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MINI-ABSTRACT (50 words) 

This study evaluated the role of host-defence/antimicrobial peptides in trauma-associated 

hemorrhagic shock (HS). Trauma-associated HS resulted in the release of the host defence 

peptide LL-37.  The synthetic host defence peptide Pep19-4LF attenuated the HS-associated 

organ injury/dysfunction in the rat by activating pro-survival pathways and by inhibiting local and 

systemic inflammation. 
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ABSTRACT 

Objective: To evaluate (i) levels of the host-defence/antimicrobial peptide LL-37 in patients with 

trauma and hemorrhagic shock (HS) and (ii) the effects of a synthetic host-defence peptide on 

multiple organ failure (MOF) associated with HS in rats.  

 
Background: There are no specific interventions, which reduce MOF in HS. Injury and infection 

triggers the release of host-defence/antimicrobial peptides, the function of which in HS is unknown.  

 
Methods: LL-37 was measured in plasma from 48 trauma/HS patients admitted to an urban major 

trauma center. Rats were submitted to HS followed by resuscitation and treated during 

resuscitation with the synthetic host-defence/antimicrobial peptide Pep19-4LF (66 or 333 μg/kg x 

h) or vehicle.   

 
Results:  

Plasma levels of LL-37 were elevated in patients with trauma/HS. In anesthetized rats subjected 

to HS and resuscitation, Pep19-4LF attenuated the HS-induced kidney dysfunction, liver injury 

and lung inflammation. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (i) protein 

kinase B (Akt) and (ii) endothelial nitric oxide synthase (eNOS) and, hence, activated the 

Akt/eNOS survival pathway. Pep19-4LF also attenuated the HS-induced (i) translocation of p65 

from cytosol to nucleus, (ii) phosphorylation of IKK on Ser176/180 and (iii) phosphorylation of IκBα 

on Ser32/36 resulting in inhibition of NF-κB and formation of NF-κB-dependent pro-inflammatory 

cytokines. Pep19-4LF prevented the release of TNFα caused by heparan sulfate in human 

mononuclear cells by binding to this DAMP. 

 



3 

 

Conclusions: Trauma-associated HS results in release of the host-defence/antimicrobial peptide 

LL-37. The synthetic host-defence/antimicrobial peptide Pep19-4LF attenuates the organ 

injury/dysfunction associated with HS by activating pro-survival and anti-inflammatory pathways. 

Keywords 

Antimicrobial peptides, hemorrhagic shock, multiple organ failure, NF-κB pathway, LL-37 
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INTRODUCTION 

Severe injuries account for 9 % of the deaths worldwide.1 Although guidelines for the early 

management of hemorrhagic shock (HS; including resuscitation and organ support strategies) 

have decreased the rates of immediate (on scene/within 60min) and early (emergency department 

and operating room/within 1-4h) deaths,2 post-injury multiple organ failure (MOF) is still associated 

with significant morbidity and mortality2. Therapeutic agents that reduce the incidence and severity 

of MOF following HS could, therefore, have a major global impact on patient outcomes and 

resource utilization. The MOF after HS is associated with excessive systemic inflammation, 

secondary to the release of damage-associated molecular patterns (DAMPs) from extensive 

tissue damage and ischemia reperfusion injury.3 To date, there are no specific pharmacological 

interventions used clinically to prevent MOF following/associated with HS. 

 
Host-defence/antimicrobial peptides are known for over 100 years and form part of the innate 

immune system of insects, plants, and vertebrates by defending the host against invading 

microorganisms.4,5,6 Although these peptides differ in sequence and structure, they are 

predominantly short (10 – 50 amino acids) amphipathic molecules.6 The most extensively studied 

host-defence/antimicrobial peptide in humans is the cathelicidin-derived peptide LL-37.6 LL-37 

exhibits strong bactericidal properties, but at the same time neutralizes pathogenic factors 

released during injury/infection including lipopolysaccharide (LPS) or lipoprotein (LP).7 In addition 

to the interaction with PAMPs (pathogen associated molecular patterns), LL-37 modulates the 

inflammatory response induced by DAMPs and, hence, modulates many physiological host 

functions including inflammation, angiogenesis and wound healing.6,8 Thus, host-

defence/antimicrobial peptides are attractive candidates for the development of novel therapeutic 

interventions in infectious and inflammatory diseases.6 The systemic application of LL-37 as a 

potential drug in man, however, is limited by its toxicity.9,10 The challenge is to develop synthetic 
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host-defence/antimicrobial peptides (mimetics) that have little or no adverse effects. Peptide 19-

4LF (Pep19-4LF) is one of several new synthetic host-defence/antimicrobial peptides, which 

belongs to the class of synthetic anti-lipopolysaccharide peptides (SALP = synthetic anti-LPS 

peptides).11,12 However, in addition to binding LPS, these peptides exhibit potent anti-inflammatory 

effects in experimental sepsis by interacting with a variety of PAMPs and DAMPs.13,12,14,15 

 
The role of host-defence/antimicrobial peptides in HS is unknown. Therefore, the aims of the 

present study were to (i) investigate the plasma levels of LL-37 in patients with trauma with or 

without HS and (ii) to explore the effects of Pep19-4LF on the organ injury/dysfunction associated 

with HS. We report here for the first time, that (i) the plasma levels of LL-37 are elevated in patients 

with trauma/HS (when compared with trauma without HS) and that (ii) Pep19-4LF attenuates the 

HS-associated organ injury/dysfunction. Mechanistically, Pep19-4LF has pro-survival and anti-

inflammatory properties, as it activates the Akt/eNOS cell survival pathways and attenuates the 

activation of the nuclear factor kappa B (NF-κB) pathway in the rat in vivo. Moreover, Pep19-4LF 

exhibits its anti-inflammatory activity, at least in part, by directly interacting/binding to the DAMP 

heparan sulfate in human mononuclear cells (MNCs) in vitro. These data suggest that Pep19-4LF 

may prevent the MOF in patients caused by trauma-associated HS, which, in turn, may improve 

outcome in these patients.  

