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Abstract The 2-constraint bin packing problem consists in packing a given
number of items, each one characterised by two different but not related di-
mensions, into the minimum number of bins in such a way to do not exceed the
capacity of the bins in either dimension. The development of the heuristics for
this problem is challenged by the need of a proper definition of the criterion for
evaluating the feasibility of the two capacity constraints on the two different
dimensions. In this paper, we propose a computational evaluation of several
criteria, and two simple but effective algorithms – a greedy and neighbour-
hood search algorithms – for solving the 2-constraint bin packing problem. An
extensive computational analysis supports our main claim.
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1 Introduction

The 2-Constraint Bin Packing Problem (2CBP) is a generalisation of the classic
bin packing problem in which each item i ∈ I is characterised by two attributes
or dimensions, usually called weight wi and length `i such that wi ≥ 0, `i ≥ 0,
and wi + `i > 0. The n = |I| items have to be packed into the minimum
number of bins in such a way that the sum of the wi and the sum of the `i do
not exceed the maximum weight W and the maximum length L of each bin,
respectively. A straightforward integer linear programming formulation is the
following:

min z =
∑

j∈J
yj (1a)

∑

j∈J
xij = 1, i ∈ I, (1b)

∑

i∈I
wixij ≤Wyj , j ∈ J, (1c)

∑

i∈I
`ixij ≤ Lyj , j ∈ J, (1d)

xij ∈ {0, 1}, yj ∈ {0, 1} i ∈ I, j ∈ J, (1e)

where: J is the set of possible bins indexed by j; yj = 1 if and only if the
bin j is used; xij = 1 if and only if the item i is packed into the bin j.
Constraints (1b) guarantee that all the items are assigned to a bin while con-
straints (1c) and (1d) ensure that such an assignment does not exceed the bin
capacities, when the bin is used. Finally, the objective function (1a) seeks to
minimise the number of bins used.

Apart from the applications in loading and scheduling contexts considered
by Spieksma (1994), the 2CBP has a new important application in the emerg-
ing field of the management of cloud computing platforms. Guazzone et al
(2013) used 2CBP to evaluate the cost of a cloud federation for the reduc-
tion of the energy bill. Such a cost is then the pay-off of a cooperative game
which models the capability of the different cloud providers to self-organise
into Nash-stable federations. To find the solution of the cooperative game,
the authors proposed a distributed algorithm which finds the equilibrium by
means of iterated executions. The 2CBP arises also as task placement problem
for packing processes onto a cluster of servers (Wilcox et al 2011) or for data
placement problem in the context of multimedia storage systems (Shachnai
and Tamir 2012).

The 2CBP is a particular case of the m-dimensional vector bin packing
problem proposed by Garey et al (1976), and is NP -hard in the strong sense
(see, e.g., Monaci and Toth (2006)). Spieksma (1994) proposed lower bounds,
constructive heuristics and a branch-and-bound algorithm for the problem
while Garey et al (1976) and Kellerer and Kotov (2003) presented some approx-
imation algorithms with guaranteed performance ratio. An extensive analysis
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of the 2CBP has been reported in Caprara and Toth (2001): the authors pro-
posed and compared several lower bounds, greedy procedures and constructive
heuristics, and exact algorithms based on branch-and-bound and branch-and-
price. Exploiting a set-covering formulation, Monaci and Toth (2006) proposed
a general heuristic algorithm for solving the 2CBP in which both the column-
generation and the column-optimisation phases are heuristically performed.
Recently, in their work on a single machine scheduling problem with two-
dimensional vector packing constraints, Billaut et al (2015) extended their
proposed algorithm also to solve 2CBP. The algorithm is a two-step approach
embedding a Recovering Beam Search (Della Croce et al 2004) algorithm,
which generates a good-quality initial solution in a short amount of time, and
a more time consuming matheuristic algorithm.

The main contributions of our paper to the 2CBP are the following: an ex-
tended analysis of different criteria for driving both constructive and improve-
ment algorithms, and two simple and effective algorithms, that is a greedy and
a neighbourhood search heuristic.

The paper is organised as follows. The extended analysis of different cri-
teria is reported in Section 2 in which the greedy solution framework is also
presented. The neighbourhood search heuristic is discussed in Section 3. An
extensive computational analysis is reported in Section 4. Conclusions are dis-
cussed in Section 5. In the remainder of the paper, the reader can refer to the
books of Martello and Toth (1990) and Kellerer et al (2004) for the traditional
bin packing algorithms, which are cited in the paper.

