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A COMBINATORIAL DESCRIPTION OF

FINITE O-SEQUENCES AND ACM GENERA

FRANCESCA CIOFFI, PAOLO LELLA, AND MARIA GRAZIA MARINARI

Abstract. The goal of this paper is to explicitly detect all the arithmetic genera of
arithmetically Cohen-Macaulay projective curves with a given degree d. It is well-known
that the arithmetic genus g of a curve C can be easily deduced from the h-vector of
the curve; in the case where C is arithmetically Cohen-Macaulay of degree d, g must
belong to the range of integers

{
0, . . . ,

(
d−1

2

)}
. We develop an algorithmic procedure that

allows one to avoid constructing most of the possible h-vectors of C. The essential tools
are a combinatorial description of the finite O-sequences of multiplicity d, and a sort of
continuity result regarding the generation of the genera. The efficiency of our method
is supported by computational evidence. As a consequence, we single out the minimal
possible Castelnuovo-Mumford regularity of a curve with Cohen-Macaulay postulation
and given degree and genus.

Introduction

In this paper we introduce an algorithmic approach to the search of all possible arith-
metic genera of an arithmetically Cohen-Macaulay (aCM for short) projective curve of
given degree d. This problem has been studied in several instances, such as [Rob82,
Example 4.6], and it has a role in the classification of algebraic curves, see for example
[Har94, Nag03] and the references therein.
The arithmetic genus g of a curve appears in the constant term of the curve’s Hilbert

polynomial, hence it is related to the more general study of the coefficients of Hilbert
polynomials (see [Har66] for a geometrical point of view, and [ERV96] in the context of
local algebra).
In fact, not only does the h-vector encode a lot of information about the geometry

of the curve; the arithmetic genus of the curve is also easily deduced from it ([Har10,
Exercises 8.11 and 8.12], [Mig98, Section 1.4]). For an aCM projective scheme the h-
vector is actually the Hilbert function of its artinian reduction. This result is mainly
due to the fundamental paper of [Mac26] characterizing the Hilbert functions of standard
graded algebras.
We stress the fact that the work of Macaulay does not provide an algorithmic solution

for the problem of deciding whether or not an aCM curve of degree d and genus g exists.
This remark has been the starting point of our paper. By investigating the set of finite O-
sequences of multiplicity d and its properties we obtain our solution, both computational
and theoretical, that relies on some closed formula considerably reducing the amount of
real computations. We have not been able to find analogous results in literature.
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As a first step, we provide a very natural combinatorial description of finite O-sequences,
by means of suitable connected graphs, and we obtain an efficient search algorithm of the
arithmetic genera of Cohen-Macaulay curves (see Algorithm 1 in Section 2).
Then, for every positive integer d, we denote by Rd =

[
0,
(
d−1
2

)]
∩N the set of integers

to which the genus of a Cohen-Macaulay curve of degree d must belong, and we focus
our attention on smaller ranges Rs

d, consisting of the genera of Cohen-Macaulay curves
of degree d and h-vector of length s. By introducing a convenient total ordering on the
set of O-sequences of multiplicity d and length s, we can single out each range Rs

d (see
Corollary 2.10, Theorem 3.2, Propositions 3.4).
The integers in Rd that can not be realized as genus of an aCM curve of degree d are

called gaps. Many of them are located outside every range Rs
d, some others lie near the

maximal genus in Rs
d, for values of s that can be exactly determined by suitable closed

formulas (see Propositions 4.3 and 4.9).
Finally, we provide an algorithm to compute all the genera of aCM curves for a given

degree d, avoiding to construct all the corresponding O-sequences (see Algorithm 2 in
Section 5). The strategy supporting this algorithm combines the previous results together
with a sort of continuity in the generation of the genera of aCM curves developed in Lemma
5.1 and applied in Theorem 5.4. Experimental computations point out that only a small
percentage of integers of Rd needs to be checked by the search algorithm (see Tables 1
and 2).
In Section 6, we apply our search algorithm to detect the minimal possible Castelnuovo-

Mumford regularity of a curve with Cohen-Macaulay postulation and given degree and
genus (Proposition 6.1). Moreover, we answer to a question posed in [CDG11] about the
Castelnuovo-Mumford regularity of even dimensional projective subschemes having the
same Hilbert function of a Cohen-Macaulay projective scheme (Example 6.3).

1. Generalities on O-sequences and aCM genera

In this section, we state some notation and recall some basic results on O-sequences,
referring to [BH93] and [Val98].
Given two positive integers a, t, the binomial expansion of a in base t is the unique

writing

(1.1) a =
(
k(t)
t

)
+
(
k(t−1)
t−1

)
+ · · ·+

(
k(j)
j

)

where k(t) > k(t − 1) > · · · > k(j) > j > 1 with the convention that
(
n

m

)
= 0 whenever

n < m and
(
n

0

)
= 1 for every n > 0. Letting

a〈t〉 :=
(
k(t)+1
t+1

)
+
(
k(t−1)+1

t

)
+ · · ·+

(
k(j)+1
j+1

)
,

by an easy computation, one gets (a + 1)〈t〉 > a〈t〉. A numerical function h : N → N is
admissible or an O-sequence if h(0) = 1 and h(t+ 1) 6 h(t)〈t〉 for every t > 1.
If h is an admissible function and h(t) = 0 for some t, then h(t+ i) = 0 for every i > 0,

and h is called a finite or Artinian O-sequence. For a finite O-sequence (h0, . . . , hs−1)
we assume hs−1 6= 0. The integer s is the length of the O-sequence and the integer
e(h) :=

∑s−1
i=0 hi is its multiplicity.

It is well known that there is a bijective correspondence between the set of finite O-
sequences of multiplicity d and the set of Hilbert functions of a Cohen-Macaulay standard
graded algebra of multiplicity d over a field K [Val98, Theorem 1.5]. In fact, all these
Hilbert functions can be computed from the finite O-sequences. In particular, if the graded
algebra is the ring of regular functions on an aCM curve C (i.e. a closed subscheme C ⊂ P

n
K

of dimension 1), the Hilbert function HC of C is the 2-th integral of a finite O-sequences
h = (h0, h1, . . . , hs−1), i.e. lettingHC(0) := HZ(0) := h(0) = 1 andHZ(t) = HZ(t−1)+h(t)
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for every t > 0, we have

HC(t) = HC(t− 1) +HZ(t), for every t > 0.

