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Numerical approximation of GB-splines by a convolutional approach

Fabio Romana, Carla Mannib, Hendrik Speleersb

aDepartment of Mathematics, University of Turin, Italy
bDepartment of Mathematics, University of Rome ‘Tor Vergata’, Italy

Abstract

Generalized splines are smooth functions belonging piecewisely to spaces which are a natural gener-
alization of algebraic polynomials. GB-splines are a B-spline-like basis for generalized splines, and
they are usually defined by means of an integral recurrence relation which makes their evaluation
quite cumbersome and computationally expensive. We present a simple strategy for approximating
the values of a cardinal GB-spline of arbitrary degree p, with a particular focus on hyperbolic and
trigonometric GB-splines due to their interest in applications. The proposed strategy is based on the
Fourier properties of cardinal GB-splines. The approximant is expressed as a linear combination of
scaled and dilated versions of (polynomial) cardinal B-splines of degree p, whose coefficients can be
efficiently computed via discrete convolution. Sharp error estimates are provided and illustrated with
some numerical examples.
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1. Introduction

Classical polynomial splines are smooth functions belonging piecewisely to the space of algebraic
polynomials (of degree p). Generalized splines are smooth functions belonging piecewisely to spaces
of the form

〈1, x, . . . , xp−2, U(x), V (x)〉, 2 ≤ p ∈ N, (1.1)

where the functions U, V are such that (1.1) is an extended Tchebycheff space; see [8]. Extended
Tchebycheff spaces are natural generalizations of algebraic polynomial spaces. They are commonly
used in approximation theory, mainly because they form a very flexible substitute for algebraic poly-
nomial spaces to solve Hermite interpolation problems. Generalized splines are a special class of
Tchebycheffian splines and possess all the desirable properties of polynomial splines. In particular,
they admit a representation in terms of basis functions which are a natural generalization of the
polynomial B-splines, the so-called generalized B-splines (GB-splines). Furthermore, the elegant and
powerful blossoming approach and classical algorithms (like degree elevation, knot insertion, differ-
entiation formulas, etc.) can be rephrased for them; see [16, 18]. Interesting examples are trigono-
metric or hyperbolic (exponential) generalized splines for which U, V are taken as cos(αx), sin(αx),
or cosh(αx), sinh(αx), respectively.

Generalized splines and their B-spline-like basis are popular tools in the CAGD community; see,
e.g., [11, 13, 16, 19]. With a suitable choice of the functions U, V , they allow for an exact representation
of conic sections as well as some transcendental curves (helix, cycloid, etc.). Moreover, tensor-product
GB-splines are an interesting problem-dependent alternative to tensor-product polynomial B-splines
and NURBS in isogeometric analysis, a successful paradigm for the analysis of problems governed by
partial differential equations (see [9, 14, 15]). Their success and the need of local refinement motivated
the recent study of generalized splines over T-meshes (see [3, 4, 5, 6]).
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GB-splines are usually defined by means of an integral recurrence relation. Using this recurrence
relation for the evaluation of GB-splines, however, is quite cumbersome, computationally expensive,
and numerically instable. This inherent complexity explains the often reluctant attitude to use GB-
splines in practical applications, despite their interesting analytical and geometrical properties. In
this paper we address the problem of a stable computation of values of cardinal GB-splines, which are
GB-splines defined over a uniform knot sequence and are of particular interest in practical applications.

We present a simple strategy for approximating the values of a cardinal GB-spline of arbitrary
degree p. The strategy can be applied to spaces of general U, V , and is illustrated in more detail for
hyperbolic and trigonometric GB-splines due to their interest in applications. The proposed method
exploits the Fourier properties of cardinal GB-splines [17] and the well-known refinement relation of
(polynomial) cardinal B-splines [7]. The approximant is expressed as a linear combination of scaled
and dilated versions of (polynomial) cardinal B-splines whose coefficients can be efficiently computed
via discrete convolution. The accuracy of the approximation can be predetermined according to the
application we need to deal with. Other approaches for the evaluation of GB-splines of low degree
and particular selections of the functions U, V can be found in [2].

The remainder of the paper is divided into four sections. Section 2 contains the definition of
cardinal GB-splines and collects several of their properties. These properties are then exploited in
the approximation strategy described in Section 3. In Section 4 we study the approximation error
and give some numerical tests. Section 5 concludes the paper with some final remarks.

