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Abstract 

Two trials were carried out on European sea bass (Dicentrarchus labrax L.) juveniles to 

evaluate the effects of dietary inclusion of a full-fat Tenebrio molitor (TM) larvae meal. A first 

growth trail was performed on 450 European sea bass using three isonitrogenous and isolipidic 

experimental diets (3 tanks/diet, 50 fish/tanks) formulated to contain increasing levels of TM 

meal inclusion and precisely: 0 (TM0), 25 (TM25) and 50% (TM50) as fed basis. The 

performances, proximate body composition and fatty acid (FA) profile of whole fish fed the 

experimental diets were evaluated. A digestibility trial was then conducted on 180 fish to 

evaluate the in vivo apparent digestibility coefficient (ADC) of diets having 25% of TM inclusion 

in absence (TMD) or presence of exogenous enzymes (Carbohydrases, TM-Carb; Proteases, 

TM-Prot) compared to a fish meal based control diet (CD). The growth trial results showed that 

the highest inclusion level (TM50) led to a worsening of final body weight, weight gain, specific 

growth rate, and feeding rate if compared to the control diet (TM0). Regarding the whole body 

composition, crude protein and ether extract were not significantly influenced by the use of 

TM, while changes were observed in the FA profile. In particular, C18:2 n6 increased (+91% 

and +173% in TM25 and TM50, respectively vs TM0) with the inclusion of TM while sharp 

decreases of C20:5 n3 (-30% and -58% in TM25 and TM50, respectively vs TM0) and C22:6 

n3 (-35% and -67% respectively vs TM0) and C22:6 n3 (-35% and -67% respectively vs TM0) 

were highlighted. Consequently, the ∑ n3 / ∑ n6 FA ratio showed a significant decrease (-63% 

and -84% in TM25 and TM50, respectively vs TM0). As far as digestibility trial is concerned, 

the crude protein ADC of the fish fed TMD was significantly higher than that of fish fed CD 

(92.31 vs 89.97 respectively). The supplementation of digestive enzymes did not improved the 

protein and ADF digestibility. 

 

Keywords 

Insect meal; Fishmeal substitution; Yellow mealworm; Performance parameters; Apparent 

digestibility coefficient; Fatty acid profile 

 

Abbreviations: AIA, acid insoluble ash; ADC, apparent digestibility coefficient; ADF, acid 
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detergent fibre; CP, crude protein; DM, dry matter; EE, ether extract; FA, fatty acids; FAME, 

fatty acid methyl esters; FBW, final body weight; FCR, feed conversion ratio; FM, fish meal; 

FR, feeding rate; HI, Hermetia illucens; HSI, hepatosomatic index; IBW, initial body weight; 

NFE, Nitrogen-Free Extract; PER, protein efficiency ratio; TM, Tenebrio molitor; VSI, 

viscerosomatic index; WG, weight gain. 

 

1. Introduction 

In the coming years there will be a worldwide protein shortage due to the increasing demand 

by the ever growing world population. In particular, European Union (EU) already suffers from 

important protein deficiency and imports over 70% of consumed proteins (EU report 

2010/2111(INI)). 

The nutritive requirements of fish, in particular of carnivorous fish, are quite high in terms of 

quality and quantity of protein in the diet. For this reason, fish meal (FM) with its excellent 

protein level and balanced amino acid profile, has been traditionally considered the best useful 

protein source in feed formulation. However, FM is a limited supply product (Oliva-Teles et al., 

2015) and the rapid development of aquaculture has given rise to a lively debate concerning 

the sustainability of its production (Hardy, 2010). Moreover, according to the growing global 

fish consumption, the demand for aqua feed is expected to strongly increase and, as marine 

resources will not be sufficient to satisfy it, alternative protein sources have been widely 

investigated in the last 20 years. A lot of research has been conducted substituting FM with 

plant products (Palmegiano et al., 2005; Palmegiano et al., 2006; Oliva-Teles et al., 2015; Gai 

et al., 2016) and, even if a 100% substitution was achieved in some cases, plant proteins still 

present disadvantages such as anti-nutritional factors, high level of fiber and non-starch 

polysaccharides, inadequate fatty acid (FA) and amino acid profile (Gai et al., 2012), and low 

palatability (Gatlin et al., 2007). Moreover, some plant proteins compromise fish intestinal 

enterocyte integrity (Daprà et al., 2009; Merrenfild et al., 2009; Ferrara et al., 2015). 

Recently, the interest of researchers turned to insect meals (Barroso et al., 2014; Henry et al., 

2015; Lock et al., 2015) as they have interesting nutritional values for both fish and terrestrial 

animals (Makkar et al., 2014). Insects are often part of the natural animal diets, and they are 
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claimed to be a highly sustainable source of nutrients (van Huis, 2013). Although insects grow 

rapidly and all stages of reproduction are controlled, the present cost price of insect meals is 

still not competitive if compared with other protein sources (Koeleman, 2014). Nevertheless, 

an increase in demand inevitably will lead to increase of production scale and thereby a 

reduction of insect meal prices in future (Mancuso et al., 2016). 

The current European legislation does not allow the use of insect meals (as well as the use of 

nearly all other Processed Animal Proteins - see the Catalogue of Feed Materials - EC 68/2013) 

in animal feeds in response to the Bovine Spongiform Encephalopathy outbreak (EC 

999/2001). Nevertheless, given the strong interest shown for insect meals by stakeholders 

(insects producers, feed producers and farmers), an amendment of the EC regulations to 

authorise their use in diets for monogastrics has been highly requested. However, research is 

needed as several issues on biological and chemical hazards associated with insects meals 

used as feed material still have to be clarified, as underlined by a recent European Food Safety 

Authority opinion (EFSA, 2015). 