Hence, h is the so-called h-vector of C and the Hilbert polynomial of C is pC(z) = dz+1−g

where, after an easy computation, we find that the arithmetic genus of C is

(1.2) g = 1 + (s− 2)d− p(s− 2) =

s−1∑

j=2

(j − 1)hj > 0.

In this situation, we say that HC is an aCM function or a Cohen-Macaulay postulation,
pC(z) is an aCM polynomial and g is an aCM genus.

Remark 1.1. The following facts are immediate remarks:

(i) the arithmetic genus of an aCM curve is non-negative;
(ii) every positive integer g is the genus of some aCM curve: it is enough to take any

O-sequence (1, h1, g), with h
〈1〉
1 > g;

(iii) if g is the arithmetic genus of some aCM curve Cd of degree d, then there is also
an aCM curve Cd+1 of degree d + 1 with the same arithmetic genus g; indeed,
if h = (1, h1, h2, . . . , hs−1) is the h-vector of Cd, then the sequence h′ = (1, h1 +
1, h2, . . . , hs−1) is also an O-sequence and is the h-vector of a curve Cd+1 with Hilbert
polynomial (d + 1)z + 1 − g. Indeed, the multiplicity of the O-sequence h′ is d + 1
and then we apply formula (1.2), in which the integer h1 does not occur. From a
geometric point of view, this means that Cd+1 can be obtained as the union of Cd

and a line through a point of Cd.

2. A combinatorial description of finite O-sequences

In this section, we consider a natural structure on the set of all finite O-sequences. This
structure will entail both our search algorithm of the arithmetic genera of Cohen-Macaulay
curves, and some useful information about the aCM genera, such as the existence of
minimal genera corresponding to O-sequences with given length (and multiplicity).
We let ei denote any sequence, of any length, consisting entirely of 0 except 1 in the

i-th position. Moreover, we introduce the following compact notation for some particular
sequences:

(1α0 , hα1

i1
, hα2

i2
, . . . , h

αk

ik
) := (1, . . . , 1︸ ︷︷ ︸

α0 times

, hi1 , . . . , hi1︸ ︷︷ ︸
α1 times

, . . . , hik , . . . , hik︸ ︷︷ ︸
αk times

).

Definition 2.1. The O-sequences graph is the directed graph G such that:

• the set of vertices V (G) consists of the finite O-sequences;
• the set of edges E(G) consists of the pairs (h, h′) ∈ V (G)2 s.t. h′ − h = ei for some
i (i.e. (h, h′) ∈ E(G) if h′ can be obtained from h by increasing by 1 its i-th entry).

An edge (h, h′) ∈ E(G) from h to h′ is labeled by ei if h
′ − h = ei.

Let us consider the map g : G → N that associates to each O-sequence the genus of an
aCM curve having this O-sequence as h-vector.

Proposition 2.2. The O-sequences graph G is a rooted connected graph without loops.
The root is the O-sequence of multiplicity 1.

Proof. For any h = (1, h1, . . . , hs−1), the sequence h′ = h− es−1 is admissible so that there
is an edge going from h′ to h. Repeating this procedure, we get the length one O-sequence
(1) which cannot be the head of any edge, proving that G is connected. There are no
loops as each edge increases the multiplicity by 1. �
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Remark 2.3. Denoted by dG(h) the distance of the node h from the root, we have
dG(h) = e(h)− 1.

We are going to define a subgraph T ⊂ G which will turn out to be a spanning tree.
In this way, we can design ad hoc algorithms to visit the tree in order to quickly find
the O-sequences with the properties we will look for. The idea for determining T is the
one used in the proof of Proposition 2.2. For each node of G, we consider only the edge
coming from the O-sequence obtained lowering by 1 the value with the greatest index.
Indeed, notice that each O-sequence h (of any length s) has a successor in T , as h+ es is
always a finite O-sequence, whereas the sequence h + es−1 might not be admissible.

Definition 2.4. We call O-sequences tree the subgraph T ⊂ G such that:

• V (T ) = V (G);
• E(T ) =

{
(h, h′) ∈ E(G)

∣∣ h′ = h+ es or h
′ = h + es−1, if h

〈s−2〉
s−2 > hs−1

}
.

(1)

(12)

(13) (1, 2)

(14) (1, 2, 1) (1, 3)

(15) (1, 2, 12) (1, 22) (1, 3, 1) (1, 4)

(16) (1, 2, 13) (1, 22, 1) (1, 3, 12) (1, 2, 3) (1, 3, 2) (1, 5)(1, 4, 1)

(17) (1, 2, 14) (1, 22, 12) (1, 3, 13) (1, 23) (1, 2, 3, 1)(1, 3, 2, 1) (1, 32)(1, 4, 12) (1, 4, 2) (1, 5, 1) (1, 6)

Figure 1. The O-sequence graph G up to multiplicity 7. The dashed
edges are edges of G that do not belong to the spanning tree T .

In most situations, we will work with O-sequences with given multiplicity (i.e. with
nodes of G at the same distance from the root) or with given length. We denote by Gd

the set of O-sequences of multiplicity d and by Gs the set of O-sequences of length s.

Remark 2.5. As in the spanning tree T each vertex is the tail of at most 2 edges, we
have that |Gd| < 2|Gd−1|. Moreover, since |G2| = 1, by recursion |Gd| < 2d−2.

Proposition 2.6. The subgraph Gs ⊂ G is a rooted connected graph with root (1s) con-
taining a spanning tree T s with the same root.

Proof. We need to show that, for any O-sequence h 6= (1s) of length s, there exists another
O-sequence of the same length with multiplicity e(h)−1. If k = max{1 6 i 6 s−1 | hi >

1}, then h = (1, h1, . . . , hk, 1
s−k−1) and h′ = (1, h1, . . . , hk − 1, 1s−k−1) is admissible. �

Remark 2.7. Denoted by dsG(h) the distance of the node h from the root of Gs, we have
dsG(h) = dG(h)− (s− 1) = e(h)− s.

