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30 years of GreatSPN

Elvio Gilberto Amparore, Gianfranco Balbo, Marco Beccuti, Susanna Donatelli,
Giuliana Franceschinis

Abstract GreatSPN is a tool for the stochastic analysis of systems modelled as
(stochastic) Petri nets. This chapter describes the evolution of the GreatSPN frame-
work over its lifespan of 30 years, from the first stochastic Petri net analyzer imple-
mented in Pascal, to the current, fancy, graphical interface that supports a number
of different model analyzers. This chapter reviews, with the help of a manufacturing
system example, how GreatSPN is currently used for an integrated qualitative and
quantitative analysis of Petri net systems, ranging from symbolic model checking
techniques to a stochastic analysis whose efficiency is boosted by lumpability.

1 Introduction

GreatSPN [24] is a tool that supports model-based (stochastic) analysis of Discrete
Event Dynamic Systems (DEDS). It has evolved significantly over its 30 years of
life and it has been used not only for the evaluation of systems, but also to support
research activities, by providing an environment suitable for the development of new
methods and techniques, mainly aimed at performance evaluation.

The modelling formalisms of reference in GreatSPN are Generalized Stochastic
Petri Nets (GSPN) [3] and its colored extension Stochastic Well-formed nets (SWN)
[18]. SWN are based on the high-level Petri net model of well-formed net (WN).
WN have been recasted into Symmetric Nets (SN) in the Petri net ISO/IEC 15909-2
standard [29], and therefore SWN are sometimes also called Stochastic Symmetric
Nets (SSN).

GreatSPN was conceived about 30 years ago as a tool for performance evaluation.
To overcome the (at that time) existing limitations in expressing synchronization and
resource acquisition, GreatSPN evolved into a tool with a more holistic approach to
verification. In this approach classical performance properties (like resource usage
and throughput of transitions) and classical qualitative Petri net properties (like live-
ness of transition, existence of deadlocks and traps) and, more recently, probabilistic
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verification properties, work in a synergic manner to establish the property of inter-
est of a DEDS. In the rest of the paper we shall use the term “stochastic analysis” to
refer to the set of analysis activities aimed at establishing the qualitative correctness
of the model, using both performance and performability properties.

One of the distinctive features of GreatSPN with respect to other tools is the will-
ingness of its development team to maintain, in the stochastic extension, the basic
semantics of transition enabling and firing as well as the relevance of the graphical
information. The underlying Petri net formalism is that of place/transition nets with
priorities and inhibitor arcs, which have a comprehensive graphical representation
of the net behaviour. The idea was to try to diverge as little as possible from the
underlying Petri net formalism, so as to be able to reuse all possible solution tech-
niques available for classical (non-stochastic) Petri nets. This choice enhanced the
anlytical power, but certainly decreased the modelling power, since certain mod-
elling features, like queueing policy for places and marking dependencies on arcs,
have never been included.

In this chapter we review 30 years of history of GreatSPN and discuss its current
role for model-based analysis: we revisit how the graphical interfaces have evolved
over the years, and we also revisit many of the advances in stochastic Petri net
analysis and what is the current status in model-based stochastic analysis.

The chapter starts with a review of the GSPN formalism: its roots and its evo-
lution (Section 2), followed by the history of the GreatSPN tool in Section 3. The
rest of the paper shows the current value of GreatSPN for model-based stochastic
analysis. The tool, as it is now, is presented in Section 4. Section 5 describes how
GreatSPN3.0 supports the workflow of a model-based analysis of a target system:
from model construction to validation through model-checking and evaluation using
stochastic model-checking and standard performance evaluation techniques. A sim-
ilar workflow is illustrated for the colored case (Section 6). The common reference
example is inspired by the various flexible manufacturing system models available
in the literature. The chapter ends with a literature survey of tools with similar char-
acteristics (Section 7) followed by a summary of the status of GreatSPN3.0 and of
its desirable future (Section 8).

2 From Petri nets to GSPN

Petri Nets (PN) [34] are a natural, simple, and powerful formalism aimed at the
modelling of the information and control logics in systems with asynchronous and
concurrent activities. In Stochastic Petri Nets (SPN) [32] all the transitions are as-
sumed to fire with a random delay that is exponentially distributed. This feature
enriches the analysis of a variety of systems by computing several quantitative in-
dices on their efficiency (performance) and reliability. Usually this is achieved by
automatically constructing a Continuous Time Markov Chain (CTMC) which re-
flects the behavior of the system and then applying the analysis methods available
for this type of stochastic processes.
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In models of real systems, it is often the case that a change of state occurs not
only because there has been a completion of an activity which takes time, but also
because there has been a change of some logical conditions, which may depend on
the current state of the system in a rather intricate manner. These two types of events
may have rather different durations, and modelling these type of systems with SPNs
yields CTMCs with quite different transition rates, making the numerical analysis
of the model very difficult.

Starting from the practical observations, Generalized Stochastic Petri Nets (GSPN)
[3] were proposed. Immediate transitions were introduced to answer the need for
events that happen in a very short time (actually zero), it was also chosen that im-
mediate transitions have priority over timed ones (the transitions that fire after a
non-negligible amount of time). Priorities were introduced to simplify the analysis,
by splitting markings in “vanishing” markings (states in which at least one immedi-
ate transition is enabled and where therefore the net does not spend any time) and
“tangible” markings (states in which only timed transitions are enabled and where
the net does spend time). Soon after their introduction, GSPNs became very pop-
ular in the performance and reliability evaluation community. The reason for this
unexpected success was probably due to three quite different reasons: the simplic-
ity of the formalism, the presence and the role of immediate transitions, and the
availability (not much later than the formalism definition) of a design and analysis
tool.

GSPNS are based on very few (and simple) primitive constructs that with their
precise semantics make the formalism easy to learn and apply to many interest-
ing practical problems. Indeed, researchers with considerably different backgrounds
found GSPNs easy to grasp and useful for quickly drawing and analyzing complex
probabilistic models that would have been otherwise difficult to construct in a reli-
able manner. Despite the need for more powerful formalisms for a compact repre-
sentation of complex real systems, the choice of keeping the formalism simple while
delegating to a different modelling language (namely Stochastic Well Formed nets
- SWNs) the burden of dealing with these possible additional complexities allowed
many newcomers to become quickly acquainted with GSPNs without scaring them
away with less intuitive definitions. On the other hand, researchers already familiar
with the features of the basic formalism found quite interesting the possibility of
using with little additional effort the more complex high-level extensions, as they
realized that this additional complexity pays off when it is actually needed by the
difficulty of the problem at hand.

Immediate transitions were originally included in GSPNs to allow a simple rep-
resentation of very fast activities and logical choices. The extensive use of the for-
malism made soon clear that the structure of the underlying un-timed (autonomous)
net could play an important role in allowing many more results to be derived from
the model. Time scale differences captured with timed and immediate transitions
were related with the concepts of visible and invisible transitions in Petri net the-
ory. The priority of immediate over timed transitions led to the study of un-timed
Petri net with different levels of priority. Drawing on these results, it became clear
the danger of specifying “confused models”, and thus the difficulty of constructing
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“correct models” including sequences of immediate transitions. To help analysts in
specifying “well behaving nets”, the concept of extended conflict set was formal-
ized and methods were developed to find this structure at the net level [17, 37].
In the analysis of GSPN models, immediate transitions are thus “pre-processed” to
construct a reduced Embedded Markov chain defined on tangible markings only.