Larvae from many insect species can be used for insect meal production. Among such species 

there is the yellow mealworm (Tenebrio molitor L., TM), a worldwide distributed coleopter 

belonging to the Tenebrionidae family (Makkar et al., 2014). Its larvae are very promising for 

aquaculture because they are rich in protein with an adequate amino acid profile and easy to 

breed and feed (De Marco et al., 2015). Currently, larvae are sold alive, dried or in powder 

form for fishing (bait) or pet feeding (van Huis, 2013). Recent studies reported the use of TM 

in poultry (Bovera et al., 2015; De Marco et al., 2015; Biasato et al., 2016; Bovera et al., 

2016) and fish feed. In particular, in rainbow trout (Oncorhynchus mykiss Walbaum), Belforti 

et al. (2015) showed that a full-fat TM larvae meal could be used up to 50% of inclusion in 

diets (as fed basis), without negative effects on growth performances even if a reduced feed 

intake was observed. Similarly, Ng et al. (2001) showed good growth performances when TM 

meal was included up to 35% in African catfish (Clarias gariepinus Burchell) diets. On the 

contrary, Roncarati et al. (2015) showed reduced weight gain in common catfish (Ameiurus 

melas Rafinesque) fingerlings fed a diet containing TM larvae meal. So far, limited knowledge 

is available on TM digestibility. Some trials have been conducted in vitro (Marono et al., 2015; 
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Sánchez-Muros et al., 2015; Yi et al., 2016) but to our knowledge, only one trial was 

performed in vivo, and showed a decrease of protein apparent digestibility coefficient (ADC) 

when TM was included at a 50% level in rainbow trout diets (Belforti et al., 2015). 

The use of insect meal has not been investigated so far in the European sea bass 

(Dicentrarchus labrax L.), a major species cultured in Mediterranean region. For this, two 

separate trials were performed to evaluate the effects of dietary inclusion of a full-fat TM 

larvae meal on i) growth performances and whole body composition (proximate constituents 

and FA profile) of European sea bass juveniles fed diets with increasing levels of TM, and ii) in 

vivo apparent digestibility coefficients of diets having 25% of TM inclusion in absence or 

presence of exogenous enzymes. 

 

2. Materials and methods 

A full-fat TM larvae meal purchased from the Gaobeidian Shannong Biology CO. LTD 

(Shannong, China) was used in the two trials, which were both conducted at the Institute of 

Marine Biology, Biotechnology and Aquaculture (IMBBC) of the Hellenic Center for Marine 

Research (Crete, Greece). The experimental protocol was designed according to the guidelines 

of the current European Directive (2010/63/EU) on the protection of animals used for scientific 

purposes. 

 

2.1 Growth trial 

2.1.1 Fish and experimental conditions 

European sea bass juveniles were obtained from the IMBBC hatchery. Four hundred and fifty 

fish were lightly anesthetised (2-phenoxyethanol, 150 ppm) and individually weighed (5.22 ± 

0.822 g) at the beginning of the trial. The fish were randomly allotted to 9 circular tanks of 

500 l supplied by open-circulation borehole aerated sea water (renewal 200% per hour). The 

trial was conducted from May to July under constant temperature (19.5 ± 0.5 °C), salinity 

(36‰), and dissolved oxygen (DO -6 ppm), under natural photoperiod. 

 

2.1.2 Fish diets 
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Three experimental diets were formulated to be isonitrogenous (about 54.5 g 100g-1 crude 

protein – CP, on as fed basis), isolipidic (about 15.5 g 100g-1 ether extract - EE, on as fed 

basis) and isoenergetic (about 21.5 MJ kg-1 dry matter - DM). They were obtained including, as 

fed basis, graded levels of TM larvae meal TM0 (control diet, with no TM inclusion), TM25 

(25% TM inclusion) and TM50 (50% TM inclusion)]. The experimental feeds were prepared at 

the IMBBC laboratory. All ingredients were thoroughly mixed; water was then blended into the 

mixture to attain a consistency appropriate for pelleting using a 1 mm die meat grinder. After 

pelleting, the diets were dried at 40 °C and stored in plastic bags at -20 °C until used. The 

ingredients and proximate composition of the experimental diets are reported in Table 1. 

Each diet was assigned to three groups of 50 fish and distributed by hand to apparent 

satiation, twice a day, for 7 days per week. In detail, as soon as the fish stopped eating, the 

pellet distribution was interrupted and any not-ingested pellet was recovered, dried and 

weighed. The exact quantity of feed distributed within each tank was recorded. Mortality was 

checked every day and the trial lasted 70 days after a 2-week period of acclimation to the 

tanks and diets. 

 

2.1.3 Growth performance 

At the end of the trial, fish were starved for 1 day, lightly anesthetised (2-phenoxyethanol, 150 

ppm) and individually weighed. The following growth performance indexes were calculated: 

 Mortality (%) = (number of dead fish / number of fish at start)  100 

 Dry matter intake (DMI, g) = feed distributed (g, DM) – feed recovered (g, DM) 

 Weight gain (WG, g) = [FBW (final body weight, g) – IBW (initial body weight, g)] 

 Specific growth rate (SGR, % day-1) = [(lnFBW - lnIBW) / number of feeding days]  100 

 Feed conversion ratio (FCR) = [total feed supplied (g, dry basis) / WG (g)] 

 Protein efficiency ratio (PER) = [WG (g) / total protein fed (g, dry basis)] 

 Feeding rate (FR, %) = [(total feed supplied (g, dry basis) * 100% / number of feeding 

days)] / [e(lnFWB + lnIBW) * 0.5]. 

 

2.1.4 Chemical analyses of TM larvae meal, experimental diets and fish 
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Feeds were ground using a cutting mill (MLI 204 – Bühler AG, Uzwil, Switzerland) and 

analysed for DM (#934.01), CP (#984.13) and ash (#942.05) contents according to AOAC 

International (2000); EE (#2003.05) was analysed according to AOAC International (2003). 

The gross energy content was determined using an adiabatic calorimetric bomb (IKA C7000, 

Staufen, Germany). The proximate composition and energy level of the TM larvae meal and of 

the experimental diets are shown in Table 1. 

The FA composition of TM larvae meal and of the experimental diets was assessed using the 

method described by Schmid et al. (2009). Fatty acid methyl esters (FAME) were separated, 

identified and quantified on the basis of the chromatographic conditions reported by Renna et 

al. (2014). Tridecanoic acid (C13:0) was used as internal standard. The results were expressed 

in absolute values as g 100 g−1 DM (Table 2). All feed analyses were performed in duplicate. 