 

METHODS 

Study population and human outcome measurements 

Details relating to the study population and human outcome measurements are provided in the 

supplemental. 

Use of human subjects-ethic statement 



6 

 

All patients or their legal representative gave written informed consent. Before inclusion of the first 

individual, the local National Health Service Research Ethics Committee (REC: 07/Q0603/29) 

approved this study, which was performed in accordance with the Declaration of Helsinki in its 

latest form. The use of plasma from healthy volunteers was approved by the ethics committee of 

the University Hospital Aachen (EC Nr. 206_09, 5 January 2010). 

Use of experimental animals-ethic statement 

The experimental protocols used in this study have been approved by the Animal Welfare Ethics 

Review Board (AWERB) of Queen Mary University of London and the study was performed under 

license issued by home office (Procedure Project License; PPL: 70/7348). Animal care was in 

accordance with the Home Office guidance on Operation of Animals (Scientific Procedures Act 

1986) published by Her Majesty’s Stationery Office and the Guide for the Care and Use of 

Laboratory Animals of the National Research Council. 

Hemorrhagic shock and quantification of organ injury and dysfunction 

This study was carried out on 46 male Wistar rats (Charles River Ltd, Margate, UK) weighing 230-

350 g receiving a standard diet and water ad libitum. Hemorrhagic shock and quantification of 

organ injury and dysfunction were performed as described previously in this journal (supplemental 

Fig. 1).16 

Experimental design 

Rats were randomly allocated to the following groups: Sham + vehicle (n = 11), sham + Pep4LF 

(n = 6), HS + vehicle (n = 12), HS + Pep4LF-LD (n = 4), HS + Pep4LF-HD (n = 8). Rats were 

administered vehicle (saline 1.5 ml/kg/h) or Pep19-4LF (low dose (LD) = 66 μg/kg x h; high dose 

(HD) = 333 μg/kg x h) continuously for 4 hours after resuscitation using infusion pump for rodents 
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(PHD2000, 70-2000; Harvard apparatus Massachusetts, U.S). The doses of Pep19-4LF used in 

this study were based on efficacy seen in previous in vitro and in vivo studies.13,12,14,15 

Immunoblot analysis  

Western blot was performed as previously described.17 

Cytokine analysis 

Concentrations of serum cytokines were determined using a commercially available cytometric 

bead array (BD Biosciences, San Jose, CA or BioLegend, San Diego, CA) following the 

manufacturer/product specific protocol. 

Immunohistochemistry 

Lung samples were obtained at the end of the experiment and fixed in formalin for 48 h and 

immunohistochemistry was performed as described previously.17  

Determination of Myeloperoxidase Activity  

Myeloperoxidase (MPO) activity was determined as an indicator of neutrophil accumulation into 

the lungs and performed as described previously.16 

Human mononuclear cells study  

Mononuclear cells (MNC) were isolated from heparinized blood samples obtained from healthy 

donors as described previously.11  

Isothermal titration calorimetry  
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Microcalorimetric experiments of peptide binding to heparan sulfate were performed using 

isothermal titration calorimeter as described before.15 

Statistics 

Unless otherwise stated, the data is expressed as median and standard error or described in box 

and whisker format showing medians, interquartile ranges and full ranges of n observations, where 

n represents the number of animals/experiments studied. Statistical analysis was carried out using 

Prism 6 for Mac OS X (GrapPad, San Diego, CA, USA). The distribution of the data was assessed 

using D'Agostino's K-squared test or Kolmogorov–Smirnov test. Unless otherwise stated, normal 

distributed data were assessed by 1 or 2-way analysis of variance followed by Bonferroni post hoc 

test. Unless otherwise stated, not normally distributed data were analyzed with a non-parametric 

test (Kruskal-Wallis followed by Dunn test). A p < 0.05 was considered to be significant. 
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RESULTS  

Plasma concentrations of the host defence AMP cathelicidin LL-37 

Figure 1 shows plasma concentrations of LL-37 in healthy volunteers and trauma patients 

recruited from an urban major trauma center. The median age of the healthy volunteers were 47 

(32-53) years with 80% male. Further demographic and clinical parameters of trauma patients are 

described in table 1. Admission blood samples of trauma patients were obtained within 2 h of injury 

(Table 1). When compared to healthy volunteers, trauma patients (n = 24) and trauma hemorrhage 

patients (n = 23) (defined as patients who received greater than or equal to two units of packed 

red blood cells on admission) showed significantly higher plasma levels of LL-37. When compared 

to trauma patients, the plasma levels of LL-37 were significantly higher in trauma hemorrhage 

patients (Fig. 1). 

Pep19-4LF attenuates the decline in blood pressure during resuscitation after HS 

When compared to sham-operated rats, HS-rats treated with vehicle showed a significant decline 

in mean arterial pressure (MAP) after resuscitation (Fig.2). Intravenous administration of high-

dose Pep19-4LF (333 μg/kg x h, in 0.9% saline) significantly attenuated the decline in MAP 

observed during the resuscitation period in HS-rats, while the low dose of Pep19-4LF (66 μg/kg x 

h, in 0.9% saline) had no significant effect. In contrast, the high dose of Pep19-4LF had no effect 

of MAP in sham-operated rats (Fig. 2). 