Even the simplest GSPN models that one can conceive are difficult to describe
and analyze without the use of proper software tools. The development and the
free distribution of such a tool to academic researchers was indeed a key factor in
spreading the knowledge and the use of GSPNs within the performance and relia-
bility research communities.

As mentioned before, the complexity of real systems often requires more pow-
erful formalisms in order to build relatively simple models, where abstraction is
the key element to understand highly intricate situations. Colored extensions of
(G)SPNs have thus been proposed, allowing a more compact and parametric model
representation with a more efficient analysis. Such analysis is based on the strong
or exact lumpability conditions on Markov chains. In particular Stochastic Well-
Formed Nets (SWN) [18] have a structured color syntax that enables an automatic
discovery of the presence of behavioral symmetries, leading directly to a reduced
state space and a corresponding lumped CTMC.

3 The history of GreatSPN

The development of the Generalized Stochastic Petri Net (GSPN) formalism [2]
was motivated by the modeling power of SPNs, with their effectiveness and sim-
plicity [4]. A prototype solver [1] was initially jointly developed by members of the
Computer Science Department of the University of Torino and of the Electronics
Department of the Politecnico of Torino with the simple aim of overcoming the te-
dious and error prone task of manually constructing the Markov chains underlying
GSPN models. Starting from the insights gained from the experience of using this
preliminary tool, it was decided to design and implement a complete framework
for the modeling, verification, and solution of GSPN models. The first version of
the framework [15], written in Pascal [30], was released in 1985, and targeted three
platforms: the VAX 11/780 with VMS, the VAX 11/780 with BSD Unix 4.1 and Sun
1 workstation with BSD Unix 4.2. This was the first documented software package
for the analysis of GSPN models [23, p. 29].

The structure of the framework was conceived as a collection of interacting tools.
Figure 1 (taken from [15], pag 139) shows the structure of this original tool chain.
Programs (represented as rectangles) communicate with each others using inter-
mediate files (represented as circles). Each program is designed to solve a specific
problem. The purpose of this tool-chain was the generation of the reachability graph,
computation of steady-state and/or transient solution of the reduced Markov chain,
and computation of result statistics. GSPN and DSPN (Deterministic and Stochastic
Petri Nets with deterministic transitions) models were supported.
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Fig. 1 The structure of the GSPN/DSPN solution tool chain in 1985.

Started in August 1986 and based on the experience of Mike Molloy’s SPAN
interface [33] (which was the first graphical editor for SPN), a new GUI was writ-
ten from scratch for the SunView 3.0 graphical toolkit, and its fusion with the
GSPN solution tool-chain became the GRaphical Editor and Analyzer for Timed
and Stochastic Petri Nets, namely GreatSPN 1.0. GreatSPN was the first software
package developed to fully integrate within a single user-friendly tool a modeling
pipeline that included, among other features, editing Petri net models graphically,
inspecting their properties like invariants and bounds, calling solvers, and showing
graphically the results. In 1987, version 1.3 was released with all command line pro-
grams rewritten in C to increase the portability of the framework. Several “compil-
ing techniques” [16] were introduced in this version to improve the time and space
efficiency of the tool. With these new features, GreatSPN had the merit of joining
a powerful graphical interface with a large variety of (both qualitative and quantita-
tive) analysis methods. Models developed with GreatSPN showed for the first time
the advantage of making practical the possibility for a performance analyst to first
study qualitative properties of a systems with methods (s)he was little familiar with,
and for formal method experts to complete their correctness and validation stud-
ies with performance considerations. Subsequently the addition of animation (token
game) and discrete event simulation facilities [10] made GreatSPN beneficial also in
management-oriented environments where the intuitive representations of real sys-
tems were more important than the powerful analysis methods that could be used
for their evaluation. In 1995, the milestone release 1.7 introduced bound computa-
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tion based on linear algebra techniques, as well as colored Petri nets in the form of
Stochastic Well-formed Nets (SWN) [18]. The SWN solution method implemented
in GreatSPN included both the state space generation and consequent solution of the
associated Markov chain as well as the simulation, using either colored or symbolic
markings.
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Fig. 2 The structure of the GreatSPN framework today.

4 GreatSPN now

After almost 30 years of developments, improvements and tests, the GreatSPN
framework is now a collection of many tools that support Petri net modeling and
evaluation in multiple ways. Fig. 2 shows a (simplified) schema of the current fea-
tures of GreatSPN. Tool names are written in bold, and are grouped into logical
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modules. Tool functions include: numerical solutions, structural analysis, state space
exploration and model-checking for GSPN and SWN, support for Markov Decision
Well-formed nets (MDWN), conversions among multiple formalisms, Monte Carlo
simulation, support for DSPN definition and solution, and model composition. The
graphical editor is the center of GreatSPN as it is used for drawing the models and
for defining their properties. It is responsible for the invocation of various command
line tools and for the visualization of the results. GreatSPN is now in the transition
of replacing the old Motif-based GUI with a new interface developed in Java. For
the rest of the chapter, the characteristics of the framework will be shown from the
user point of view, i.e. interacting with the new Java GUI. Most of the command
line tools comprised in GreatSPN can be called directly from the GUI.

The workflow of GreatSPN was conceived, back in its original design, to consist
of three main phases: the user (“modeler”) draws the Petri net in a graphical way;
Then structural properties are computed (minimal P/T semi-flows, place bounds,
conflict sets, ...) to understand if the model is designed properly and if it can be
solved using numerical methods or via simulation; Finally the user specifies the
measures of interest directly on the model and calls a command line solver to com-
pute the results. Several solvers are provided for different types of models and with
different characteristics. Models are written to the disk in the net/def format, which
contains the net description and the evaluation indexes to be computed. There are
three families of models supported by GreatSPN: colored GSPNs, GSPNs with de-
terministic and/or general transitions, and Markov Decision Petri nets (MDWNs).

The new GUI [6] integrates a modern editing pipeline which supports the entire
GreatSPN workflow consisting of the editing phase, the visual inspection of net
properties, the evaluation of qualitative and quantitative properties, and visualization
of the results. The rest of the chapter describes this implementation discussing a case
study represented by a sufficiently complex GSPN model, that illustrates the details
and the new features of the framework.

A picture of the new GreatSPN GUI is shown in Figure 3, taken while editing
a Petri net model. In the upper-left panel, there is the list of open files. The editor
supports multi-page file. In the current version of the editor, pages can be of three
types: Petri net models, Deterministic Timed Automaton models (to be discussed
later) and tables of measures. New model formalisms can be added to the editor
by specifying new types of pages. The property panel is in the lower-left corner. It
shows the editable properties of the selected objects. It is possible to operate to more
than one object, of the same type, at a time. The central canvas contains the editor
of the selected project page, in this case a GSPN model.