2 Selection Criteria and Greedy Solutions

When devising heuristics for the 2CBP, the first question is which selection
criterion should be employed. For instance, how should the item to be added
to or deleted from the current solution be selected in a greedy or constructive
algorithm? An analysis of the literature reveals that a comparison among
different criteria is not reported, to the best of our knowledge.

Garey et al (1976) proposed an adaptation of the First Fit Decreasing
(FFD) heuristic where the items are considered in decreasing order of max{wi,
`i}, and the item with highest weight is packed in the first bin with enough
residual capacity. The heuristic, called 2FFD in Caprara and Toth (2001), re-
quires O(n log n) time. Spieksma (1994) proposed the heuristics 2FFDµ, which
considers the items in decreasing order of µwi + `i values, where µ ≥ 0: each
iteration consists in an execution of the 2FFD to compute a solution which is
then examined to determine which bins are “well-filled” and to update µ; the
items belonging to the well-filled bins will be not considered in the following
iterations. The algorithm requires O(n2 log n) time. Caprara and Toth (2001)
introduced the surrogate cost si equal to

si = λwi + (1− λ)`i , i ∈ I , (2)
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associated to each item i ∈ I. Exploiting such a definition, the authors consid-
ered the heuristic 2FFDλ as an adaptation of the heuristic of Spieksma (1994).
In addition, they extended the classical Best Fit Decreasing (BFD) heuristic
– which distinguishes itself from the FFD by inserting the item with highest
weight into a bin in such a way that the residual capacity of the bin after the
insertion is minimal, possibly 0 – to the 2BFD, in the form of 2BFDµ and
2BFDλ.

In the following, we will consider a criterion as a combination of a way to
insert an item into a bin, and a function that returns a surrogate weight of
the item. Hereafter, we will consider normalised weights, that is w′

i = wi

W and

`′i = `i
L . Given an item i ∈ I, let us consider the following surrogate weight

functions, that is vmax
i = max{w′

i , `
′
i}, vmin

i = min{w′
i , `

′
i}, vsubi = |w′

i − `′i|,
and vavgi = 1

2w
′
i + 1

2`
′
i. Note that vavgi = si when λ = 1

2 . Let us also consider
the following traditional bin packing insertion rules, that is a First Fit (FF)
and a Best Fit (BF) policies.

Now let us consider the classic Bin Packing Greedy (BPG) framework, that
first selects the best item among those not already inserted, and then try to
insert it into one of the open bin(s) or into a new bin when the item cannot be
packed into the already open bins. Over the BPG framework, we can obtain 7
greedy algorithms combining an insertion rule and a surrogate weight function
properly. Table 1 summarises the proposed algorithms.

The 2FFDmin and 2FFDmax combine the FF rule with vmin
i and vmax

i ,
respectively. Combining the BF rule with vmax

i , vavgi and vsubi , we obtain re-
spectively the 2BFDmax, 2BFDavg and the 2BFDsub algorithms. Note that
2FFDmax corresponds to the greedy proposed by Garey et al (1976).

The last two algorithms are characterised by an alternative use of dif-
ferent surrogate weight functions. The rationale here is to mitigate the ef-
fect of the insertion of heavy items with the insertion of lighter ones. The
2FFDmaxmin combines the FF rule with vmax

i and vmin
i , alternatively. Finally,

the 2BF/FFDavgmin alternates both the surrogate weight function and the in-

sertion rule: after one iteration, which combines the BF rule with vavgi , follows
an iteration in which the FF rule is combined with vmin

i .

Table 1 Summary of the 7 greedy algorithms proposed.

primary alternate
algorithm insertion rule surrogate weight insertion rule surrogate weight

2FFDmin FF vmin
i – –

2FFDmax FF vmax
i – –

2BFDmax BF vmax
i – –

2BFDavg BF vavgi – –
2BFDsub BF vsubi – –

2FFDmaxmin FF vmax
i FF vmin

i
2BF/FFDavgmin BF vavgi FF vmin

i
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The quality of the solutions provided by applying the above greedy algo-
rithms (greedies hereafter) can depend on the number of open bins where it
is possible to insert the current item. To overcome this limitation for greed-
ies based on the BF insertion rule, we exploit the information provided by
a lower bounding procedure LB on the minimum number of bins required,
which returns the value zLB .

