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Figure 1. The time series of the Draupner rogue wave. The maximum wave height is approximately 25.6 m with a peak elevation of
18.5 m.

First optical rogue waves have been identified with the
high amplitude peaks occurring in the supercontinuum
generated by a non-linear photonic crystal fibre [4], then,
roguewaveshavebeen reported inmanydifferent types of
optical systems, see e.g. [5,6]. Rogue waves have also been
reported in a large number of other physical domains, as
in water waves, linear and non-linear optics, plasmas,
superfluids, Bose–Einstein condensates, acoustics (see,
e.g. [5] and references therein).

The aim of this review is to give an introduction to
the basic physical concepts and mathematical tools
required to describe rogue wave phenomena in a mul-
tidisciplinary context. Among the various experiments
we will refer mostly to examples from water waves and
optics, the two domains have in common one of the
fundamental equations in non-linear physics, the non-
linear Schrödinger equation, NLSE, from which proto-
type rogue wave solutions can be derived. Numerical
simulations also play an important role in shedding light
on basically involved mechanisms, such as the modula-
tional instability, emergence of large breathers and large
filaments in wave turbulence. Here, we will present some
of the most prominent features of the rogue wave phe-
nomena, as the large deviations from the Gaussian
statistics of the amplitude, the existence ofmany uncorre-
lated ‘grains’ of activity and their clustering in inhomoge-
neous spatial domains via large-scale symmetry breaking.
As for an universal definition or a general classification
in terms of different statistics and nature of the invol-
ved waves, this still constitutes the subject of ongoing
researches and continues to stimulate a growing number
of investigations.

Section 2 provides a brief introduction toNLSE and its
applications both in the context of water waves and non-
linear optics. The localised breather solutions of theNLSE
are also described in this section, as well as the superreg-
ular and higher order solutions which are considered as
the rogue wave prototypes. In Section 3 are given several
examples of laboratory experiments in which the NLSE
solutions have been reproduced. Section 4 presents rogue
waves as rational solutions of integrable partial differ-
ential equations, such as the Manakov system, which
describes two coupled sea states propagating in different

directions, so-called the crossing sea-state, a phenomenon
conjectured at the origin of rogue waves in the oceans.
Section 5 is dedicated to an introduction to the main sta-
tistical properties of rogue waves, such as the exceedance
probability and the large-tailed probability distribution
function (PDF) of the wave amplitude. Rogue waves in
spatially extended optical systems are presented in Sec-
tion 6, where it highlighted the stretched exponential
character of the PDF of the light intensity. In Section
7, optical rogue waves occurring in pattern-forming sys-
tems, such as photorefractive or Kerr media with optical
feedback, are presented and, finally, Section 8 are the
conclusions.

2. The non-linear origin of rogue waves: the
NLSE

Non-linearity, even though statistically small in theocean,
is considered as playing a fundamental role in the ocean
wave dynamics and, thus, is expected to have a major
part in the origin of the rogue wave phenomena. In par-
ticular, two types of non-linearities can be associated to
the sea surface elevation, the first one resulting from
the presence of the so-called bound, or phase locked,
modes, the second one deriving from the quasi-resonant
interaction between free modes [7,8]. In a similar way,
non-linearity in optics is well-known to arise because of
mode coupling, or multiple wave interaction, in non-
linear media, which gives rise to focusing or defocusing
behaviours. Both in hydrodynamics and in optics, the
paradigm model for non-linear wave interaction is the
non-linear Schrödinger equation, NLSE,

i
(
∂A
∂t

+ cg
∂A
∂x

)
= β

∂2A
∂x2

+ α|A|2A, (1)

where A is the complex wave amplitude, cg = ∂ω/∂k is
the group velocity, ω the wave frequency and k the wave
number, and β and α are two constant coefficients that
weight, respectively, the dispersive and non-linear terms.
This equation is able to catch the main features of non-
linear wave dynamics, as the modulational instability,
the formation of solitons and the appearance of rogue



CONTEMPORARY PHYSICS 3

waves. Moreover, the NLSE is an integrable equation via
the Inverse Scattering Transform and such property can
be used to identify rogue waves in random wave trains
[9].

The modulational instability, also known as the
Benjamin–Feir or side-band instability, describes the
exponential growth of an initially sinusoidal long wave
perturbation of a plane wave. The non-linear stage of the
modulational instability is described by exact solutions
of the NLSE, known as Akhmediev breathers [10] and
considered as prototypes of rogue waves [11]. Besides the
Akhmediev breather, the NLSE has a variety of solutions
that are the results of a focusing process, among which
the Kuznetsov-Ma breather [19,20], the Peregrine soliton
[12], the N-breather solution [13] and the superregular
breathers [14].

In hydrodynamics, the coefficients α, β and cg are,
in general, complicated functions of the carrier wave
number k0, the water depth h and the gravity acceler-
ation g . However, in the limit of infinite water depth, the
coefficients reducenotably to cg = ω0/(2k0),α = ω0k20/2
and β = ω0/(8k20) with ω0 = √

gk0. In this limit, it
is possible to introduce a dispersive, LD, and a non-
linear, LNL, length as follows, LD = (ω2

0/��
2)/k0 and

LNL = 1/(|A0|2k30), where�� is ameasure of the spectral
bandwidth and |A0| is a typical wave amplitude of the
considered process. The ratio between the dispersive to
the non-linear length is known as the Benjamin–Feir
Index (BFI) [15,16]

BFI =
√

LD
LNL

= |A0|k0
��/ω0

, (2)

a non-dimensional parameter related to the probability
of formation of rogue waves in incoherent wave trains.
In the context of water waves, in particular, in oceanog-
raphy, the BFI is used as an indicator for rogue wave
forecasting, as the probability of finding extreme waves
increases for initial conditions characterised by large BFI.