Pep19-4LF attenuates the organ injury and dysfunction caused by HS 

When compared to sham-operated rats, rats subjected to HS treated with vehicle exhibited a renal 

dysfunction, as indicated by significant increases in serum urea (Fig. 3A) and creatinine (Fig. 3B), 

and a significant decline in creatinine clearance (Fig. 3C). HS-rats also exhibited significant 



10 

 

increases in alanine aminotransferase, aspartate aminotransferase, amylase and lipase, 

indicating the development of liver and pancreatic injury, respectively (Fig. 3E-G). In addition, HS-

rats exhibited a significant increase in serum lactate, indicating global ischemia (Fig. 3D). When 

compared to vehicle-treated rats, intravenous administration of high-dose Pep19-4LF significantly 

attenuated the organ injury and dysfunction as well as the rise in lactate caused by HS (Fig. 3A-

H). Although the lower dose of Pep19-4LF reduced pancreatic injury, it had no effect on any of the 

other parameters measured (Fig. 3A-H). 

Pep19-4LF attenuates lung inflammation caused by HS 

Having shown that Pep-4LF-treatment attenuates kidney dysfunction and liver injury, we next 

investigated the effects of Pep-4LF on lung inflammation measured as recruitment of 

macrophages (CD68-positive cells) and neutrophil activation (MPO activity) into the lung. When 

compared to sham-operated rats, we found a significant increase in CD68-positive cells and MPO-

activity in lungs of HS-rats treated with vehicle (Fig. 4A-C). Treatment of HS-rats with Pep19-4LF 

significantly attenuated the recruitment of macrophages and neutrophil activation caused by HS 

(Fig. 4A-C). 

Pep19-4LF attenuates the increase in interleukin (IL)-6 and monocyte chemotactic protein-

1 (MCP-1) caused by HS 

Having shown that Pep-4LF attenuates the activation of NF-κB in kidney and liver, we next 

investigated the effects of Pep-4LF on the formation of pro- and anti-inflammatory cytokines 

caused by HS. When compared to sham-operated rats, HS-rats treated with vehicle developed a 

significant increase in serum IL-6 and MCP-1. In HS-rats, we also observed increases in serum 

IL-10 and C-X-C motif ligand 1 (CXCL1), but these effects were not significant (Fig. 5A,B). 
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Treatment of HS-rats with Pep19-4LF abolished the increases in IL-6, MCP-1, IL-10, and CXCL1 

caused by HS (Fig. 5A-D). 

Pep19-4LF attenuates the activation of NF-κB (liver and kidney) caused by HS 

Having shown that Pep19-4LF significantly attenuates kidney dysfunction and liver injury caused 

by HS, we next explored the potential mechanism(s) underlying the observed beneficial effects of 

high dose of Pep19-4LF. When compared to sham-operated rats, HS-rats treated with vehicle 

exhibited a significant increase in the nuclear translocation of the p65 subunit of NF-κB in kidney 

and liver (Fig. 6A,E) as well as a significantly increased degree of phosphophorylation of IκB 

kinase α and β (IKKα/β) on Ser176/180 and of IκΒ〈 on Ser32/36 in both kidney and liver (Fig. 6B,C,F,G). 

The intravenous administration of high-dose Pep19-4LF attenuated the nuclear translocation of 

the NF-κB subunit p65, the phosphorylation of IKKα/β on Ser176/180, and of IκBα on Ser32/36 in both 

liver and kidney (Fig. 6B,C,F,G). 

Pep19-4LF increases activation of Akt and eNOS in kidney and liver after HS 

As activation of the Akt-survival pathway is known to reduce HS-induced organ dysfunction16,17 we 

next investigated whether the high dose of Pep19-4LF activates Akt in kidney and liver of HS-rats 

(Fig. 6D,I). Moreover, we investigated the phosphorylation of eNOS in kidney and liver (Fig. 6E,J). 

When compared to sham-operated rats, HS-rats treated with vehicle showed a significant 

reduction in the phosphorylation of Akt on Ser473 and eNOS on Ser113 in both kidney and liver (Fig. 

6D,E,I,J). In contrast, treatment of HS-rats with Pep19-4LF attenuated the decline in Akt 

phosphorylation on Ser473 and of eNOS phosphorylation on Ser113 in kidney and liver, when 

compared to HS rats treated with vehicle (Fig. 6D,E,I,J). 
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Pep19-4LF inhibits the heparan sulfate-induced TNFα secretion in human peripheral blood 

mononuclear cells 

As discussed above, traumatic injury and trauma-associated HS result in release a variety of 

endogenous TLR ligands, including heparan sulfate 18. We report here that heparan sulfate 

stimulates the release of TNFα from human MNCs, and that this effect is reduced/abolished in a 

concentration-dependent manner by Pep19-4LF (Fig. 7A). 

Pep19-4LF exhibits a strong binding to heparan sulfate 

To gain a better understanding of the mechanism(s) by which Pep19-4LF reduces the formation 

of TNFα in human MNC challenged with heparan sulfate, we investigated the potential binding of 

Pep19-4LF to heparan sulfate by isothermal titration calorimetry. There was a strong exothermic 

reaction between the two reactants, running into a saturation of binding at higher mass ratios (Fig. 

7B). This high affinity binding was characteristic for a chemical complex reaction, and may explain 

that the binding epitopes of heparan sulfate to TLR4 are hidden by the peptide. 