Petri nets are drawn with the usual graphical notation. Transitions may be im-
mediate (thin black bars), exponential1 (white rectangles) or general2 (black rectan-
gles). The priority level of immediate transitions is indicated as π = i (omitted when
i = 1). Input and output arcs are arrows and inhibitor arcs are circle-headed arrows.
Arcs may be “broken”, meaning that only the beginning and the end of the arrows

1 Firing times are random variables with negative exponential distributions
2 Firing times are random variables with general distributions
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Fig. 3 The GUI with a GSPN model of an FMS with faults and repairs.

are shown. The real values (or real-valued parameters) associated with transitions
represent either the rate of the exponential distribution associated with timed transi-
tions or the weight used to derive firing probabilities of immediate transitions. Defi-
nitions (constants, color classes, color variables) are drawn in textual form. Names,
arc multiplicities, transition delays, weights, and priorities are all drawn as small
movable labels positioned next to the corresponding Petri net elements.

Unlike the previous graphical interface, the check of the syntax of the colored
definition is done while the definition is written. The editor also supports fluid places
and fluid transitions (not shown in the example). Places can be partitioned into la-
beled groups for Kronecker-based solutions [14]. The editing process supports all
the common operations of modern interactive editors, like undo/redo of every ac-
tion, cut/copy/paste of objects, drag selection of objects with the mouse, single and
multiple editing of selected objects, etc. Petri net models are drawn entirely using
vector graphics, which allows for high quality visualization and print of the net. Ob-
ject labels may be drawn with an optional LATEX engine. The interface is designed to
avoid modal dialog windows as much as possible to streamline the use of the GUI.

5 Model-based analysis through GSPN in GreatSPN3.0

Model-based analysis is supported by GreatSPN3.0 in various ways. The goal is to
verify the correct behaviour of the modelled system through qualitative analysis and
model-checking as well as to verify performance properties once it is decided that
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the model correctly represents the system under study (as in the case of nets auto-
matically generated from system specifications). Once the user is confident that the
model represents the system behaviour, the analysis work-flow concentrates on the
probabilistic aspects, through stochastic model-checking and through the computa-
tion of classical performance and/or dependability evaluation indices. The GUI of
the tool supports the computation and the visualization of the results for a varying
set of parameter values. The analysis workflow is illustrated on a rather classical
GSPN model of a flexible manufacturing system (FMS). All the figures and the
graphs reported are directly produced by GreatSPN3.0, unless otherwise stated.

The GSPN model of our FMS model is depicted in Figure 3, inside a screenshot
of the GUI that has been used for its definition. The net by itself could also be
printed as pdf file using the classical printing facilities of the operating system. The
system includes three machines Mi (places Mi) and K pallets of parts to be worked
(place Pallets). Each part is loaded and then sequentially processed by the three
machines until the work is completed, the manufactured part is unloaded and the
pallet goes back to place Pallets through transition restart waiting for a new raw part
to be loaded. For each machine Mi an arriving part is taken (transition swi), worked
(transition ewi) and put in the input buffer of the subsequent machine or in the buffer
of the completed parts. Machines M2 and M3 can fail. In the case of M2 there are
SP spares available, while for M3 there are no spare parts. Spares in use can fail as
well. Both spares and machines are repaired by a repairman (token in place Ready).
Since there are no spares for M3 the repairman is assigned with higher priority to
M3. This is implemented through the priority of transition repM3 which is higher
than that of transition repSpares. Upon failure of M2 (firing of transition failM2), if
no spare is available, the work to be done waits in place M2ko, while if a spare is
available it is taken (transition repM2), the machine goes into repair, and the piece
is worked (transition ew2bis). Finally the part is put in the input buffer of M3 (place
M3buff) and a token goes into the machine place M2 meaning that M2 is available
again. Upon failure of M3, since there is no spare available, the part is blocked until
the repair ends (transition repM3E) and the part is worked (transition ew3bis). Then
machine goes back to M3 and the part goes into the buffer of completed parts.

The modeler can play the token game and observe the flow of tokens by firing the
transitions. The token game can be driven by the modeler, which explicitly chooses
which transition to fire among the set of enabled transitions, or can be delegated to
the tool (random mode execution).

Step 1: standard qualitative properties

The analysis by P- and T-invariants, which can be activated from the graphical inter-
face, reveals that there are 6 minimal P-semiflows and 4 minimal T-semiflows. The
corresponding P-invariants prove that all places are bounded, with bounds equal ei-
ther to 1,K or SP. Figure 4 shows one of the four T-semiflows as displayed by the
GUI directly on the GSPN model. Transitions in the semi-flow are marked in red
and their weight in the semi-flow is displayed inside the transition box (all weights
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equal to 1 in this semi-flow). The T-semiflow of the figure refers to a pallet that
goes normally through machines M1 and M2 and then experiences a failure at M3.
For this T-semiflow there is a firing sequence firable in the initial marking. The T-
semiflow shows a scenario in which there is the direct intervention of the repairman
to complete the work.
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Fig. 4 Visualization of a T-semiflow for the FMS model.

Reachability graph generation and analysis reveal that the state space contains
a single connected component, that there are no deadlocks, and that all transitions
are live. Reachability graphs can also be displayed by selecting the “measure” RG
(TRG for the tangible reachability graph). Figure 5, right, shows the TRG as dis-
played by GreatSPN, while the left part is a zoom-in of a portion of it. The feature
for displaying the reachability graph is very useful for Petri net beginners and for
teaching, but it is usually not part of the normal work-flow of model-based analysis
because the size of the graph when modeling realistic systems is most of the time
too large to be conveniently visualized.

Step 2: Computational Tree Logic (CTL) model checking

More sophisticated properties of the net can be investigated through the CTL [20]
model checker provided by the tool. The user defines one or more “CTL mea-
sures” in the measure panel, as shown in Figure 6. The analysis is performed for
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Fig. 5 TRG visualization.

SP = 3, K = 5 (assigned in the top part of the window), since the GreatSPN model
checker [5] is based on decision diagrams, much higher values of the parameters are
verifiable. The CTL model checker of GreatSPN assigns a variable to each place.
As usual in model-checkers based on decision diagrams, a bound on each variable
should be known and a variable ordering should be defined. The central part of
the window (Figure 6) is devoted to establish by which methods the bounds and
the variable ordering have to be computed. The syntax of the CTL operators is the
classical one, with A and E standing for “for all paths” and “there exists a path”.
Operators G and F stand for “for all states in the path” and “it exists a state in
the path”. The term #p means “number of token in place p”, while condition en(t)
means “transition t is enabled”. The panel displays the truth value of each formula
(computed in the initial state), but a log is available with more detailed information,
including counter-examples or witnesses, whenever feasible. The properties listed
in Figure 6 allow to investigate, from the top of the list downwards, more and more
detailed aspects of the system behaviour.

The first point of the analysis is to check standard Petri net properties, like ab-
sence of deadlocks and liveness of transitions. Property 1◦ (AG ndeadlock) checks
that on all states of all paths reachable from the initial marking (the whole RG) it is
true that the state is not a deadlock. The panel of Figure 6 shows that the property is
true and therefore the system has no deadlock. Property 2◦ (AG EF en(load)) is an
example of liveness check. This property reads as “from all reachable states (AG) it
is possible to find a path (EF) that enables load” (en(load)), which is equivalent to
the classical definition of transition liveness in Petri nets. The screen-shot of Figure
6 shows that this property is true, so transition load is live.