In the context of optics the NLSE is used, for instance,
to describe optical pulse propagation in non-linear fibres.
In this context, it is usually written in the form (see, e.g.
[17])

i
∂ψ

∂x
− β2

2
∂2ψ

∂t2
+ ω0

c
n2|ψ |2ψ = 0, (3)

where space takes the role of time, β2 = (
∂2k/∂ω2)

ω0
is

the group velocity dispersion coefficient, ω0 the central
frequency of the pulse and n2 the non-linear coefficient
expressing the Kerr-like optical response of the medium.
The pulse evolution can be characterised by two char-
acteristic lengths, the dispersive length L−1

D = |β2|/2δ20,
where δ0 is the time width of the input pulse, and the
non-linear length LNL = ω0n2/(c P0), where P0 is the

peak pulse amplitude. A non-dimensional number that
weights the linear to the non-linear contribution, N ≡
LD/LNL can be introduced. The interplay between group
velocity dispersion and self phasemodulations is ruled by
N , with non-linear effects becoming dominant at largeN
and soliton balance between dispersion and non-linear
focusing occurring for LD ∼ LNL. For this reason N is
also called the soliton number.

A detailed discussion on the analogy between NLSE
in non-linear optics and in water waves can be found in
[18]. In particular, in analogy with water waves, the BFI
can be derived for optical fibres characterised by a Kerr
non-linearity, which takes the form

BFIK =

√
2n2〈|A|2〉
ω0c|β2|Seff
��/ω

, (4)

where Seff is the effective area of the fibre core, 〈|A|2〉 is
the optical power and ��/ω0 is the relative frequency
spectral bandwidth. The BFIK can also be constructed as
the ratio of the dispersive to non-linear length, BFIK =√
LD/LNL in analogy with the water waves BFI, and pro-

vides an indicator of the probability of occurrence of
optical rogue waves.

The NLSE exhibits localised solutions, solitons or
breathers type, which are considered as the prototypes
of rogue waves. Examples of the classical NLSE localised
solutions are shown in Figure 2. By taking the conven-
tional form of NLSE for water waves, Equation (1), in
a frame of reference moving with the group velocity,
the Akhmediev breather is a solution periodic in space
x and localised in time t, which describes the modula-
tional instability in its non-linear regime [10] and has the
following analytical form:

A(x, t) = A0 exp
[−iβA2

0t
]

×
(√

2ν̃2 cosh[�t] − i
√
2σ̃ sinh[�t)]√

2 cosh[�t] − √
2 − ν̃2 cos[Kx] − 1

)
,

(5)

where ν̃ = K/A0
√
α/β , σ̃ = ν̃

√
2 − ν̃2, � = βA2

0σ̃ ,
and K is the wave number of the perturbation. For large
negative times the solution becomesA0 exp (iφ)(1+δ cos
(Kx)) with δ small, which corresponds to a perturbed
Stokes wave. � is the exponential growth rate of the
perturbation. The perturbation grows if 2 − ν̃2 > 0,
which for deep water waves corresponds to the condition
K < 2

√
2A0k20. The absolutemaximumof theAkhmediev

breather, Amax, can be found and it can be shown that
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Figure 2. The localised solutions of NLSE : (a) Akhmediev breather, (b) KM solution, (c) Peregrine soliton. In all the plots the time is
non-dimensionalised by the wave period, the space by the wavelength and the amplitude by A0; only the wave envelope is shown.

Amax

A0
= 1 + 2

√
1 − ν̃2

2
= 1 + 2

√
1 −

(
1

2
√
2εk0/K

)2
.

(6)
The maximum amplitude is reached when εk0/K → ∞,
and for such case Amax/A0 = 3, which corresponds to
the Peregrine solution.

The Kusnetzov–Ma (KM) solution is periodic in time
t and localised in space x [19,20]. While for the Akhme-
diev breather the large time limit is a plane wave plus a
small perturbation, the modulation for the KM breather
is never small; therefore it does not corresponds to the
classical Benjamin–Feir instability. The solution has the
analytical form

A(x, t) = A0 exp
[−iβA2

0t
]

×
(

−√
2μ̃2 cos[�t] + i

√
2ρ̃ sin[�t)]√

2 cos[�t] −√
2 + μ̃2 cosh[Kx] − 1

)
,

(7)

with μ̃ = K/A0
√
α/β , ρ̃ = μ̃

√
2 + μ̃2,� = βA2

0ρ̃. In a
similar way as for the Akhmediev breather one can find
the maximum amplitude and obtain

Amax

A0
= 1 + √

2
√
2 + μ̃2 = 1 + √

2

√
2 +

(
1

2εk0/K

)2
.

(8)
The Peregrine solution, also known as rational solu-

tion, has been originally proposed in [12]. It has the pecu-
liarity of being localised both in time t and in space x and,
therefore, it can be identifies as a wave that ‘appears from
nowhere and disappears without trace’ [21]. Besides, its
maximum amplitude reaches three times the amplitude
of the unperturbed waves. For these reasons it has been
considered as a special prototype of rogue waves [22].
The analytical form of the Peregrine solution is

A(x, t) = A0 exp
[−iβA2

0t
]

×
(

4α(1 − i2βA2
0t)

α + α(2βA2
0t)2 + 2βA2

0x2
,−1

)
, (9)

where α and β are, respectively, the coefficient of the
dispersive and non-linear term in (1), i.e. in infinite water
depth α = ω0/(8k20) and β = k0ω2

0/2.
It is worth noting that the breather solutions are

related one to the other. Their properties are such that
simple transformations link a solution to the other (see,
e.g. [23]). For instance, the Akhmediev breather becomes
the KM solution if K is replaced by iK . Both the Akhme-
diev breather and the KM breather become the Peregrine
soliton in the limit of K → 0. The Akhmediev breather
becomes the plane wave solution if ν̃ = √

2 and the KM
breather becomes a soliton in the limit of K → ∞.

2.1. Superregular and higher order breather
solutions

A new family of exact solutions of NLSE have been
derived in [14], which are named ‘superregular breathers’
and can be used as rogue wave prototypes. They des-
cribe a generalised modulation instability that develops
from localised perturbations of a plane wave. As for the
Akhmediev breathers, the standard modulational insta-
bility is obtained froman infinitesimal perturbationof the
coherent background, however, the perturbation, here, is
localised and not periodic. The superregular breathers
can be obtained as a non-linear superposition of n pairs,
with n integer, of quasi-Akhmediev breathers propagat-
ing in opposite directions. Suchmathematical objects are
able to describe different configurations of the non-linear
stage of the modulational instability, such as the amp-
lification, annihilation or ghost interaction of localised
perturbations.