2. Cardinal GB-splines

In this section we discuss the definition and some properties of cardinal GB-splines. We focus on
the space

PU,V
p := 〈1, x, . . . , xp−2, U(x), V (x)〉, x ∈ [0, 1], (2.1)

where U, V ∈ Cp−1[0, p+1] are such that {U (p−1), V (p−1)} is a Tchebycheff system on [0, 1], i.e., any
non-trivial element in the space 〈U (p−1), V (p−1)〉 has at most one zero in [0, 1]. The space in (2.1)

will be called section space. We denote by Ũ , Ṽ the unique elements in the space 〈U (p−1), V (p−1)〉
satisfying

Ũ(0) = 1, Ũ(1) = 0, Ṽ (0) = 0, Ṽ (1) = 1. (2.2)

Popular examples of such a space (2.1) are

Pp := 〈1, x, . . . , xp−2, xp−1, xp〉,

Hp,α := 〈1, x, . . . , xp−2, cosh(αx), sinh(αx)〉, α ∈ R+,

Tp,α := 〈1, x, . . . , xp−2, cos(αx), sin(αx)〉, 0 < α < π.

Definition 2.1. The (normalized) cardinal GB-spline of degree p ≥ 1 over the uniform knot set
{0, 1, . . . , p + 1} with sections in (2.1) is denoted by φU,V

p and is defined recursively as follows. For
p = 1,

φU,V
1 (x) := δU,V

1





Ṽ (x), if x ∈ [0, 1),

Ũ(x− 1), if x ∈ [1, 2),

0, elsewhere,

where δU,V
1 is a normalization factor given by

δU,V
1 :=

(∫ 1

0

Ṽ (y) dy +

∫ 2

1

Ũ(y − 1) dy

)−1

.

For p ≥ 2,

φU,V
p (x) :=

∫ x

0

(φU,V
p−1(y)− φU,V

p−1(y − 1)) dy. (2.3)
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If the space (2.1) is the space of algebraic polynomials Pp, then the function in Definition 2.1 is
the classical (polynomial) cardinal B-spline of degree p, denoted by φp, which can also be defined
recursively as follows [1]:

φ0(x) :=

{
1, if x ∈ [0, 1),

0, elsewhere,

and

φp(x) :=
x

p
φp−1(x) +

p+ 1− x

p
φp−1(x− 1), p ≥ 1. (2.4)

The cardinal GB-spline φU,V
p is globally of class Cp−1 and possesses the following fundamental

properties (see, e.g., [17, Section 3.1] and references therein). These properties are generalizations of
well-known properties of φp (see, e.g., [10, Section 3.1]).

• Positivity:
φU,V
p (x) > 0, x ∈ (0, p+ 1).

• Minimal support:
φU,V
p (x) = 0, x 6∈ (0, p+ 1).

• Partition of unity:
∑

k∈Z

φU,V
p (x− k) =

p∑

k=1

φU,V
p (k) = 1, p ≥ 2.

• Recurrence relation for derivatives:

(
φU,V
p

)(r)
(x) =

(
φU,V
p−1

)(r−1)
(x)−

(
φU,V
p−1

)(r−1)
(x− 1), 1 ≤ r ≤ p− 1.

• Conditional symmetry with respect to p+1
2 :

φU,V
p

(
p+ 1

2
+ x

)
= φU,V

p

(
p+ 1

2
− x

)
if φU,V

1 (1 + x) = φU,V
1 (1− x). (2.5)

• Convolution relation:

φU,V
p (x) =

(
φU,V
p−1 ∗ φ0

)
(x) :=

∫

R

φU,V
p−1(x − y)φ0(y) dy =

∫ 1

0

φU,V
p−1(x− y) dy, p ≥ 2, (2.6)

where φ0(x) := χ[0,1)(x). Moreover,

φU,V
p (x) =

(
φU,V
1 ∗ φ0 ∗ · · · ∗ φ0︸ ︷︷ ︸

p−1

)
(x), φp(x) =

(
φ0 ∗ · · · ∗ φ0︸ ︷︷ ︸

p+1

)
(x), p ≥ 1.

• Inner products:
∫

R

φU1,V1

p1
(x)φU2,V2

p2
(x+ k) dx =

(
φU1,V1

1 ∗ φU2,V2

1 ∗ φ0 ∗ · · · ∗ φ0︸ ︷︷ ︸
p1+p2−2

)
(p2 + 1− k),

if φU2,V2

1 (1 + x) = φU2,V2

1 (1− x). In particular,

∫

R

φU,V
p1

(x)φp2
(x+ k) dx =

(
φU,V
1 ∗ φ0 ∗ · · · ∗ φ0︸ ︷︷ ︸

p1+p2

)
(p2 + 1− k) = φU,V

p1+p2+1(p2 + 1− k),

∫

R

φp1
(x)φp2

(x+ k) dx =
(
φ0 ∗ · · · ∗ φ0︸ ︷︷ ︸

p1+p2+2

)
(p2 + 1− k) = φp1+p2+1(p2 + 1− k).
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Figure 1: Cardinal GB-splines of degree p = 1, 3: polynomial B-spline (black), trigonometric GB-spline with α = 1
(blue) and α = 3 (green), hyperbolic GB-spline with α = 1 (red) and α = 10 (yellow).