Gd is not a subgraph of G, as there are no edges of G between O-sequences with the
same multiplicity. But the edges of G induce the following natural partial order on Gd.
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(1)

G1

(12)

G2

(13) (1, 2)

G3

(14) (1, 2, 1) (1, 3)

G4

(15) (1, 2, 12) (1, 22) (1, 3, 1) (1, 4)

G5

(16) (1, 2, 13) (1, 22, 1) (1, 3, 12) (1, 2, 3)(1, 3, 2)(1, 4, 1) (1, 5)

G6

(17) (1, 2, 14)(1, 22, 12)(1, 3, 13)(1, 23)(1, 2, 3, 1)(1, 3, 2, 1) (1, 32)(1, 4, 12) (1, 4, 2) (1, 5, 1) (1, 6)

G7

Figure 2. The subgraphs Gs of the O-sequence graph with given length
s. Along the grey dotted edges the length increases, so such edges of G do
not belong to any subgraph Gs. The dashed edges are edges of Gs that do
not belong to the corresponding spanning tree T s.

Definition 2.8. Two O-sequences h1 and h2 in Gd are directly comparable if there exists
h0 ∈ Gd−1 such that h1 = h0 + ei and h2 = h0 + ej , i.e. h1 − h2 = ei − ej . On directly
comparable O-sequences we consider the order

(2.1) h1 ≺ h2 ⇐⇒ i < j

and denote by ≺ also its transitive closure in Gd.

The partial order ≺ gives a natural structure of directed graph to Gd. The edges are
all the possible pairs (h, h′) ∈ V (Gd)

2 such that h = h′ + ej − ei and j > i (see Figure
3). As before, we define a spanning tree of the graph structure of Gd which allows us to
efficiently examine the set of O-sequences with given multiplicity. The same procedure
is also extended to the set of O-sequences Gs

d with given multiplicity d and length s.
Moreover, we let

(2.2) hs(d) := (1, d− s+ 1, 1s−2) and gs(d) := g(hs(d)) =
(
s−1
2

)
.

Proposition 2.9. (i) The graph Gd contains a spanning tree Td with root the O-sequence
(1, d− 1).

(ii) The subgraph Gs
d contains a spanning tree T s

d with root the O-sequence hs(d). Thus,
Gs
d is also connected.

Proof. (i) For each vertex h ∈ Gd \ {(1, d − 1)}, the spanning tree Td contains the edge
es−1 − e1 going from h′ = h− es−1 + e1 to h, where s is the length of h.

(ii) For each vertex h = (1, h1, . . . , hi, 1
d−∑i

j=0
hj) ∈ Gs

d \{(1, d−s+1, 1s−2)} (i.e. i > 1),
the spanning tree T s

d contains the edge ei − e1 going from h′ = h− ei + e1 to h. �

Corollary 2.10. The order induced on Gd by the total order on N through the map
g : Gd → N is a refinement of the partial order ≺. In particular, hs(d) = min(Gs

d) with
respect to ≺, gs(d) is the minimal genus corresponding to an O-sequence of length s and
multiplicity d and it does not depend on d.
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Proof. If h1−h2 = ei−ej , then g(h1) = g(h2)+(i−1)− (j−1) = g(h2)+ i− j, by formula
(1.2). Hence, we obtain

h1 ≺ h2 ⇐⇒ i < j =⇒ g(h1) < g(h2)

and the assertion about the minimum follows by Proposition 2.9. �

As the minimal genus gs(d) does not depend on the value of d, from now on we will
simply denote it by gs.

(1)

G1

(12)

G2

(13) (1, 2)

G3

(14) (1, 2, 1) (1, 3)

G4

(15) (1, 2, 12)

(1, 22) (1, 3, 1) (1, 4)

G5

(16) (1, 2, 13)

(1, 22, 1) (1, 3, 12)

(1, 2, 3) (1, 3, 2) (1, 4, 1) (1, 5)

G6

(17) (1, 2, 14)

(1, 22, 12)

(1, 23)

(1, 2, 3, 1)

(1, 3, 13)

(1, 3, 2, 1)

(1, 32)

(1, 4, 12)

(1, 4, 2) (1, 5, 1) (1, 6)

G7

Figure 3. The order relations among directly comparable elements of
Gd, d = 1, . . . , 7.

Now, we can state the strategy of a general algorithm for searching aCM genera. We
choose the set of O-sequences corresponding to the considered constraints on multiplicity
and length and, more precisely, the associated spanning tree T̃ . Then, we perform a
depth-first search on the tree using a LIFO (Last In First Out) procedure of visit of the
vertices. Assume that, at some moment in the search, we stored in a list (resp. a stack)
the vertices whose existence we know, having visited their parents, but that we have not
yet visited. We visit the first vertex h in the list (resp. the top of the stack). There are
three possible alternative actions:

a. if g(h) is equal to the genus we are looking for, then we end the visit returning the
O-sequence h;

b. if g(h) is greater than the genus we are looking for, then we can avoid to visit the
tree of descendants of h, as the genus increases along the edges (Proposition 2.2
and Corollary 2.10);

c. if g(h) is smaller than the genus we are looking for, then we need to visit the tree

of descendants of h, so we add the children of h in the tree T̃ at the beginning of
the list (resp. at the top of the stack) containing the vertices still to be visited.
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(17)

(1, 2, 15) (1, 22, 12) (1, 23) (1, 2, 3, 1)

e6 − e1

(1, 3, 14) (1, 3, 2, 1) (1, 32)

e5 − e1 e4 − e1 e3 − e1 e3 − e1

(1, 4, 12) (1, 4, 2)

e4 − e1 e3 − e1 e2 − e1

(1, 5, 1)

e3 − e1 e2 − e1

(1, 6)

e2 − e1

(a) The spanning tree T7 of G7.

(1, 5, 1)

(1, 4, 2)

(1, 3, 3)

e2 − e1

e2 − e1

(1, 4, 12)

(1, 3, 2, 1)

(1, 2, 3, 1) (1, 2, 2, 2)

e2 − e1

e2 − e1 e3 − e1

(1, 3, 13)

(1, 22, 12)

e2 − e1

(b) The spanning trees T s
7

of Gs
7

for s = 3, 4, 5. For s = 2, 6, 7, the
graph Gs

7 has a unique vertex.