Property 3◦ is instead an example of a model-dependent property, aimed at in-
vestigating the use of the spares. Do we really need all the SP spares that have been
included in the model? Indeed property 3◦ checks if there is a reachable state in
which there is a failure at M2 and no spare is available. This property reads as fol-
lows: there is a state on a path (EF) for which machine M2 has failed ( M2ko > 0)
and no spare is available (Spares = 0). The property is true and a system designer
may be tempted to add more spares to have a more efficient production process, but
of course CTL analysis is not enough to assert how convenient this addition will be.
This objective should be addresses by a quantitative (stochastic) analysis.
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The fourth property investigates the need for the spares to be repaired (and for
the repairman to get into action). This requirement has been translated into a CTL
formula (4◦:) that checks if it is true that on all reachable states (AG), on all paths
that start from those states transition goReady is enabled (AF en(goReady)), that is
to say, repairman goes back to the ready state. This property is false, since in the
RG there are loops in which machines never break down; again, only a stochastic
analysis can establish how often this happens, but it is well-known that, in the long
run, the probability of having an execution in which machines never break down
goes to zero. This is an instance of the classical fairness problem in CTL, which,
when considering all paths, accounts also for the single (or the few), executions that
will never happen under a fair schedule. GreatSPN3.0 is not able to check fair-CTL,
but the modeler can use stochastic analysis to discriminate these situations, as we
shall illustrate later in this section through the stochastic property of Figure 12. A
stochastic approach might also be safer than a fair model checker: indeed in fair CTL
the modeller explicitly indicates that the model checker should consider only the
paths that verify certain conditions. If the modeler identifies the wrong conditions
the whole analysis process can be severely impaired.

The last three properties (5◦ to 7◦) verify how the system uses the spares (for
example if spares are always taken one by one). 5◦ is an existential Until property
that investigates whether there is a path from the initial marking in which the spares
remain untouched (#Spares == SP) until the count of spares is diminished by one.
This property is true, but its value is limited. Indeed it does not say that there are
no other paths in which a different behaviour is possible, not even that on that same
path there could be a different behaviour. Property 5◦ is more informative since it
checks that for all reachable states (AG) in which the number of spares is equal to SP
all the paths stemming from that state keep SP spares until they get to SP−1. This
property is false, and the tool provides a counterexample in the log file. A portion of
this log is shown in Figure 7, which lists the states of a cyclic execution that starts
with 3 spares and, passing through a number of reachable states, all with 3 spares,
comes back to the initial state of the loop. Again, this is due to the presence of an
infinite path in which machine M2 never breaks down. Another line of investigation
could be to check whether there exists a path, from the initial marking, in which all
spares are available until two of them are taken in one step. This is formalized in
property 7◦, which is false.

Step 3: Classical performance evaluation

Once the user is confident that the model faithfully represents the system (at the
desired level of abstraction), he/she can proceed to the standard performance index
computation (throughput of transitions, average number of tokens in places and dis-
tribution of tokens in places, for various settings of the transition parameters and/or
of the initial marking).

Figure 8 depicts two windows of the GreatSPN3.0 GUI. The measure panel (left)
and a plot of the token distribution in place Pallets (right) which shows that most of
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Fig. 6 CTL model checker of GreatSPN.

1.1: Spares(3), Ready(1), Pallets(5), M3(1), M2(1), M1(1)
State 1.1. does not satisfy: (#Spares == 2). Start of loop.

1.2: Spares(3), Ready(1), Pallets(4), StartM1(1), M3(1), M2(1), M1(1)
State 1.2. does not satisfy: (#Spares == 2).

1.3: Spares(3), Ready(1), Pallets(4), M3(1), M2(1), M1on(1)
State 1.3. does not satisfy: (#Spares == 2).

1.4: Spares(3), Ready(1), Pallets(4), M2buff(1), M3(1), M2(1), M1(1)
State 1.4. does not satisfy: (#Spares == 2).

1.5: Spares(3), Ready(1), Pallets(4), M2on(1), M3(1), M1(1)
State 1.5. does not satisfy: (#Spares == 2).

1.6: Spares(3), Ready(1), Pallets(4), M3buff(1), M3(1), M2(1), M1(1)
State 1.6. does not satisfy: (#Spares == 2).

1.7: Spares(3), Ready(1), Pallets(4), M3on(1), M2(1), M1(1)
State 1.7. does not satisfy: (#Spares == 2).

1.8: Spares(3), Ready(1), Pallets(4), Completed(1), M3(1), M2(1), M1(1)
State 1.8. does not satisfy: (#Spares == 2).

1.9: loop back to state 1.1.

Fig. 7 Log with a counterexample for property 6◦
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the time the place is empty. The measure panel is the same panel of Figure 6, where
the target measure are performance indices instead of CTL properties. Measure ALL
computes the (steady-state) token distributions for all the places and the throughput
of all transitions, while specific performance indices (measure of type PERF can
be defined with an appropriate grammar. Measure 3◦ defines the sum of the average
number of tokens in the two places that represent machine M2 correctly working, or
of the two places that represents machine M2 broken (measure 4◦).
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Variables binding:

100 %Ok.

Fig. 8 GUI for performance indices of the FMS and plot of the token distribution in place Pallets.

The tool also supports dependability measures like “how long machine M2 will
survive if no repair on M2 can take place”, for example for a varying number of
parts circulating in the system. The condition that machine M2 cannot be repaired
is implemented in the model by simply removing transition repSpares (repair of
a spare) so that machine M2 and its spares are not repaired any longer. Figure 9
shows on the left the specified performance index (1◦) and the range of variability
of the parameters. In this case the analysis is conducted for 3 spares and a number
of parts equal to 3,4 and 5. The selected solution is the transient one at time t,
where t ranges in the interval [4..40] with step 4. Measure 1◦ is the probability of
finding all SP spares in place SpareBroken. Results are plotted on the right side of
Figure 9. The plot represents the distribution of the time needed to break all spares,
for the three values of parameter K. The plot has been obtained using Excel on
data exported through a specific GUI facility. Distribution of tokens in places and
transition throughputs may also be shown and exported in Excel.

GreatSPN plots directly inside the GUI the distribution of the number of tokens
in places (as in the case of the token distribution of Figure 8) and the throughput of
transitions directly on the net elements in the net window of the GUI.

Step4: A “less classical” approach: performance and dependability through CSLTA.