Pep19-4LF does not show cytotoxic activity 

Finally, possible cytotoxic effects of Pep19-4LF were studied in the hemolysis assay with RBC as 

sensitive target cells for cytotoxicity. Pep19-4LF caused only a very small degree of hemolysis in 

concentrations of up to 100 μg/ml (Fig. 7C). 
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DISCUSSION 

The main findings of this study are that (i) plasma levels of the host-defence/antimicrobial peptide 

LL-37 are elevated in patients with trauma-associated HS, and that (ii) the synthetic host-

defence/antimicrobial peptide Pep19-4LF attenuates the renal dysfunction and liver injury caused 

by HS in the rat. Pep19-4LF also reduced both the local (lung) and the systemic (rise in plasma 

IL-6 and MCP1) inflammation caused by HS. Pep19-4LF activated the Akt/eNOS cell survival 

pathway and attenuated the activation of NF-κB in kidney/liver of HS-rats. Moreover, Pep4LF 

attenuated the release of TNFα caused by the DAMP heparan sulfate in human peripheral blood 

MNCs.  

 
Trauma-hemorrhage is associated with the release of DAMPs (from the host) and PAMPs (from 

bacteria after bacterial translocation from the gut), which drive inflammation and contribute to 

tissue/organ-damage. It is unclear whether trauma-hemorrhage also triggers the release of host-

defence/antimicrobial peptides, but the serum of trauma patients does have an enhanced 

antimicrobial capacity, which limits the growths and ultimately kills Gram-negative and Gram-

positive bacteria.19 We report here for the first time that trauma leads (within 2 h) to a significant 

increase in the plasma levels of the host-defence/antimicrobial peptide LL-37. Most notably, the 

highest levels of LL-37 were found in patients with trauma complicated by severe hemorrhage 

(Fig.1). LL-37 is primarily released by T cells and natural killer cells20. Notably, natural killer cells 

are elevated and activated within 2 h of injury in trauma patients who later develop MOF, 

suggesting that these cells contribute to the rapid rise in plasma LL-37.21 

 
Having found that trauma-HS increases plasma LL-37, we next performed a reverse translational 

approach and investigated whether pharmacological intervention with a synthetic host-

defence/antimicrobial peptides attenuates the MOF associated with HS in rats. As the therapeutic 
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use of LL37 in man is limited by its systemic toxicity in therapeutic doses,9,10 we synthesized 

Pep19-4LF, which does not cause any significant adverse effects (hemolysis) in the doses used 

(Fig. 7C).  

 

The administration of Pep19-4LF significantly attenuated the fall in blood pressure (Fig. 2) as well 

as the rise in serum lactate caused by HS (Fig. 3D). Thus, Pep19-4LF reduces the delayed 

vascular decompensation and organ/tissue ischemia probably due to increased microvascular 

perfusion secondary to increased perfusion pressure. Moreover, Pep19-4LF significantly 

attenuated the liver injury, renal dysfunction, pancreatic injury and lung inflammation caused by 

HS (Fig. 3 A, B, E, F, G, H). As neutrophils and macrophages play an important role in HS-

associated lung inflammation, we evaluated the degree of macrophage infiltration (measured as 

number of CD68-positive cells) and the degree of neutrophil activation (measured as MPO-

activity) in the lung. HS resulted in a significant increase in the number of macrophages in the lung 

as well as a significant increase in MPO-activity, both of which was attenuated by the treatment of 

HS-rats with Pep19-4LF (Fig. 4). Neutrophils and macrophages release (via degranulation) pro-

inflammatory cytokines, such as IL-6 or MCP-1 which importantly contribute to acute lung 

injury/inflammation.22 The pro-inflammatory cytokines IL-6 and MCP-1 are important mediators of 

alterations associated with organ dysfunction and even lethality following HS and 

resuscitation.23,24,25,26 For instance, a monoclonal antibody against IL-6 reduces the organ 

dysfunction and inflammation caused by HS.42 Indeed, we report here that Pep19-4LF  also 

attenuates the rise in serum IL-6 and MCP-1 caused by HS in the rat (Fig. 5).  

 
What, then, are the mechanisms by which Pep19-4LF attenuates HS-associated organ 

injury/dysfunction? There is good evidence that PAMPs and DAMPs released during trauma-HS 

interact with Toll-like receptors (i.e. TLR2 and TLR4) resulting in activation of NF-κB.27,28,29 Indeed, 
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we observed a significant increase in (a) the nuclear translocation of NF-κB subunit p65 (Fig. 6 A, 

E) and (b) the degree of phosphorylation of IKKα/β on Ser176/180 (Fig. 6B,F) and of IκBα on Ser32/36 

(Fig. 6C,G) in liver/kidneys of rats with HS. This activation of NF-κB in key target organs was 

attenuated in HS-rats treated with Pep19-4LF during resuscitation. IκBα masks the nuclear 

localization signals of NF-κB proteins and sequesters NF-κB as an inactive complex in the 

cytoplasm, thereby inhibiting NF-κB.30,31 Signal-induced proteolytic degradation of IκBα, which 

has been phosphorylated by IκB kinases (IKKα/β) liberates NF-κB to translocate to the nucleus.31 

Subsequently, NF-κB activates the transcription of a number of genes involved in producing pro-

inflammatory cytokines and chemokines known to result in the transcription of a multitude of pro-

inflammatory cytokines, chemokines and proteins that are widely implicated in the 

pathophysiology of MOF.17,16 Thus, the organ protective effects of Pep19-4LF in HS are 

associated with a significant reduction in the activation of the NF-κB pathway, which in turn 

accounts for the reduced formation of IL-6 and MCP-1 (see above). 