• Unity of integral: ∫ p+1

0

φU,V
p (x) dx = 1.

• Fourier transform:

φ̂U,V
p (θ) = φ̂U,V

1 (θ)

(
1− e−iθ

iθ

)p−1

. (2.7)

We now give two examples of interest in practice: hyperbolic and trigonometric cardinal GB-
splines with real phase parameters α.

Example 2.1. The hyperbolic cardinal GB-spline is denoted by φHα
p and is defined by taking U(x) :=

cosh(αx) and V (x) := sinh(αx). In this case, we have

Ũ(x) =
sinh(α(1 − x))

sinh(α)
, Ṽ (x) =

sinh(αx)

sinh(α)
, (2.8)

satisfying (2.2).

Example 2.2. The trigonometric cardinal GB-spline is denoted by φTα
p and is defined by taking

U(x) := cos(αx) and V (x) := sin(αx). In this case, we have

Ũ(x) =
sin(α(1 − x))

sin(α)
, Ṽ (x) =

sin(αx)

sin(α)
, (2.9)

satisfying (2.2).

Note that φHα
p = φTiα

p with i the imaginary unit. To simplify the notation later on, we will also

use the notation φQα
p if a statement holds for both φHα

p and φTα
p . Some hyperbolic and trigonometric

cardinal GB-splines are depicted in Figure 1.

Remark 2.1. Hyperbolic and trigonometric cardinal GB-splines approach the (polynomial) cardinal
B-spline of the same degree as the phase parameter α approaches 0, i.e.,

lim
α→0

φQα

p (x) = φp(x), Q = H,T.

Remark 2.2. The symmetry requirement φU,V
1 (1 + x) = φU,V

1 (1− x) in (2.5) is equivalent to

Ṽ (x) = Ũ(1 − x), x ∈ [0, 1].

This requirement is satisfied for hyperbolic and trigonometric cardinal GB-splines, see (2.8)–(2.9), as
well as for (polynomial) cardinal B-splines.
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Remark 2.3. GB-splines can be defined in a more general setting than Definition 2.1. In particular,
completely general knot sets can be considered and the section space (2.1) can be chosen differently
on each knot interval; see, e.g., [14].

3. Approximation strategy

The integral recurrence relation in Definition 2.1 is not well suited for an efficient and numerically
stable evaluation of cardinal GB-splines, due to both the need of integration and subtraction in the
expression (2.3). Recurrence relations for Tchebycheffian splines and so for (cardinal) GB-splines
analogous to (2.4) are also known; see [12]. However, they require quite involved weight functions
and so they are more of theoretical interest than of practical help for designing good (numerical)
evaluation algorithms. On the other hand, there exist extremely stable and fast algorithms for the
evaluation of (polynomial) cardinal B-splines. In this section, we propose an approximation strategy
for φU,V

p based on convolution of cardinal B-splines. The accuracy of the approximation can be
predetermined according to the application we need to deal with.

Suppose we are given an approximation of the type:

φU,V
1 (x) ≃

∑

k

qU,V
k fk(x). (3.1)

The Fourier transform of (3.1) results in

φ̂U,V
1 (θ) ≃

∑

k

qU,V
k f̂k(θ),

and can be extended to any p ≥ 2 by means of (2.7):

φ̂U,V
p (θ) ≃

(
1− e−iθ

iθ

)p−1

φ̂U,V
1 (θ) =

∑

k

qU,V
k f̂k(θ)φ̂p−2(θ). (3.2)

Then, by taking the inverse Fourier transform of (3.2) we get

φU,V
p (x) ≃

∑

k

qU,V
k (fk ∗ φp−2)(x). (3.3)

We now look for an intelligent choice of the functions fk and the coefficients qU,V
k in (3.1)–(3.3).

For a fixed accuracy parameter j, linear spline interpolation over Z/2j gives

φU,V
1 (x) ≃ φ̃U,V

1,j (x) :=

nj∑

k=0

qU,V
k,j φ1(2

jx− k), (3.4)

with nj := 2(2j − 1) and

qU,V
k,j := φU,V

1

(
k + 1

2j

)
, k = 0, . . . , nj. (3.5)

When following the above procedure, we get for p ≥ 2,

φU,V
p (x) ≃ φ̃U,V

p,j (x) :=

nj∑

k=0

qU,V
k,j (φ1(2

j · −k) ∗ φp−2)(x). (3.6)

In the convolution operation used in (3.6) we see that φ1 has as argument 2jx− k while φp−2 has
as argument x. In order to deal with this, we recall the standard two-scale refinement formula for
cardinal B-splines [7]:

φp(x) =
1

2p

p+1∑

i=0

(
p+ 1

i

)
φp(2x− i). (3.7)

Iterating this recursively leads to the following refinement formula.
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Lemma 3.1. For every p ≥ 0 and j ≥ 0, we have