Standard and non-standard dependability/performance measures can be computed
using the stochastic model checker for the CSLTA[21] logic which is also part of the
GreatSPN. A CSLTA formula has the form Φ = Prob./α(A ), where ./ is a compar-
ison operator (./∈ {≤,<,=}), α a probability value and A is a timed automaton
with a single clock x that accepts/rejects timed paths of a GSPN. People familiar
with simulation can think of the timed path of a GSPN as a simulation trace, with
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Fig. 9 Distribution of the time for consuming all spares of machine M2 for a varying number of
parts.

states, events, and time at which events happen. A formula Φ is true in a marking m
if the probability of the set of the GSPN executions that starts in m and that are ac-
cepted by A is ./ α . Model checking algorithms for CSLTA exist that return true if
the property is true for the initial marking. The CSLTA model checker of GreatSPN
[7] computes the truth value for the initial marking as well as, for each reachable
marking, the probability of the set of accepted executions stemming from that mark-
ing. The check of a CSLTA property has a cost which, in the worst case, is equivalent
to the cost of solving in steady-state a Markov Regenerative Process.

Figure 10(left) shows the automaton that accepts the GSPN executions in which
the repairman completes two repairs before time t. The automaton has four loca-
tions, including l0, the initial one, and l2, the accepting one. The timed automaton
of a CSLTA formula can have more than one initial and more than one accepting lo-
cations. There is a single clock x that starts from zero and increases linearly unless
it is reset to zero. A condition x≤ t on an arc implies that the arc can be taken only
when the value of the clock x is ≤ t. Arcs are labelled with GSPN transition names
(where Act stands for “any transition”) and location have an associated property that
is evaluated over the GSPN marking. If the clock x is attached to the arc, taking the
arc implies that x is set to zero. When the GSPN moves from marking m to marking
m′ for the firing of t, this move is accepted by the automaton only if there is an arc
labelled t out of the current location, the clock guard is satisfied, and the arc leads
to a location whose atomic proposition is satisfied by marking m′. The only other
way in which an automaton can move is because of a condition x = β associated to
an arc from the current location of the automaton. When the clock reaches value β

the automaton “takes the arc” and changes location.
For a GSPN execution to be accepted by the automaton of Figure 10, it must start

in a ¬EndRep marking, then move, in one of more transition firings, to an EndRep
marking, then, back to a ¬EndRep marking. The execution is finally accepted when
the GSPN goes back to an EndRep marking. Whenever the clock reaches t, the path
is discarded. When the atomic proposition EndRep is instantiated to the GSPN con-
dition “#EndRep = 1” and the value of t is instantiated to 30, the CSLTA model
checking algorithms computes the probability of the accepted paths. This probabil-
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ity is listed in table reported in Figure 10 (right). Parameter ρ is the rate of failure
of both M2 and M3.

K=5, SP=3, t=30 
ρ Probability 

0.05 0.081078 
0.1 0.216116 
0.5 0.653851 
1.0 0.709993 
5.0 0.737052 

10.0 0.739829 
!

Act
x < t

Act
x < t

Act
x < t

Act
x < t

Act
x < t

Act
x < t

x : clock

l0
:EndRep

hEndRepi hti

l1
EndRep

l 01
:EndRep

l2
EndRep

Fig. 10 Probability of two repairs, any machine, before time t = 30 for a varying failure rate ρ .

Figure 11 shows an example of a timed automaton used to compute the distribu-
tion of a completion time. The automaton accepts all executions that take less than
tmax from the first failure at M3 (firing of failM3) to completion of the part that un-
derwent the machine failure (firing of ew3bis). The analysis plotted in Figure 11 is
for a varying value of tmax from 5 to 50.

Note that the automaton in Figure 10 accepts paths depending only on the visited
markings. since there are no specific requirements for actions associated to arcs,
the automaton of Figure 11 only accepts a path based on the transitions that occurs
along that path (the atomic proposition associated to location is always the clause
“True”).

Act n ffailM3g
x > 0

ffailM3g
x > 0; fxg

Act n few3bisg
x < tmax

few3bisg
x < tmax

x : clock hfailM3i hew3bisi htmaxi

l0
true

l1
true

l2
true

K=5, SP=3 
Time Probability 

5 0.300606 
10 0.534543 
15 0.692577 
20 0.798302 
25 0.868422 
30 0.914588 
35 0.944795 
40 0.964454 
45 0.977190 
50 0.985406 

 

Fig. 11 Less than tmax time units from first M3 failure to completion of the part that underwent the
machine failure.

There is another less common use of probabilistic verification that can be very
useful. As previously discussed, there are certain CTL formulas which are false
due to the presence of some anomalous behaviour, like infinite executions in which
a machine never breaks down. Typically these executions are not realistic. Indeed
the property “AGAF en(goReady) was shown to be false. We can define a similar
property in CSLTA through the automaton of Figure 12, which accepts all paths
in which transition goReady fires at least once. The CSLTA model-checker reveals
that, for all states, the set of paths accepted by the timed automaton has probability
1, clearly indicating that in a probabilistic setting the path(s) that makes the CTL
formula false are negligible. This is indeed an example on the importance of having
in a single tool both qualitative and probabilistic model checking.
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Act n fgoReadyg
x > 0

fgoReadyg
x > 0

x : clock hgoReadyi

l0
true

l1
true

Fig. 12 Probability of executing GoReady at least once

6 Model-based analysis through colored GSPN in GreatSPN3.0

GreatSPN supports also a formalism in the class of high level Petri nets, namely
Stochastic Symmetric Nets3 (SSN)[18]. The new GreatSPN GUI supports the de-
sign of SSN models as well as the interactive simulation with the colored token
game. It also includes the unfolding function that generates a GSPN model whose
behavior is equivalent to that of the SSN.

Figure 13 shows a variation of the FMS model, enriched with colors, and ex-
pressed through the SSN formalism. The model definition includes a set of finite
basic color classes, and set of place color domains which result from the Cartesian
product of basic color classes and define the possible colors of the tokens in each
place. Transition color domains define the possible color instances of each transi-
tion. The arc functions define the multiset of tokens withdrawn from or added to the
input and output places by a given transition instance. Colors may be useful in dif-
ferent situations, like when there is a need to identify a specific token among a set of
tokens residing in the same places (e.g. to compute first passage time distributions
[11]). This differentiates the qualitative behavior of some entities (hence making the
marking evolution to depend on colors) or the stochastic delays of the activities in-
volving specific entities (hence defining color dependent transition rates). In general
colored models are more compact and can highlight symmetries in the model.

The SSN model in Figure 13 has two color classes, C (identifiers of parts being
processed by the FMS), partitioned into three static sublcasses: C1, C2 and C3, and
CM (faulty machine identifiers: m2 and m3 corresponding to machines M2 and M3)
containing two static subclasses, one for each of the machine that may breakdown
and be repaired. The components in subclasses C2 and C3 skip the processing on
machine m2. This is modeled by the two guards associated with transitions t0 and
t1, namely [(x ∈ C2)∨ (x ∈ C3)] and [(x ∈ C1)]. The repair procedure for the two
machines in this model is the same, and is based on the availability of spares. We
shall consider two configurations: an asymmetric one where we have three spares
for machine m2 and only one for machine m3, and a symmetric one, where there
are two spares for each machine. There is also a repairman who replaces the broken
spares of both machines. In the model we can observe that the broken spares of
machine m3 are repaired with priority over those of machine m2 (indicated by the
labels π = 3 and π = 2 next to transitions repSp3 and repSP2).