 

We also investigated the effects of HS with or without Pep19-4LF on the degree of activation of 

the Akt-survival pathway (Fig. 6). When compared to sham rats, HS rats treated with vehicle 

showed a significantly decreased phosphorylation of Akt on Ser473 (indicating reduction in activity 

of this kinase) in kidney and liver, which makes these organs less resistant to organ injury (see 

below). In contrast, Pep19-4LF attenuated the decline in Akt-activation caused by HS (Fig. 6D, H). 

Akt is a member of the phosphoinositide-3-kinase (PI3K) signal transduction enzyme family. When 

activated (phosphorylated on Ser473) by its upstream regulator PI3K, Akt controls inflammatory 

response, chemotaxis and apoptosis.32 Most notably, activation of the Akt-survival pathway 

reduces organ injury in many conditions associated with ischemia/inflammation including 

ventilation-induced lung injury, sepsis-induced organ dysfunction, myocardial infarction, and HS-
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induced organ dysfunction.33,34,35,36,16. Moreover, activation of Akt results in phosphorylation and 

activation of eNOS at Ser1177 that enhances the formation of small amounts of NO, which is pivotal 

for the preservation of microvascular perfusion and, hence, reducing organ injury.37,34,38 We report 

here that the degree of eNOS phosphorylation on Ser1177 is significantly higher in HS-rats treated 

with Pep19-4LF indicating activation of eNOS and enhanced formation of NO in the 

microcirculation at least of kidney and liver. We propose that the enhanced formation of NO by 

eNOS in HS-rats treated with Pep19-4LF contributes to improved microcirculatory perfusion 

resulting in better tissue oxygenation and lower lactate levels (Fig 3D). Thus, the organ protective 

effects of Pep19-4LF in HS are associated with a significant activation of the Akt/eNOS survival 

pathway. 

 

Traumatic injury and trauma-associated HS result in the release of a variety of endogenous TLR 

ligands, including heparan sulfates.27,28,29,39 Moreover, the degradation of the glycocalyx (and 

subsequent liberation of heparan sulfates) induces remote organ injury after trauma/hemorrhagic 

shock,40, 41,42,43 suggesting heparan sulfate as a potential therapeutic target for Pep19-4LF. Indeed, 

using isothermal titration calorimetry, we found a strong Coulomb interaction between Pep19-4LF 

and heparan sulfate, as indicated by strong exothermic reaction running into a saturation 

characteristic (Fig. 7B). These results are in line with our recent findings, reporting a strong 

Coulomb interaction between the related peptide Pep2.5 and heparan sulfate.15 To investigate 

whether Pep19-4LF inhibits the release of TNFα caused by heparan sulfate in human cells, we 

exposed human MNCs to heparan sulfate in the presence or absence of Pep19-4LF. Moist 

notably, Pep19-4LF attenuated the release of TNFα caused by heparin sulfate in these cells in a 

dose-related fashion (Fig. 7A) indicating that Pep19-4LF is able to prevent the activation of human 

cells by the DAMP heparin sulfate. Thus, these findings indicate, that the organ protective and 
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anti-inflammatory effects of Pep19-4LF in HS are, at least partly, associated with its interaction 

with relevant DAMPs, such as heparan sulfate. 

 

In conclusion, we report here for the first time that trauma and trauma-haemorrhage result in a 

significant release of the host-defence/antimicrobial peptide LL-37. As the systemic administration 

of higher doses of LL-37 leads to adverse effects, we have synthetized a small host-

defence/antimicrobial peptide, Pep19-4L. Like LL-37, Pep19-4LF neutralizes the effects of LPS 

and lipoproteins.12 LL-37 also interacts with and attenuates the effects of several DAMPs.6,8 We 

report here that Pep19-4LF abolishes the release of TNFα caused by heparan sulfate in human 

mononuclear cells. In addition, Pep19-4LF attenuates the organ injury/dysfunction caused by 

severe hemorrhage and resuscitation in the anesthetized rat. This protective effect of Pep19-4LF 

was associated with activation of the Akt/eNOS-survival pathway (kidney and liver), which 

increases the resistance of these organs to injury. In addition, Pep19-4LF also attenuates the 

activation of NF-κB in these organs, resulting in the reduced formation of the pro-inflammatory 

cytokines IL-6 and MCP-1. Thus, we propose that Pep19-4LF may be useful to reduce the organ 

injury/dysfunction and inflammation caused by severe hemorrhage and resuscitations in patients 

with trauma. 
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LEGENDS TO FIGURES 

FIGURE 1. LL-37 plasma levels in human healthy volunteers and trauma patients  

Plasma concentrations of the cathelicidin LL-37 were assessed in control healthy volunteers (n = 

10) and in trauma patients (n = 24) as well as in trauma hemorrhagic patients (n = 23). Data are 

expressed as box and whisker min to max for n number of observations. + = mean value. *P < 0.05 

vs. healthy; §P < 0.05 vs. trauma (Kruskall-Wallis test with Dunn´s multiple comparisons test). 

FIGURE 2.  Pep19-4LF attenuates the decline in MAP during resuscitation after HS. 

HS-rats received continuous administration of low-dose (LD; 66 μg/kg x h) or high-dose (HD; 333 

μg/kg x h) of Pep-4LF or saline (vehicle) throughout 4 h after resuscitation. Sham animal were 

used as control and received saline or high-dose of Pep19-4LF. The MAP was recorded during 

the whole experiment. The following groups were studied: sham + vehicle (n = 11); sham + 

Pep4LF-HD (n = 6); HS + vehicle (n = 12), HS + Pep4LF-LD (n = 4); HS + Pep19-4LF-HD (n = 8). 