At the end of the trial, ten fish per tank were killed by over anaesthesia (2-phenoxyethanol, 

overdose). Fish where gutted, finely ground (Retsch ZM200, Haan, Germany), and freeze-dried 

(Telstar Cryodos, Terrassa, Spain). Dry matter, CP, EE, and ash contents of fish whole body 

(pooled per tank) were determined according to the same procedures used for feed analyses 

(AOAC International 2000; 2003). The freeze-dried and ground samples of fish whole body 

were also used to assess their FA composition, as reported by Belforti et al. (2015). FAME were 

separated using the same analytical instruments and temperature programme previously 

described for the FA analysis of feeds. Peaks were identified by injecting pure FAME standards 

as detailed by Renna et al. (2012). The results were expressed as g kg−1 whole body. All fish 

analyses were performed in triplicate. 

 

2.2 Digestibility trial 

2.2.1 Fish and experimental conditions 

One hundred and eighty European sea bass of 65.3 ± 5.70 g initial weight obtained from the 

IMBBC hatchery were distributed in 12 circular fiberglass tanks (3 tanks per treatment; 15 fish 

per tank) of 270 liters equipped with a settling column. The water and environmental 

conditions were the same as described for the growth trial. Four experimental isonitrogenous 

and isoenergetic diets were formulated based on the control diet containing about 70% FM 
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(CD) or with about 25% of TM meal replacing 36% of FM without enzymes (TMD) or in 

combination with exogenous digestive enzymes, carbohydrases (xylanase and β-glucanases; 

Ronozyme MultiGrain – 0.01% of inclusion) (TM-Carb) or proteases (Ronozyme ProAct – 

0.02% of inclusion) (TM-Prot) obtained from DSM Animal Nutrition & Health (Heerlen, The 

Netherlands). The ingredients and proximate composition of diets are reported in Table 3. 

Diets were prepared at the IMBBC laboratory following the same procedure described for the 

growth trial. Fish were fed the experimental diets ad libitum 2 times a day for 6 weeks. Faeces 

were collected daily for the last 3 weeks of the experiment, centrifuged and stored at -20 ºC. 

The apparent digestibility coefficients were measured using the indirect acid-insoluble ash 

(AIA) method; 1% celite® (Fluka, St. Gallen, Switzerland) was added to the diets as an inert 

marker.  

At the end of the feeding trial, 27 fish per treatment (9 fish per replicate) were randomly 

chosen, weighed and killed by over anaesthesia (2-phenoxyethanol, overdose) and dissected. 

Liver and gut were weighed to determine Hepatosomatic (HSI) and Viscerosomatic (VSI) 

indexes as described in Belforti et al. (2015). 

 

2.2.2 Chemical analyses of experimental diets and faeces  

Feeds and faeces were analysed for DM (#934.01), ash (#984.13), CP (#984.11), and acid 

detergent fibre (ADF; #973.18) according to AOAC International (2000); EE (#2003.05) was 

analysed according to AOAC International (2003). The AIA contents of feeds and faeces were 

determined according to Vogtmann et al. (1975). The gross energy content was determined 

using an adiabatic calorimetric bomb (IKA C7000, Staufen, Germany). 

The apparent digestibility coefficients of dry matter (ADC DM), crude protein (ADC CP), ether 

extract (ADC EE) and acid detergent fibre (ADC ADF) were calculated following Palmegiano et 

al. (2006). 

 

2.3. Statistical analyses 

Data were analysed using IBM SPSS Statistics 20.0. As size can significantly influence the 

chemical composition of fish and FBW in our trial showed significant differences among dietary 
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treatments, data regarding proximate constituents and fatty acids of fish whole body (growth 

trial) were firstly analysed using an analysis of covariance (GLM Univariate procedure). The 

statistical model included dietary treatment as main effect and FBW as a covariate. The 

assumption of homogeneity of regression slopes was tested using a customized model that 

included dietary treatment, covariate, and their interaction. The analysis of covariance allowed 

us to control the effect of the covariate, which resulted in no significance for any of the 

considered parameters. 

All data, for both the growth and digestibility trials, were therefore subjected to a one-way 

analysis of variance. The following models were used: 

(i) Yij =  + Di + εij (growth trial) 

where Yij = observation; μ = overall mean; Di = effect of diet (TM0, TM25, TM50); εij = 

residual error 

(ii) Yij =  + Di + εij (digestibility trial) 

where Yij = observation; μ = overall mean; Di = effect of diet (CD, TMD, TM-Carb, TM-Prot); εij 

= residual error. 

The assumption of equal variances was assessed by Levene’s homogeneity of variance test. If 

such an assumption did not hold, the Brown-Forsythe statistic was performed to test for the 

equality of group means instead of the F one. Pairwise multiple comparisons were performed 

to test the difference between each pair of means (Tukey’s test and Tamhane’s T2 in the cases 

of equal variances assumed or not assumed, respectively).  

Linear regression was used to identify the relationships existing between the dietary TM meal 

inclusion and fish performances or some specific nutritional parameters of fish whole body 

composition (i.e., Σ n3 fatty acids and Σ n3 fatty acids / Σ n6 fatty acids). 

Significance was declared at P ≤ 0.05. 

 

3. Results 

3.1 Growth trial 

3.1.1 Growth performance 

The experimental diets were well accepted by the fish and all feeds were consumed without 



 11 

loss. The mortality (%) and performance traits of European sea bass juveniles fed diets 

containing increasing levels of TM are reported in Table 4. 

Fish mortality ranged from 4.67% (TM0) to 8.67% (TM25) and was not significantly different 

among the treatments (P > 0.05). IBW was comparable among the treatments. In 70 days, 

the fish tripled their body weight. FBW and WG were significantly lower in TM50 (17.35 and 

12.22 g, respectively) if compared to TM0 (22.08 and 16.80 g; P < 0.05). DMI was 

significantly lower in fish fed TM50 if compared to TM0. SGR was higher (P < 0.05) in the fish 

fed TM0 diet (1.99 % day-1) compared to the highest inclusion level of insect meal (TM50: 1.66 

% day-1). The fish fed TM50 also highlighted a significantly lower FR than those fed TM0 (1.74 

vs 1.95 % day-1, respectively; P < 0.01); intermediate values were observed for TM25. No 

significant differences were observed for FCR and PER. 