φp(x) =

Np,j∑

l=0

al,p,j φp(2
jx− l), (3.8)

with Np,j := (p+ 1)(2j − 1), a0,p,0 := 1, and

al,p,m :=
1

2p

min(⌊ l
2
⌋,Np,m−1)∑

k=max(0,⌈ l−p−1

2
⌉)

(
p+ 1

l − 2k

)
ak,p,m−1, l = 0, . . . , Np,m, m > 0. (3.9)

Proof. The identity in (3.8) is trivial for j = 0. We proceed by induction. Suppose the identity is
true for j − 1 ≥ 0. Then, by means of (3.7) we have

φp(x) =

Np,j−1∑

k=0

ak,p,j−1 φp(2
j−1x− k) =

1

2p

Np,j−1∑

k=0

ak,p,j−1

p+1∑

i=0

(
p+ 1

i

)
φp(2

jx− 2k − i).

By taking l := 2k + i and reorganizing the sums, we get (3.8). Note that

2Np,j−1 + p+ 1 = (p+ 1)(2j − 2) + p+ 1 = Np,j.

We now arrive at our main approximation result based on the procedure described in (3.1)–(3.3).

Theorem 3.1. For every p ≥ 2 and j ≥ 0, we have

φU,V
p (x) ≃ φ̃U,V

p,j (x) =

Np,j∑

r=0

bU,V
r,p,j φp(2

jx− r), (3.10)

with

bU,V
r,p,j :=

1

2j

min(r,nj)∑

k=max(0,r−Np−2,j)

qU,V
k,j ar−k,p−2,j , r = 0, . . . , Np,j , (3.11)

and qU,V
k,j is defined in (3.5) and al,p,j is defined in (3.9).

Proof. Using Lemma 3.1 we can rewrite (3.6) into

φ̃U,V
p,j (x) =

nj∑

k=0

qU,V
k,j


φ1(2

j · −k) ∗

Np−2,j∑

l=0

al,p−2,j φp−2(2
j · −l)


 (x).

Moreover, from the translation and scaling properties of the convolution operator we know that

(φ1(2
j · −k) ∗ φp−2(2

j · −l))(x) =
1

2j
φp(2

jx− k − l),

and we get

φ̃U,V
p,j (x) =

nj∑

k=0

qU,V
k,j

Np−2,j∑

l=0

al,p−2,j

2j
φp(2

jx− k − l).

By taking r := k+ l and reorganizing the sums, we obtain (3.10). Note that nj +Np−2,j = Np,j.

Remark 3.1. The expression for the coefficients given in (3.11) is a discrete convolution and therefore
can be implemented efficiently.
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Remark 3.2. Thanks to the structure of the approximation in (3.10) and the expression of the

coefficients (3.11), a more accurate solution φ̃U,V
p,j+1 can be efficiently obtained from φ̃U,V

p,j by saving all

the computations previously done both for the coefficients al,p,j and for the values qU,V
k,j .

Lemma 3.1 gives us a recursive procedure to compute the coefficients al,p,j. Inspired by a direct
check for several values of p and j, we conjecture the following explicit expression for the coefficients
al,p,j in (3.8):

al,p,j =
1

2pj

min(p+1,⌊ l

2j
⌋)∑

k=0

(−1)k
(
p+ 1

k

)(
p+ l − k 2j

p

)
. (3.12)

This means that the coefficients al,p,j can be written in terms of combinatorics as

al,p,j =
1

2pj
P (l, p+ 1, 2j − 1),

where P (α, β, γ) stands for the number of ways that the nonnegative integer α can be written as an
ordered sum of β nonnegative integers ranging from 0 to γ; see [20].

Under the validity of the above conjecture, we can also formulate an alternative expression for the
coefficients in (3.10). Combining (3.11) and (3.12) gives

bU,V
r,p,j =

1

2(p−1)j

min(r,nj)∑

k=max(0,r−Np−2,j)

qU,V
k,j

min(p−1,⌊ r−k

2j
⌋)∑

l=0

(−1)l
(
p− 1

l

)(
p− 2 + r − k − l 2j

p− 2

)
. (3.13)

In the explicit expression (3.13) of the coefficients bU,V
r,p,j we only need to know the function values of

φU,V
1 in integer multiples of 1

2j between 0 and 2; see (3.5).

Example 3.1. The function values of φHα

1 in multiples of 1
2j between 0 and 2 are given by

φHα

1

(
k + 1

2j

)
=





α

2 tanh(α/2)

sinh
(
k+1
2j α

)

sinh(α)
, if k ≤ 2j − 1,

α

2 tanh(α/2)

sinh
(
(2− k+1

2j )α
)

sinh(α)
, if k ≥ 2j − 1.