Figure 4. Graph descriptions of O-sequences with given multiplicity and
length.

Algorithm 1 The algorithm for searching aCM genera with given constraints on the
multiplicity and the length of the O-sequences. A trial version of this algorithm is available
at http://www.paololella.it/HSC/Finite O-sequences and ACM genus.html

1: procedure genusSearch(g, T̃ )
Input: g, a non-negative integer.

T̃ , a spanning tree chosen among T , Td, T s and T s
d .

Output: an O-sequence h such that g(h) = g (if it exists).

2: stack := {root(T̃ )};
3: while stack 6= ∅ do

4: h := removeFirst(stack);
5: if g(h) = g then return h;
6: else if g(h) < g then

7: addFirst(stack,children(h, T̃ ));
8: end if

9: end while

10: end procedure

3. Combinatorial ranges

From now on, we assume d > 2, as Gd has only one element for d ∈ {1, 2}.
For convenience, we let Gd (resp. G

s
d) be the set of all the arithmetic genera of the aCM

curves of degree d (resp. of degree d with h-vector of length s), i.e. Gd := {g(h) | h ∈ Gd}
(resp. Gs

d := {g(h) | h ∈ Gs
d}).

Looking at the graph Gd, we immediately can observe the well known fact that Gd ⊆{
0, . . . ,

(
d−1
2

)}
(see [Har94, Theorem 3.1]). Denoting by [a, b] the set of integers {n ∈

N | a 6 n 6 b}, we let Rd :=
[
0,
(
d−1
2

)]
. In the range Rd we single out smaller suitable

ranges, taking into account also the length of the O-sequences.
Recall that, by the partial order ≺ introduced in Definition 2.8 and by Corollary 2.10,

we have min(Gs
d) = g(min(Gs

d)) = gs =
(
s−1
2

)
, thus gs < gs+1 and gs+1 − gs = s − 1. In

http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
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order to obtain an analogous result about a maximum, we extend the partial order ≺ to
the following total order on Gs

d.

Definition 3.1. Given two O-sequences h = (1, h1, . . . , hs−1) and h′ = (1, h′
1, . . . , h

′
s−1) of

Gs
d, we denote by < the total order on Gs

d such that h < h′ if hℓ < h′
ℓ, where ℓ := max{j :

hj 6= h′
j}.

Although the usual order on N does not induce on Gs
d the total order < (see Example

3.3), we notice that min≺(Gs
d) = min(Gs

d) with respect to <. Furthermore, we can consider
also max(Gs

d) with respect to < and obtain the following non obvious result.

Theorem 3.2. Let h = (1, h1, . . . , hs−1) and k = (1, k1, . . . , ks−1) be two O-sequences of
Gs
d. If k < h and g(k) > g(h), then there is an O-sequence h̄ ∈ Gs

d such that h̄ > h and
g(h̄) > g(k). Thus, max(Gs

d) = g(max(Gs
d)).

Proof. We can assume s − 1 = max{j : hj 6= kj}, hence hs−1 > ks−1 because h > k. By
the hypotheses, we have

g(h) =

s−2∑

j

(j − 1)hj + (s− 2)hs−1 <

s−2∑

j

(j − 1)kj + (s− 2)ks−1 = g(k)

which implies there exists the integer t := max{j ∈ {2, . . . , s− 2} : hj < kj} and so

(3.1)
(1, h1, . . . , ht, ht+1, . . . , hs−2, hs−1)

∧ ⊻ ⊻ ∨
(1, k1, . . . , kt, kt+1, . . . , ks−2, ks−1)

that is 




ht < kt,

hi > ki, t+ 1 6 i 6 s− 2,

hs−1 > ks−1.

Note that k
〈t〉
t > h

〈t〉
t > ht+1 > kt+1. Hence, we can consider the O-sequence h′ :=

k− bet +
∑s−1

j=t+1 cjej, where

b = min

{
kt − ht,

s−1∑

j=t+1

hj − kj

}
and cj = min

{
hj − kj , b−

j−1∑

i=t+1

ci

}

and h′
j 6 hj for every j > t.

The corresponding genus of h′ is

g(h′) = g(k)− (t− 1)b+

s−1∑

j=t+1

(j − 1)cj > g(k) > g(h).

If needed, replacing the O-sequence k by h′ and repeating the same argument as before,
we obtain an O-sequence h′ with h′

j = hj for every j > t and g(h′) > g(h). If h′ < h, we

can repeat the same argument as before until we obtain an O-sequence h̄ with h̄j = hj

for every j > t and h̄t > ht + 1. �

Example 3.3. (a) Consider the two O-sequences h = (1, 6, 4, 2, 1) and k = (1, 4, 7, 1, 1)
of G5

14. We have h > k and 11 = g(h) < g(k) = 12 as in the hypotheses of Theorem 3.2. In
this case, we obtain t = 2, b = min{3, 1} = 1, c3 = min{1, 3} = 1 and c4 = min{0, 2} = 0,
so that h̄ = k− e2 + e3 = (1, 4, 6, 2, 1) with genus g(h̄) = 13 > g(k) and h̄ > h.
(b) Consider the two O-sequences h = (1, 13, 3, 3, 3) and k = (1, 6, 13, 2, 1) of G5

23. We
have h > k and 18 = g(h) < g(k) = 20. Applying Theorem 3.2, as t = 2, b = min{10, 3} =
3, c3 = min{1, 10} = 1 and c4 = min{2, 9} = 2, we determine h̄ = k − 3e2 + e3 + 2e4 =
(1, 6, 10, 3, 3) > h and g(h̄) = 18 + 2 + 3 = 21 > g(k).
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Looking again at the graph Gs, we can find a way to detect g(max(Gs
d)). We first

note that, if d < s, then Gs
d is empty and if d = s, then we have a unique O-sequence

(1s) corresponding to a plane curve of degree s, i.e. with genus
(
s−1
2

)
. For d = s + 1

we have the unique O-sequence (1, 2, 1s−2), obtained from (1s) by increasing h1 by 1 and
corresponding to a curve of degree s + 1 and genus

(
s−1
2

)
. In the other cases, we deduce

max(Gs
d) assuming to know the O-sequence h = max(Gs

d−1) and consequently the genus

g(h) =
∑s−1

j=2 hj(j − 1) = max(Gs
d−1) (Theorem 3.2). Next result shows how to find

max(Gs
d) and then g(max(Gs

d)).