The mathematical expressions for the superregular
breathers are complicated functions of a number of free
parameters [24] and are not reported here. To give a
qualitative example, we show in Figure 3 a plot of such a
superregular solution taken from [25]. It can be noticed
the higher steepness and higher amplitude of the central
peak of this solution when compared to the breather
solutions shown in Figure 2.
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Figure 3. One-pair breather solution of the focusing NLSE: the
superregular breather. From [25].

In general, it is possible to build non-linear super-
positions of breathers to generate NLSE solutions. The
solutions associated with this mechanism are known as
higher order breathers and display higher amplitude
peaks with respect to the building-block breathers, the
amplification factor increasing with the order of the
solution. These solutions attract a lot of attention as rogue
wave prototypes [13,26–28]. In [21], amethod for finding
the hierarchy of rational solutions of the self-focusing
NLSE is proposed. The process starts by seeding the
evolution equation with simple solutions, such as plane
waves, then, the higher order solutions are constructed
using the recursive Darboux method (see, e.g. [29] for
a detailed presentation of the method). The fundamen-
tal component, or elementary building block of a rogue
wave, is a first-order breather, and starting from this all
higher order solutions are constructed.

A non-linear superposition of order n requires n first-
order components. It can be shown that, if a label j
is given to each component this can be translated by
an amount xj or tj along the x or t axes, respectively.
Different symmetrical arrangements of localised peaks
are obtained depending on the amount of temporal and
spatial translation. In Figure 4 it is shown the hierarchy
of the fundamental NLSE rogue-wave solutions up to
order 6. Circular clusters are obtained on the diagonal of
the space–time translation diagram. In the rogue wave
limit, the solutions appear as patterns of peaks, each
peak corresponding to a Peregrine soliton or a com-
bination of them. The peak amplitude increases with
the order of the solution. If the amplitude of the seed-
ing plane-wave is fixed to 1, the maximum amplitude
reached, for instance, by the fourth-order solution is 9.
It appears from a mathematical point of view that there
is no limitation in the amplification factor of such
solutions.

3. Laboratory experiments and NLSE solutions
as rogue wave prototypes

Several localised solutions of the NLSE have been faith-
fully reproduced in laboratory experiments in order to
demonstrate the non-linear origin of the rogue wave

phenomena.The elementary building-blocks of the rogue
waves as well as several higher order rational solutions
have been reproduced in a controlled way. Experiments
were mainly in fluid dynamics and in optics, the analo-
gies between the two approaches stemming from the
qualitative similarity of water waves propagating in a
channel and light pulses travelling in an optical fibre.
NLSE solutions have been recreated in laboratory by
imposing appropriate initial conditions for water waves
in a tank [30] and by using appropriately addressed input
beams in optical fibres [35].

3.1. Water waves: breathers and higher order
solutions

The first demonstration of a localised solution of NLSE
was the Peregrine soliton obtained in wave tank exper-
iments [30]. The set-up consists of a 15 × 1.6 × 1.5m
tank with 1mwater depth. The appropriate initial condi-
tions are realised using a single-flap paddle activated by
a hydraulic cylinder to generate the waves at the one end
of the channel. A wave-absorbing beach is located at the
opposite end of the tank in order to avoid wave reflec-
tions. The wave height is measured at a given point by
a capacitance wave gauge with a sensitivity of 1.06V/cm
and a sampling frequency of 500Hz.

The Peregrine soliton is located on a backgroundwave
which provides energy for its growth. The choice for the
parameters of this wave is dictated by the size of the
tank and the position where the rogue wave develops
its maximum amplitude depends on the initial condi-
tions at the wave maker. By setting appropriate param-
eters, the maximum breather amplitude was excited at
about 9m along the tank. The water surface-height data
have been collected at 10 positions, with equal separa-
tions of 1m, along the direction of wave propagation.
An example of the experimentally recorded Peregrine
soliton is displayed in Figure 5. The carrier wave has
an amplitude of about one centimetre and the maximum
surface height of the breather reaches a value of three
centimetres. For comparison, the measured time series
(solid line) is plotted together with the curve predicted
by the Peregrine soliton solution (dashed line), showing
a good agreement between theory and experiment. It is
worth noting that such a Peregrine soliton has been used
experimentally to study the impact of a rogue wave on a
ship [31].

The Kuznetsov-Ma solution has also been reproduced
in wave tank experiments [33], as well as higher order
solutions [32,34]. The hierarchy of rational breather so-
lutions up to order five have been successfully gener-
ated for appropriate initial conditions obtained with a
single-flap paddle to generate the waves at one end of the
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Figure 4. Fundamental rogue wave solutions up to order 6. Structures belonging to columnm (form > 1) have effective radial symmetry
of order 2m − 1. Each circular cluster along the diagonal (n = m) displays a ring of 2m − 1 Peregrine solitons around a central rogue
wave of orderm − 2 (form > 2). Reproduced with permission from [29].

Figure 5. Peregrine soliton obtained in water tank experiments:
measured surface height (solid line) and theoretically calculated
Peregrine solution (dashed line). Reproduced with permission
from [30].
channel. A second-order rational solution obtained in the
water tank experiment is shown in Figure 6. A maximal
amplification of a factor 5 above the backgroundwave has
been obtained, in good agreement with the theoretical
prediction. More recently, a superregular breather has
also been successfully reproduced [25]. An example of
experimental observation together with the comparison
with the theoretical prediction is shown in Figure 7.

Figure 6. Second-order rational solution of the NLSE obtained
in water tank experiments (upper curve) and comparison with
the theoretical solution (lower curve); the maximal amplification
above the background wave is 5. From [32].

