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Summary 13 

Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with 14 

over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches 15 

have dominated the initial studies of these fascinating symbioses, the advent of molecular 16 

biology, live cell imaging and ‘omics’ techniques have provided new and powerful tools to 17 

decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. 18 

In this chapter we focus on the most common mycorrhizal association, arbuscular mycorrhiza 19 

(AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are 20 

believed to have assisted the conquest of dry lands by early plants around 450 million years 21 

ago, and are found today in most land ecosystems. AM fungi have several peculiar biological 22 

traits, including obligate biotrophy, intracellular development inside the plant tissues, 23 

coenocytic multinucleate hyphae and spores, as well as unique genetics - such as the putative 24 

absence of a sexual cycle -, and multiple ecological functions. All of these make the study of 25 

AM fungi as intriguing as it is challenging, and their symbiotic association with most crop 26 

plants is currently raising a broad interest in agronomic contexts for the potential use of AM 27 

fungi in sustainable production under conditions of low chemical input. 28 

  29 
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AN OVERVIEW OF MYCORRHIZAL INTERACTIONS  30 

Mycorrhizal fungi are a heterogeneous group of diverse taxa, associated with the roots of over 31 

90% of all plant species, from liverworts to angiosperms. Although they can spend part of 32 

their life cycle in the rhizosphere, mycorrhizal fungi always associate with the roots of plants, 33 

including forest trees, wild grasses and many crops, and colonize environments such as alpine 34 

and boreal zones, tropical forests, grasslands and croplands. Both partners benefit from the 35 

relationship: mycorrhizal fungi improve the fitness of their host plants, by influencing mineral 36 

nutrition and water absorption and by increasing tolerance to biotic and abiotic stresses. The 37 

host plant rewards the fungal symbiont with carbon compounds derived from the 38 

photosynthetic process (1). 39 

Irrespectively of their taxonomic position, mycorrhizal fungi develop an extensive hyphal 40 

network in the soil, the aptly named wood-wide web, which can connect whole plant 41 

communities and potentially grant the horizontal transfer of nutrients. Such underground web 42 

has caused a paradigm shift in our knowledge of plant ecology, by introducing the key role of 43 

below ground microbes and opening the discussion on how they influence the composition 44 

and fitness of plant communities (2). 45 

The term mycorrhiza is derived from the Greek words for ‘fungus’ and ‘root’: a beautiful 46 

linguistic rendering of such biological synergies. This does not in any way imply that 47 

mycorrhizal fungi only colonize roots; in fact, so-called basal plants lacking true roots also 48 

rely on mycorrhizal fungi for their nutrition and host the symbionts in other organs, such as 49 

the liverwort thallus. This feature is an evolutionary reminder of the first known mycorrhizal 50 

interactions. Four hundred and fifty million year-old fossils of some of the first land plants 51 

display characteristic symbiotic fungal structures in their simple, prostrate shoots. In short, the 52 

evolution of mycorrhizal symbioses predates the appearance of roots, even if mycorrhizal 53 

fungi are currently restricted to roots in the vast majority of extant plants. 54 
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Mycorrhizal fungi can be divided into two major groups: aseptate endophytes such as 55 

Glomeromycota, and septate Asco- and Basidiomycota. Usually, the classification of 56 

mycorrhizal interactions is based on plant anatomical traits and identifies two broad 57 

categories (Fig. 1), ectomycorrhizae (EM), where the fungus is restricted to the intercellular 58 

spaces of outer root tissues, and endomycorrhizae, where fungi penetrate the living host cells 59 

(3). In ectomycorrhizae, which colonise trees and shrubs, hyphae remain extracellular, 60 

inducing important changes to root morphogenesis, while their presence leads to subtle 61 

modifications in epidermal or cortical cells. In endomycorrhizae, i.e. ericoid, orchid and 62 

arbuscular mycorrhizae (AM), hyphae penetrate the root cells to establish an intracellular 63 

symbiosis. While AM are common to diverse plant taxa, ericoid and orchid mycorrhizae are 64 

restricted to the order Ericales and the family Orchidaceae, respectively. Such taxonomic and 65 

morphological diversity has stimulated the study of the colonization process in numerous host 66 

plants since the start of the nineteenth century. Indeed  new information generated by 67 

genomic sequencing, the use of mutants affected in their symbiotic capabilities and live cell 68 

imaging has deeply changed our view of the colonization process (4). 69 

The arbuscular mycorrhizal (AM) symbiosis is the most widespread plant-fungus mutualistic 70 

association. AM fungi are found in association with all plant phyla, including agriculturally 71 

relevant species, and play a crucial ecological role in the functioning of low-input 72 

environments. All AM fungi belong to the Glomeromycota phylum and are very specialized 73 

symbionts, as revealed by their obligate biotrophy. Currently there is broad interest in AM 74 

fungi for their potential to support a reduction in the use of chemical fertilizers and pesticides, 75 

and to positively impact sustainable crop production systems to feed a globally growing 76 

human population (5, 6). For these reasons this chapter will focus on the AM symbiosis, 77 

providing an overview of the current knowledge of the molecular mechanisms controlling this 78 

ancient and deeply intimate plant-fungus association. 79 
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ARBUSCULAR MYCORRHIZAE 80 

AM fungi form a mutualistic symbiosis with the roots of ~80% of plant species in natural and 81 

agricultural systems, and are considered a central component of the plant microbiota. 82 

AM fungi have the unusual ability to grow in two extremely different niches: the soil and the 83 

lumen of plant cells. In soil, the extensive hyphal network has been estimated to reach a 84 

density of 100 m/cm3 (7). This hyphal network can acquire water and nutrients with great 85 

efficiency and reach a volume of soil that is inaccessible to roots alone (8). The presence and 86 

activity of AM fungal mycelia also directly influence the physico-chemical properties of soil 87 

(9). Inside their host plant, AM fungi penetrate single cells of the root cortex, where they 88 

develop a structure that is the distinctive feature of this association: the arbuscule (Fig. 2). 89 

Named from the Latin word for bush, or small tree, each arbuscule results from repeated 90 

branching of a single hypha in the lumen of a parenchymatic cell from the inner root cortex 91 