Proposition 3.4. Given any d > s > 3, let h = max(Gs
d−1). If ı is the highest index

such that h + eı is an O-sequence in Gs
d, then max(Gs

d) = h + eı and g(max(Gs
d)) =

g(max(Gs
d−1)) + ı− 1.

Proof. By the assumption, we have hı < h
〈ı−1〉
ı−1 , so that hı+1 6 h

〈ı−1〉
ı−1 and hı+r = h

〈ı+r−1〉
ı+r−1 ,

for every 1 6 r 6 s− 1− ı, that is:

h = (1, . . . , hı, h
〈ı〉
ı , h

〈ı+1〉
ı+1 , . . . , h

〈s−2〉
s−2 )

and

h + eı = (1, . . . , hı + 1, h〈ı〉
ı , h

〈ı+1〉
ı+1 , . . . , h

〈s−2〉
s−2 ).

For every h′ ∈ Gs
d−1 \ {h}, consider the integer ℓ := max{j : hj 6= h′

j}. Then, we have
h′
ℓ < hℓ and h′

ℓ+r = hℓ+r, for every 1 6 r 6 s − 1 − ℓ, because h = max(Gs
d−1). Note

that we have ℓ < ı, otherwise h′
ℓ < hℓ would imply h′

ℓ+1 6 h′〈ℓ〉
ℓ < h

〈ℓ〉
ℓ = hℓ+1, against the

definition of ℓ. Therefore,

h′ = (1, . . . , h′
ℓ, . . . , hı, h

〈ı〉
ı , . . . , h

〈s−2〉
s−2 ).

If there were an O-sequence h′ ∈ Gs
d−1 such that h′ + eλ > h+ eı for some index λ such

that h′ + eλ ∈ Gs
d, then ı < λ. We have seen that h and h′ certainly have equal entries for

indices greater than or equal to ı and hı + 1 > hı = h′
ı. But, for indices j > ı, the value

h′
j = hj = h

〈j−1〉
j−1 cannot be increased by the definition of O-sequences. Thus, we obtain

max(Gs
d) = h+ eı. The last assertion follows by Theorem 3.2 and formula (1.2). �

For every d > 2 and s ∈ {⌊d
2
⌋ + 1, . . . , d}, we let

(3.2) hs(d) := (1, 2d−s, 12s−d−1) and gs(d) := g(hs(d)) =
(
s−1
2

)
+
(
d−s

2

)
.

Then, we have: max(Gs
d) = hs(d), g

d =
(
d−1
2

)
= gd(d) and gd−1 =

(
d−2
2

)
= gd−1(d).

Remark 3.5. Another description of the maximal genus of a range Rs
d could be set in

terms of minimal Hilbert functions with a constant Hilbert polynomial and a given regu-
larity (see [Rob82, Examples 4.6 and 4.8] and [CLMR15]). By the way, the combinatorial
description we provide here arises in a very natural way and gives more information, at
least from a computational point of view.

The previous results together with those of Sections 2 suggest to consider the following
smaller ranges in Rd.

Definition 3.6. For every d > s > 2, the set of integers between gs and max(Gs
d) is

called (d, s)-range and denoted by Rs
d, i.e. R

s
d :=

{
α ∈ N |

(
s−1
2

)
= gs 6 α 6 max(Gs

d)
}
.

Corollary 3.7. For every d > s > 2, the arithmetic genus of an aCM curve of degree d

having h-vector of length s belongs to the range Rs
d.

Proof. The statement follows by Corollary 2.10, Theorem 3.2 and Proposition 3.4. �
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(14) R4
4 = {3}

(1, 2, 12) R4
5 = {3}

(1, 22, 1) (1, 3, 12) R4
6 = [3, 4]

(1, 23) (1, 2, 3, 1) (1, 3, 2, 1) (1, 4, 12) R4
7 = [3, 6]

(1, 2, 3, 2) (1, 3, 22) (1, 32, 1) (1, 4, 2, 1) (1, 5, 12) R4
8 = [3, 7]

(1, 2, 32) (1, 32, 2) (1, 3, 4, 1) (1, 4, 3, 1) (1, 4, 22) (1, 5, 2, 1) (1, 6, 12) R4
9 = [3, 9]

(1, 2, 3, 4)(1, 33)(1, 3, 4, 2)(1, 4, 3, 2)(1, 3, 5, 1)(1, 42, 1)(1, 5, 3, 1)(1, 5, 22)(1, 6, 2, 1)(1, 7, 12)R4
10 = [3, 11]

+1

+2

+1

+2

+2

Figure 5. The ranges R4
d for d = 4, . . . , 10. In the picture, the edges on

the left are labeled with the corresponding increase of the genus.

4. Unattainable aCM genera in Rd

Recall that we are denoting by Rd the range
[
0,
(
d−1
2

)]
and that Gd ⊆ Rd.

Definition 4.1. An integer in Rd \Gd is called a gap in Rd.

Example 4.2. The integers in the range
[(

d−2
2

)
+ 1,

(
d−1
2

)
− 1

]
are gaps in Rd. More

generally, every integer of Rd not contained in any (d, s)-range is a gap.

Next result allows us to characterize the consecutive (d, s)-ranges that are separated,
i.e. ranges Rs

d and Rs+1
d such that gs+1 −max(Gs

d) > 1.

Proposition 4.3. For any d > 2, we have

max(Gs
d) < gs+1 − 1 ⇐⇒ 2d+ 1−

√
8d− 15

2
< s 6 d− 1.

Thus, the integers in [max(Gs
d) + 1, gs+1− 1] are gaps in Rd, for

2d+1−
√
8d−15

2
< s 6 d− 1.