3.2. Optical fibres: breathers and higher order
solutions

Peregrine solitons have been experimentally realised in
non-linear optical fibres generating femtosecond pulses
[35]. The NLSE equation describing the pulse propaga-
tion in the fibre can be written as
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Figure 7. Creation of a pair of breathers: (a) water wave
experiments and (b) analytical solutions. The envelopes, in black,
are calculated using the Hilbert transform. From [25].

i
∂A
∂z

− β2

2
∂2A
∂T2 + γ |A|2A = 0, (10)

where A(z,T) is the field envelope, β2 < 0 is the group
velocity dispersion and γ is the non-linear coefficient.
The input field can be expressed as A(z = z0,T) =√
P0
[
1 + αmode(iωmod T)

]
, with P0 the input power, αmod

andωmod themodulation strength and frequency, respec-
tively. By defining the non-linear length LNL = (γP0)−1

and the timescale T0 = (|β2|LNL)1/2, the dimensional
distance z and time T are related to the normalised
parameters of the non-dimensional NLSE by the expres-
sion z = x lNL and T = t T0. Given these definitions,
it can be seen that a modulational instability occurs for
ωmod → 0, which is accessible in practice by beating two
narrow-linewidth lasers to create an initial low-
frequency-modulated wave. The input field was obtained
from a pump laser at λp = 1.55µmmixed with a closely
spaced tunable signal at λs, with αmod = 0.225. The
Peregrine soliton was found in the divergent regime at
low-frequency modulation and at maximum pulse
compression.

The dynamics of Akhmediev breathers has also been
studied in an optical fibre with a longitudinally tailored
dispersion, which has allowed to nearly freeze the evolu-
tion of the breathers near their point of maximal com-
pression [36]. The results show a good agreement with
numerical simulations of themodifiedNLSE.Then, using
a similar set-up, the KM soliton was obtained. High-
speed telecommunications-grade components were used
to strongly modulate the output of a continuous laser
diode at λp = 1.55µm. The modulation strength and
period were chosen such that the characteristics of each
cycle match a particular KM soliton. The experimental
results are shown in Figure 8, where the evolution of
the peak power is displayed (Figure 8(a) as a function of
the normalised propagation distance along the fibre z/zp,
where zp corresponds to one period of the KM cycle,
and as a function to time (Figure 8(b). The frequency

spectrum of the KM soliton is shown for the maximum
temporal compression at zp/2 (Figure 8(c). Again, a good
qualitative agreement with the theoretical solution can be
appreciated.

More recently, the development of a small localised
perturbation into a pair of breathers for two propagation
distances have been observed in a similar set-up [25].
Comparison between theory and experiments is shown
in Figure 9. Remarkably, the similar qualitative behaviour
with the superregular breathers observed in water waves
(Figure 7) can be appreciated.

Finally, watch-hand-like super rogue wave patterns
have recently been found as high-order solutions of the
equations that govern the resonant interaction of three
optical pulses in quadratic non-linear media [38]. These
rogue wave solutions exhibit a peak amplitudemore than
five times the background height and are attributed to the
non-linear superposition of six Peregrine solitons.

4. Rogue waves as rational solutions of PDEs

The Peregrine solution, which is the first prototype of
a rogue wave, corresponds to a rational solution of the
standard NLSE. In the recent years, an important res-
earch activity has been developed in order to find ratio-
nal solutions of integrable partial differential equations.
In this framework, rational solutions are called ‘rogue
waves’. As a first example, the following coupled non-
linear Schrödinger equations, called Manakov system,
has been analysed

iut + uxx + 2(|u|2 ± |v|2)u = 0
ivt + vxx + 2(|v|2 ± |u|2)v = 0,

(11)

where the index indicates derivatives. The interest for
this system has been triggered by the fact that in ocean
waves there has been some conjectures on the formation
of roguewaves in the presence of crossing seas, i.e. two sea
states propagating in different directions [39–44], such
sea states being described by a non-integrable version of
the system, Equation (11). In the focusing regime (‘+’
sign) a semi-rational, multiparametric vector solution is
derived, which includes the vector Peregrine solutions,
bright- and dark-rogue solutions and novel vector rogue
waves, which features both exponential and rational de-
pendence on coordinates [45]. Solutions are found by us-
ing the Darboux dressing technique. In [46] are reported
rogue wave solutions of the defocusing vector NLSE (‘−’
sign in Equation (11)). This family of solutions includes
bright-dark anddark-dark roguewaves. The link between
modulational instability and rogue waves is displayed by
showing that only the so-called baseband instability can
sustain rogue-wave formation [47].
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Figure 8. Experimental observation of KM soliton in optical fibres. (a) Evolution of the peak power as a function of the normalised
distance z/zp; (b) temporal evolution; and (c) frequency spectrum of the KM soliton for themaximum temporal compression at zp/2. The
experimental data (red) are compared with the theoretical evolution (black) and simulation (blue). Reproduced with permission from
[37].

Figure 9. Superregular breathers in optical fibers: (a) experiments
and (b) theory. Only the wave envelopes are shown. From [25].

Other examples of rational solutions of an integrable
system can be found in [48], where a novel family of
analytic solutions of three-wave resonant interaction
equations at the purpose of modelling rogue waves is
introduced. The system of equations has the following
form

ut + c1ux = v∗w∗

vt + c2vx = −u∗w∗

wt + c3wx = u∗v∗, (12)

where c1, c2, c3 are the group velocities of the three
complex wave amplitudes u, v, w. Applications of the
above equations can be found in fluid dynamics (cap-
illary-gravity waves, internal gravity waves, surface and
internal waves), in optics (parametric amplification, fre-
quency conversion, stimulated Raman and Brillouin
scattering), in plasmas (plasma instability, laser-plasma
interactions, radio frequency heating), in acoustics and
solid-state physics.

Then, the long-wave–short-wave equation

iut + 1
2
uxx + uv = 0

vt − (|u|2)x = 0,
(13)

has been introduced anddiscussed in termsof exact rogue
wave solutions in [49]. Here, u is a complex field that
describes the envelope of the short waves, while v is a real
long-wave field. The system has applications in plasma
physics, non-linear optics, hydrodynamics, particularly
in the capillary-gravity waves interaction. By following
the standard Darboux dressing procedure, the funda-
mental rogue wave solution has been found. A similar
solution, using the Hirota bilinear form of Equation (13),
has also been found in [50].