(10). With their impressive surface/volume ratio, arbuscules are considered the major site of 92 

nutrient exchange (11). 93 

As obligate biotrophs, AM fungi strictly depend on their plant hosts for both growth and 94 

reproduction (3, 12). Up to 20% of the photosynthesis products of terrestrial plants is 95 

consumed by AM fungi (13). Interestingly, the carbon flow from the plant to the fungus 96 

seems to be proportional to the amount of phosphate that the fungus returns to its host (14). 97 

Consequently, while the beneficial effects of AM fungi become evident when the nutrient and 98 

water supply are limited, root colonization decreases in soils with abundant nutrients. 99 

The AM interaction also supports important ecological services such as an increase of soil 100 

quality (15) and of biodiversity of the associated plant communities (16). Additionally, many 101 

studies have highlighted the positive influence of the AM symbiosis on plant responses to 102 

biotic (17, 18) and abiotic stresses such as drought, salinity and heavy metal contaminants (6, 103 

19, 20).  104 
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Classification and phylogeny of AM fungi 105 

AM fungi have existed and coevolved with plants for at least 450 million years (21) as fossils 106 

records witness (22). Due to their importance in nutrient transfer they are supposed to have 107 

played a crucial role during land colonization by plants. The widespread occurrence of AM 108 

fungi in plants from the most parts of the world, particularly in the tropics, was acknowledged 109 

in the nineteenth century (23, 24). In 1844, the Tulasne brothers described the first AM fungal 110 

species, Glomus microcarpum and Glomus macrocarpum (25). In 2001 Schüßler and 111 

colleagues grouped AM fungi within a new monophyletic phylum, the Glomeromycota, 112 

distinct from the Zygomycota where they had previously been placed (26). 113 

The phylum Glomeromycota is currently represented by about 250 described species (4) 114 

although molecular analyses suggest a broader diversity (27). A recent survey of the global 115 

distribution of these plant symbionts showed that AM fungal communities reflected local 116 

environmental conditions and the spatial distance between sites. However, despite AM fungi 117 

apparently possessing limited dispersal ability, 93% of taxa were found on multiple continents 118 

and 34% on all of the six surveyed continents (28). 119 

Before the advent of molecular techniques, the identification of AM fungi was based on the 120 

microscopic examinations of spores. These are roundish, from about 30 to 400 μm in diameter 121 

and with features with taxonomic value like colour, dimension, cell wall structure, presence of 122 

septa and connection to sustaining hypha. However, morphological similarities do not always 123 

reflect phylogenetic relationships. The development of PCR-based approaches and advances 124 

in molecular analyses led to novel identification rules (26, 29). Since then, the taxonomy of 125 

Glomeromycota has been subjected to several changes and nowadays it is still largely open to 126 

discussion. On the basis of rRNA gene phylogeny Glomeromycota were described as a sister 127 

group of Ascomycota and Basidiomycota (26, 29). However, phylogenetic reconstructions 128 

based on mitochondrial (30, 31, 32) or protein-coding nuclear (33) sequences suggest a closer 129 



 7

relationship with Mortierellales or Mucorales (Mucoromycotina). Recently, on the basis of 130 

the complete genome sequence of Rhizophagus irregularis (34, 35), Glomeromycota were 131 

again phylogenetically placed closer to Mucoromycotina (see later in this chapter). Indeed 132 

Mucoromycotina, a basal group of fungi also characterized by a coenocytic mycelium, is now 133 

considered a sister group of Glomeromycota (36). Interestingly, Mucoromycotina form 134 

functional mycorrhiza-like associations with basal plant lineages (37) suggesting that the 135 

symbiotic options available to the first plants emerging onto dry land were more varied than 136 

previously thought (38). It now appears likely that the last common ancestor of both fungal 137 

groups thrived in primeval soils long before plants colonised the land (36). 138 

 139 

Biological features, genome organization and genetics of AM fungi 140 

AM fungi are also intriguing from a cellular and genetic point of view. They display many 141 

unusual biological features beside their obligate biotrophism: spores and coenocytic hyphae 142 

contain thousands of nuclei in a common cytoplasm and no uninucleate life stage is known to 143 

occur. This makes classical genetic approaches challenging (12, 36). Depending on the 144 

species, a single spore contains from 800 to about 35000 nuclei (39). Single spores are 145 

populated by flows of unrelated nuclei streaming from the mycelium, rather than by the 146 

replication of one or few nuclei within the developing spore (40). 147 

The concept of species is poorly defined in this group of organisms, since they show a high 148 

degree of genetic variability. For example, the intrasporal variability of the ITS (Internal 149 

Transcribed Spacer) ribosomal region can range between 6% for Gigaspora margarita (41), 150 

18% for Glomus intraradices (42) and over 20% in other Glomus ‘intraradices-like’ strains 151 

(43). 152 

In spite of being among the oldest living terrestrial organisms, AM fungi surprisingly appear 153 

to have lost sexual reproduction, as no sexual cycle has ever been described.  154 
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The genetic organization of coexisting nuclei in the Glomeromycota (i.e. coenocytic 155 

organisms) has been a major source of debate for the past 15 years, with two opposite 156 

hypotheses being supported within the research community: heterokaryosis (44) and 157 

homokaryosis (45), which support, respectively, the presence or the absence of internuclear 158 

genetic divergence (46). Furthermore, the possibility that AM fungi contain a uniform 159 

population of nuclei characterized by intranuclear polymorphism has also been proposed (47). 160 

Heterokaryosis may originate by hyphal anastomosis between genetically different mycelia or 161 

by the accumulation of mutations. Hyphal anastomosis and the exchange of nuclei has indeed 162 

been observed in a few fungal taxa (48, 49), nevertheless such events have only been 163 

observed between distinct isolates of the same species from one sampling area (50), but not 164 

between isolates from different geographical areas (51). These opposing hypotheses have 165 

been reconciled by recent analyses of complete genome sequences of AM fungi (next 166 

paragraph). 167 

A further increase in the genetic complexity of AM fungi is given by the presence of 168 

endobacteria and viruses. Many AM fungi harbor endobacteria in their hyphae and spores: 169 

two types of endobacteria are known in Glomeromycota: rod-shaped Gram-negatives, limited 170 

in distribution to members of the Gigasporaceae family and coccoid Mollicutes-related 171 

endobacteria, distributed across different lineages of AM fungi (52). The genomes of a few 172 

endobacteria have been sequenced: all are characterized by a limited size (0.5 - 1.8 Mb), 173 

which is consistent with complete dependence on their fungal host and their inability to grow 174 

in pure culture (53, 54, 55). So far, the biological role has only been investigated for 175 