(3.14)

Example 3.2. The function values of φTα

1 in multiples of 1
2j between 0 and 2 are given by

φTα

1

(
k + 1

2j

)
=





α

2 tan(α/2)

sin
(
k+1
2j α

)

sin(α)
, if k ≤ 2j − 1,

α

2 tan(α/2)

sin
(
(2 − k+1

2j )α
)

sin(α)
, if k ≥ 2j − 1.

(3.15)

4. Error analysis and some numerical experiments

In this section we study the accuracy of the approximation (3.10), starting with the first degree
approximation (3.4) and then passing to a general degree approximation. We study the error by
considering two steps.

1. The error eU,V
1,j (x) := φU,V

1 (x) − φ̃U,V
1,j (x) is the standard (piecewise) linear interpolation error

with zero values in the points i/2j, i = 0, . . . , 2j+1. It is well known that, if ϕ ∈ C2(a, b) is the
function to be approximated by its linear interpolant at the points a and b, denoted by L{a,b}ϕ,
then for every a < x < b,

|ϕ(x) − L{a,b}ϕ(x)| ≤
1

8
(b − a)2 sup

y∈(a,b)

|ϕ̈(y)|, (4.1)

where ϕ̈ is the second derivative of ϕ. We consider the intervals [i/2j, (i + 1)/2j] for i =
0, . . . , 2j+1 − 1. From this, and referring to the notation of (4.1), it follows that b − a = 2−j,
and so (1/8)(b− a)2 = 2−2j−3.
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2. The error eU,V
p,j (x) := φU,V

p (x)− φ̃U,V
p,j (x) can be obtained from the error eU,V

1,j (x) by convolution.
Indeed, we have for p ≥ 2,

φU,V
p (x) − φ̃U,V

p,j (x) = ((φU,V
1 − φ̃U,V

1,j ) ∗ φp−2)(x). (4.2)

Let us now work out the details of the error bound.

Lemma 4.1. For every p ≥ 0 and x ∈ R, we have

∫ 2

0

φp(x − y) dy ≤ 2φp+1

(
p+ 1

2

)
=: Ip, (4.3)

and 0 ≤ Ip ≤ 1.

Proof. For p = 0 it is easy to verify that

∫ 2

0

φ0(x − y) dy ≤ 1 = I0.

Now we prove (4.3) for p ≥ 1. From [18] we know that for t ∈ [0, p+ 1],

∫ t

0

φp(y) dy =

p∑

k=0

φp+1(t− k).

Hence, for x ∈ [2, p+ 1],

∫ 2

0

φp(x− y) dy =

∫ x

x−2

φp(y) dy =

p∑

k=0

(φp+1(x− k)− φp+1(x− k − 2))

= φp+1(x) + φp+1(x− 1)− φp+1(x− p− 1)− φp+1(x− p− 2).

When taking x = (p+ 3)/2, we get

∫ 2

0

φp

(
p+ 3

2
− y

)
dy = φp+1

(
p+ 3

2

)
+ φp+1

(
p+ 1

2

)
− φp+1

(
−p+ 1

2

)
− φp+1

(
−p− 1

2

)
,

and by exploiting the symmetry and local support of the cardinal B-spline, this can be simplified to

∫ 2

0

φp

(
p+ 3

2
− y

)
dy = 2φp+1

(
p+ 1

2

)
. (4.4)

From the symmetric bell-shape of the cardinal B-spline it follows that for any x ∈ R,

∫ 2

0

φp(x− y) dy ≤

∫ 2

0

φp

(
p+ 3

2
− y

)
dy,

which implies (4.3). Finally, by the positivity and unity of integral of the cardinal B-spline, it is clear
from (4.4) that 0 ≤ Ip ≤ 1.

The quantity Ip is visualized in Figure 2 for different p, and we see that its value decreases for
increasing p.

Lemma 4.2. For every p ≥ 2 and x ∈ R, we have

|(eU,V
1,j ∗ φp−2)(x)| ≤ Ip−2 max

y∈[0,2]
|eU,V

1,j (y)|, (4.5)

where Iq is defined in (4.3).
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Figure 2: Values of Ip defined in (4.3) for p = 1, . . . , 10.

Proof. From the definition of convolution and the positivity of cardinal B-splines, we get

|(eU,V
1,j ∗ φp−2)(x)| =

∣∣∣∣
∫ 2

0

eU,V
1,j (y)φp−2(x − y) dy

∣∣∣∣ ≤
∫ 2

0

|eU,V
1,j (y)|φp−2(x− y) dy

≤ max
y∈[0,2]

|eU,V
1,j (y)|

∫ 2

0

φp−2(x− y) dy,

and using Lemma 4.1 completes the proof.

Theorem 4.1. For p ≥ 1 and x ∈ R, we have

|φU,V
p (x) − φ̃U,V

p,j (x)| ≤ 2−2j−3 Ip−2 sup
y∈(0,1)∪(1,2)

|φ̈U,V
1 (y)|, (4.6)

where I−1 := 1, Iq is defined in (4.3) for q ≥ 0, and φ̈U,V
1 is the second derivative of φU,V

1 .