5. Basics of rogue wave statistics: exceedance
probability and large tailed PDF

The most salient feature of rogue waves statistics is that
the PDF of the wave amplitude deviates from the Gaus-
sian probability expected from the central limit theorem
when a large number of uncorrelated events are recorded.
Indeed, ocean waves are usually treated as homo-
geneous and stationary stochastic processes characterised
by Fourier phases uniformly distributed in the [0, 2π]
interval [51,52]. In the linear approximation, the wave
components are assumed to be independent from each
other, then, according to the central limit theorem, the
surface elevation should be characterised by a Gaussian
PDF. However, rogue waves and non-linear effects lead
to deviations from the Gaussian behaviour.
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Under the hypothesis of small amplitude, the sur-
face elevation is described in oceanography by a Gaus-
sian distribution. Correspondingly, the PDF of the wave
envelope |A| is given by

p(|A|) = |A|
σ 2 exp

[
−|A|2
2σ 2

]
, (14)

where σ is the standard deviation of the surface elevation.
The above PDF, Equation (14), is called the Rayleigh
distribution. In practice, oceanographers prefer to com-
pute the statistics of wave heights H , where H is the
difference between themaximum of the surface elevation
in between two zero-crossings and the minimum of the
surface elevation in the adjacent zero crossing interval
(see, e.g. [5]). For a linear and narrow band process,
H 
 2|A|, then, the statistics of the wave height is closely
related to the envelope statistics.

Another currently used concept is the significant wave
height,Hs, which expresses the wave height estimated by
a ‘trained observer’ [53]. Nowadays, it is a common rule
to identify the significant wave height with 4σ , that is,
Hs = 4σ . Finally, often one is interested in addressing
the problem on what is the probability of encountering a
wave whose height is larger than some specific heightH0,
i.e the exceedance probability defined as

S(H > H0) =
∫ ∞

H0

H
4σ 2 exp

[
− H2

8σ 2

]
dH

= exp

[
− H2

0
8σ 2

]
= exp

[
−2

H2
0

H2
s

]
. (15)

This distribution function is particularly relevant in view
of providing a statistical definition of rogue waves. For
instance, sometimes in the literature, a rogue wave is
defined for having a height such thatH > 2Hs. However,
thismust be taken not as an universal definition butmore
as a qualitative indicator.

The comparison of the statistics for water waves and
for optical waves is not straightforward because optical
measurements do not provide direct access to the optical
field. Indeed, the measured quantity is the light intensity,
hence, the statistics must be defined for the intensity of
the optical field. For independent linear waves, it is well-
known that they are Gaussian distributed for the field
amplitude, which provides an exponential PDF for the
intensity [54]. In the paper by Solli and co-workers [4]
optical rogue waves were identified as high amplitude
peaks in the time series of the light intensity at the output
of a non-linear fibre. The rogue wave character of the
observations was highlighted by the L shape of the in-
tensity histograms, showing clearly large deviations from
the Gaussian behaviour.

More recently, an optical fibre experiment has been
developed in order to investigate integrable turbulence in
the focusing regime of the one-dimensional NLSE [55],
showing the appearance of rogue waves. In analogy with
the broad spectrum excitation used in one-dimensional
experiments for water waves, a random initial wave was
launched in a single-mode optical fibre. The PDF of the
optical power was measured using a specifically devel-
oped optical sampling set-up and found to evolve from
the normal law to a strong heavy-tailed distribution, thus
revealing the formationof roguewaves.Using anultrafast
acquisition system equivalent to microscope in the time
domain, in [56] the direct observation of rogue waves in
incoherent light on the time scale of pico seconds was
achieved.

Also in the integrable turbulence regime, the dynam-
ics of an incoherently pumped passive optical fibre ring
cavity nearby the zero-dispersion wavelength of the fibre
has been studied experimentally and numerically in [57].
The authors show that the cavity exhibits a quasisoliton
turbulence dynamics, whose properties are controlled by
the degree of coherence of the injected pump wave. As
the coherence of the pump is reduced, a transition from
the quasisoliton condensation regime towards theweakly
non-linear turbulent regime characterised by short-lived
rogue wave events is observed.

For equations of the NLS type an exact relation
between the evolution of the fourth-order moment of the
probability distribution and the evolution of the spectral
broadening has been found in [58]. Such relation implies
that an increase in the spectral bandwidth in the focus-
ing/defocusing regime leads to an increase/decrease in
the probability of formation of rogue waves. Indeed, in
[59] it has been shown numerically that out of
equilibrium spectra can lead to an increase in the kurtosis
in deep water waves.

Note that in all the statistical approaches currently
adopted, the systems under analysis are considered to
be autonomous, that is, are considered to be well des-
cribed by equations whose coefficients do not depend
explicitly on time (or space). Non-autonomous problems
are usually less treated in the rogue wave regime, even
though this analysis could be interesting in revealing new
phenomena, as the PDF could, in such cases, change in
the course of time (or space).

6. Rogue waves in spatially extended optical
systems: the stretched exponential PDF

Rogue waves in two-dimensional spatially extended opti-
cal systems have been studied in a non-linear optical cav-
ity, a system characterised by non-linearity and presence
of many transverse modes [60,61]. Here, rogue waves
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appear as high amplitude pulses that spontaneously build
up on the transverse profile of the beam circulating in
the cavity. The cavity is an unidirectional ring oscilla-
tor formed by three high-reflectivity dielectric mirrors
and containing a liquid crystal light-valve, LCLV, which
supplies the gain needed to overcome losses from the
mirrors. The LCLV, formed by the assembly of a nematic
liquid crystal layer with a photoconductive crystal, is
pumped by an incoming laser beam, so-called pump
beam,field amplitudeEp, opticalwavelengthλ = 532 nm,
enlarged and collimated (10mm diameter), from which
photons are injected in the cavity through two wave-
mixing processes occurring in the liquid crystal layer
[60]. The total cavity length is L = 273.3 cm and a lens
of f = 70 cm focal length is positioned at a distance
L1 = 88.1 cm from the entrance plane of the LCLV in
order to ensure the stability of the cavity modes. The
coordinate system is taken such that z is along the cavity
axis and x, y are on the transverse plane, where is the
wavefront of the field Ec circulating in the cavity. Ec is
spontaneously generated starting from the amplification
of refractive index fluctuations in the liquid crystal layer.