3 The formalism was first introduced with the name of Well-Formed Nets, but recently it has been
replaced by the new name Symmetric Nets, better emphasizing its specific features.
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¸3

domain RepM = C£M

failM3

½3

N = 0

Fig. 13 A colored model of an FMS with faults and repairs.

For an early check of the qualitative behavior of the colored model in the design
phase, it is possible to use the colored token game feature of the GUI, which in any
given marking highlights all the transitions that have at least one enabled instance.
Clicking on one such transition a list of enabled instances pops up so that the mod-
eler can choose which one to fire, leading to a new colored marking. The trace of
markings reached along the interactive simulation is shown, and the user can return
to one of the visited markings by clicking on it to try another path originating in that
marking. During this initial phase the transition timing can be taken into account al-
lowing the GUI to generate random delays to be associated with transitions enabled
in a given marking.

The analysis of colored models can proceed in two directions: (1) through the un-
folding of the colored net (now available with one click through the new GUI) into a
(usually much larger) equivalent net without colors that can be processed using the
solvers illustrated earlier, or (2) by direct analysis of the colored model using SSN
specific solvers.

Table 1 shows the number of places and transitions in the unfolded version of
model depicted in Fig. 13 for different sizes of color class C. The table reports also
the sizes of the ordinary reachability graph (RG), and that of the symbolic reach-
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Configuration with asymmetric number of spares and
color independent/dependent transition rates in ew3 and RepM3

C size |SRG| |RG| ESRG (Tan+Van) Unfolded
|C1|, |C2|, |C3| Tangible Vanishing Tangible Vanishing |ESRG| |Strong| |Exact| |P|, |T |
2,2+2 40 985 116 663 965 596 3 061 896 41 471 54 608 155 171
2,2,2 159 786 484 140 965 596 3 061 896 41 471 61 057 617 185 103,131

dep.rates 41 471 76 423 617 185
3,2+2 118 225 367 670 7 046 972 24 442 193 79 052 96 500 476 190
3,2,2 455 230 1 491 364 7 046 972 24 442 193 79 052 96 500 1 858 652 118,152

dep.rates 79 052 110 218 1 858 652
3,3,2 1 019 868 3 546 614 36 225 840 136 062 633 123 330 154 172 4 344 685 133,173dep.rates 123 330 175 403 4 344 685

Configuration with symmetric number of spares
and color independent/dependent transition rates in ew3 and RepM3

C size |SRG| |RG| ESRG (Tan+Van)
|C1|, |C2|, |C3| Tangible Vanishing Tangible Vanishing |ESRG| |Strong| |Exact| DSRG
2,2+2 44 915 131 482 1 055 314 3 433 358 43 307 52 509 173 689 46 896
2,2,2 174 654 543 900 1 055 314 3 433 358 43 307 52 509 689 260 46 896

dep.rates 43 307 67 618 689 260 57 147
3,2+2 129 895 413 617 7 736 126 27 382 639 81 815 101 982 532 883 89 360
3,2,2 499 144 1 673 558 7 736 126 27 382 639 81 815 101 982 2 076 213 89 360

dep.rates 81 815 143 348 2 076 213 99 611
3,3,2 1 116 480 3 969 892 39 705 528 151 977 288 126 798 161 896 4 843 938 139 219

dep.rates 126 798 269 711 4 843 938 162 469

Table 1 Symbolic/Ordinary RG size of the FMS colored model and size of its unfolding for dif-
ferent configurations.

ability graph (SRG and ESRG). In a symbolic RG, multiple markings are lumped
together into a single symbolic marking. SRG and ESRG have two different criteria
for this marking aggregation.

GreatSPN can generate both the ordinary RG, equivalent to the RG of the un-
folded model, and a more compact symbolic RG for any SN model. The latter ex-
ploits model symmetries and aggregates equivalent states. A CTMC can be derived
both from the RG and from the SRG, on which both transient and steady state anal-
ysis can be performed. Extended and Dynamic SRG [9] (ESRG and DSRG) are also
available, to efficiently deal with partially symmetric systems. Finally a simulator
allows to compute estimates of steady state performance measures (with confidence
intervals). The simulator supports both the plain colored marking representation and
the symbolic one (which can improve the efficiency of future event list handling
[22, 12]).

In Table 1 it is possible to compare the size of the RG, SRG, ESRG and DSRG
for the test cases. The number of states in the RG is derived directly from the infor-
mation contained in the SRG, but it can also be derived by direct generation from the
model, at the price of higher cost in both time and space, or from the unfolded model.
The state space reduction becomes relevant as the cardinality of class C grows. The
size of the SRG is 17% of the RG size for the case |C1|= |C2|= |C3|= 2, the 6%
for the case |C1|= 3, |C2|= |C3|= 2, and 3% for the case |C1|= |C2|= 3, |C3|= 2.
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Observe that a coarser partition into static subclasses gives better results in terms of
state space reduction. Indeed when transition rates do not depend on the color, the
two static subclasses C2 and C3 can be merged and the SRG shrinks further: in the
cases |C1|= 2, |C2|= 4 and |C1|= 3, |C2|= 4, where two static subclasses of car-
dinality two have been merged, the SRG size is respectively 4% and 1.5% of the
corresponding RG.

In systems where there are (partial) symmetries which cannot be exploited by
SRG, it is still possible to take advantage of this symmetries by means of two
solvers: The Extended SRG and the Dynamic SRG. The FMS model of Fig.13 has
three static subclasses. The elements in the first subclass are routed to machine m2
after leaving m1, while the others are routed to m3. The subclasses C2 and C3 are
needed only in some configuration where the rates of certain transitions (in our ex-
ample ew3 and RepM3) are different for elements in classes C2 and elements in the
other classes. By executing the ESRG module on the FMS model the algorithm au-
tomatically detects and exploits partial symmetries. The generation of the CTMC
according to the ESRG method comprises two steps. First a graph is built that over-
aggregates the states. Then a refinement step derives a lumped CTMC based either
on strong lumpability or exact lumpability criteria [9]. The choice of the type of
refinement depends on the performance indices the user wants to compute. Exact
lumpability allows to retrieve the probability of detailed states, because it ensures
equiprobability of the states in the same aggregate. In Table 1 the number of states
generated with the ESRG algorithm are shown for some configurations. In partic-
ular observe that the size of the structure generated in the first phase of the ESRG
derivation is much smaller than the size of the SRG for the same model (the num-
ber of states of the ESRG structure includes both tangible and vanishing markings).
However, the refinement with the exact lumpability condition results in a size that is
close at the SRG one. When the refinement is performed using the strong lumpabil-
ity condition, the size of the refined lumped CTMC is only slightly larger than that
unrefined one. In the strong lumpability case however only some color dependent
performance indices can be computed.

Another possibility is to apply the DSRG solver. This aggregates the state space
yielding a lumped CTMC satisfying the exact lumpability condition. The model
specification in this case must be completely symmetric (no static subclasses parti-
tion of color classes, no guards, symmetric initial marking) while the asymmetries
can be expressed in a separate file where it is possible to indicate, for each transition,
restrictions on the colors that can be bound to each transition variable. In Table 1
the DSRG size for the model with equal number of spares for both machines and
with or without color dependent transition rates is shown. The type of lumpability
condition makes it possible to compute color dependent performance indices based
on the information contained in the DSRG structure.