Candidatus Glomeribacter gigasporarum, the rod-shaped bacterium hosted by Gigaspora 176 

margarita. The endobacterium enhances fungal sporulation, bioenergetic capacity, ATP 177 

production and ability to detoxify reactive oxygen species. Endobacteria also appear to 178 

enhance fungal responsiveness to strigolactones, root-exudated signals that act as hyphal 179 
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branching factors for AM fungi. Overall, this endosymbiosis improves the fungal ecological 180 

fitness by priming mitochondrial metabolic pathways and giving the AM fungi more tools to 181 

face environmental stresses (56, 57).  182 

Our knowledge of mycoviruses of AM fungi is still very limited (58, 59). In one case a 183 

biological function has been reported: the presence of the virus led to the production of a 184 

higher number of spores and increased stimulation of plant growth (58). All together these 185 

studies underline the importance of these additional genetic components of AM fungi, as such 186 

components can contribute to the symbiosis. 187 

 188 

The first genome project dedicated to an AM fungus 189 

Extensive efforts were made to sequence the first genome of an AM fungus. Two independent 190 

research groups  (34, 35) published the genome sequences of the same Rhizophagus 191 

irregularis isolate DAOM197198 (60). By sampling the extraradical hyphae of mycorrhizal 192 

hairy root cultures, Tisserant and colleagues obtained an assembly of 101 Mb out of an 193 

estimated genome size of 153 Mb (34). This assembly, although highly fragmented, is 194 

believed to include almost all the protein-coding genes (23,561 high-confidence gene 195 

models), and places the genome of R. irregularis among the largest fungal genomes 196 

sequenced to date, along with those of obligate biotrophic powdery mildews (61) and the 197 

ectomycorrhizal symbiont Tuber melanosporum (62).  198 

In order to specifically address the issue of the heterokaryotic nature and to determine the 199 

extent to which nuclei differ from each other, Lin and colleagues performed a de novo 200 

genome sequencing of individual nuclei collected from crushed spores (35). Their 201 

comparative analysis revealed a surprisingly low level of polymorphism: > 99.97% of the 202 

aligned genome sequences were identical in different nuclei. The genome organization of this 203 

strain is therefore considered basically homokaryotic. By contrast, within a single nucleus, the 204 
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45S rDNA repeat unit - and in particular the ITS region - turned out to be highly diverged and 205 

the relative abundance of alleles appeared to differ between nuclei. Genome annotation 206 

resulted in 27,392 protein-coding gene models representing 30,003 putative transcripts with a 207 

high level of putative/predicted (retro-)transposable elements (35), findings consistent with 208 

those of Tisserant et al. (34).  209 

The gene repertoire of R. irregularis mostly overlaps with the repertoire of sequenced 210 

Mucoromycotina species (34, 35) and phylogenomic analyses demonstrated that 211 

Glomeromycota are more closely related to Mucoromycotina than to their postulated sister 212 

Dikarya (35). 213 

The obligate biotrophy of AM fungi is not mirrored by any drastic loss of metabolic 214 

complexity in central metabolism. One striking genomic feature is anyway the lack of genes 215 

encoding plant cell wall degrading enzymes; the same situation has been observed in obligate 216 

biotrophic pathogens (61) and ectomycorrhizal symbionts (62).  217 

More recently, the in silico genome analysis of five different R. irregularis isolates (63) has 218 

highlighted substantial genetic diversity among isolates. Two isolates contained a stable 219 

population of two dominant divergent haploid nuclei (a unique dikaryon-like condition) while 220 

the other three isolates only displayed one dominant genotype (63). R. irregularis therefore 221 

appears to develop both homokaryotic and heretokaryotic mycelia, even if the modes by 222 

which this differential genomic pattern arises remain unclear. In addition, the identification of 223 

a putative mating type locus suggests the existence of cryptic sex-related processes (34, 63). 224 

Beside reconciling the previous contrasting results, such novel data indicate that conventional 225 

modes of reproduction - including mating - may exist in this lineage which can suggest 226 

approaches to deliver genetic improvement of AM strains.  227 

 228 

The colonization process 229 
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The establishment of the AM symbiosis requires a succession of well characterized 230 

developmental steps (Fig. 3) (3). In advance of direct plant-fungus contact - the so called 231 

presymbiotic stage - diffusible molecules mediate reciprocal recognition between the two 232 

symbionts. Then, the fungal hyphae contact the root epidermis, where they form adhesion 233 

structures called hyphopodia; these precede root entry and mark the initiation of the symbiotic 234 

phase. In response to these chemical and physical stimuli, the contacted epidermal cell 235 

develops an intracellular accommodation structure, called prepenetration apparatus (64), 236 

which drives fungal penetration and guides hyphal passage across the epidermal cell and 237 

towards the inner root tissues. Within the root, hyphae grow inter- and intracellularly to reach 238 

the deepest cortical cells where arbuscules develop (65). As root colonization proceeds, the 239 

AM fungus explores the soil developing an extensive hyphal network, the extraradical 240 

mycelium, which also can produce a new generation of asexual spores. 241 

Host plants control each step of symbiosis development, leading to a precise synchronization 242 

of fungal and plant developmental processes (65, 66). Over the last decade, the molecular 243 

components controlling AM colonization have been intensively studied in angiosperms (11, 244 

65) and more recently in basal land plants (67, 68).  245 

 246 

Presymbiotic signaling  247 

AM fungi perceive the vicinity of a host via root-exuded molecules that induce spore 248 

germination and hyphal branching (69, 70). The most studied plant symbiotic signals are 249 

carotenoid-derived phytohormones called strigolactones (SL) (71), which have a primary role 250 

in plant development (72).  AM sense SLs in root exudates at concentrations as low as 10 nM. 251 

Fungal responses to GR24, a synthetic molecule commonly used to study SL actions, include 252 

the enlargement of mitochondria, a rapid increase in ATP and NADH and nuclear 253 

proliferation (73, 74, 75, 76). GR24 exposure also causes a sharp increase in Ca2+ 254 
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concentration in the fungal cytoplasm (77). Although fungal SLs receptors remain unknown, 255 

such observations suggest that SLs are perceived via a Ca2+-mediated signaling pathway and 256 

trigger a cellular and molecular prelude to root colonization (74, 75, 78).  257 

AM fungi also release signal molecules that trigger plant symbiotic responses (79), including 258 

transcriptional regulation, nucleus-associated Ca2+ signals, starch accumulation in roots and 259 

lateral root formation (80, 81, 82, 83, 84, 85, 86). Repeated oscillations in nuclear Ca2+ 260 

concentration (spiking) have been observed in the root epidermal cells contacted by AM 261 

fungal hyphopodia, but also when the same cells were treated with exudates from germinated 262 