 

3.1.2 Fish whole body composition 

The proximate whole body composition of the fish at the end of the trial is shown in Table 5. 

No significant differences were observed among treatments with the exception of ash that was 

statistically different between TM50 (4.37 g 100g-1 wet weight) and the other treatments (3.98 

g 100g-1 ww for both TM0 and TM25). 

Oleic (C18:1 c9), linoleic (C18:2 n6) and palmitic (C16:0) acids were the most represented FA 

in TM meal (7.58, 6.97 and 3.43 g 100g-1 DM, respectively) (Table 2). These FA were also the 

most represented in the experimental diets and their concentration increased with the increase 

of TM meal inclusion. Long chain polyunsaturated fatty acids (PUFA) such as eicosapentaenoic 

(EPA, C20:5 n3), docosapentaenoic (DPA, C22:5 n3) and docosahexaenoic (DHA, C22:6 n3) 

acids were not detected in TM meal. As a consequence, and also due to the contemporary 

decrease in the fish oil content of the diets, a decrease in EPA, DPA and DHA was observed 

from TM0 to TM50. Similarly, the ∑ n3 / ∑ n6 FA ratio decreased in the diets following the 

increase of TM inclusion.  

The FA composition of European sea bass whole body was significantly modified by the diet 

(Table 5). The concentration of C18:1 c9 was higher in TM25 and TM50 than in TM0 (37.55, 

41.53 and 30.65 g kg-1 ww, respectively). C18:2 n6 increased by 90% and 173% respectively 
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for TM25 and TM50 compared to TM0. The n3 PUFA were also altered by the dietary inclusion 

of insect meal. In particular, if compared to TM0, a sharp decrease of EPA (-30% and -58% in 

TM25 and TM50, respectively), DPA (–37% and –66%, respectively) and DHA (-35% and -

67%, respectively) was highlighted. In the fish fed increasing levels of TM, whole body showed 

a consistent increase and decrease of Σ n6 and Σ n3 FA, respectively. This led to a significant 

reduction of the Σ n3 / Σ n6 FA ratio, which ranged from 1.55 (TM0) to 0.25 (TM50) (P < 

0.001). 

 

3.1.3. Regression analysis 

When the dietary TM inclusion levels were plotted against performance parameters and chosen 

nutritional values, the equations and coefficients of determinations reported in Table 6 were 

obtained (SE and P-values associated with slope and y-intercept are also reported in the 

table). The majority of the coefficients of determination, with the exception of those found for 

FCR and PER, indicated that the equations fitted the data well and that the TM inclusion level in 

the diet made a significant contribution to predicting the considered parameters. 

Particularly, a significant negative relationship was observed between the inclusion of TM meal 

and WG (R2 = 0.698; P < 0.01), SGR (R2 = 0.721; P < 0.01), and FR (R2 = 0.834; P = 0.001). 

The inclusion of insect meal also had a great influence on the nutritional value of fish whole 

body and both Σ n3 FA and the Σ n3 / Σ n6 FA ratio showed a strong significant negative 

relationship with the inclusion of TM meal in the diet (R2 = 0.952 and 0.924, respectively; P < 

0.001). 

 

3.2 Digestibility trial 

The final weight of fish (100.6 ± 25.49 g) in the digestibility trial was not affected by the 

dietary treatment. HSI was significantly higher in the fish fed TMD if compared to the fish fed 

CD; intermediate values were observed for TM-Carb and TM-Prot. No significant differences 

were found for VSI (Table 7). 

Table 8 shows the digestibility results. Dry matter and protein digestibilities showed 

significantly higher values for TMD if compared to the other treatments. No significant 
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differences were found for lipid digestibility, while ADF digestibility showed the lowest values in 

TM-Prot and the highest in TMD. 

 

4. Discussion 

4.1 Growth trial 

4.1.1 Growth performance 

To our knowledge, until now no trials have been performed using TM in European sea bass 

diets. In the current trial, the linear regression indicated a worsening of performance 

parameters with the increase of TM dietary inclusion. However, ANOVA results indicated that 

over the period tested a dietary inclusion up to 25% of full-fat TM larvae meal is feasible 

without significant negative effects on performance parameters. A higher inclusion level (50%) 

induced decreased DMI (- 23%) and FR (-11%) compared to the control diet, with a 

consequent 27% decrease in WG. According to Skalli and Robin (2004), the minimum dietary 

requirement of long-chain (LC) n3 PUFA for adequate growth of D. labrax juveniles is 0.7% on 

a DM basis; lower values worsen fish growth performance without negative effects on feed 

efficiency or PER. Minimal requirements of LC n3 PUFA were not fulfilled by TM50 (which 

provided only 0.62 g 100g-1 DM of total n3 FA, including C18:3 n3) and this can at least partly 

explain the observed significant decrease of WG and SGR in the fish fed the highest TM 

inclusion level in the current trial. 

Recently, Belforti et al. (2015) used the same full-fat TM larvae meal and the same inclusion 

levels in rainbow trout diets. These authors also reported a significant decrease of voluntary 

feed intake; no significant difference was reported among treatments for WG, while a 

significant improvement was observed for FCR, PER and SGR. Belforti et al. (2015) stated that 

the productive traits were not negatively affected by dietary inclusion of TM and attributed the 

decrease in FR to the high quantity of fat in the TM meal, as well as to its FA composition. 

Roncarati et al. (2015) performed a pre-fattening trial on common catfish fingerlings using a 

FM control diet and a TM diet where insect substituted 50% of FM; these diets were neither 

isonitrogenous nor isolipidic. Roncarati et al. (2015) concluded that the diet with insect meal 

was able to sustain growth in catfish fingerlings but the fish fed FM performed better than 
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those fed TM. A decrease in growth performances was also reported by Ng et al. (2001) using 

TM in African catfish fingerlings when insect meal exceeded the level of 40% of FM 

substitution. 