We thus define the 2BFD-LB framework as an adaptation of the 2BFD in
which the algorithm starts with zLB bins open instead of only 1. The 2BFD-
DYNLB algorithm extends the 2BFD-LB as follows: at the end of each iter-
ation, the value zLB is recomputed after the insertion of a new item. If the
new lower bound zLB is greater than the current number of open bins z, the
algorithm will open zLB − z new bins. Algorithm 1 depicts the pseudo-code
of the 2BFD-DYNLB greedy. The pseudo-code of the 2BFD-LB greedy can
be obtained from algorithm 1 dropping the lines 12–13. Hereafter, we denote
with Bj the set of items belonging to the bin j.

Algorithm 1: 2BFD-DYNLB
Data: I, sw surrogate weight function.

1 S = I;
2 zLB = computeBound(S);
3 z = zLB ; B1,...,z = ∅ ; /* open new z bins */

4 while S 6= ∅ do
5 i = selectItemFrom(S, sw);
6 j = findBinForItem(i, B1,...,z) ; /* returns 0 when i cannot be packed */

7 if j > 0 then
8 addItem(i, Bj) /* add i to Bj */

9 else
10 z = z + 1; Bz = ∅; addItem(i, Bz) /* add i to new bin */

11 S = S \ {i};
12 zLB = updateBound(S);
13 if zLB > z then Bz+1,...,zLB = ∅; z = zLB /* add new bins */;

Result: z, B1,...,z .

Several bounds have been proposed in literature (see, e.g., Alves et al
(2014)). In line with the simplicity of the methods used in the development
of our algorithms, we would like to adopt a simple lower bound procedure.
Following the quantitative analysis reported by Caprara and Toth (2001) re-
garding the quality of the lower bound and the running time required, we
adopted the simple LC lower bound, introduced by Spieksma (1994), defined
as

LC = max

{⌈∑

i∈I
w′
i

⌉
,

⌈∑

i∈I
`′i

⌉}
. (3)

The updated number of bins (see line 12) is given by the number of already
open bins plus the value of the lower bound computed as follows: computes
LC considering only the set of not inserted items and subtracting the corre-
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sponding residual normalised capacity of the already opened bins to each term
of (3).

3 Neighbourhood Search

To the best of our knowledge, 2REF by Caprara and Toth (2001) is the only
neighbourhood search proposed to solve the 2CBP. The authors used 2REF to
improve the solution computed by their greedies, reported in Section 2. The
exchange procedure works as follows: the item i with maximum si is selected
from the bin of minimum overall surrogate cost; such an item is moved to
another bin with minimum surrogate cost such that the item and all items
already belonging to the bin can be packed according to a BF policy.

In this Section, we provide a simple and effective neighbourhood search for
solving the 2CBP, which is characterised by a clever way to exploit the un-
feasibility of a solution, already tested in Aringhieri and Dell’Amico (2005a,b)
and Aringhieri et al (2016).

Two classical neighbourhoods have been employed by our algorithm. The
shift neighbourhood N1 moves one item from a bin to a different one while the
swap neighbourhood N2 exchanges two items belonging to two different bins.
The objective of such neighbourhoods is to maximise the residual capacity
of the emptiest bin according to the weights vavgi introduced in Section 2.
The shift and the swap require O(n) and O(n2) time for each neighbourhood
exploration.

In order to avoid looping over already visited solutions, our algorithm em-
ploys two tabu lists having fixed length δ1 and δ2 respectively, implemented
using tabu tags Gendreau et al (1994). The first tabu list forbids an item to be
part of a move for the next δ1 iterations while the second tabu list forbids an
item to be packed back to the starting bin for the next δ2 iterations. Clearly, it
is required that δ1 < δ2. The rationale here is to block the item i ∈ I in order
to allow the search to adjust the solution after moving it; then, we prevent
the item i from being packed back to its starting bin to allow the algorithm
to compose an exchange in two steps, when the exchange is not allowed to be
done directly. The effectiveness of this setting has already been discussed, for
instance, in Aringhieri (2009) and Aringhieri et al (2015).