AM fungal spores (83). Similarly, the expression of the early symbiotic gene ENOD11 in M. 263 

truncatula is upregulated upon both fungal contact (87) and the perception of fungal exudates 264 

(80). 265 

Different N-acetylglucosamine oligosaccharides have been characterized in AM fungal 266 

exudates as bio-active molecules responsible for such plant responses. They include tetra- and 267 

penta-chito-oligosaccharides (CO4 and CO5) (86) as well as lipo-chito-oligosaccharides 268 

(LCOs), which are very similar to nodulation (Nod) factors released by nitrogen-fixing 269 

rhizobia (85). When applied as purified molecules, such chitin derivatives mimic the 270 

perception of fungal exudates in the host roots, including nuclear Ca2+ spiking (85, 86) and 271 

the regulation of symbiosis-related genes (80, 85, 88). Interestingly, the release of CO4 and 272 

CO5 in Rhizophagus irregularis exudate is boosted upon GR24 treatment (86), suggesting the 273 

existence of a positive loop between plant and fungal signal perception and production of 274 

these oligosaccharides. 275 

The study of plant signaling mechanisms involved in the perception of AM fungal signals has 276 

been developed in legumes such as Medicago truncatula, largely following the research on 277 

rhizobial Nod factors signaling. Such comparative investigations have revealed the existence 278 

of a so-called ‘common symbiotic signalling pathway’ (CSSP), which includes several genes 279 
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that are essential for both symbioses (89, 90). Evidence that the same genes are also involved 280 

in diverse symbiotic, pathogenic and parasitic plant interactions is accumulating (91). 281 

The CSSP starts on the plant cell membrane, with a malectin-like domain (MLD) leucine-rich 282 

repeat (LRR) receptor-like kinase (known as SYMRK, in Lotus japonicus). SYMRK  forms a 283 

complex with Nod factor receptors NFR1 and NFR5 and is believed to also interact with the 284 

so-far unidentified receptor(s) for AM fungal signals (90). In its cytoplasmic domain, 285 

SYMRK also interacts with a MAP kinase kinase (92), and HMGR1, a 3-hydroxy-3-286 

methylglutaryl-CoA reductase involved in mevalonate synthesis. Indeed, mevalonate has 287 

recently been demonstrated to trigger downstream symbiotic responses such as nuclear Ca2+ 288 

spiking and ENOD11 expression (93).  289 

All the remaining CSSP proteins that have currently been identified are localised to the 290 

nucleus. They include three nucleoporins - NUP85, NUP133, and NENA (94, 95, 96) - 291 

possibly involved in nuclear targeting of CSSP actors, as well as the ion channel 292 

CASTOR/POLLUX and the SERCA-type Ca2+-ATPase MCA8. Both these latter proteins 293 

localize to the nuclear envelope (97, 98) and are essential for nuclear Ca2+ spiking (98, 99, 294 

100, 101). The nuclear envelope lumen is considered the site where Ca2+ is stored and 295 

released from during symbiotic Ca2+ signaling.  The Ca2+-and-calmodulin-dependent protein 296 

kinase CCaMK localizes to the nucleoplasm and is composed of a serine/threonine kinase 297 

domain, a calmodulin binding domain and three Ca2+-binding EF-hand domains (102, 103). 298 

Upon an increase in Ca2+ concentration, CCaMK is subject to a complex conformational 299 

change (102, 104, 105). When active, CCaMK regulates gene expression through its 300 

interacting partner, CYCLOPS (106, 107, 108) and the action of transcription factors such as 301 

NSP1 and NSP2 (109, 110, 111, 112), NIN (113, 114) and RAM1 (89, 115).  302 

The exchange of chemical signals that mediate reciprocal recognition probably becomes more 303 

intense as soon as a hyphopodium adheres to the surface of the root epidermis. Hyphopodium 304 
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differentiation depends on plant cell wall-bound signals as shown by the seminal studies of 305 

Giovannetti et al. (116) and Nagahashi and Douds (117). Only recently, though, monomeric 306 

cutin has been proposed to be responsible for hyphopodium differentiation. This deduction 307 

comes from the observation that RAM1 activation increases the expression of RAM2, a 308 

glycerol3-phosphate acyl transferase involved in the biosynthesis of cutin precursors (115, 309 

118).  310 

Interestingly, in a recent paper Gutjahr et al. (119) identified loss of responsiveness to AM 311 

fungi in a rice mutant, which was also mirrored by the absence of physical contact and of 312 

characteristic transcriptional responses to AM fungal diffusible signals. The gene responsible 313 

for the loss of symbiosis, DWARF 14 LIKE (D14L), encodes an alpha/ beta-fold hydrolase, 314 

that is a component of an intracellular receptor complex involved in the detection of the 315 

smoke compound, karrikin. Thus D14L seems to be required to support initial colonization 316 

events by AM fungi. Overall, these results reveal a novel plant recognition strategy for AM 317 

fungi and envisage the existence of an additional signaling molecule, the D14L ligand. 318 

 319 

Host cell colonization 320 

As soon as a hyphopodium develops on the root surface, the nucleus of the underlying 321 

epidermal cell moves toward the fungal contact site, then migrates to the opposite side of the 322 

cell traversing the lumen and partially displacing the vacuole. Concurrently, a broad, 323 

columnar cytoplasmic aggregation assembles between the nucleus and the fungal contact site. 324 

This aggregate is rich in endoplasmic reticulum, cytoskeleton, Golgi stacks and secretory 325 

membranes, and constitutes the so-called the prepenetration apparatus, or PPA (Fig. 3) (64, 66, 326 