The use of meals from other insect species in substitution of FM showed contrasting results. 

Some studies on rainbow trout or turbot reported that the use of insects (Hermetia illucens L. - 

HI, the black soldier fly) decreased growth performances and diet digestibility (St-Hilaire et al., 

2007; Kroeckel et al., 2012), while no significant differences were observed in another trial 

with African catfish fingerlings fed maggots (Fasakin et al., 2003). 

 

4.1.2 Fish whole body composition 

The obtained values of whole body proximate constituents are consistent with literature for 

European sea bass juveniles (Messina et al., 2013; Tibaldi et al., 2015; Peixoto et al., 2016). 

Regarding the effect of insect meal inclusion in the diet, the obtained results contrast with 

Belforti et al. (2015) who reported a significant decrease of DM and EE contents, and an 

increase of CP content with increasing inclusion of TM larvae meal in rainbow trout diets. Also 

Sealey et al. (2011), in a study using a full fat HI in rainbow trout diets showed a decrease in 

DM and EE in fish fillets associated with the dietary inclusion of insect meal. Kroeckel et al. 

(2012) used a defatted HI meal to feed turbot (Psetta maxima L.) juveniles and found no 

differences for CP and ash contents, but moisture and lipid contents were significantly reduced 

with the increase of HI in the diets. 

Independently from the dietary treatment, C18:1 c9, C16:0 and C18:2 n6 were the most 

abundant FA found in whole body of European sea bass, which is in accordance with previous 

published literature (Skalli and Robin, 2004; Eroldoğan et al., 2013). It is well known that the 

FA profile of fish mostly mirror that of administered diets, at comparable fish age and size. 

Data reported in this trial are in agreement with those described by Sealey et al. (2011) and 

by Belforti et al. (2015) who found decreasing levels of valuable n3 PUFA (such as C18:3 n3, 

C20:5 n3, C22:5 and C22:6 n3, well known for their beneficial effects on human health) when 

fish were fed diets containing insect meals. Eroldoğan et al. (2013) also reported comparable 

trends as those observed in our trial, as well as a noticeable reduction of the Σ n3 / Σ n6 FA 
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ratio, in European sea bass fed diets where fish oil was totally replaced by vegetable oils rich in 

C18:1 c9 and/or C18:2 n6, the two most abundant FA also found in TM larvae meal. 

 

4.2 Digestibility trial 

In our trial HSI was significantly higher in the fish fed 25% TM (TMD treatment) if compared to 

the fish fed the control diet; such result does not agree with the findings of Belforti et al. 

(2015) who reported a decreasing HSI in rainbow trout following increasing dietary inclusion 

level of TM (2.18 vs 1.79 and 1.61 for diets containing 0, 25 and 50% of TM inclusion, 

respectively). 

A previous study of in vitro digestibility of TM showed that chitin varies from 4.8 to 6.7% of 

the meal (5.75% ± 0.012) depending on the meal sample (Marono et al., 2015). A dietary 

inclusion of 25% of TM, replacing 36% of dietary FM, would thus bring a maximal amount of 

1.7% of chitin. Despite the common assumption that monogastric animals, including fish, 

cannot digest chitin (Rust, 2002), the replacement of 36% of FM by TM meal increased the 

digestibility of proteins and did not significantly alter lipid and carbohydrate digestibility. 

Chitinase activity has been shown in the digestive tract of many marine fish species (Krogdahl 

et al., 2005; Gutowska et al., 2010; Kawashima et al., 2016). Although the evaluation of 

chitinase activity was out of scope for the present research, our results suggest that chitinase 

activity maybe present in European sea bass, either through the production of endogenous 

enzymes by the fish or through exogenous enzymes produced by intestinal bacteria. Chitinase 

activity due to exogenous bacteria was shown in various fish species (Ray et al., 2012) but not 

yet in European sea bass. Other enzyme-producing bacteria have been isolated from the gut of 

many fish species (Ray et al., 2012): protease-and/or lipase-producing bacteria (Vibrio, 

Acinetobacter, Enterobacteriaceae, Pseodomonas) have been isolated from sea bass larvae 

(Gatesoupe et al., 1997).  

Many studies have shown that the addition of exogenous enzymes improves the digestibility of 

plant-based diets in mammals (Carneiro et al., 2008; Emiola et al., 2009) and fish (Dalsgaard 

et al., 2012; Castillo and Gatlin, 2015). The addition of exogenous proteases and 

carbohydrates (not specifically designed for chitin and insect meal) to the TM containing diet of 
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European sea bass significantly reduced the digestibility of both proteins and carbohydrates if 

compared to the TMD diet. A reduction of acid and neutral detergent fibre digestibility was also 

obtained in pigs fed corn, soya, whey and dried distillers grains with soluble based diets 

enriched with similar enzymes (Kerr et al., 2013). In the current trial, the exogenous enzymes 

were added at a level recommended to other productive animals, the dietary enzyme 

concentration may have been too low to help the fish to digest proteins and carbohydrates 

present in the TM-enriched diets or their effect was not detectable under our experimental 

conditions. However, this would justify an absence of improvement of digestibility rather than 

the observed decreased digestibility values. As suggested in a recent review, a better 

explanation would be that these exogenous enzymes, added to the diet to improve its 

digestibility, may in fact alter the viability of the gut microflora that helps the digestive activity 

of the fish (Ringø et al., 2015). Indeed, β-glucanase and xylanase have been shown to 

influence the bacterial microbiota of broiler chickens (Jozefiak et al., 2010) and bacteria of the 

fish microflora, such as Vibrio harveyi, Vibrio fisheri and Photobacterium leiognathi, have been 

shown to have a chitinolytic activity (Ramesh and Venugopalan, 1989). The proteases and 

carbohydrases (mainly β-glucanases) present in TM-prot and TM-carb diets respectively, may 

have affected the proteins and carbohydrates present at the surface of Gram-negative bacteria 

(Beveridge, 1999) or the surface proteins present on Gram-positive bacterial membrane 

(Navarre and Schneewind, 1999; Desvaux et al., 2006) in turn decreasing their digestive 

activity towards insect chitin. Because chitin is a complex matrix of proteins, lipids and other 

compounds (Kramer et al., 1995), a better digestion of insect chitin will ease the access of 

digestive enzymes to protein and lipids, consequently increasing not only carbohydrates 

digestibility but also proteins and lipids digestibility (Tanaka et al., 1997). Evidently, more 

detailed research is required to elucidate the mode of action of exogenous enzymes in TM-

supplemented feeds for sea bass. 