While for lowpump intensity the amplitude of the cav-
ity field follows a Gaussian statistics, hence, an
exponential PDF of the light intensity, for high pump, the
system displays the emergence of spatiotemporal pulses
with much higher amplitude with respect to the back-
ground. Such extreme events populate the tail of the
PDF providing large deviations from Gaussianity [5,61].
The spatiotemporal pulses develop erratically in time
and in space and live for a typical time that is dictated
by the response time of the LCLV [60]. The features
of the optical rogue wave statistics are characterised by
measuring the PDF of the light intensity for increasing
levels of the pump beam intensity Ip, corresponding to
the passage from low to high non-linearity. In Figure
10(a) the PDF of the cavity field intensity, I = |Ec|2,
are displayed for Ip/Ith = 1.8, 4.0, 4.2 and 6.4, where
Ith = 1.2mW/cm2 is the threshold for the optical oscilla-
tions to start in the cavity. Increasingly, large deviations
from the exponential behaviour are observed as Ip is
increased. Moreover, all the distributions are well fitted
by the stretched exponential function

P(I) = Ne−
√
c1+c2I , (16)

where 1/c1 is a parameter that measures the deviation
from the exponential behaviour.Meanwhile that the PDF
develops a large tail an increasing number of large ampli-
tudepeaks populates the opticalwavefront over a speckle-
like lower amplitude background (see Figure 10(b)).

Here, the small spatial scale is given by non-linearity
that yields transverse spatial grains of average size λL/a,

where L is the free propagation length and a is the size
of the most limiting aperture in the cavity. Moreover, a
large-scale inhomogeneity is introduced by the chosen
geometrical configuration of the resonator. Indeed, be-
cause of the geometry of the cavity, which is formed by
three mirrors in a quasi-spherical configuration, there
is an inversion symmetry around the y axis, hence, the
field returning to the LCLV is inverted along y after a
round trip. This symmetry breaking provides a nonlocal
coupling between distant domains. As a consequence,
the cavity field Ec develops into large-scale clusters of
elementary grains that are dynamically coupled in a non-
local way.

Numerical simulations have been performed using the
full model equations of the cavity [62]

∂n0
∂t

= −n0 + α|Ec|2,
∂n1
∂t

= −n1 + αEcE∗
p , (17)

where n0 and n1 are, respectively, the amplitude of the
homogeneous refractive index and the amplitude of the
photo-induced refractive index grating at the spatial fre-
quency kc − kp, where kc and kp are the optical wave
numbers of the pump Ep, and cavity field Ec , respectively.
α is the non-linear coefficient of the LCLV. The dynamics
of the liquid crystals is much slower than the settling of
the cavity field, thus,Ec adiabatically follows the evolution
of n0 and n1. By taking the wave propagation equation
with the cavity boundary conditions, Ec is expressed as a
function of the scattering of Ep onto the photo-induced
refractive index grating through a complex operator
accounting for the geometry of the cavity (inversion sym-
metry due to the odd number of mirrors), photon losses
and phase retardation in a round trip.

Starting with a random initial condition, a transient
speckle-like behaviour is observed, then a symmetry
breaking occurs leading to an inhomogeneous build-up
of the field showing large deviations from Gaussianity.
The numerical PDF of the cavity field intensity are dis-
played in Figure 11 for different values of the pump. The
tails are increasingly populated as the pump intensity
increases, in agreement with the experimental observa-
tions. The numerical PDF are also well fitted by the
stretched exponential function Equation (16).

6.1. Mean-field hypercycle amplificationmodel

The inversion symmetry around the y axis induces an
inhomogeneous build-up of the field, hence, spatial
domains are coupled with other and distant domains.
Because of this mechanism, large loops of amplification
are introduced between distant domains, leading to a
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Figure 10. (a) PDF of the cavity field intensity; the non-linearity is increased from the steepest to the shallowest distribution; the black
line is a fit with the stretched exponential function. (b) An instantaneous profile of the cavity field intensity. Reproduced with permission
from [61].
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Figure 11. Numerical PDF of the cavity field intensity for different
values of the pump Ip/Ith = 6 (black), 8 (red), 10 (green); 1−� =
0.7. The dotted line is a fitwith a stretched exponential, c1 = 3.73.
Reproduced with permission from [61].

focusing effect for which at some space locations the
cavity field grows much more with respect to the sur-
rounding places. To elucidate this mechanism, a simple
two-mode model has been proposed, where only the
evolution of the average refractive index n1 is kept, the
average being performed over the transverse (x, y) plane.
For a nearly plane cavity, n̄1 satisfies an equation of the
form

τ
∂n̄1
∂t

= −n̄1 + IpF(n̄1), (18)

where the first and second terms account for the liquid
crystal relaxation and, respectively, the grating feeding
provided by the pump and cavity fields. A cubic function
is taken as an ansatz forF, which describes a linear growth
followed by saturation, this last one being mainly due to
multiple scattering processes [62].

The above mean-field picture is modified by the non-
local coupling due to the inversion of the y-axis after
a round trip. Therefore, two mean fields n̄+ and n̄−
must be considered, where the averages are performed
over the upper and lower half-planes, respectively, and
where each grating n̄± is fed, after a round trip, by the
grating n̄∓ at the opposite side. The main features of the
hypercycle amplification can be captured by using the
cubic function F(n̄±) = n̄± − n̄3±. In this case, it is easy
to show that for 1 < Ip < 2 the system has only one stable

solution, n̄− = n̄+ = 0, whereas for Ip ≥ 2 a bifurcation
occurs with the birth of the two stable asymmetric states
breaking the y → −y symmetry.