120). Such features characterize the PPA as a broad exocytotic process finalized at the 327 

construction of the novel membrane domain - in fact an extension of the host plasmalemma - 328 

where the fungus will be hosted: the perifungal membrane which envelops all intracellular 329 
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fungal structures (120). Only after the PPA is fully deployed, a penetrating hypha develops 330 

from the hyphopodium, crosses the epidermal cell wall and enters the cell lumen, strictly 331 

following the PPA route (64). PPAs are not observed in plants that lack CSSP genes such as 332 

dmi2 or dmi3 (64). Furthermore constitutive expression of an active CCaMK variant induces 333 

cytoplasmic aggregates that resemble a PPA (121). Consequently, one key function of the 334 

CSSP is the activation of the cellular program responsible for fungal hosting (11).  335 

PPA formation is not limited to epidermal cells, where the fungus starts its intracellular 336 

development, but is also observed in outer and inner cortical cells, in preparation for 337 

arbuscule formation (66). Cortical cells that are preparing to harbor an arbuscule display the 338 

most extensive PPAs: here, the cell membrane invagination does not envelop a single hypha, 339 

but progressively expands to line each of the fine branches that can fill up most of the cell 340 

lumen (10). The perifungal membrane - around intracellular hyphae - or periarbuscular 341 

membrane (PAM) around arbuscules (65) outlines the so-called symbiotic interface, the novel 342 

cell compartment where the fungus is hosted and where most of the signal and nutrient 343 

exchanges are believed to occur (123, 124). In line with this, the PAM comprises a specific 344 

sub-set of membrane-associated proteins (122). Though the signal that induces branching and 345 

differentiation of arbuscules is currently unknown, several plant genes required for arbuscule 346 

development and/or function have been identified, including Vapyrin (125), two Vesicle-347 

Associated Membrane Proteins (126), EXO70I (127), proteases (128, 129), a proton ATPase 348 

(130, 131), ATP-binding cassette (ABC) transporters, Stunted Arbuscule (STR) and STR2 349 

(132) and phosphate transporters (133, 134). Interestingly, trafficking of the symbiotic 350 

phosphate transporters and ABC transporters to the PAM requires gene expression coincident 351 

with arbuscule branching (135), leading to the hypothesis that PAM construction is achieved 352 

by synchronizing two cellular and molecular processes: the massive reorientation of 353 

exocytosis towards the developing PAM, and the transcription of specific genes encoding for 354 
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PAM-resident proteins (11, 135). As transcriptional control seems crucial to ensure the 355 

correct protein composition of the PAM, plant transcription factors active in the AM 356 

symbiosis have been also characterized. So far, transcription factors required for AM 357 

symbiosis include CYCLOPS (108, 136), the gibberellin repressor protein DELLAs (137, 358 

138), Reduced Arbuscular Mycorrhiza1 (RAM1; 115), Required for Arbuscule Development1 359 

(RAD1; 139), MtERF1 (140), and DELLA-Interacting Protein1 (DIP1; 141). Recent results 360 

suggest a model where DELLA proteins regulate arbuscule development through modulation 361 

of RAM1 and RAD1 that in turn regulate genes required to support arbuscule branching (142). 362 

Arbuscules are ephemeral structures that collapse and degenerate approximately two to three 363 

days after maturity (11, 143), while the host cell regains its previous organization and can 364 

undergo a new round of colonization.  365 

The correct formation and functioning of an arbuscule is also expected to be under fungal 366 

control; however, the functional studies on the fungal partner are very few. Kloppholz et al. 367 

(144), discovered the first AM fungal effector, named secreted protein 7 (SP7). Effector 368 

proteins are secreted by plant-colonizing microbes and are generally thought to promote 369 

compatibility or to suppress plant defense responses by interfering with metabolism or 370 

signaling pathways (145; chapter XX of this book). In particular, SP7, which is secreted into 371 

the host cell and localizes to the plant nucleus, counteracts the plant immune response by 372 

interacting with the pathogenesis-related transcription factor Ethylene Response Factor 19 373 

(144). Although their mechanisms of action have not been elucidated yet, two additional 374 

fungal genes have been recently identified with a putative role in accommodation of fungal 375 

structures in the root (146, 147). 376 

While such targeted investigations start shedding light on the cellular and molecular 377 

mechanisms that act inside each host cell, transcriptomic and genomic studies suggest that 378 

these are just the first steps into the characterization of fungal effectors and their function in 379 
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AM (148, 149).  380 

 381 

The transfer of nutrients  382 

Nutrient uptake and transfer to the host plant are the most documented roles of AM fungi. The 383 

extraradical mycelium acts as an extension of the root system, taking up phosphate (P), 384 

nitrogen (N), sulfur (S), and trace elements from the soil, and delivering them to the host plant 385 

via the intraradical mycelium (8). The PAM is considered the site where this symbiotic 386 

transfer occurs: mineral nutrients released in the interface compartment are captured by PAM-387 

bound plant transporters that translocate them to the host cell cytoplasm (150).  388 

 389 

Phosphorus  390 

Two pathways contribute to inorganic phosphate (Pi) uptake in mycorrhizal plants: a direct 391 

pathway by the root epidermal cells and a mycorrhizal pathway via AM fungi (151, 152). AM 392 

fungi are capable of significantly improving the uptake of Pi ions, which are characterized by 393 

low mobility and availability in soil. By using radioactive P, Smith and Smith (8) found that 394 

in mycorrhizal plants most of the P delivered to the plant came from the fungus and that the 395 

direct pathway was almost inactive. Indeed, depending on the plant and fungal species, AM 396 

fungi can contribute from 20 to 100% of the plant P uptake (153). 397 

The mycorrhizal pathway involves initially the fungal uptake of soluble Pi from the soil. This 398 

is mediated by Pi:H+ transporters, which have been described in Diversispora epigaea (154), 399 

Rhizophagus irregularis (155) and Funneliformis mosseae (156). However, a role remains to 400 

be clarified for the putative Pi:Na+ transporters RiPT1 and RiPT2, recently identified in the R. 401 

irregularis genome (152). 402 

Within the extraradical mycelium, Pi can supply the metabolically active Pi pool (used for the 403 

biosynthesis of phospholipids, DNA, RNA and proteins) or rapidly accumulate in vacuoles in 404 
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the form of long-chain or short-chain polyphosphates (polyP) (157, 158), presumably through 405 

the action of the polyP polymerase/vacuolar transporter chaperone complex (148). PolyP is 406 

considered the major Pi store in hyphae as well as the main form of Pi translocation over long 407 

distances within hyphae (159). Indeed, polyP accumulation in the extraradical mycelium 408 

mirrors an equivalent Pi uptake from the soil (160). Interestingly, polyP translocation towards 409 

the host is mediated by the activity of a fungal aquaglyceroporin, which is highly expressed in 410 

the intraradical mycelium and is responsible for water transport across the plasma membrane 411 