 

5. Conclusions 

The main results of the present study were that a full-fat Tenebrio molitor meal can be used up 

to 25% of inclusion in diets for European sea bass juveniles without affecting growth 
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performances; such inclusion level allowed saving 36% of fish meal in the diet. At a higher TM 

inclusion level (50%) fish performances were negatively affected. The whole body proximate 

composition was not significantly influenced by the use of TM (with the exception of ashes), 

while a dramatic worsening was highlighted in the whole body FA profile. 

Despite the chitin content of Tenebrio molitor, the digestibility of TM-containing diet was not 

reduced compared to the FM diet. Digestibility of proteins was even better in fish fed TM 

compared to fish fed FM. The supplementation of digestive enzymes (proteases and 

carbohydrases), instead of improving protein and carbohydrate digestibilities, reduced them, 

possibly because they affected the chitinolytic activity of some intestinal bacteria. 

Further research is highly suggested to confirm these results and to investigate deeply the 

digestibility effects. 
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Table 1. Growth trial: ingredients and proximate composition of TM larvae meal and 

experimental diets. 

 TM larvae meal TM0 TM25 TM50 

Ingredients (g kg-1)     

Fish meal (Chile, super prime) - 700.0 450.0 200.0 

TM larvae meala - 0 250.0 500.0 

Wheat gluten meal - 50.00 75.00 150.0 

Corn gluten meal - 0 28.00 0 

Wheat meal - 92.00 90.00 80.00 

Wheat bran - 55.00 40.00 25.00 

Starch gelatinized, D500 - 0 0 12.00 

Fish oil - 90.00 54.00 20.00 

L-methionine - 6.00 6.00 6.00 

L-lysine - 3.00 3.00 3.00 

Choline - 1.50 1.50 1.50 

Premixb - 2.50 2.50 2.50 

Proximate compositionc     

DM (g 100g-1) 93.9 92.0 92.3 91.7 

CP (g 100g-1, as fed) 51.9 54.8 54.5 54.6 

EE (g 100g-1, as fed) 23.6 15.2 15.8 15.7 

Ash (g 100g-1, as fed) 4.7 11.5 8.5 5.7 

Gross energy (MJ kg− 1 , as fed) 24.40 21.29 21.87 22.62 

a Tenebrio molitor larvae meal purchased from Gaobeidian Shannong Biology CO. LTD 

(Shannong, China). 

b Premix (kg− 1): Vitamin A 4.000.000 (IU), Vitamin D3 800.000 (IU), Vitamin E 100.000 (mg), 

Vitamin K3 4000 (mg), Vitamin B1 8000 (mg), Vitamin B2 8000 (mg), Nicotinic acid 60.000 

(mg), Pantothenic acid 24000 (mg), Vitamin B6 8000 (mg), Vitamin B12 8000 (mg), Vitamin 

B12 80 (mg), Folic acid 1600 (mg), Biotin 320 (mg), Vitamin C (Stay C35% MONO) 80000 

(mg), Anticoagulant 71000 (mg), Inositol 60000 (mg), MnO 14000 (mg), Ca*(IO3)2 1600 

(mg), ZnO 24000 (mg), FeCO3 18000 (mg), CuSO4.5H2O 2800 (mg). Na2SeO3 60 (mg), BHA 

(E320) 160 (mg), Ethoxyquin (E324) 160 (mg).  

c Values are reported as mean of duplicate analyses. 

Abbreviations: TM, Tenebrio molitor; DM, dry matter; CP, crude protein; EE, ether extract. 
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Table 2. Growth trial: fatty acid profile (g 100g-1 DM) of TM larvae meal and 

experimental diets. 

 TM larvae meal TM0 TM25 TM50 

C12:0 0.04 0.01 0.02 0.03 

C14:0 0.51 0.60 0.49 0.42 

C14:1 t - 0.01 0.01 0.01 

C14:1 c9 0.03 0.06 0.05 0.04 

C15:0 - <0.01 <0.01 <0.01 

C16:0 3.43 1.94 2.16 2.63 

C16:1 t - 0.01 0.01 0.01 

C16:1 c9 0.40 0.56 0.42 0.31 

C17:0 - 0.06 0.05 0.04 

C17:1 c9 - 0.03 0.04 0.05 

C18:0 0.64 0.37 0.39 0.48 

C18:1 t - 0.03 0.02 0.02 

C18:1 c9 7.58 2.87 3.56 4.62 

C18:1 c11 - 0.38 0.27 0.18 

C18:2 n6 6.97 1.20 2.21 3.57 

C18:3 n3 0.27 0.36 0.28 0.22 

C18:3 n6 - 0.02 0.01 0.01 

C20:0 0.31 0.04 0.03 0.03 

C20:1 c9 - 0.06 0.04 0.02 

C20:1 c11 - 0.59 0.37 0.18 

C20:2 n6 - 0.26 0.15 0.07 

C20:3 n3 - 0.08 0.03 0.02 

C20:3 n6 - 0.02 0.01 0.01 

C20:4 n6 - 0.06 0.04 0.01 

C20:5 n3 - 0.76 0.42 0.16 

C22:1 n9 - 0.73 0.42 0.18 

C22:5 n3 - 0.13 0.08 0.02 

C22:6 n3 - 0.83 0.46 0.19 

∑ SFA 4.98 3.04 3.14 3.64 

∑ MUFA 8.01 5.33 5.19 5.61 

∑ PUFA 7.24 3.72 3.69 4.29 

∑ n3 0.27 2.16 1.27 0.62 

∑ n6 6.97 1.56 2.42 3.66 

∑ n3 / ∑ n6 0.04 1.38 0.52 0.17 

TFA 20.23 12.10 12.02 13.55 

All values are reported as mean of duplicate analyses. 
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Abbreviations: TM, Tenebrio molitor; t, trans; c, cis; SFA, saturated fatty acids; MUFA, 

monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total fatty acids. 
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Table 3. Digestibility trial: ingredients and proximate composition of the 

experimental diets. 