In order to minimise the number of bins, our algorithm first detects the
emptiest bin, that is the bin whose surrogate weight is minimum, and then
it simply moves the items belonging to that bin into the remaining bins by
forcing the application of N1. Clearly, the resulting solution can be unfeasible
since one or more items can exceed the bin capacity. Feasibility can be regained
applying N2 in such a way to find a move that minimises the unfeasibility of
the solution measured as follows

V =
∑

j∈J
max



0,−W +

∑

i∈Bj

wi



+ max



0,−L+

∑

i∈Bj

`i



 . (4)
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We remark that each move having V = 0 individuates a swap that restores
the feasibility of the incumbent solution.

Each step of our algorithm is composed of two phases. In the first phase,
the algorithm finds the best feasible move (best improvement exploration of N1

and N2), not necessarily better than the incumbent solution, that maximises
the residual capacity of the emptiest bin. After M1 not improving moves, the
second phase starts by (i) emptying the emptiest bin forcing the application
of N1, then (ii) trying to restore the feasibility by applying N2 in such a
way to find a move that minimises V . The second phase will end as soon
as V = 0 or after M2 non improving moves. If it restores feasibility, the
algorithm comes back to the first phase, otherwise it applies a restart. We
remark that the restart works as a diversification strategy while the second
phase acts as an intensification strategy. The algorithm will finish after R
restarts. Algorithm 2 depicts the pseudo-code of our algorithm NSwR-2CBP.
The symbol Σ represents a solution to the problem, i.e. a set of bins Σ =
{B1, . . . , Bz}, while z(Σ) is the number of bins in solution Σ.

Algorithm 2: NSwR-2CBP
Data: I, sw surrogate weight function, R, M1, M2.

1 r = 0; solutionIsImproving = true;
2 while r < R do
3 Σ = computeStartingSolution(I, sw); ; // Σ = {B1, . . . , Bz}
4 repeat

/* phase 1: maximise the residual capacity of the emptiest bin */

5 m1 = 0; solutionIsImproving = false;
6 while m1 < M1 do
7 Σ′ = getBestSolFrom(N1, N2, sw);
8 if isBetter(Σ′) then Σ = Σ′; m1 = 0;
9 else m1 = m1 + 1;

/* phase 2: reducing the number of bins handling unfeasibility */

10 Σ′ = emptyTheEmptiestBin(Σ, sw);
11 V = computeUnfeasibility(Σ′);
12 if V < 0 then
13 m2 = 0;
14 while m2 < M2 and V > 0 do
15 Σ′′ = getBestSolFrom(N2, sw);
16 V = computeUnfeasibility(Σ′′);
17 if isBetter(Σ′′) then m2 = 0;
18 else m2 = m2 + 1;

19 if V = 0 then solutionIsImproving = true; Σ = Σ′′;

20 else solutionIsImproving = true; Σ = Σ′;
21 until solutionIsImproving;

/* Store the solution obtained if it improves the current best */

22 storeBestSolution(Σ, r);
23 r = r + 1;

Result: Σ =extractBestSolution().
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At each restart, the starting solution is computed with 2BFD-DYNLB,
which adopts the vavgi weights. In order to generate different starting solutions,
we propose a simple randomisation of the item insertion policy. Instead of
inserting the current item in the bin that minimises its residual capacity after
the item insertion, the algorithm randomly selects one of the possible bins
whose residual capacity after the insertion differs from the best one by a value
of at most ∆.

4 Computational Analysis

In this Section, we report our computational tests on the algorithms proposed
in Sections 2 and 3. Our codes have been implemented in C++ and ran on a
Linux 64 bit laptop with a 2.4 GHz Intel Core i3 processor and 4 GB of main
memory.

We performed our computational analysis on the instances whose charac-
teristics are reported in Table 2, which replicates those reported in Caprara
and Toth (2001). Such instances have been introduced by Spieksma (1994)
(instances belonging to the classes 1–3) and Caprara and Toth (2001) (in-
stances belonging to the classes 4–10). Instances are available online at http:
//or.dei.unibo.it/library. For a complete description of the instance char-
acteristics, we refer to that reported in Caprara and Toth (2001).