(161). These findings provide novel insights on the mechanisms involved in the directional P 412 

transport towards the roots, and they highlight a key role of host transpiration and fungal 413 

aquaporins. PolyP degradation in the intraradical mycelium, possibly by vacuolar 414 

endopolyphosphatase and exopolyphosphatase activities, sustains Pi flux from the fungus to 415 

the apoplastic interface compartment (148, 162). 416 

On the plant side the activation of the mycorrhizal pathway is mirrored by the downregulation 417 

of plant Pht1 (H+-dependent) transporters located in root epidermal cells, such as Medicago 418 

truncatula phosphate transporters MtPT1 and MtPT2 (163) and the upregulation of 419 

mycorrhiza-inducible Pth1 transporters (152 and references therein). Some of them are mostly 420 

or exclusively expressed in arbusculated cells. Among them, MtPT4 localizes to the PAM 421 

surrounding the arbuscule branches (164, 122). Interestingly, the two mycorrhiza-inducible Pi 422 

transporters, MtPT4 and LjPT4, are expressed in the root tips of non-colonized plants, 423 

suggesting they play a role in the Pi-sensing machinery of root tips (165). 424 

 425 

Nitrogen  426 

Although the impact of AM symbiosis on plant N uptake is not as clearly defined as that of Pi, 427 

there is increasing evidence for the existence of a N pathway through the fungal hyphae to the 428 

host plant, in spite of the  contribution of AM fungi to the plant total N nutrition varying 429 
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considerably depending on the context (8, 158, 166).  Nitrogen is found in soil in both organic 430 

and inorganic compounds and plants use all of them. The former include simple molecules 431 

such as urea, amino acids, amines and peptides, and complex ones, such as proteins, while 432 

inorganic N compounds are mainly represented by nitrate (NO3
-) and ammonium (NH4

+). In 433 

soils where N is limited or poorly mobile, due to drought or acidity, the contribution of the 434 

AM fungus to plant N nutrition can be considerable (152, 167) ranging between 24 and 42% 435 

of a plant total N content (168).  436 

A few mechanisms of N uptake and transfer in the AM symbiosis have been recently 437 

described (166). Extraradical hyphae preferentially take up NH4
+, which is energetically less 438 

costly than alternative N sources such as NO3
- and amino acids. López-Pedrosa et al. (169) 439 

demonstrated that GintAMT1, a gene encoding for a high-affinity NH4
+ transporter (AMT) in 440 

the AM fungus R. irregularis, is expressed in the extraradical mycelium. A second R. 441 

irregularis AMT, has been characterized (170). GintAMT1 and GintAMT2 are differentially 442 

expressed during the fungal life cycle and in response to N. In contrast to GintAMT1, 443 

GintAMT2 transcript levels are higher in the intraradical than extraradical hyphae. 444 

Inside the extraradical mycelium, N compounds are converted into amino acids, mainly 445 

arginine (171, 172). Arginine is then translocated to the intraradical hyphae within tubular 446 

vacuoles and then reconverted into inorganic N compounds by the sequential enzymatic 447 

activitiy of arginase and urease: NH4
+ is the most likely form of N transferred from fungus to 448 

plant (173, 174). It has been proposed that arginine binds to the negatively charged poly-P 449 

and both could move together within the hyphae (171, 175). The eventual transfer of NH4
+ 450 

from the apoplast to the plant cells probably relies on NH4
+ transporters sitting on the PAM 451 

(176, 177, 178). Remarkably, mutations in AM-specific Pi and NH4
+ transporters have an 452 

impact on intraradical fungal development and arbuscule lifespan (179, 180). It has been 453 
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speculated that these transporters not only deliver nutrients to the plant cells, but also trigger 454 

signaling processes that control arbuscule maintenance (180). 455 

Even though the flux of mineral nutrients within the periarbuscular space is assumed to be 456 

directed towards the plant cell, fungal Pi (181, 182) and NH4
+ transporters (170) are expressed 457 

in arbuscules. This finding suggests that the fungus may recover nutrients from the 458 

periarbuscular interface, as a mechanism to control the amount of nutrients delivered to the 459 

host. 460 

As well as taking up inorganic N, AM fungi also appear to obtain N from complex organic 461 

material (183, 184, 185, 186). Such a process probably involves, among other transporters, an 462 

amino acid permease (AAP). A fungal APP (GmosAAP1) has been characterized in F. 463 

mosseae. Since GmosAAP1 is expressed in the extraradical mycelium and upregulated upon 464 

exposure to organic nitrogen (187), this gene may play a role in the first steps of amino acid 465 

acquisition from the soil. Since short peptides can represent a greater proportion of N in soils 466 

than free amino acids, it is notable that AM fungi also possess functional dipeptide 467 

transporters such as RiPTR2 (188). In yeast complementation assays, RiPTR2 allowed the 468 

uptake of several dipeptides such as Ala-Leu, Ala-Tyr, Tyr-Ala. RiPTR2 is expressed in the 469 

extraradical hyphae, suggesting a role in the uptake of organic N from soil; however, a 470 

stronger expression is consistently observed in the intraradical phase (188). This finding 471 

points to a function for this transporter in the mobilization of organic N in mycorrhizal roots.  472 

Despite all the interesting findings, many critical questions about N transport through the fungal 473 

hyphae and across the mycorrhizal interface are still unanswered and should be addressed in 474 

future studies (166). 475 

 476 

Other mineral nutrients 477 
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In addition to the improvement of plant N and P nutrition, physiological studies also have 478 

highlighted a role for AM fungi in enhancing the absorption of other ions such as sulphur, 479 

potassium or different secondary macro- and microelements (1, 152). 480 

Sulphur (S) is a key macronutrient for plant growth, development and response to several 481 

stresses. Casieri et al. (189) observed an increased S content in mycorrhizal compared to non-482 

mycorrhizal plants and the up-regulation of two S transporters (MtSULTR1.1 and 483 

MtSULTR1.2) in Medicago truncatula. More recently, a Lotus japonicus transporter 484 