 CD TMD TM-Carb TM-Prot 

Ingredients (g kg-1)     

Fish meal (Chile, super prime) 693 445.5 445.5 445.5 

TM larvae meala 0 247.5 247.5 247.5 

Wheat gluten meal 49.50 74.25 74.25 74.25 

Corn gluten meal 0 27.72 27.72 27.72 

Wheat meal 91.08 89.10 89.10 89.10 

Wheat bran 54.45 39.60 39.50 39.40 

Fish oil 89.10 53.46 53.46 53.46 

Celite 10 10 10 10 

Ronozyme Proactb 0 0 0 0.20 

Ronozyme Multigrainb 0 0 0.10 0 

L-methionine 5.94 5.94 5.94 5.94 

L-lysine 2.97 2.97 2.97 2.97 

Choline 1.485 1.485 1.485 1.485 

Premixc 2.475 2.475 2.475 2.475 

Proximate compositiond     

DM (g 100g-1) 93.7 92.9 93.2 92.9 

CP (g 100g-1, as fed) 53.1 53.2 53.1 52.7 

EE (g 100g-1, as fed) 16.4 14.8 14.9 14.4 

ADF (g 100g-1, as fed) 1.0 2.4 2.6 2.2 

Ash (g 100g-1, as fed) 9.7 9.5 10.4 9.7 

Gross energy (MJ kg− 1 as fed)f 21.74 21.41 21.28 21.26 

a Tenebrio molitor larvae meal purchased from Gaobeidian Shannong Biology CO. LTD 

(Shannong, China). 

b Ronozyme Proact (proteases) and Ronozyme Multigrain (carbohydrases: xylanase and β-

glucanases) were purchased from DSM Animal Nutrition & Health, Heerlen, The Netherlands. 

cPremix (kg− 1): Vitamin A 4.000.000 (IU), Vitamin D3 800.000 (IU), Vitamin E 100.000 (mg), 

Vitamin K3 4000 (mg), Vitamin B1 8000 (mg), Vitamin B2 8000 (mg), Nicotinic acid 60.000 

(mg), Pantothenic acid 24000 (mg), Vitamin B6 8000 (mg), Vitamin B12 8000 (mg), Vitamin 

B12 80 (mg), Folic acid 1600 (mg), Biotin 320 (mg), Vitamin C (Stay C35% MONO) 80000 

(mg), Anticoagulant 71000 (mg), Inositol 60000 (mg), MnO 14000 (mg), Ca*(IO3)2 1600 

(mg), ZnO 24000 (mg), FeCO3 18000 (mg), CuSO4.5H2O 2800 (mg). Na2SeO3 60 (mg), BHA 

(E320) 160 (mg), Ethoxyquin (E324) 160 (mg).  
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d Values are reported as mean of duplicate analyses. 

Abbreviations: CD, control diet; TMD, diet with 25% of Tenebrio molitor; TM-Carb, TMD with 

Ronozyme MultiGrain – 0.01% of inclusion; TM-Prot, TMD with Ronozyme ProAct – 0.02% of 

inclusion; DM, dry matter; CP, crude protein; EE, ether extract; NFE, Nitrogen-Free Extract; 

ADF, acid detergent fiber. 

f Determined using an adiabatic calorimetric bomb (IKA C7000, Staufen, Germany). 
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Table 4. Growth trial: mortality and growth performances of European sea bass 

juveniles fed the experimental diets (n = 3). 

 TM0 TM25 TM50 SEM P-value 

Mortality (%) 4.67 8.67 6.67 1.054 0.343 

IBW (g) 5.29 5.23 5.15 0.040 0.370 

FBW (g) 22.08 a 20.68 ab 17.35 b 0.821 0.020 

WG (g) 16.80 a 15.43 ab 12.22 b 0.792 0.018 

DMI (g DM) 726.77 a 653.15 ab 560.90 b 26.773 0.026 

SGR (% day-1) 1.99 a 1.89 ab 1.66 b 0.058 0.018 

FCR 0.90 0.91 0.99 0.020 0.114 

PER 2.20 2.19 2.01 0.046 0.163 

FR (% day-1) 1.95 a 1.84 ab 1.74 b 0.033 0.004 

Abbreviations: IBW, initial body weight; FBW, final body weight; WG, weight gain; DMI, dry 

matter intake; SGR, specific growth rate; FCR, feed conversion ratio; PER, protein efficiency 

ratio; FR, feeding rate. 

Different letters within a row indicate significant differences (P ≤ 0.05). 
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Table 5. Growth trial: whole body proximate (g 100 g-1 ww, unless otherwise stated) 

and fatty acid (g kg-1 ww) compositions of European sea bass juveniles fed the 

experimental diets (n = 3). 