Measures can be defined for colored nets in the same way as for the uncolored
ones: their definition can be independent of the color (average number of tokens in a
place regardless of their color, or overall throughput of a transition corresponding to
the sum of the throughput of any instance of that transition) or be color dependent.
An interesting feature of the SRG is that, despite the relevant state space aggrega-
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tion, it allows one to derive the same performance indices that could be computed on
the much larger RG. The same is true for the ESRG with exact lumpability refine-
ment and for the DSRG (which also ensures exact lumpability). The model checking
facilities of GreatSPN currently require that colored models have to be first unfolded
for the analysis to be performed.

Throughput Utilization Pr(Down) T
load M1 M2 M3 M2 M3 queue

C1 C2 C3 C1 C2 C3 C1 C2 C3 M2
Different number of spares, uniform ew3 rate.

0.1906 0.2024 0.2024 0.1588 0.1686 0.1686 0.1059 0.1003 0.1065 0.1065 3.4e-7 0.0418 0.0310
0.2768 0.1963 0.1963 0.2306 0.1636 0.1636 0.1537 0.1457 0.1033 0.1033 2.1e-6 0.0538 0.0640
0.2678 0.2845 0.1896 0.2232 0.2371 0.1580 0.1488 0.1839 0.1952 0.1952 2.1e-6 0.0658 0.0624

Different number of spares, color dependent ew3 rate.
0.1899 0.2005 0.2016 0.1583 0.1671 0.1680 0.1043 0.0999 0.1179 0.1061 3.5e-7 0.0444 0.0310
0.2757 0.1945 0.1955 0.2298 0.1621 0.1629 0.1532 0.1451 0.1144 0.1029 2.1e-6 0.0565 0.0639
0.2661 0.2812 0.1884 0.2218 0.2343 0.1570 0.1478 0.1401 0.1654 0.0992 2.2e-6 0.0701 0.0622

Equal number of spares, uniform ew3 rate.
0.1953 0.2075 0.2075 0.1628 0.1729 0.1729 0.1085 0.1028 0.1092 0.1092 2.8e-5 0.0092 0.0314
0.2853 0.2025 0.2025 0.2378 0.1688 0.1688 0.1521 0.1502 0.1066 0.1066 1.1e-4 0.0136 0.0652
0.2776 0.2951 0.1967 0.2313 0.2459 0.1639 0.1542 0.1461 0.1553 0.1035 1.3e-4 0.0188 0.0638

Equal number of spares, color dependent ew3 rate.
0.1949 0.2059 0.2070 0.1624 0.1716 0.1725 0.1083 0.1026 0.1211 0.1089 2.9e-5 0.0101 0.0313
0.2846 0.2009 0.2020 0.2372 0.1674 0.1683 0.1581 0.1498 0.1182 0.1063 1.2e-4 0.0148 0.0651
0.2764 0.2923 0.1959 0.2303 0.2436 0.1632 0.1536 0.1455 0.1719 0.1031 1.3e-4 0.0208 0.0637

Table 2 Performance indices of the FMS colored model. Results grouped in set of three lines for
workloads 2,2,2, 3,2,2 and 3,3,2

Table 2 shows some measures of interest computed using the GreatSPN solvers
exploiting the model (partial) symmetries. These measures include system through-
put (partitioned on the static subclasses of C), machines utilization, and probability
for machines m2 and m3 to be unavailable due to a breakdown. Applying Little’s
formula we also derive the average time spent in m2 queue (obtained as the ratio be-
tween the average number of customers in queue and the throughput of machine m2).
The measures are shown for the configurations (a) 2,2,2, (b) 3,2,2 and (c) 3,3,2, Each
of these three configurations are tested in four different scenarios, that have/have not
the same number of spares for each machine, as well as in case of uniform or color
dependent rates of the ew3 and RepM3 transitions.

The analysis of the model for an increasing number of elements in class C is
limited by the state space size that grows considerably despite the application of
techniques able to exploit the model behavioral symmetries. It is however possible
to estimate the measures of interest through the SSN simulator.

Table 3 reports system throughput values, utilization of machine m1, and prob-
ability of the repairman being in waiting status (#Ready== 1, i.e. one token in place
Ready) or working (#SpareRapairing== 1, i.e. one token in place SpareRepairing).
Each of these four measures are computed for 6 different sizes of the color classes,
reported as triplets in the first column. The simulator can work with the same sym-
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bolic marking representation used for the SRG, so that the future event list size
(shown in the last column of Table 3) does not grow significantly when the number
of colors in the color classes increases.

Color class Performance Point Confidence time (sec) average event
size indices estimate interval list size
3,3,2 X(load) 0.7355 0.7306, 0.7406

31 4.3783U(M1) 0.6134 0.6082, 0.6186
E(#Ready) 0.6398 0.6273, 0.6524
E(#SpareRep) 0.3003 0.2888, 0.3116

3,8,2 X(load) 0.9683 0.9580, 0.9788

165 4.9284U(M1) 0.8108 0.8017, 0.8200
E(#Ready) 0.5509 0.5351, 0.5667
E(#SpareRep) 0.3751 0.3606, 0.3895

3,8,8 X(load) 1.0794 1.0671, 1.0920

172 5.1236U(M1) 0.8970 0.8879, 0.9064
E(#Ready) 0.5006 0.4836, 0.5177
E(#SpareRep) 0.4158 0.4001, 0.4312

5,8,8 X(load) 1.0725 1.0623, 1.0850

180 5.2520U(M1) 0.9012 0.8923, 0.9103
E(#Ready) 0.4811 0.4659, 0.4964
E(#SpareRep) 0.4304 0.4167, 0.4439

8,8,8 X(load) 1.0957 1.0827, 1.1089

283 5.4395U(M1) 0.9219 0.9129, 0.9311
E(#Ready) 0.4765 0.4582, 0.4950
E(#SpareRep) 0.4340 0.4174, 0.45031

10,10,10 X(load) 1.1096 1.0975, 1.1218

291 5.4807U(M1) 0.9226 0.9142, 0.9310
E(#Ready) 0.4383 0.4217, 0.4550
E(#SpareRep) 0.4687 0.4534, 0.4838

Table 3 Performance indices obtained with the GreatSPN SSN simulator (Confidence level 95%
accuracy 2%).

7 Literature review

GreatSPN3.0 has many features that can find in similar software packages for the
analysis of Petri-net based models. A full comparison of these tools would require
a chapter on its own. In this section we only provide a brief overview of a few other
tools that share some of the features of GreatSPN3.0 with hints on similarities and
differences. Two characteristics that are unique to GreatSPN and that will not be
listed explicitly as differences are the availability of a CSLTA model-checker and of
solution techniques based on symmetries for colored Petri nets. Vice-versa, some of
the tools listed below support compositionality through hierarchical models: this is
a feature that is not present in GreatSPN.
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SPNP. The software package SPNP ( [28] was developed in the 90’s at Duke Univer-
sity, by the group of Trivedi, and it has evolved over the years to account for new re-
search results in the field. SPNP basic formalism is that of SRNs, which incorporate
several structural extensions to GSPNs such as marking dependencies (as marking
dependent arc cardinalities and guards) and allow reward rates to be associated with
each marking. Type of measures that can be computed are steady-state, transient,
cumulative transient, time-averaged and up-to-absorption. A discrete-event simu-
lator is available for both SRN and its non-Markovian extension. Limited support
is provided for qualitative analysis of models, which is partially due to the choice
of using a powerful text-based modelling language, for which a smaller number of
qualitative analysis techniques are available. SRN definition was done in a C-like
language, but in 2000 a Tcl/Tk-based graphical interface was added to reduce the
need for the modeler to express the model in a purely textual form. SPNP graphical
interface can also be used to draw and simulate fluid Petri nets.