Finally, if the non-locality is removed by changing the
geometrical configuration of the resonator, the statistics
becomes Gaussian again, demonstrating the importance
of the nonlocal coupling in the generation of
optical rogue waves [5,61]. The above simplified mean-
field model qualitatively account for the experimental
and numerical observations obtained for the non-linear
cavity. It must be noted that hypercycle amplification is a
mechanism of a general nature and that it plays a relevant
role in different contexts, for instance, in autocatalytic
systems or in spontaneous self-organisation. In the con-
text of ocean rogue waves hypercycle amplification could
play a role, for example, in the interaction between winds
and currents.

6.2. Multimode optical fiber experiments

In order to investigate the relative role of granularity
and inhomogeneity in the generation of optical rogue
waves, a multimode optical fibre experiments has been
set-up [63]. The input beam, from a frequency doubled
solid-state laser, wavelength 532 nm, is focused by a large
numerical aperture lens on the entrance of a multimode
fibrewith 0.4mmcore diameter and 2m length. Less than
1mW/cm2 is coupled inside the fibre. The intensity pro-
file of the input beam is controlled by a computer driven
spatial-light-modulator, SLM, by setting onto the SLM
appropriate transmittance masks T(x, y). While an uni-
form mask T(x, y) allows the whole cone of input wave
vectors to be coupled into the fibre, an inhomogeneous
mask with a black hole prevents the wave vectors passing
in that direction to be coupled into the fibre, thus pro-
viding a symmetry breaking mechanism which induces
at the output domains of different average intensity.
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Figure 12. (a) PDF of the intensity at the output of the multimode fiber; solid (red) line: homogeneous mask; (black) empty dots:
inhomogeneous mask; (red) filled dots: inhomogeneous mask and temporal perturbations; the black dashed line is a fit with an
exponential function; the black solid line is a fit with a stretched exponential (c1 = 10, c2 = 0.092). In the inset: 1D intensity profile I(x)
taken from a corresponding image; 〈I〉 is the intensity averaged over the whole image. (b) measured distribution of the variance σ of the
single PDF measured over each homogeneous domain at the output of the optical fiber.

Besides, the average size of the individual intensity
grains of the fibre output is given by the total number
of modes supported by the fibre, which is proportional
to (a/λ)2, with a the radius of the fibre core and λ the
wavelength of light in air [54]. For the typical experi-
mental conditions, the total number of modes can be
estimated as ∼ 106. Therefore, the intensity distribution
at the fiber output reproduces a situation with a high
number of individual grains clustered into large-scale
spatial domains of different average intensity.

The PDFs of the intensity are determined by acquir-
ing with a CCD camera a large set of images and then
performing the histograms of the intensity on the whole
image stack. The results are shown in Figure 12(a), where
the PDF recorded for a uniform T(x, y) is compared with
the PDF recorded in the presence of an inhomogeneous
mask. The first one (red solid line) is well fitted by an
exponential function (black dashed line), as expected for
speckles [54]. The second one (empty black dots) shows
appreciable, though not too large, deviations from the
exponential. In the same figure, a PDF with strong devi-
ations from the exponential is also plotted; it is obtained
by applying to the fibre a lateral perturbation n(t) with a
Gaussian distribution of the amplitude. The perturbation
is realised by placing a piezoelectric emitter in contact
with a side of the fibre. Thanks to the elasto-optical effect,
when the piezo emits a low frequency acoustic wave, it
locally modifies the optical paths inside the fibre, giving
rise to a different spatial distribution of the output inten-
sity, therefore, the detector collects events over different
speckle configurations.

The symmetry breakingmechanism, together with the
temporal perturbations, lead to the appearance of high
amplitude peaks on the output intensity distributions
I(x, y). Correspondingly, thePDFof the intensity is large-
tailed and well described by the stretched exponential
distribution, Equation (16). In the inset of Figure 12(a) a
one-dimensional intensity profile taken along a 1D line

of a corresponding image is displayed for the inhomoge-
neous case. A large amplitude peak, optical rogue wave,
can be clearly distinguished.

In comparisonwith the non-linear optical cavity, here,
theminimal size of the optical grains is due to the diffrac-
tion limit of the input beam and nonlocal coupling is
provided by the asymmetric mask. On the other hand,
in the cavity there is a spontaneous symmetry breaking
and the average size of the individual optical grains is a
result of the multimode dynamics. Then, in the non-
linear cavity the multimode dynamics spontaneously
induces a continuous change of the cavity field, while
here it is the time-dependent mechanical perturbation
that introduces a dynamical behaviour forcing the change
of speckle pattern configurations.

In both the linear and non-linear system the inhomo-
geneity plays a crucial role in determining the stretched
exponential character of the PDF. In order to account for
its effect, one can consider that at the fibre exit the inten-
sity is distributed as a collection of speckle patterns made
of domains with different average intensities. Within a
single domain the statistics is exponential but the vari-
ance changes from domain to domain. As a consequence,
the overall PDF becomes a stretched exponential as the
events are counted over the whole field. More precisely,
the stretched distribution can be obtained as a statistical
mixture of many exponential distributions with different
variance,

P(I) =
∫ ∞

0
dσρ(σ)

e−I/σ

σ
, (19)

where σ is the local variance of the PDF in a single
domain. The stretched distribution is exactly obtained
when the distribution of σ takes the form

ρ(σ) = √
σ e−

c2σ
4 − c1

c2σ . (20)

Qualitatively, this prediction is well confirmed by the
experimental results, where ρ(σ) has been evaluated by
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Figure 13. (a) Near-field distribution intensity of the backward beam: 2D intensity distribution in the transverse plane, 3D reconstruction
and 1D profile. (b) PDF of the intensity in the presence of rogue waves; the curves are fitted with a stretched exponential; the deviations
from the exponential behaviour increase with increasing the input intensity Iin. (From Ref. [65]).

performing the PDF analysis over small spatial domains
and, then, by determining the local variance of the
associated fit [63]. In Figure 12(b) the distribution ρ(σ)
of the measured local variance σ is plotted for various
values of σ , these being evaluated on the single PDFwhen
measured over each homogeneous domain at the output
of the fiber. A qualitative agreement with the theoretical
expression, Equation (20), can be appreciated.