Table 2 Test instances: u.d.[a, b] means uniformly distributed in the interval [a, b].

class W L wi `i n

1 1000 1000 u.d.[100, 400] u.d.[100, 400] {25, 50, 100, 200}
2 1000 1000 u.d.[1, 1000] u.d.[1, 1000] {25, 50, 100, 200}
3 1000 1000 u.d.[200, 800] u.d.[200, 800] {25, 50, 100, 200}
4 1000 1000 u.d.[50, 200] u.d.[50, 200] {25, 50, 100, 200}
5 1000 1000 u.d.[25, 100] u.d.[25, 100] {25, 50, 100, 200}
6 150 150 u.d.[20, 100] u.d.[20, 100] {25, 50, 100, 200}
7 150 150 u.d.[20, 100] u.d.[wj − 10, wj + 10] {25, 50, 100, 200}
8 150 150 u.d.[20, 100] u.d.[110− wj, 130− wj] {25, 50, 100, 200}
9 see text see text u.d.[100, 400] u.d.[100, 400] {25, 50, 100, 200}
10 100 100 see text see text {24, 51, 99, 201}

Instances belonging to the class 9 are similar to those in class 1: actually,
items are generated following the same distribution, while the capacities are
computed as

W =

∑
i∈I wi
M

and

∑
i∈I `i
M

where M is computed as

M = max

{∑
i∈I wi

1000
,

∑
i∈I `i

1000

}
.
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Instances belonging to the class 10 are generated in such a way that each bin
can be filled up with just one triplet of items: considering the generic triplet
composed of three items 1, 2 and 3, the first two items are generated in such
a way that the weights w1 and `1,and w2 and `2 are randomly selected in
[25, 50], and then the third item is generated setting w3 = W − w1 − w2 and
`3 = L− `1− `2. Consequently, the number of items n should be a multiple of
3 as reported in the last column of the Table 2. We remark that the instances
belonging to the class 10 are introduced by Caprara and Toth (2001) to test
the goodness of their lower bounds.

Table 3 Comparing selection criteria (running time negligible).

2FFD 2BFD 2BF/FFD
class max min max min max avg sub avgmin

1 2 4 5 12 19 8 7
2 0 0 0 16 15 7 3
3 0 0 0 11 26 1 3
4 11 12 12 10 20 14
5 31 31 31 20 28 20 27
6 0 0 0 7 12 7 0
7 0 0 0 28 38 28 2
8 1 0 0 40 39 31 9
9 0 1 2 5 17 4 4
10 0 0 2 5 2 0 0

total 45 48 52 151 219 120 68

2BFD-LB 2BFD-DYNLB
class max avg sub max avg sub

1 19 31 30 24 35 34
2 11 33 13 15 34 13
3 12 36 14 14 33 14
4 29 36 36 30 37 37
5 31 38 37 31 38 36
6 7 25 9 7 36 9
7 9 40 4 13 39 5
8 34 32 40 40 40 40
9 11 31 24 20 33 23
10 1 34 4 0 29 3

total 164 336 211 194 354 214

Table 3 reports the results of the comparisons among the different criteria
discussed in Section 2, and the resulting 13 greedy algorithms. Each column
reports the number of best solutions computed by the corresponding algo-
rithm on the 10 different classes of instances, where the best value for each
instance is the best value computed by at least one of the 13 algorithms re-
ported. The reported results show the superiority of the avg criteria combined
with the BF insertion rule: actually, considering the 7 algorithms summarised
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in Table 1, 2BFDavg computes 219 bests, 68 more than the second ranked
2BFDmax. Such a behaviour is confirmed also in the case of the 2BFD-LBavg
and 2BFD-DYNLBavg algorithms. Table 3 demonstrates also the capability of
the two algorithmic frameworks – 2BFD-LB and 2BFD-DYNLB – to improve
the quality of the greedy solutions: 2BFD-DYNLBavg is able to compute 354
best solutions out of 400, and to improve the number of the best solutions
computed by 2BFDavg and 2BFD-LBavg of 117 and 18, respectively.

To evaluate our algorithms and to compare them with those in the litera-
ture, we use the number of optimal solutions computed, as already done in the
2CBP literature. With regards to our algorithms, optimality is checked com-
paring the solution value with the lower bound reported in Monaci and Toth
(2006) (only for instances belonging to classes 1, 6, 7, 9, 10), and available
online at http://or.dei.unibo.it/library, or with the optimal solutions
computed by Cplex within a time limit of 1 hour, when available. For the
competitor algorithms, we consider the number of optimal solutions reported
in the corresponding paper.

Table 4 Comparing greedies (running time negligible).