Data are expressed as mean ± SEM for n number of observations. Statistical analysis was 

performed using 2-way ANOVA followed by Bonferroni post hoc test. *P < 0.05 vs HS + vehicle. 

ANOVA indicated analysis of variance; SEM, standard error of the mean. 

FIGURE 3. Pep19-4LF attenuates the organ injury and dysfunction caused by HS. 

(A) Serum urea, (B) serum creatinine, (C) creatinine clearance (CCr), (D) serum lactate, (E) serum 

alanine transaminase (ALT), (F) serum aspartate transaminase (AST), (G) serum amylase, and 

(H) serum lipase of HS or sham-operated rats. All parameters were assessed 4 h subsequent to 

HS.  HS-rats received continuous administration of low-dose (LD; 66 μg/kg x h) or high-dose (HD; 

333 μg/kg x h) of Pep-4LF or saline (vehicle) throughout 4 hours after resuscitation. Sham animal 

were used as control and received saline or high-dose of Pep19-4LF. Data are shown as box and 
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whiskers, showing medians, interquartile range, and full range. The following groups were studied: 

sham + vehicle (n = 11); sham + Pep4LF-HD (n = 6); HS + vehicle (n = 12), HS + Pep4LF-LD (n 

= 4); HS + Pep19-4LF-HD (n = 8). Statistical analysis was performed using 1-way ANOVA followed 

by Bonferroni post hoc test. §P < 0.05 vs sham + vehicle and *P < 0.05 vs HS + vehicle. ANOVA 

indicated analysis of variance. 

FIGURE 4. Pep19-4LF attenuates lung inflammation caused by HS. 

Representative images for CD68 as a macrophage marker (200 fold), (B) quantitative analysis of 

the number of CD68-positive cells/mm2, (C) MPO activity in lungs of HS or sham-operated rats. 

The scale bar represents 100µm. All parameters were assessed 4 h subsequent to HS.  HS-rats 

received continuous administration of vehicle (saline) or Pep19-4LF of  (333 μg/kg x h) throughout 

4 hours after resuscitation. Sham animal were used as control and received saline. Data are 

shown as box and whiskers, showing medians, interquartile range, and full range. The following 

groups were studied: sham + vehicle (n =4); HS + vehicle (n = 6), HS + Pep19-4LF HD (n = 6). 

Statistical analysis was performed using 1-way ANOVA followed by Bonferroni post hoc test. §P 

< 0.05 vs sham + vehicle and *P < 0.05 vs HS + vehicle. ANOVA indicated analysis of variance. 

FIGURE 5. Pep19-4LF attenuates the increase in IL-6 and MCP-1 caused by HS. 

The serum concentrations of (A) interleukin (IL)-6, (B) monocyte chemotactic protein-1 (MCP-1), 

(C) IL-10, and (D) C-X-C motif ligand 1 (CXCL1) were determined using a cytometric bead array 

in sham and HS rats treated with vehicle or Pep19-4LF (333 μg/kg x h) throughout 4 h after 

resuscitation. All parameters were assessed 4 h subsequent to HS. Data are presented as box 

and whiskers format, showing medians, interquartile range, and full range. (E) Heatmap of 

measured cytokines. The following groups were studied: sham + vehicle (n = 11); HS + vehicle (n 

= 12), HS + Pep19-4LF-HD (n = 8). Statistical analysis was performed using 1-way ANOVA 
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followed by Bonferroni post hoc test. §P < 0.05 vs sham + vehicle and *P < 0.05 vs HS + vehicle. 

ANOVA indicated analysis of variance. 

FIGURE 6. Pep19-4LF attenuates the activation of NF-κB and increases the activation of 

Akt and eNOS in kidney and liver after HS. 

The nuclear translocation of p65 subunit of NF-κB (kidney (A), liver (F)), and the phosphorylation 

of Ser176/180 on IKKα/β (kidney (B), liver (G)), Ser 32/36 on IκBα (kidney (C), liver (H)), Ser473 on Akt 

(kidney (D), liver (I)), and Ser113 on eNOS (kidney (E), liver (J) of sham and HS rats treated with 

vehicle or high-dose of Pep19-4LF (333 μg/kg x h) upon resuscitation were determined by Western 

blotting. Protein expression was measured as relative OD. Data are shown as box and whiskers, 

showing medians, interquartile range, and full range. The following groups were studied: sham + 

vehicle (n =4); HS + vehicle (n = 4), HS + Pep19-4LF-HD (n = 4). Statistical analysis was 

performed using 1-way ANOVA followed by Bonferroni post hoc test. §P < 0.05 vs sham + vehicle 

and *P < 0.05 vs HS + vehicle. ANOVA indicated analysis of variance; OD, optical density. 

FIGURE 7. Pep19-4LF interacts with heparan sulfate 

Inhibitory effect of Pep10-4LF on heparan sulfate-induced TNFα release in human peripheral 

blood mononuclear cells from healthy donors. Pep19-4LF was added at the indicated weight ratios 

of the concentrations of heparan sulfate to Pep19-4LF. (B) Enthalpy of the Pep19-4LF-heparan 

sulfate binding. Isothermal calorimetric titration of a 1 – 4 mM Pep19-4LF solution into a 200 µg/ml 

heparan sulfate dispersion. The enthalpy changes at each injection were measured and the area 

underneath each injection peak was integrated and plotted against the weight ratio of the 

concentrations of Pep19-4LF to heparan sulfate. A downward peak corresponds to an exothermic 

reaction, and an upward peak corresponds to an endothermic reaction. (C) Red blood cells, 

obtained from citrated human blood were suspended at a concentration equivalent to 5% of the 
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normal hematocrit. Pep19-4LF was added at different concentrations and the supernatants were 

analyzed for haemoglobin. Results are expressed as the percentage released with respect to 

sonicated controls (100% release) or controls processed without peptide (0% release). 
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Table 1. Admission Characteristics & Outcomes 