Proof. The result follows immediately from (4.1), (4.2) and (4.5).

We see that the approximation error reduces as O(4−j) with respect to j. To have a precise

constant in our error estimate we still need to bound |φ̈U,V
1 (x)|.

Example 4.1. The second derivative of φHα

1 (x) can be bounded as follows. By the local support and
symmetry of φHα

1 (x) with respect to x = 1 (see Remark 2.2), we can restrict our analysis to the
interval [0, 1]. We have

φHα

1 (x) =
α

2 tanh(α/2)

sinh(αx)

sinh(α)
, 0 < x < 1,

and differentiating twice results in

φ̈Hα

1 (x) =
α3

2 tanh(α/2)

sinh(αx)

sinh(α)
, 0 < x < 1.

Hence, we conclude

|φ̈Hα

1 (x)| ≤

∣∣∣∣
α3

2 tanh(α/2)

∣∣∣∣ , x ∈ R. (4.7)

This bound is plotted in Figure 3 (left).
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Figure 3: Graphs of the bounds in (4.7) and (4.8) for |φ̈Hα
1

(x)| and |φ̈Tα
1

(x)| with respect to α.

Example 4.2. The second derivative of φTα

1 (x) can be bounded as follows. By the local support and
symmetry of φTα

1 (x) with respect to x = 1 (see Remark 2.2), we can restrict our analysis to the
interval [0, 1]. We have

φTα

1 (x) =
α

2 tan(α/2)

sin(αx)

sin(α)
, 0 < x < 1,

and differentiating twice results in

φ̈Tα

1 (x) = −
α3

2 tan(α/2)

sin(αx)

sin(α)
, 0 < x < 1.

If 0 < α < π
2 , then | sin(αx)| ≤ | sin(α)|, whereas if π

2 ≤ α < π, then | sin(αx)| ≤ 1. Hence, we get

|φ̈Tα

1 (x)| ≤





∣∣∣∣
α3

2 tan(α/2)

∣∣∣∣ , if 0 < α < π
2 ,

∣∣∣∣
α3

2 tan(α/2) sin(α)

∣∣∣∣ , if π
2 ≤ α < π,

x ∈ R. (4.8)

This bound is plotted in Figure 3 (right).

We will now check the sharpness of the error bound in (4.6) together with (4.7)–(4.8) in some
numerical examples. Let us first consider the hyperbolic cardinal GB-spline case. We start by recalling
from Lemma 4.1 that 0 ≤ Ip ≤ 1. Hence, we know from (4.6) and (4.7) that the approximation error

eHα

p,j(x) := φHα
p (x) − φ̃Hα

p,j(x) is bounded by

EHα

j := 4−j−2

∣∣∣∣
α3

tanh(α/2)

∣∣∣∣ . (4.9)

This bound is reported in Table 1 for different values of j and α. Let Gp be the set of points uniformly
distributed over the interval [0, p+1] with a stepsize of 0.01. Table 1 also shows the maximum value of
the error |eHα

p,j(x)| sampled over Gp for p = 1, 2, 3 and for different values of j and α. We clearly notice
the reduction of the error by a factor 1/4 when moving from j to j+1 for fixed p and α. Moreover, we
observe that the bound (4.9) is a quite sharp approximation of the maximum error value depicted in
column p = 1, especially for higher values of j. Finally, we see that the error decreases for increasing
p. This is expected because we know that Ip is decreasing for increasing p (see Figure 2). Some plots
of the error are depicted in Figure 4 (a,c).
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EHα

j p = 1 p = 2 p = 3

α = 1

j = 1 0.338 e−1 0.239 e−1 0.159 e−1 0.133 e−1
j = 2 0.845 e−2 0.714 e−2 0.398 e−2 0.348 e−2
j = 3 0.212 e−2 0.194 e−2 0.996 e−3 0.879 e−3
j = 4 0.529 e−3 0.506 e−3 0.249 e−3 0.220 e−3
j = 5 0.132 e−3 0.119 e−3 0.623 e−4 0.551 e−4

α = 10

j = 1 0.156 e+2 0.240 e+1 0.152 e+1 0.120 e+1
j = 2 0.391 e+1 0.132 e+1 0.470 e+0 0.409 e+0
j = 3 0.977 e+0 0.544 e+0 0.126 e+0 0.113 e+0
j = 4 0.244 e+0 0.181 e+0 0.321 e−1 0.290 e−1
j = 5 0.610 e−1 0.475 e−1 0.807 e−2 0.731 e−2

Table 1: Theoretical bound E
Hα
j defined in (4.9) and the maximum value of the error |eHα

p,j(x)| sampled over Gp.