2BFD-DYNLB GREEDY
class avg all 2FFDµ GREEDY + 2REF

1 14 14 6 10 12
2 32 38 39 39 40
3 30 37 40 40 40
4 20 23 19 22 25
5 37 39 32 36 36
6 16 20 10 13 17
7 22 23 19 19 17
8 40 40 40 40 40
9 11 13 10 17 21
10 0 0 0 0 0

total 222 247 215 236 248

Table 4 reports the results of the comparison among 2BFD-DYNLBavg
and other algorithms illustrated in Section 2 whose results are extracted from
those reported in Caprara and Toth (2001): the greedy based constructive
heuristic 2FFDµ is that proposed by Spieksma (1994); GREEDY provides the
best results among six greedy algorithms while GREEDY+2REF improves
such solutions by applying the 2REF local search. Finally, column all reports
the best results for all the three 2BFD-DYNLB algorithms. The results in
Table 4 show that 2BFD-DYNLBavg is slightly better than 2FFDµ, especially
on the instances in class 1. Further, we remark that GREEDY has comparable
results with all the 2BFD-DYNLB only by adding the local search 2REF.
The results prove that our simple 2BFD-DYNLBavg is competitive with more
sophisticated constructive approaches.
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Finally, we compare the results of our NSwR-2CBP algorithm with the
Set-Covering based Heuristic (SCH) proposed by Monaci and Toth (2006),
and the Recovering Beam Search with MatHeuristic (RBS-MH) by Billaut
et al (2015). To the best of our knowledge, these algorithms are the best
available in the literature. The parameter setting of NSwR-2CBP have been
obtained through a preliminary computational analysis performed on a limited
number of instances (classes 1 and 9) in order to maximise the number of
optimal solutions computed. The values of the parameters R, M1, M2, δ1
and δ2 belong to the sets {1000, 1500, 2000, 2500}, {20, 30, 40}, {20, 30, 40},
{7, 9, 11} and {15, 17, 19, 21}, respectively. We remark that the overall results
showed little differences when varying the M1, M2, δ1 and δ2 parameters. On
the contrary, the number of restart R can influence the final results. Finally,
we selected the following setting: R = 2000, M1 = M2 = 30, δ1 = 7 and
δ2 = 19.

Table 5 Comparing competitors.

NSwR-2CBP SCH (30s) SCH (100s) RBS-MH
class n # opt time # opt time # opt time # opt time

1
50 10 – 10 – 10 – 10 –
100 7 8.66 5 10.10 5 32.05 7 45.61
200 5 46.58 1 29.63 3 93.69 8 608.87
total 32 26 28 35

6
50 9 – 9 – 9 – 9 –
100 5 10.28 5 15.63 5 50.73 5 153.13
200 1 63.18 0 26.01 2 61.49 0 743.79
total 25 24 26 24

7
50 9 – 9 – 9 – 8 –
100 3 10.55 3 11.67 3 37.07 3 0.32
200 7 64.80 7 19.98 7 59.93 6 428.99
total 29 29 29 27

9
50 9 – 9 – 9 – 9 –
100 0 8.49 0 19.40 0 52.45 0 1.59
200 0 46.27 0 29.05 0 73.17 0 23.28
total 19 19 19 19

10
51 9 – 10 – 10 – 0 –
99 0 9.36 8 15.26 9 50.38 0 7.97
201 0 60.61 0 28.58 2 97.49 0 97.92
total 19 28 31 10

total 124 126 133 115
total (no 10) 105 98 102 105

Each column of Table 5 reports the number of optimal solutions computed
(# opt) and the average running times (time). We report the running time
only for the largest instances since they are the most significant. We report
two columns for SCH since the heuristic proposed by Monaci and Toth (2006)
showed quite different results changing the algorithm time limit from 30 sec-
onds to 100. Finally, we report the results only for the instances belonging to
the classes 1, 6, 7, 9 and 10 since they result being the most difficult in the
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previous studies, and therefore are the only available. Note that the results for
the smallest instances, that is those with n = 25 (24 for class 10) are omitted
since they are always equal to the optimal values and, by consequence, # opt
is always equal to 10.