 Trauma  

No  Haemorrhage 

Trauma  

Haemorrhage 

P-value* 

Admission Characteristics 

N 24 23 - 

Age 43 (35-49) 32 (24-51) 0.190 

Male (%) 24 (100) 16 (69.6) 0.003‡ 

Blunt Mechanism (%) 23 (95.8) 15 (65.2) 0.008‡ 

Time Injury-Sample (mins) 94 (76-108) 100 (59-116) 0.686 

Admission Base Deficit 0 (-2-1) 11 (8-22) <0.001 

Admission Lactate 2 (1-3) 8 (6-11) <0.001 

Pre-baseline PRBC (units) 0 (0-0) 1 (0-3) <0.001 

24hr PRBC (units) 0 (0-0) 10 (5-12) <0.001 

ISS 23 (20-29) 29 (25-41) 0.004 

AIS Head 0 (0-0) 0 (0-0) 0.371 

AIS Chest 4 (3-5) 3 (2-5) 0.904 

AIS Abdomen 2 (0-3) 2 (0-3) 0.444 

AIS Extremity 2 (0-4) 3 (0-5) 0.097 

Outcomes 
28-day mortality (%) 0 (0) 6 (26.1) 0.007‡ 

Ventilator Days 0 (0-2) 3 (3-7) <0.001 

Critical Care LOS 0 (0-6) 9 (4-20) <0.001 

Hospital LOS 15 (8-38) 18 (4-51) <0.773 

PRBC: Packed Red Blood Cells; ISS: Injury Severity Score; AIS: Abbreviated Injury 

Severity Score; LOS: Length of Stay. Median (interquartile range) reported unless 

specified. *Trauma hemorrhage vs. No hemorrhage Mann-Whitney U-test unless 
‡Chi-Squared test. 
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METHODS 

Study population and human outcome measurements 

Study setting and participants 

Trauma patients who presented to an urban major trauma centre were recruited to an 

ongoing, prospective observational cohort study called the ‘Activation of Coagulation and 

Inflammation in Trauma Study II’ (ACIT-II). This study was originally established in 2008 

to investigate the biological mechanisms underlying acute traumatic coagulopathy and the 

inflammatory response to trauma. Adult trauma patients who require trauma team 

activation on admission were eligible for inclusion. Exclusion criteria included 

age under 16 years, transfer from another hospital, arrival-time greater than 120 min from 

injury, pre-hospital administration of  greater than 2000 ml crystalloid, greater than 5 % 

burns, severe liver disease, known bleeding abnormality (including anticoagulant 

medication), refused consent and vulnerable patients. 

 
Patient selection 

Trauma patients for this study (n = 47) were identified from the available ACIT-II cohort 

based on their Injury Severity Score (ISS) and blood product requirements during 

resuscitation. Patients were included if they had an ISS score greater than or equal to 16. 

Trauma Haemorrhage patients were defined as patients who received greater than or 

equal to two units of packed red blood cells (PRBC) on admission. Control patients (No 

Haemorrhage) received no PRBCs during the first 24 hours of their admission. We 

subsequently excluded patients with a head Abbreviated Injury Severity (AIS) score 

greater than three in order to ensure the groups were not skewed on the basis of severe 

traumatic brain injury. Furthermore, we included healthy volunteers (n = 10) as a control 

group. 

 



Sample and data collection 

Admission data were collected on patient demographics, mechanism of injury, blood 

product use and baseline physiology. Arterial blood gas analysis for base deficit (BD) and 

lactate was performed during the trauma team resuscitation as part of normal care 

processes. Admission bloods were drawn within 2 hours of injury. Whole blood was 

collected in 4.5 ml citrated vacutainer tubes and centrifuged at 3400 rpm for 10 minutes. 

The plasma supernatant was centrifuged again at the same settings, and the double-spun 

plasma was subsequently stored in aliquots at -80 °C. Patient outcomes including 28-day 

mortality, ventilator days, critical care and hospital length of stay were recorded. 

LL37-ELISA 

Plasma-levels of the cathelicidin-derived human AMP LL-37 in patients were quantified 

using a commercially available ELISA kit (Cambridge Bioscience Ltd, Cambridge, UK) by 

following the manufacturer/product specific protocol. 

Immunoblot analysis 

Semi-quantitative immunoblot analyses of nuclear translocation of p65 and the 

phosphorylation of IκBα, IKKα/β, Akt, and eNOS were carried out in tissue samples as 

described before.1 Briefly, lung, kidney and liver samples were homogenized in buffer and 

centrifuged at 4000 rpm for 5 min at 4℃ To obtain the cytosolic fraction, supernatants were 

centrifuged at 14000 rpm at 4℃ for 40 min. The pelleted nuclei were re-suspended in 

extraction buffer and centrifuged at 14,000 rpm for 20 min at 4℃. Protein content was 

determined on both nuclear and cytosolic extracts using bicinchoninic acid (BCA) protein 

assay (Thermo Fisher Scientific Inc, Rockford, IL). Proteins were separated by 8% sodium 

dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a 

polyvinyldenediflouoride (PVDF) membrane, which was incubated with a primary antibody 

[mouse anti-total Akt (1:1000); mouse anti-IκBα pSer32/36 (1:1000); rabbit anti-NF-κB p65 



(1:1000); rabbit anti-eNOS pSer113 (1:1000)]. Membranes were incubated with a 

secondary antibody conjugated with horseradish peroxidase (1:2000) for 30 min at room 

temperature and developed with ECL detection system. The immunoreactive bands were 

visualized by autoradiography and the densitometric analysis was performed using Gel 

Pro Analyzer 4.5, 2000 software (Media Cybernetics, Silver Spring, MD, USA). The 

membranes were stripped and incubated with β-actin monoclonal antibody (1:5000) and 

subsequently with an anti-mouse antibody (1:10000) to assess gel-loading homogeneity. 