(LjSultr1;2), specifically involved in sulphate uptake from arbuscules, has been identified 485 

(190).  486 

Despite the importance of potassium (K+) for plant growth, the contribution of AM symbiosis 487 

to plant K+ nutrition has only occasionally been studied. It appears that plant K+ nutrition is 488 

improved by mycorrhization, especially under K+ limiting conditions. Moreover, this 489 

improvement could affect abiotic stress tolerance, P homeostasis maintenance, or exclusion of 490 

soil contaminants such as radiocaesium (191 and reference therein). The characterization of 491 

genes involved in the transport and metabolism of K+ and other mineral nutrients is required 492 

before a comprehensive map of the transportome of arbuscular mycorrhizae can be developed.  493 

 494 

Carbon  495 

In exchange for the improved access of plants to nutrients, AM fungi take advantage of 496 

carbon compounds of plant origin, consuming between 10 to 30% of the plant photosynthates 497 

(192). The transcriptional regulation of genes involved in sucrose transport has been reported 498 

in several plant-fungus combinations (152 and references therein), although more efforts are 499 

required in order to clarify which plant sucrose transporters and regulatory mechanisms are 500 

active in sucrose partitioning during mycorrhization. On the fungal side, only one high-501 

affinity monosaccharide transporter (MST), probably responsible for C uptake from the 502 
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interface compartment, has been described (193). The gene MST2 is highly expressed in 503 

arbuscules and intercellular hyphae. The high affinity and transport capability for xylose 504 

residues suggest that the use of derivatives from plant cell wall polymers could be an 505 

additional source of C. Interestingly, MST2 is also expressed in extraradical hyphae, which 506 

can take up glucose and xylose, suggesting a partial metabolic independence of AM fungi 507 

from host plants. 508 

For full mutualism to occur, a functional linkage between C and P exchange, under a fine 509 

control by both partners, is likely to be in place. Recent studies have demonstrated that a 510 

strategy of reciprocal rewards rules AM interactions: in the presence of multiple partners, the 511 

most beneficial one is rewarded with the majority of resources (14, 194). A similar 512 

mechanism also appears to regulate C and N exchange (175). These striking results support 513 

the idea that biological market dynamics ensure the stable regulation of resource exchange in 514 

the evolution of AM symbiosis. However, other evidence suggests that reciprocal regulation 515 

represents only a fraction of the forces determining resource exchange in the AM symbiosis 516 

and such reciprocity is only found in a subset of symbionts under specific conditions (195). 517 

 518 

The impact of AM symbiosis on above ground organs of the host plant  519 

The impact of the AM symbiosis goes beyond the root apparatus and involves distal parts of 520 

the plant through a fine shaping of the whole plant physiology. The first molecular evidence 521 

of a systemic effect was observed at the level of gene expression profiles: changes in 522 

transcript pattern, which were not a mere consequence of an improvement in P nutrition, were 523 

observed in shoots of M. truncatula upon root colonization by AM fungi (196). A 524 

transcriptional reprogramming was also reported for other plants such as tomato and maize 525 

(198, 199, 200). Gerlach and colleagues (200) also performed parallel ionomic and 526 

metabolomic analyses showing drastic changes in leaf elemental composition, a general 527 
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increase in C versus N metabolism and an accumulation of secondary metabolites. The AM 528 

symbiosis therefore influences the physiological status of plant leaves.  529 

The systemic effect of the AM symbiosis was recently shown to also extend to fruits with the 530 

potential to increase their nutritional values. Lycopene, carotenoid and volatile compound 531 

contents were significantly increased in fruits of mycorrhizal tomato plants compared to those 532 

of non-mycorrhizal plants (201, 202). An overall increase in fruit yield of mycorrhizal tomato 533 

plants, as well as qualitative and quantitative changes in amino acid profile accompanied 534 

phenological modifications as an accelerated flowering and fruiting time (203, 204). Not only 535 

vegetative but also reproductive traits are therefore under the influence of the AM symbiotic 536 

interaction. This situation has major ecological and agronomical implications. 537 

Such systemic effects have been proposed to depend, at least to some extent, on the action of 538 

phytohormones, which are also involved in AM establishment and functioning (205, 206, 539 

207). The levels of several hormones such as salycilic acid (SA), jasmonic acid (JA), abscisic 540 

acid (ABA), auxin and ethylene, are altered during AM colonization (208, 209, 210, 211). In 541 

addition, SA, ethylene and cytokinins are considered negative regulators of fungal penetration 542 

and root colonization (205). At later stages, arbuscule development is suppressed by 543 

biologically active gibberellins and promoted by DELLA gibberellin repressors (137, 205, 544 

212). By contrast, ABA and auxins positively regulate arbuscule development and 545 

functionality (213, 214), while contrasting effects have been described for jasmonates (215). 546 

The alteration of transcriptional profiles and hormonal balance in mycorrhizal plants may also 547 

have an impact on the plant response to abiotic and biotic stresses (6, 18, 216, 217, 218). AM 548 

symbiosis often reduces the damage caused by soil-borne pathogens, while the effect on pests 549 

and pathogens attacking from aboveground are more variable and are highly dependent on the 550 

combination of AM fungus, plant and attacker (18). The effect of AM at both local and 551 

systemic scale strongly suggests that the bioprotective role of mycorrhization is not simply 552 
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related to improved mineral nutrition, changes in the root apparatus and/or in the microbial 553 

rhizosphere communities, but rather to the activation of systemic defense responses (218, 219, 554 

220, 221, 222, 223). In support of this hypothesis, stress and defense-related genes are up-555 

regulated in mycorrhizal plants, which in turn show increased tolerance to foliar bacterial 556 

pathogens (196, 199).  557 

In this context, the combined action of plant hormones and gene regulation may contribute to 558 

the generation of a primed status in the plant, allowing a more efficient activation of defence 559 

mechanisms in the case of a subsequent attack (200) The identification of the full set of 560 

defence regulatory elements deployed by mycorrhizal plants and indirectly driven by AM 561 

fungi, will have important practical implications regarding the effectiveness of the AM 562 

symbiosis in biological control and integrated management of pests and diseases. 563 