Möbius. The tool Möbius [19] is an extensible dependability, security, and perfor-
mance modelling environment for studying large-scale discrete-event systems. It
supports multiple model formalisms which allow the modeller to represent each
part of a system in the formalism that is most appropriate for it. Among the avail-
able formalisms it supports Stochastic Activity Networks (SANs) [35] a superclass
of GSPNs in which the primitive Input and Output gates allow one to specify com-
plex transition behaviours by general functions written in a C-like language. Like
GreatSPN, Möbius provides multiple solution techniques. It support time and space
efficient discrete-event simulation as well as numerical solutions based on compact
MDD representation of the state space. Möbius is probably the most mature tool for
Petri net (a commercial version is available as well). With respect to GreatSPN3.0 it
has better features for stochastic simulation, but it has a limited support to structural
and qualitative analysis.

TimeNET. The software package TimeNET [38], now at version 4.3, was developed
starting back in 1995 at the Technische Universität of Ilmenau, as a successor of the
software DSPNexpress, which was partly inspired by GreatSPN. The main focus
of TimeNET is an efficient unified solution of DSPN and GSPN nets. Steady state
and transient analysis techniques include either exact numerical solutions, approx-
imate solutions and simulations. Firing delays of non-exponential transitions may
have an arbitrary distribution. The graphical user interface, initially developed in
Motif and then rewritten in Java, supports colored stochastic Petri nets as well as
Markov chains, and is designed to be extensible to graph-like modeling formalisms.
TimeNET provides more support for general distribution than GreatSPN3.0, but it
does not include a complete qualitative analysis as provided by the CTL model-
checker of GreatSPN.

Snoopy-Marcie-Charlie. The University of Cottbus has developed a suite of tools
for the analysis of qualitative and stochastic properties of Petri nets which shares
many of the objectives of GreatSPN3.0. Snoopy[25] is a java-based graphical inter-
face which includes token animation. Marcie [26] is a set of analysis algorithms for
various forms of stochastic Petri nets. These algorithms implement CTL and CSL
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model-checking as well as CTMC solution and stochastic simulation of the net.
CTL model checker is very efficient, based on a specific class of decision diagrams
called IDD which are particularly efficient for Petri nets. Marcie is a command line
tool, but it can be called through Charlie [27], which is an ”extensible” interface
for solvers. Charlie computes standard structural and behavioural properties of Petri
nets, complemented by non-symbolic CTL and LTL model checking. Through the
use of plug-in Charlie can work as interface for the command line solvers included
in Marcie.

The suite of tools has been developed over numerous years and it is now very
rich. It is not always easy to find the right solver to use and how to use it, so the wide
choice of available solvers is not very easy to use. We believe that the Cottbus suite
is facing a situation similar to that we experienced in GreatSPN before deciding to
re-write the GUI and to link from the GUI all the available solvers. The Cottbus suite
puts emphasis on structural analysis and on the richness of Petri net extension the
tool is able to deal with. Great attention is devoted to stochastic simulation of Petri
nets of biological system. Features available in GreatSPN and not in the Cottbus
suite include CSLTA model-checking and efficient solution of colored models.

Smart. Smart[36] or Stochastic Model-checking Analyzer for Reliability and Timing
is a software package providing command-line environment for logic and proba-
bilistic analysis of complex systems. Its main input formalism are Stochastic Petri
nets and both discrete-time and continuous time Markov chains. For the analysis of
logical behaviour, both explicit and symbolic state-space generation techniques are
available. In the new release, currently under development, all the symbolic algo-
rithms will be based on Meddly library as in GreatSPN. For the study of stochastic
and timing behaviour, sparse-storage, symbolic and Kronecker numerical solution
approaches are available when the underlying process is a Markov chain. Discrete-
event simulation is also provided.

APNNtoolbox The APNNtoolbox [8] has been developed at the University of Dort-
mund as an open toolset around a common exchange interface denoted as the Ab-
stract Petri Net Notation (APNN). The tool provides support for stochastic Petri net,
including support for hierarchies and for a limited form of colours. The solvers in
the APNNtoolbox are focused on state-space based analysis methods, where state-
space explosion is dealt with through Kronecker representation. The toolbox also
includes a graphical user interface (APNNed) to draw the net and call the solvers.

QPME QPME [31] is a tool developed initially at the University of Darmstadt, and
currently maintained at the University of Würzburg. It is devoted to Stochastic Petri
nets with the extension of queueing places for which the tool provides discrete event
simulation.

Oris The Oris tool [13] has been developed at the University of Florence to deal with
Timed and stochastic Petri nets. The delay associated with transitions can either be
a non deterministic value, between a pair of min-max boundaries, or stochastic over
a finite/infinite interval, thus subsuming also classical stochastic Petri nets. The tool
is equipped with a graphical interface for net specification and for the display of the
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analysis results. Oris is oriented at the analysis of non-Markovian system, for which
it provides the most advanced solvers currently available.

8 Future work

A future work list for GreatSPN strictly depends on what will be the research results
in the performance evaluation field in the next years, given the willingness of keep-
ing GreatSPN always at pace with the most useful research advances. Such a list is
difficult to write, but there are nevertheless a few features of the current graphical in-
terface and associated solvers that are already planned for a (hopefully close) future.
The first enhancement is to develop a CTL model-checker for colored models to im-
prove the analysis capabilities of GreatSPN3.0 already made unique by the use of
the CSLTA model checker. It could be interesting if such model-checker could work
directly on the symbolic reachability graph. Another approach to solve this problem
is to unfold a colored Petri net (like a SWN) into its uncolored (GSPN) equivalent
and then perform an (uncolored) model-checking. Another point that deserves more
attention in the tool is the definition of the color-dependent performance indices that
would complement in an extremely useful manner the efficient solution techniques
based on symmetries for colored Petri nets already implemented in GreatSPN3.0.
Finally, compositionality of Petri net models is clearly a desired feature, that would
make it easier to draw complex hierarchical models by separating the logic into mul-
tiple nets, supporting both top-down and bottom-up approaches. In GreatSPN3.0 net
composition can be performed through a command line program called algebra, yet
to be integrated in the GUI, which implements a parallel operator similar to the par-
allel operator in process algebra (in CSP style) based on transition superposition;
additionally, the algebra program also implements place superposition. Upgrading
this feature to the level of the invocation of the other analysis capabilities of the tool
through the new GUI is obviously an enhancement that we would like to develop as
soon as possible.
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