ETα

j p = 1 p = 2 p = 3

α = 1

j = 1 0.286 e−1 0.231 e−1 0.153 e−1 0.131 e−1
j = 2 0.715 e−2 0.651 e−2 0.383 e−2 0.338 e−2
j = 3 0.179 e−2 0.171 e−2 0.956 e−3 0.851 e−3
j = 4 0.447 e−3 0.437 e−3 0.239 e−3 0.213 e−3
j = 5 0.112 e−3 0.104 e−3 0.597 e−4 0.533 e−4

α = 3.14

j = 1 0.242 e+0 0.165 e+0 0.107 e+0 0.107 e+0
j = 2 0.605 e−1 0.552 e−1 0.260 e−1 0.260 e−1
j = 3 0.151 e−1 0.148 e−1 0.644 e−2 0.644 e−2
j = 4 0.378 e−2 0.375 e−2 0.161 e−2 0.161 e−2
j = 5 0.945 e−3 0.903 e−3 0.402 e−3 0.401 e−3

Table 2: Theoretical bound E
Tα
j defined in (4.10) and the maximum value of the error |eTα

p,j(x)| sampled over Gp.

A completely similar behavior is observed in the trigonometric cardinal GB-spline case. We know
from (4.6) and (4.8) that the approximation error eTα

p,j(x) := φTα
p (x)− φ̃Tα

p,j(x) is bounded by

ETα

j := 4−j−2





∣∣∣∣
α3

tan(α/2)

∣∣∣∣ , if 0 < α < π
2 ,

∣∣∣∣
α3

tan(α/2) sin(α)

∣∣∣∣ , if π
2 ≤ α < π.

(4.10)

This bound is reported in Table 2 together with the maximum value of the error |eTα

p,j(x)| sampled
over Gp for p = 1, 2, 3 and for different values of j and α. Some plots of the error are depicted in
Figure 4 (b,d).

Next, we make a comparison between the approximate values φ̃U,V
p,j (x) given in (3.10) and the

values obtained by numerical computation of the integral recurrence relation (2.3) using suitable
quadrature rules. A careful investigation of the computational cost of the two procedures is quite
involved because it deeply depends on their implementations. Therefore, we limit ourselves to estimate
the number of evaluations of the function φU,V

1 needed in each of the two approaches. We just focus

on the (most common) case where φU,V
1 is symmetric, like for hyperbolic and trigonometric cardinal

GB-splines. Taking into account this symmetry, from (3.5) we see that

Fj := 2j − 1

evaluations of φU,V
1 are required to compute all values qU,V

k,j in (3.10)–(3.11). In order to compute

numerically the recurrence relation (2.3), we approximate each integral
∫ x

0
(φU,V

ℓ (y)−φU,V
ℓ (y− 1)) dy,
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Figure 4: Plots of |eHα
p,j(x)| and |eTα

p,j(x)| for different values of p and α. In each plot several refinement levels are

considered: j = 2 (black), j = 3 (blue), j = 4 (red), j = 5 (magenta).

p = 2 p = 3 p = 4 p = 5

α = 1

j = 6 0.156 e−4 0.138 e−4 0.123 e−4 0.113 e−4
j = 8 0.973 e−6 0.861 e−6 0.770 e−6 0.706 e−6
m = 2 0.128 e−3 0.365 e−3 0.445 e−3 0.122 e−2
m = 3 0.265 e−6 0.790 e−6 0.976 e−6 0.266 e−5

α = 10

j = 6 0.202 e−2 0.183 e−2 0.149 e−2 0.132 e−2
j = 8 0.126 e−3 0.114 e−3 0.929 e−4 0.826 e−4
m = 4 0.470 e−2 0.350 e−2 0.311 e−2 0.305 e−2
m = 5 0.288 e−3 0.222 e−3 0.194 e−3 0.191 e−3

α = 20

j = 6 0.812 e−2 0.772 e−2 0.605 e−2 0.538 e−2
j = 8 0.509 e−3 0.483 e−3 0.379 e−3 0.337 e−3
m = 5 0.194 e−1 0.134 e−1 0.128 e−1 0.122 e−1
m = 6 0.278 e−2 0.196 e−2 0.186 e−2 0.179 e−2
m = 7 0.306 e−3 0.220 e−3 0.208 e−3 0.201 e−3

Table 3: Maximum value of the error |eHα
p,j(x)| obtained by approximation strategy (3.10) with different j, and maximum

value of the error obtained by approximating the integral recurrence relation (2.3) for φHα
p (x) by means of a composite

Gauss–Legendre quadrature rule with different mℓ = m. Both the errors are sampled over Gp.