 564 

The common mycorrhizal network  565 

AM fungi can also influence plant community dynamics and plant-plant interactions; this has 566 

major implications for natural and agricultural systems. A fascinating feature of AM fungi is 567 

the ability of their extraradical mycelium to inter-connect individual plants of the same or 568 

different species in ‘common mycorrhizal networks’ (CMNs; 224). CMNs are very common 569 

in terrestrial ecosystems, where they are thought to play key roles. Plants invest between 10 570 

and 30% of their photosynthetic products in their fungal symbionts, and receive in exchange 571 

up to 90% of their mineral requirements (4, 192). CMNs represent possible pathways for the 572 

movement of soil-derived nutrients and plant-derived carbon within the network and between 573 

CMN-interconnected plants. However, the knowledge on how C, N and P (as well as other 574 

nutrients) are exchanged and redistributed via the CMNs is still limited. The transfer of C via 575 

CMNs has been demonstrated from autotrophic to achlorophyllous (non-photosynthetic) 576 

plants, yet its transfer between autotrophic plants remains more controversial (225, 226, 227). 577 
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Similarly, the role of CMNs on mineral (e.g. N) transport between plants is not so clear (228). 578 

Moreover, the terms of trade, that is the relationship between the investment of a given plant 579 

into a CMN (amount of assimilated C), and the return of investment in terms of mineral 580 

nutrients provided by the CMN, are unresolved. Different co-cultivated plants benefit 581 

differently from their CMN, depending on the AM fungal species involved (229, 230, 231). 582 

To address such questions, Walder et al. (232) set up an elegant microcosm experiment with a 583 

pair of plants (flax and sorghum) interlinked by a CMN of either R. intraradices or F. 584 

mosseae. Fluxes of C, P and N were then monitored through C stable isotope tracing and 15N 585 

and 33P labeling. Depending on the fungal species, a strong asymmetry was observed in 586 

resource exchange: flax invested little C but obtained up to 94% of the N and P provided by 587 

the CMN. Furthermore, the overall biomass was larger when the plants were grown together 588 

than in monoculture. Overall, CMNs appear to contribute to the productivity increase that is 589 

often observed in intercropping compared with conventional monocropping systems (233). 590 

These findings clearly challenge the “biological market” model where the most beneficial 591 

partners are favoured (14) and suggest that resource exchange in the AM symbiosis is 592 

determined by more complex factors (195).  593 

Recently, a new role for CMNs was discovered. Plants can exploit CMNs to transfer defense 594 

signals to neighboring individuals. The first demonstration of interplant signalling via CMNs 595 

was in tomato plants attacked by the foliar necrotrophic fungus Alternaria solani: six defense-596 

related genes were upregulated in uninfected plants that were only connected to the infected 597 

individuals by CMN (234). The CMN-mediated transfer of defense signals was also observed 598 

between insect-attacked plants and healthy neighboring plants (235, 236). Altogether, CMNs 599 

seems to act as a belowground interplant defense communication system. Nevertheless, the 600 

nature and the mechanism of signal transfer through the fungal mycelium as well as the 601 

ubiquity and ecological impact of interplant signaling in nature remain to be fully understood 602 
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(237).  603 

  604 

CONCLUDING REMARKS 605 

Our understanding of the AM interaction at multiple levels, from cells to ecosystems, is 606 

increasingly benefiting from the developments and advances of investigation tools such as 607 

‘omics’ technologies, live cell imaging, stable isotope tracking and genetic manipulation. 608 

Already genome sequencing and analyses has accelerated our understanding of enigmatic 609 

aspects of the genetics and biology of AM fungi. It is likely that mycorrhizal research will 610 

more and more rely on multidisciplinary approaches and combinations of analytical 611 

techniques - in both controlled and natural conditions - to answer numerous questions 612 

concerning the evolution, ecology and functioning of this fascinating interaction. The holistic 613 

knowledge generated by such approaches will be crucial to boost the fruitful application of 614 

the AM symbiosis in sustainable agronomical practices to face current challenges in global 615 

food production and security. 616 
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Figure legends 1374 

Figure 1. Root colonization in ectomycorrhizal (blue) and arbuscular mycorrhizal (pink) 1375 

interactions. Ectomycorrhizal fungi envelop root tips with a thick mycelial mantle. From this 1376 

mantle, intercellular hyphae generate the so-called Hartig net around epidermal cells. In the 1377 

case of arbuscular mycorrhizae, the root tip is usually not colonized; hyphae developed from a 1378 

germinated spore produce a hyphopodium on the root epidermis. Intraradical colonization 1379 

proceeds both inter- and intracellularly, culminating with the development of highly branched 1380 

arbuscules inside inner cortical cells. Reprinted from Nature Communications (3) with 1381 

permission of the publisher. 1382 

 1383 

Figure 2. Fluorescence micrographs of different stages in the life cycle of the AM fungus 1384 

Gigaspora gigantea. A spore (S)  and the germination hyphae (GH) show strong cytoplasmic 1385 

autofluorescence (a). Hyphopodia (arrows) on the surface of a host root (b) give rise to single 1386 

infection units, with several arbuscules (A) in the inner root cortex (c). A high magnification 1387 

from a root longitudinal section is presented in d, showing two arbuscules in adjacent cortical 1388 

cells. Bars = 100 µm (a-c); 25 µm (d); fungal fluorescence was excited with 380 nm UV light. 1389 

 1390 

Figure 3. Root colonization by AM fungi. Spore germination generates a short explorative 1391 

mycelium. The perception of root exudates induces repeated hyphal branching, increasing the 1392 

probability of a direct contact between the symbionts. Concurrently, fungal exudates are also 1393 

released and activate the Common Symbiotic Signaling Pathway in root cells. Signal 1394 

transduction includes nuclear-associated calcium signals (spiking) and leads to the activation 1395 

of cellular and transcriptional responses (green cells and nuclei). Plant-fungus contact is 1396 

followed by the formation of an adhering hyphopodium on the root surface. The contacted 1397 

epidermal cell then assembles a prepenetration apparatus (PPA), a broad cytoplasmic 1398 
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aggregation (yellow) responsible for the exocytotic biogenesis of the symbiotic interface 1399 

compartment, where the intracellular hypha is hosted. Root colonization proceeds through the 1400 

epidermis into the inner cortical cells with a PPA-like process. Intercellular hyphae can also 1401 

develop along the root axis. Eventually, highly branched arbuscules develop in the lumen of 1402 

inner cortical cells, deploying an extensive surface for nutrient exchange. Reprinted from 1403 

Nature Communications (3) with permission of the publisher. 1404 
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