model”. International

Journal of Microsimulation, 5(1): 52-76.

Li J, O'Donoghue C (2014). “Evaluating Binary Alignment Methods in Microsimulation Models”. Journal of

Artificial Societies and Social Simulation, 17(1): art. 15.

Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005). “MASON: A Multiagent Simulation

Environment”. Simulation, 81(7): 517-527.

Luna F, Stefansson B (2000). Economic Simulations in Swarm: Agent-Based Modelling and Object Oriented

Programming”. Kluwer, Dordrecht.

Mannion O, Lay-Yee R, Wrapson W, Davis P, Pearson J (2012). “JAMSIM: a Microsimulation Modelling

Policy Tool”. Journal of Artificial Societies and Social Simulation 15(1): art. 8.

Minar N, Burkhart R, Langton C, Askenazi M (1996). “The Swarm simulation system: A toolkit for building

multi-agent simulations”. Santa Fe Institute Working Paper 96-06-042, Santa Fe.

North MJ, Collier NT, Ozik J, Tatara E, Altaweel M, Macal CM, Bragen M, Sydelko P (2013). “Complex

Adaptive Systems Modeling with Repast Simphony”. Complex Adaptive Systems Modeling, Springer,

Heidelberg.

Richiardi M (2012). “Agent-based Computational Economics. A Short Introduction.” The Knowledge

Engineering Review, 27(2): 137-149.

Richiardi M (2013). “The missing link: AB models and dynamic microsimulation”. In: Leitner S, Wall F

(eds). Artificial Economics and Self Organization. Springer, Lecture Notes in Economics and

Mathematical Systems, vol. 669, Berlin.

27

Stephensen P (2014). “An Information-Loss-Minimizing Approach to Multinominal Alignment in

Microsimulation Models”. DREAM Working Paper 2014:4.

Statistics Canada (2009). “Modgen Version 10.1.0 Developer’s Guide”. Accessed on 17/12/2014 at

http://www.statcan.gc.ca/microsimulation/pdf/dev-guide-eng.pdf.

Wilensky U (1999). “NetLogo (and NetLogo User Manual)”. Center for Connected Learning and Computer-

Based Modeling, Northwestern University.