Proof. For s >
⌊
d
2

⌋
+ 1, by (3.2) we have:

gs(d) < gs+1 − 1 ⇐⇒
(
s−1
2

)
+
(
d−s

2

)
<

(
s

2

)
− 1.

Hence

gs(d)− gs+1 + 1 = s2−(2d+1)s+d2−d+4
2

< 0 ⇒ 2d+1−
√
8d−15

2
< s < 2d+1+

√
8d−15

2
,

and thus gs(d) < gs+1−1 if and only if 2d+1−
√
8d−15

2
< s 6 d−1, because 2d+1−

√
8d−15

2
>

⌊
d
2

⌋
,

2d+1+
√
8d−15

2
> d− 1 and 2d+1−

√
8d−15

2
> d− 1 implies d < 3.

To prove that there are no other pairs of separated ranges, we notice that gs(d) >

gs+1 − 1 implies gs−1(d) > gs − 1, for every s. Indeed, as gs = gs+1 − (s − 1) and
gs(d) 6 gs−1(d) + (s− 2) by Proposition 3.4, we have

gs−1(d)− gs + 1 > gs(d)− (s− 2)− gs+1 + (s− 1) + 1 > gs(d)− gs+1 + 1 > 0. �

Example 4.4. For every d 6 11, the gaps in Rd are only those described in Proposition
4.3. For d = 12, in addition to the gaps described in Proposition 4.3, we find by direct
computation a unique further gap ḡ = 26, belonging only to the range R8

12 = [21, 28].
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Example 4.5. By a direct computation of the finite admissible O-sequences, we note
that for d = 15 the integer ḡ = 25 belongs to the ranges R6

15 and R5
15. Nevertheless,

whereas for each h ∈ R5
15 we have g(h) 6= 25, there is h = (1, 3, 3, 4, 2, 2) ∈ R6

15 such that
g(h) = 25.

Example 4.5 suggests the following definition.

Definition 4.6. An integer in the range Rs
d is called a hole of the range Rs

d if it is not
the arithmetic genus of an aCM curve C of degree d with h-vector of length s.

Remark 4.7. Not every hole is a gap. For instance, Example 4.5 tells us that the integer
25 is not a gap in R15, although it is a hole of R5

15. While Example 4.4 attests that the
hole 26 of R8

12 is actually a gap in R12.

Notice that for s = d − 1, d − 2, d − 3 there are no holes in Rs
d. Now, we detect some

values of d and s for which in the ranges Rs
d there exist certain special gaps and we point

out some particular holes which are also gaps, belonging to parts of different (d, s)-ranges
not overlapping each other.

Lemma 4.8. For every d and s such that 7 6
⌊
d
2

⌋
+ 1 6 s 6 d − 4, the integers

gs(d)− (d− s− 3), . . . , gs(d)− 1 are holes in the range Rs
d.

Proof. As we saw in (3.2), the maximal genus gs(d) in Rs
d arises from the O-sequence

hs(d) = (1, 2d−s, 12s−d−1). In the graph Gs
d, the only edges involving this vertex are

ed−2 − e1 and ed−s − e2. Hence, by Corollary 2.10, for each h ∈ Gs
d \ {hs(d)}

g(h) 6 max
{
g
(
hs(d)− (ed−s − e1)

)
, g
(
hs(d)− (ed−s − e2)

)}

= max {gs(d)− (d− s− 1), gs(d)− (d− s− 2)} = gs(d)− (d− s− 2). �

All the holes described in the previous lemma are surely gaps if we consider s >
2d+1−

√
8d−15

2
as in Proposition 4.3. Indeed, is such cases these holes do not belong to

any other range.

Proposition 4.9. In the hypotheses of Lemma 4.8, for every i = 1, . . . , d − s − 3, the
hole gs(d)− i is a gap if s− 1−

(
d−s

2

)
+ i > 0. More precisely,

(i) the highest hole gd−4(d)− 1 = d(d−11)
2

+ 20 is always a gap;

(ii) every hole described in Lemma 4.8 is a gap if s > 2d−1−
√
8d−31

2
.

Proof. The hole gs(d) − i is a gap if gs(d) − i < gs+1, i.e.
(
s

2

)
−

(
s−1
2

)
−

(
d−s

2

)
+ i =

s− 1−
(
d−s

2

)
+ i > 0. The proof of (i) and (ii) is a direct computation. �

Example 4.10. By Proposition 4.9, we find the following gaps in R28: the gap 258
belonging only to the range R24

d , 240 and 239 belonging only to R23
d , 224, 223 and 222

belonging only to R22
d and 207, 208 and 209 belonging to R21

28. Anyway, by a direct
computation we find also the gap 188, actually the minimal one in R28.

5. Computation of the aCM genera for curves of degree d

Proposition 4.9 gives a characterization of the gaps in Rd belonging to the last part of
a (d, s)-range. We did not find analogous conditions for gaps belonging to the first part of
a (d, s)-range. In particular, it seems hard to give a characterization of the minimal gap.
Hence, we will look for an algorithmic method to recognize the gaps in Rd, avoiding to
construct all the finite O-sequences of multiplicity d thanks to a sort of continuity in the
generation of the arithmetic genera. Denote by Gd + a the set of all arithmetic genera of
the aCM curves of degree d augmented by a non-negative integer a.

Lemma 5.1. Gd ⊇
d−1⋃
j=1

(
Gj +

(
d−j

2

))
.
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Proof. Let (1, h1, . . . , hs−1) be an O-sequence of multiplicity j < d corresponding to an

aCM genus g. Assuming h
〈i〉
i > hi+1, for some i ∈ {1, . . . , s−2}, we can consider the finite

O-sequence (1, h1, . . . , hi+1+1, . . . , hs−1) of multiplicity j+1, corresponding to the genus
g+ i. Then, we can take also the finite O-sequence (1, h1, . . . , hi+1+1, hi+2+1, . . . , hs−1)
of multiplicity j + 2, corresponding to the genus g + i + (i + 1), and so on. Performing
this construction from i = 1 until d− j, we reach the desired conclusion. �

Remark 5.2. By the proof of Lemma 5.1, we can observe that the arithmetic genera
determined by the O-sequences (1, h1, . . . , hs−1) with hi > hi+1, for every 0 < i < s − 1,
are included in those detected by Lemma 5.1. For example, we have:

G1 = G2 = {0}, G3 = G2 ∪ (G1 + 1) = {0, 1},
G4 = G3 ∪ (G2 + 1) ∪ (G1 + 3) = {0, 1, 3},
G5 = G4 ∪ (G3 + 1) ∪ (G2 + 3) ∪ (G1 + 6) = {0, 1, 2, 3, 6},
G6 = G5 ∪ (G4 + 1) ∪ (G3 + 3) ∪ (G2 + 6) ∪ (G1 + 10) = {0, 1, 2, 3, 4, 6, 10},
G7 ⊃ G6 ∪ (G5 + 1) ∪ (G4 + 3) ∪ (G3 + 6) ∪ (G2 + 10) ∪ (G1 + 15) = {0, 1, 2, 3, 4, 6, 7, 10, 15}.