7. Optical rogue waves in pattern-forming
systems

Optical rogue waves also occur in pattern-forming sys-
tems such as photorefractive or Kerr media with optical
feedback under certain ranges of parameter. Roguewaves
appear as erratic and high intensity peaks on the trans-
verse optical wavefront, live for a lifetime dictated by
the response time of the non-linear medium and exhibit
rogue wave statistics of the intensity [64–67].

In a photorefractive crystal with a single-mirror feed-
back optical rogue waves appear by increasing the input
light intensity after the first bifurcation to an ordered
pattern state [65]. For increasing non-linearity a large
number of unstable modes are brought above threshold,
giving rise to a regime of spatiotemporal turbulence. In
this regime, rare and intense peaks that exhibit the signa-
tures of optical rogue waves have been identified in the
transverse profile of the backward beam. The number
of rogue waves increases with the increase of the pump
intensity and, correspondingly, the PDF of the intensity
evolves from exponential to a large-tailed distribution.
As an example, in Figure 13 are shown a near field dis-
tribution of the backward beam intensity and a plot of
the PDF of the intensity for increasing the input intensity
Iin. It can be noted that the PDFs are well fitted by the
stretched exponential, Equation (16).

Optical rogue waves have also been reported for Kerr-
like media, as in a 1D system formed by a tilted nematic
liquid crystal layer with a single-mirror feedback [66]
and, more recently, in a liquid–crystal light valve sub-
jected to optical feedback [67]. In both systems the rogue
waves appear in thehighlynon-linear regimewheremany
modes coexist. The rogue wave regime is identified by the
appearance of intense localised peaks in transverse pat-
terns as well as by the development of a supercontinuum
in the spatial frequency domain [66] and the appearance
of spatiotemporal chaos [67].

Finally, optical rogue waves have also been observed
when a photorefractive ferroelectric crystal undergoes a
structural phase transition [68]. Resolved micrometric
bright spots with intensity more than 20 times that of the
average have been reported. The transmitted spatial light
distribution contains bright localised spots of anoma-
lously large intensity that follow a large-tailed statistics.
In this context, numerical simulations of a 2D+1 gener-
alised NLSE, containing a Kerr-saturated and a saturated
Raman-like component, show that dynamics of soliton
fusions and scale invariance play an important role in the
observed rogue wave intensities and statistics.

7.1. Optical filamentation and roguewave
phenomena

Optical filamentation occurs when a light beam
propagates in a non-linear medium characterised by a
self-focusing non-linearity, hence, under certain
circumstances, the transverse spread due to diffraction
is counteracted by the self-focusing effect and the beam
propagateswith its transverse profile unaltereduntil losses
take over the effect. The emergence of high amplitude
optical filaments has been reported in a one-dimensional
liquid crystal experiment, in which an optical wave
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turbulence [69] regime has been realised [70]. A laser
beam is shaped as a laminar beam and propagates lon-
gitudinally inside a liquid crystal layer. Using a spatial
light modulator, an initial condition is imposed in the
form of waves at a spatial scale intermediate between
the cell thickness and the dissipation length of the liquid
crystal and with spatially random phases. The focusing
non-linearity is provided by the orientational Kerr-like
effect in the bulk of the liquid crystal layer. After the
inverse cascade, leading to a smoothing of the initial
beam profile, a modulation instability sets in, which is
followed by the formation of filaments out of the random
wave field. The subsequent evolution shows the merging
of filaments and the development of a few and large
amplitude filaments [70,71]. Correspondingly, the PDF
of the intensity taken along the cell propagation distance
show an evolution from the exponential behaviour at
short propagationdistance to largedeviations fromGaus-
sianity at large propagation distance [71].

Optical filaments are also observed in a xenon gas cell
experiment, where their transient merging appears as a
mechanism at the origin of optical rogue waves [72]. The
filaments originate from the balance of linear diffraction,
dispersion and non-linear Kerr effect in the gas cell. The
rogue waves are isolated in space and in time. Their
macroscopic origin is attributed to the local refractive
index variations inside the non-linear medium, while
microscopically, mergers between filaments appear to
play a decisive role in the observed rogue wave statistics.

8. Conclusions

Since their observation on the ocean surfaces, rogue
waves have become a paradigm for multidisciplinary
physics and have been largely studied. Rogue waves have
been reproduced as genuine space–time phenomena in
a number of different experimental contexts. Hydrody-
namics and optical experiments have particularly con-
tributed to the current understanding of these complex
phenomena, together with the continuous developments
ofmathematicalmodels andnumerical simulations in the
field. A hierarchy of higher order solutions of the NLSE
has been identified, where the prototype rogue wave so-
lutions can be identified. Several of these solutions have
been faithfully reproduced in laboratory experiments.

At the same time experimental and numerical studies
have identified the non-Gaussian behaviour of the wave
amplitude as one of the distinctive features of the rogue
wave phenomena. Another characteristic of rogue waves
is their erratic behaviour and their short lifetime. The
emergence of individual grains of activity and, then, the
grain clustering in inhomogeneous spatial domains have
been reported in different types of optical experiments. In

particular, in spatially extended optical systems the PDF
of the intensity has been shown to evolve to a stretched
exponential in the rogue wave regime. A non-Gaussian
statistics of the amplitude accompanied by the formation
of large amplitude filaments have also been observed in
optical filamentation.

All these results suggest that the presence of a large
number of coupled waves is at the basis of the rogue
wave phenomenon. Non-local coupling also appear as
an essential ingredient. However, a common definition
of rogue wave criteria or a common classification of dif-
ferent classes of rogue waves are still a matter of study
and constitute an active field of current fundamental
investigations.

As for the real-world problems, there are several out-
comes that stem from the current understanding of the
rogue wave phenomena and that can be used for practical
applications. For instance, the BFI index, Equation (2), is
a parameter that can be employed for the rogue wave
forecasting. A better understanding of the statistics of the
wave amplitude can lead to a safer design of platforms
or ships. There are, however, several open problems, for
instance the role of thewind should be elucidated in order
toprovide in the future an evenhigher impact onpractical
applications. On a more basic level, the physical mecha-
nism of formation of rogue waves in the ocean is still very
much debated in the community, see for example [73]
where it is conjectured that the modulational instability
does not play a role in the formation of rogue waves in
the real ocean.
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