ℓ = 1, . . . , p − 1, by a composite Gauss–Legendre quadrature rule based on mℓ quadrature points
in each knot (sub)interval. Due to the recursive structure of (2.3), the approximation of φU,V

p (x)
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Figure 5: Values of Fj = 2j−1 (for j = 4, 6, 8, indicated by filled bullets) and Mp = (m)p−1 (for m = 4, 5, 6, 7, indicated

by open bullets) plotted against the corresponding maximum error values obtained when approximating φ
H20
p (x): p = 3

(black), p = 4 (blue) and p = 5 (red). See also data in Table 3.

requires C(x)Mp evaluations of φU,V
1 where C(x) ≥ 1 depends on the knot interval containing x and

Mp := mp−1mp−2 · · ·m1.

The value j, necessary to reach a given accuracy when using (3.10), can be easily determined by
the error bound in Theorem 4.1 (and also (4.9) and (4.10) for the hyperbolic and trigonometric
case, respectively). On the contrary, an accurate selection of mℓ is an arduous task; mℓ should
be large enough to integrate exactly polynomials of degree ℓ and approximately well the functions
U (p−ℓ), V (p−ℓ).

Table 3 reports the maximum errors obtained by the two approaches when approximating φHα
p (x)

over the grid Gp for different values of the parameter α and the degree p; we also vary the approx-
imation level j and the number of the quadrature points mℓ = m. The range of values for α and
p considered in the test are of practical interest in applications. In particular, the values α = 20
and p = 4 are those used in [15, Section 4.2.2], considering a proper scaling of the variable x. Fig-
ure 5 depicts in logarithmic scale the cost values Fj = 2j − 1 (for j = 4, 6, 8) and the lower bound
Mp = (m)p−1 (for m = 4, 5, 6, 7) versus the corresponding maximum error values obtained when
approximating φHα

p (x) with α = 20 and p = 3, 4, 5.

5. Conclusions

GB-splines – the B-spline-like basis for generalized splines – are usually defined by means of an
integral recurrence relation which makes their evaluation quite cumbersome and computationally
expensive. This inherent complexity often results in a reluctant attitude to use GB-splines in prac-
tical applications, despite their interesting analytical and geometrical properties. To circumvent this
barrier, we have proposed an approximation strategy for the evaluation of cardinal GB-splines of
arbitrary degree p. The approach is based on convolution of cardinal B-splines and its accuracy can
be predetermined according to the application we need to deal with.

The proposed approximation method deeply exploits the Fourier properties of both polynomial
and generalized cardinal B-splines. In such a manner we can avoid evaluation of integrals and related
numerical quadrature. The approximating function is expressed as a linear combination of scaled and
dilated versions of (polynomial) cardinal B-splines of degree p, whose coefficients can be efficiently
computed via discrete convolution. Moreover, in case a better accuracy is needed, the proposed
method allows us to construct a new approximation from the previous approximation by reusing all
the computations previously made.

13



Acknowledgements

This work was partially supported by INdAM-GNCS Gruppo Nazionale per il Calcolo Scientifico
and by the MIUR ‘Futuro in Ricerca 2013’ Programme through the project DREAMS.

References

[1] C. de Boor. A Practical Guide to Splines, Revised edition. Springer (2001).

[2] T. Bosner. Knot insertion algorithms for Chebyshev splines. PhD thesis, Dept. of Mathematics,
University of Zagreb (2006).

[3] C. Bracco and D. Cho. Generalized T-splines and VMCR T-meshes. Comput. Methods Appl.
Mech. Engrg. 280 (2014), 176–196.

[4] C. Bracco, T. Lyche, C. Manni, F. Roman, and H. Speleers. Generalized spline spaces over T-
meshes: Dimension formula and locally refined generalized B-splines. Appl. Math. Comput. 272
(2016), 187–198.

[5] C. Bracco, T. Lyche, C. Manni, F. Roman, and H. Speleers. On the dimension of Tchebycheffian
spline spaces over planar T-meshes. Comput. Aided Geom. Design 45 (2016), 151–173.

[6] C. Bracco and F. Roman. Spaces of generalized splines over T-meshes. J. Comput. Appl. Math.
294 (2016), 102–123.

[7] C.K. Chui. An Introduction to Wavelets. Academic Press (1992).

[8] P. Costantini, T. Lyche, and C. Manni. On a class of weak Tchebycheff systems. Numer. Math.
101 (2005), 333–354.

[9] P. Costantini, C. Manni, F. Pelosi, and M.L. Sampoli. Quasi-interpolation in isogeometric anal-
ysis based on generalized B-splines. Comput. Aided Geom. Design 27 (2010), 656–668.

[10] C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, and H. Speleers. On the spectrum of stiffness
matrices arising from isogeometric analysis. Numer. Math. 127 (2014), 751–799.

[11] B.I. Kvasov and P. Sattayatham. GB-splines of arbitrary order. J. Comput. Appl. Math. 104

(1999), 63–88.

[12] T. Lyche. A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1 (1985), 155–173.

[13] E. Mainar, J.M. Peña, and J. Sánchez-Reyes. Shape preserving alternatives to the rational Bézier
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