Note that for the multiplicity d = 7, we lose the arithmetic genus g = 5 which corresponds
to the finite O-sequence (1, 2, 3, 1).

Now, we exploit Lemma 5.1 obtaining large sets of aCM genera. To this aim, we define
an increasing sequence {md}d>1 by the following procedure:

if d = 1 then

m1 := 0;
else

M := md−1;
for k = 2, . . . , d− 1 do

if
(
k

2

)
− 1 6 M then

M = max{M,md−k +
(
k

2

)
};

end if

end for

md := M ;
end if

Example 5.3. In the following table, we list the values of the sequence {md}d>1 and

compare them with the values of g⌈
d
2
⌉+2, for 1 6 d 6 45:

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

md 0 0 1 1 3 4 4 7 11 13 18 19 19 25 32

g
⌈ d

2
⌉+2 1 1 3 3 6 6 10 10 15 15 21 21 28 28 36

d 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

md 40 43 52 62 73 85 89 102 116 118 133 149 166 184 203

g
⌈ d

2
⌉+2 36 45 45 55 55 66 66 78 78 91 91 105 105 120 120

d 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

md 208 228 229 229 250 272 295 319 344 370 376 403 431 460 490

g
⌈ d

2
⌉+2 136 136 153 153 171 171 190 190 210 210 231 231 253 253 271

Theorem 5.4 (Continuity). For all d > 1, every integer in {0, . . . , md} is the arithmetic

genus of an aCM curve of degree d, i.e. {0, . . . , md} ⊆ Gd, and md > g⌈
d
2
⌉+2, for every

d > 18.

Proof. The first statement holds by Lemma 5.1 and by the definition of md. For the
second affirmation, note that it is enough to consider odd degrees d. For 18 6 d 6 36, see
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the tables of Example 5.3. If d > 37, let s := ⌈d
2
⌉+ 2. By construction and by induction,

we know that md > md−1 > g⌈
d−1

2
⌉+2 =

(
s−2
2

)
. Hence, by the definition of md we get

md > max
{
md−1, md−(s−2) +

(
s−2
2

)}
.

Being d odd, we have d− (s− 2) = d− ⌈d
2
⌉ = ⌈d

2
⌉ − 1 = s− 3 > 18. Thus, by induction

we obtain md >
(⌈ s−3

2
⌉+1

2

)
+
(
s−2
2

)
, because md−(s−2) = m⌈ d

2
⌉−1 = ms−3 > g⌈

s−3

2
⌉+2.

Note that
(⌈ s−3

2
⌉+1

2

)
+
(
s−2
2

)
>

(
s−1
2

)
if
(⌈ s−3

2
⌉+1

2

)
> s−2, that is true for every s > 10. �

Theorem 5.4 gives a lower bound for the value assumed by md, for every d > 18.
Anyway, we can obtain more information by a full application of Lemma 5.1 which,
together with the algorithm genusSearch (see Algorithm 1), provides an algorithm to
compute all the arithmetic genera of the aCM curves of degree d, avoiding to construct
all the finite O-sequences. The strategy consists of the following steps:

Step 1: by Lemma 5.1, we determine recursively the set of integers G̃d ⊂ Rd that

are certainly aCM genera . Let G̃1 = {0}, we have G̃d =
⋃

i G̃i +
(
d−i

2

)
;

Step 2: by results in Section 4 we determine all the integers of Rd that are certainly
gaps;

Step 3: using algorithm genusSearch (Algorithm 1) we investigate the remaining
integers.

Algorithm 2 The algorithm for determining the aCM genera of curves with a given
degree. A trial version of this algorithm is available at http://www.paololella.it/HSC/

Finite O-sequences and ACM genus.html

1: procedure ACMgenera(d)
Input: d, a positive integer.
Output: the list of all possible aCM genera of a curve of degree d.
2: genera := {genera determined applying recursively Lemma 5.1};
3: gaps := {gaps determined applying Proposition 4.3 and Proposition 4.9};
4: undecided :=

{
0, . . . ,

(
d−1
2

)}
\
(
genera ∪ gaps

)
;

5: for s = 2, . . . , d− 3 do

6: g := min(undecided);
7: while g 6 upperBound(Rs

d) do
8: if g < lowerBound(Rs

d) then
9: remove(g, undecided);
10: gaps = gaps ∪ {g};
11: else

12: searching := genusSearch(g, T s
d );

13: if searching 6= ∅ then

14: remove(g, undecided);
15: genera = genera ∪ {g};
16: end if

17: end if

18: g = next(g, undecided);
19: end while

20: end for

21: return genera;
22: end procedure

http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
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Table 1. In this table, we report some numerical information about the
integers in Gd up to degree 250. The first column contains the number and
the percentage of values in Rd which are aCM genera by an application of
Lemma 5.1 (without computing the O-sequences); in the second column,
the number and the percentage of gaps determined applying Proposition 4.3
and Proposition 4.9; in the third column, the number and the percentage
of values of Rd for which we have to use the procedure genusSearch to
decide whether they are aCM genera; in the last column, the cardinality of
Gd and its percentage with respect to |Rd|.

d Certain genera Certain gaps Undecided values |Gd|
25 176 (63.77%) 88 (31.88%) 13 (4.71%) 187 (67.75%)