The results summarised in the second last row of Table 5 showed that
our simple algorithm is competitive with its more sophisticated competitors:
NSwR-2CBP computes a larger number of optimal solutions than RBS-MH,
almost the same amount as those computed by SCH within a time limit of 30
seconds, and less than SCH within a time limit of 100 seconds. In terms of
number of optimal solutions, the main difference between NSwR-2CBP and
SCH within a time limit of 100 seconds are in the results obtained for class 10:
actually SCH computes 12 optimal solutions more than NSwR-2CBP. We re-
call that such instances are generated in such a way that it is easier to compute
the lower bound (equal to n

3 ) and, by construction, only one optimal solution
exists. By consequence, such instances are really hard for neighbourhood based
algorithm, as also proved by the standard RBS and RBS-MH proposed by Bil-
laut et al (2015). As a matter of fact, if we do not consider the instances in
class 10 (last row of Table 5), we observe that NSwR-2CBP and RBS-MH are
the algorithms which compute the largest number of optimal solutions.

Running times are normalised with respect to the slowest CPU, which is
the Digital Alpha 533 MHz used by Caprara and Toth (2001), while for Billaut
et al (2015) is 1.7GhZ. This means that the real running time of NSwR-2CBP
and RBS-MH has been multiplied respectively for 4.503 and 3.189 in order
to make them comparable with those of SCH. Running times for RBS-MH
are the time-to-target time, while the authors reported that “the CPU time
required by RBS-MH is on the average well below 400 seconds”, which means
less than 1300 normalised seconds. NSwR-2CBP seems competitive also in
terms of running time with respect to its competitors. Note that the reported
results of NSwR-2CBP are obtained setting 2000 restarts in order to improve
the results for class 10, while the results for instances belonging to the other
classes can be reached with a smaller number of restarts (about 60%, i.e. 1200
restarts).

5 Conclusions

The development of the heuristics for the 2CBP problem is challenged by the
need of a proper definition of the criterion for evaluating the feasibility of the
two capacity constraints on the two different dimensions.

We proposed an extended analysis of different criteria for driving both
constructive and improvement algorithms. Such an analysis suggested the use
of the surrogate weight based on the average of the weights w and `. Such a
criterion has been then used to develop two simple and effective algorithms
for solving the 2CBP problem.

Given a lower bound procedure returning the value zLB , the first algorithm
2BFD-DYNLB is an extension of the classical BFD greedy for the bin packing
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problem, in which the algorithm starts with zLB bins open instead of only 1.
Further, at the end of each iteration, the value zLB is recomputed and, if the
new lower bound zLB is greater than the current number of open bins z, the
algorithm will open zLB − z new bins.

The second algorithm NSwR-2CBP is a simple multi start neighbourhood
search whose main characteristics is to exploit the unfeasibility of a solution
in a clever way. The algorithm tries to release a bin in order to minimise its
surrogate weight by swapping pairs of items between bins, and then it spreads
its items on the other bins leading to a possible unfeasible solution. In that
case, the above swapping is exploited to regain the feasibility.

The computational analysis on the literature benchmark sets (for a to-
tal number of 400 instances) proves the efficiency and the effectiveness of
our simple algorithms when compared with the corresponding best algorithms
available in literature.

The 2CBP shares its basic features with the problems addressed in Ar-
inghieri and Dell’Amico (2005a,b) and Aringhieri et al (2016), that is a quite
flat objective function opposed to some capacity constraints. For these prob-
lems, we remark that the idea of exploiting the unfeasibility forcing the reduc-
tion of the objective function by spreading the elements of a solution repre-
sents the key component of the corresponding solution algorithms. Therefore,
it seems promising to adopt such an approach as a general solution approach
for this class of problems. The validation of such a claim can represent an
interesting future research direction.

Acknowledgements The authors would thank the students Gianluca Bortignon and Fed-
erico Iannicelli for running part of the computational tests.

References

Alves C, de Carvalho JV, Clautiaux F, Rietz J (2014) Multidimensional dual-feasible func-
tions and fast lower bounds for the vector packing problem. European Journal of Oper-
ational Research 233(1):43 – 63

Aringhieri R (2009) Composing medical crews with equity and efficiency. Central European
Journal of Operations Research 17(3):343–357

Aringhieri R, Dell’Amico M (2005a) Comparing metaheuristic algorithms for sonet network
design problems. Journal of Heuristics 11(1):35–57

Aringhieri R, Dell’Amico M (2005b) Solution of the SONET Ring Assignment Problem
with capacity constraints. In: Rego C, Alidaee B (eds) Metaheuristic Optimization via
Memory and Evolution: Tabu Search and Scatter Search, Kluwer Academic Publisher,
pp 93–116
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