 TM0 TM25 TM50 SEM P-value 

Proximate composition      

DM (g 100 g-1) 34.67 34.20 33.37 0.340 0.324 

CP 16.57 16.67 16.93 0.131 0.563 

EE 13.24 12.51 12.18 0.233 0.180 

Ash 3.98 b 3.98 b 4.37 a 0.076 0.020 

Fatty acid composition      

C12:0 0.04 c 0.06 b 0.07 a 0.005 0.000 

C14:0 3.97 a 3.29 b 2.95 b 0.157 0.001 

C14:1 t 0.06 a 0.04 ab 0.03 b 0.005 0.011 

C14:1 c9 0.46 a 0.38 b 0.35 b 0.017 0.002 

C15:0 0.008 a 0.007 ab 0.004 b 0.001 0.036 

C16:0 19.55 20.71 21.04 0.523 0.540 

C16:1 t 0.18 a 0.13 b 0.07 c 0.002 0.000 

C16:1 c9 5.14 a 4.32 b 3.80 b 0.213 0.005 

C17:0 0.99 a 0.76 ab 0.72 b 0.053 0.036 

C17:1 c9 0.32 b 0.38 a 0.43 a 0.017 0.004 

C18:0 3.30 b 4.06 b 5.02 a 0.269 0.003 

C18:1 t 0.19 0.16 0.15 0.012 0.403 

C18:1 c9 30.65 b 37.55 a 41.53 a 1.758 0.006 

C18:1 c11 3.46 a 2.83 b 2.21 c 0.189 0.001 

C18:2 n6 7.94 c 15.14 b 21.66 a 1.989 0.000 

C18:3 n6 0.11 c 0.23 b 0.44 a 0.049 0.000 

C18:3 n3 2.23 a 1.89 ab 1.58 b 0.115 0.035 

C20:0 0.96 0.94 0.89 0.017 0.160 

C20:1 c9 0.59 a 0.46 b 0.31 c 0.041 0.000 

C20:1 c11 4.63 a 3.18 b 2.04 c 0.381 0.000 

C20:2 n6 0.51 0.60 0.60 0.030 0.414 

C20:3 n6 0.08 0.08 0.06 0.007 0.609 

C20:3 n3 0.44 a 0.32 b 0.17 c 0.041 0.001 

C20:4 n6 0.24 0.28 0.20 0.034 0.692 

C20:5 n3 3.95 a 2.75 b 1.64 c 0.350 0.001 

C22:0 0.07 0.06 0.04 0.006 0.247 

C22:1 n9 3.36 a 2.16 b 0.98 c 0.358 0.000 

C22:5 n3 0.91 a 0.57 b 0.31 c 0.088 0.000 
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C22:6 n3 6.20 a 4.01 b 2.03 c 0.608 0.000 

∑ SFA 28.89 29.89 30.73 0.668 0.599 

∑ MUFA 49.03 51.59 51.90 1.074 0.554 

∑ PUFA 22.61 b 25.85 ab 28.69 a 0.995 0.011 

∑ PUFA / ∑ SFA 0.78 b 0.87 ab 0.94 a 0.054 0.028 

∑ n3 13.74 a 9.53 b 5.73 c 1.183 0.000 

∑ n6 8.88 c 16.33 b 22.95 a 2.046 0.000 

∑ n3 / ∑ n6 1.55 a 0.58 b 0.25 c 0.500 0.000 

TFA 100.54 107.34 111.31 2.456 0.205 

Abbreviations: ww, wet weight; SEM, standard error of the mean; DM, dry matter; CP, crude 

protein; EE, ether extract; t, trans; c, cis; FA, fatty acids; SFA; saturated fatty acids; MUFA, 

monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total fatty acids. 

Different letters within a row indicate significant differences (P  0.05). 
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Table 6. Predicting fish performance parameters and nutritional parameters of fish 

whole body composition from TM meal inclusion in the diet (SE and P-values 

associated with slope and y-intercept estimates of linear regression; n = 9). 

   slope y-intercept 

 equation R2 SE P-value SE P-value 

WG y = 19.398 – 2.291x 0.698 0.570 0.005 1.232 0.000 

SGR y = 2.213 – 0.151x 0.721 0.035 0.004 0.076 0.000 

FCR y = 0.846 + 0.045x 0.411 0.020 0.063 0.044 0.000 

PER y = 2.319 – 0.093x 0.343 0.049 0.097 0.105 0.000 

FR y = 2.052 – 0.104x 0.834 0.017 0.001 0.038 0.000 

 n3 y = 1766.681 – 400.061x 0.952 33.806 0.000 73.029 0.000 

 n3 /  n6 y = 2.095 – 0.650x 0.924 0.070 0.000 0.152 0.000 

Abbreviations: SE, standard error; WG, weight gain; SGR, specific growth rate; FCR, feed 

conversion ratio; PER, protein efficiency ratio; FR, feeding rate. 
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Table 7. Digestibility trial: Final body weight, Hepatosomatic and Viscerosomatic 

indexes of European sea bass fed the experimental diets (n = 3). 

 

 CD TMD TM-Carb TM-Prot SEM P-value 

FBW 99.70 99.29 101.17 102.40 2.571 0.981 

HSI 1.25 b 1.52 a 1.38 ab 1.42 ab 0.065 0.043 

VSI 7.66 7.77 7.15 7.89 0.213 0.073 

Abbreviations: : CD, control diet; TMD, diet with 25% of Tenebrio molitor; TM-Carb, TMD with 

Ronozyme MultiGrain – 0.01% of inclusion; TM-Prot, TMD with Ronozyme ProAct – 0.02% of 

inclusion; FBW, Final body weight; HSI, Hepatosomatic index; VSI, Viscerosomatic index. 

Different letters within a row indicate significant differences (P  0.05). 
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Table 8. Digestibility trial: digestibility of dry matter, proteins, lipids and ADF by 

European sea bass fed the experimental diets (n = 3). 

 CD TMD TM-Carb TM-Prot SEM P-value 

ADC DM 0.73 b 0.80 a 0.73 b 0.76 b 0.007 0.001 

ADC CP 0.90 b 0.92 a 0.90 b 0.91 b 0.003 0.003 

ADC EE 0.98 0.97 0.97 0.96 0.003 0.344 

ADC ADF 0.41 ab 0.45 a 0.28 bc 0.25 c 0.030 0.010 

Abbreviations: CD, control diet; TMD, diet with 25% of Tenebrio molitor; TM-Carb, TMD with 

Ronozyme MultiGrain – 0.01% of inclusion; TM-Prot, TMD with Ronozyme ProAct – 0.02% of 

inclusion; ADC CP, crude protein apparent digestibility coefficient; ADC EE, ether extract 

apparent digestibility coefficient; ADC ADF, acid detergent fiber apparent digestibility 

coefficient. 

Different letters within a row indicate significant differences (P  0.05). 
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