50 835 (71.00%) 289 (24.57%) 53 (4.51%) 870 (73.98%)

75 2033 (75.27%) 558 (20.66%) 111 (4.11%) 2099 (77.71%)

100 3798 (78.29%) 879 (18.12%) 175 (3.61%) 3894 (80.27%)

125 6129 (80.37%) 1244 (16.31%) 254 (3.33%) 6261 (82.10%)

150 9040 (81.99%) 1653 (14.99%) 334 (3.02%) 9207 (83.50%)

175 12528 (83.24%) 2094 (13.91%) 430 (2.86%) 12734 (84.61%)

200 16610 (84.31%) 2574 (13.07%) 518 (2.63%) 16854 (85.55%)

225 21276 (85.19%) 3084 (12.35%) 617 (2.47%) 21560 (86.32%)

250 26530 (85.92%) 3623 (11.73%) 724 (2.34%) 26856 (86.98%)

Table 2. In this table, we report the results of a test of Algorithm 2
up to degree 250. The first three columns contain the elapsed time (in
milliseconds) for Step 1, Step 2 and Step 3 of Algorithm 2. In the fourth
column, there is the total time for the execution (Step 1 + Step 2 + Step
3). The last column contains the time required for determining the set Gd

by performing a complete visit of the tree Td (even for d = 75, we obtain
an Out Of Memory Error). The algorithms are implemented in the Java

language and have been run on a MacBook Pro with an Intel Core 2 Duo
2.4 GHz processor.

d Step 1 Step 2 Step 3 Algorithm 2 Visit Td
25 37.336ms 0.164ms 38.594ms 76.094ms 210.769ms

50 82.774ms 0.208ms 212.868ms 295.850ms 15155.87ms

75 21.734ms 0.155ms 458.117ms 480.006ms O.O.M.

100 47.529ms 0.103ms 1390.027ms 1437.659ms O.O.M.

125 104.683ms 0.279ms 4684.598ms 4789.56ms O.O.M.

150 207.936ms 0.183ms 12610.461ms 12818.58ms O.O.M.

175 546.818ms 0.227ms 37518.036ms 38065.081ms O.O.M.

200 665.378ms 0.364ms 73552.564ms 74218.306ms O.O.M.

225 922.599ms 0.36ms 169042.878ms 169965.837ms O.O.M.

250 1395.378ms 0.179ms 359836.564ms 361232.121ms O.O.M.

6. An application: Castelnuovo-Mumford regularity of curves with
Cohen-Macaulay postulation

In this section, we show how the search algorithm of aCM genera (Algorithm 1) allows
us to detect the minimal Castelnuovo-Mumford regularity maCM

d,g of a curve with Cohen-
Macaulay postulation, given its degree d and genus g. Moreover, by the Example 6.3 we
give a negative answer to a question posed in [CDG11, Remark 2.5]. A complete solution
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to the problem of detecting the minimal Castelnuovo-Mumford regularity of a scheme
with a given Hilbert polynomial is described in [CLMR15].
Denoting by ρ the regularity of a Hilbert function, i.e. the minimal degree from which

the Hilbert function and the Hilbert polynomial coincide, we can state the following:

Proposition 6.1.

maCM
d,g = min

{
ρ

∣∣∣∣∣
ρ is the regularity of an aCM postulation
with Hilbert polynomial dt+ 1− g

}
+ 2

Proof. Let f be an aCM postulation with Hilbert polynomial dt + 1 − g and regularity
ρ. Then, the minimal possible Castelnuovo-Mumford regularity of a curve with Hilbert
function f is ρ + 2. As a matter of fact, by [CDG11, Proposition 2.4] this regularity is
strictly greater than ρ+ 1 and if the curve is aCM, it is exactly ρ+ 2. �

By Proposition 6.1, the value of maCM
d,g is determined by applying Algorithm 1 in order

to find an O-sequence h of multiplicity d and g(h) = g with the shortest possible length.
Notice that if the length of h is s, then the regularity of Σ2h is s−2. Thus, we can rewrite
the statement in Proposition 6.1 as

maCM
d,g = min

{
s

∣∣∣∣∣
s is the length of an O-sequence h

with multiplicity d and g(h) = g

}
.

Example 6.2. Let us consider the curves of degree d = 15 and genus g = 32. There are
four O-sequences of multiplicity d corresponding to aCM curves of genus g:

h1 = (1, 4, 3, 2, 1, 1, 1, 1, 1), h3 = (1, 2, 3, 4, 2, 1, 1, 1),
h2 = (1, 3, 3, 2, 2, 2, 1, 1), h4 = (1, 3, 5, 1, 1, 1, 1, 1, 1).

Hence, the minimal Castelnuovo-Mumford regularity maCM
d,g is 8. Applying the results of

[CLMR15] (see http://www.paololella.it/HSC/Minimal Hilbert Functions and CM

regularity.html), we notice that the minimal Castelnuovo-Mumford regularity of any
projective scheme with Hilbert polynomial p(t) = 15t− 31 is 7.

More generally, in the case of an aCM function f with regularity ρ and Hilbert polyno-
mial with odd degree, we have that the minimal possible Castelnuovo-Mumford regularity
of a scheme X with HX = f is strictly greater than ρ+1 (see [CDG11, Proposition 2.4]).
If the degree of the Hilbert polynomial is even, an analogous result does not hold, as the
following example shows.

Example 6.3. The following strongly-stable ideal

I = (x2
6, x5x6, x

2
5, x4x5, x3x5, x2x5, x1x5, x

2
4x6, x3x4x6, x2x4x6, x1x4x6, x

2
3x6, x2x3x6,

x1x3x6, x
3
2x6, x1x

2
2x6, x

2
1x2x6, x

4
4, x3x

3
4, x2x

3
4, x

4
1x6, x

3
3x

2
4, x

4
3x4, x

5
3) ⊂ K[x0, . . . , x6],

where x0 < x1 < · · · < x6, defines a non-aCM surface X ⊂ P
6 with the aCM postulation

HX = (1, 7, 21, 44, . . . , 6t2−10t+21, . . .) of regularity ρ = 4 and the Castelnuovo-Mumford
regularity of X is 5 = ρ+ 1.
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