Densitometric analysis of the related bands is expressed as relative optical density, and 

normalized using the related sham-operated band. 

Peptide-synthesis 

The synthesis and purification of Pep19-4LF was performed at the Research Center 

Borstel, Germany as described previously.2 The amino acid sequence of this 19´mer is 

GKKYRRFRWKFKGKLFLFG. Pep19-4LF was amidated at the C-terminal end and had a 

purity of > 95% as measured by HPLC and MALDI-TOF mass spectrometry.2  

Immunohistochemistry 

Lung samples were obtained at the end of the experiment and fixed in formalin for 48 h 

and immunohistochemistry was performed as described previously 1. Briefly, lung tissue 

was embedding in paraffin and processed to obtain 4-μm sections. After deparaffinization, 

the slides were then incubated with rabbit anti-CD68 antibody ED1 (1:400; catalog no. 

MCA341R; AbD Serotec) for 1 h at 37°C and afterwards incubated for 30 min with labelled 

polymer-HRP antibody. Counterstaining was performed with Harris hematoxylin. Images 

were acquired using a NanoZoomer Digital Pathology Scanner (Hamamatsu Photonics 

K.K. Japan) and analyzed using the NDP Viewer software. The numbers of CD68 positive 

cells were counted in 10 randomly selected fields (200×) in a double-blinded manner by 

three independent investigators. 



Hemorrhagic shock and quantification of organ injury and dysfunction 

Hemorrhagic shock and quantification of organ injury and dysfunction were performed as 

described previously 3. Rats were anesthetized by sodium thiopentone (120 mg/kg i.p. for 

induction, followed by 10 mg/kg i.v. for maintenance). We performed cannulation of the 

trachea, femoral artery (for measuring blood pressure), and carotid arteries (for blood 

withdrawal), jugular vein (for drug administration), and bladder (for collecting urine). We 

withdrew blood (up to 1 mL/min) via the cannula inserted in the carotid artery in order to 

achieve a fall in mean arterial pressure (MAP) to 27 to 32 mmHg. Thereafter, MAP was 

maintained at this level for a period of 90 min either by further withdrawal of blood during 

the compensation phase or administration shed blood during the decompensation phase. 

At 90 min after initiation of hemorrhage (or when 25% of the shed blood had to be re-

injected to sustain MAP at 27 to 32 mmHg), animals were resuscitated with the remaining 

shed blood (mixed with 100 IU/mL heparinized saline) (over a period of 5 min) plus a 

volume of Ringer’s lactate identical to the volume of blood spent during decompensation. 

During the last 3 h of resuscitation, urine was obtained for the estimation of creatinine 

clearance. Then, blood samples were collected via the carotid artery for measurement of 

lactate (Accutrend Plus Meter, Roche Diagnostics, West Sussex, UK) and organ 

injury/dysfunction parameters. Under deep anesthesia, the heart was removed to 

terminate the experiment. Blood samples were centrifuged to separate serum, which was 

used for the determination of urea, creatinine, aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), lipase, amylase and creatine kinase (CK) by an external contract 

research facility (IDEXX Laboratories Ltd, West Yorkshire, UK) in a blinded fashion. In 

addition, lung, kidney and liver samples were taken and stored at -80 oC for further 

analysis. Sham-operated rats were used as control and underwent identical surgical 

procedures, but without hemorrhage or resuscitation. Blood pressures during the 



experiment were measured by powerlab®, and recorded and analyzed by Labchart® (AD 

instruments Ltd, Dunedin, New Zealand). 

Human mononuclear cells study  

Mononuclear cells (MNC) were isolated from heparinized blood samples obtained from 

healthy donors as described previously.4 The cells were re-suspended in medium (RPMI 

1640), and their number was equilibrated at 5 x 106 cells/ml. For stimulation, 200 μl MNC 

(1x 106 cells) was transferred into each well of a 96-well culture plate. Heparan sulfate 

and the mixtures of heparan sulfate and peptide were pre-incubated for 30 min at 37°C 

and added to the cultures at 20 μl per well. The cells were then incubated for 4 h at 37°C 

with 5% CO2. Supernatants were collected after centrifugation of the culture plates for 10 

min at 400 x g and stored at - 20°C until immunological determination of tumor necrosis 

factor alpha (TNFα) was carried out with a sandwich enzyme-linked immunosorbent assay 

(ELISA) using a monoclonal antibody against TNFα (clone 6b; Intex AG, Switzerland) and 

described previously in detail.4  

Isothermal titration calorimetry (ITC) 

Microcalorimetric experiments of peptide binding to heparan sulfate were performed on a 

MSC isothermal titration calorimeter (MicroCal Inc., Northampton, MA) at 37 °C as 

described before.5 Briefly, after thorough degassing of the samples, Pep19-4LF (1 to 4 

mM in 20 mM HEPES, pH 7.0) was titrated to a heparan sulfate suspension (200 μg/ml in 

20 mM HEPES, pH 7.0). The enthalpy change during each injection was measured by the 

instrument, and the area underneath each injection peak was integrated (Origin; MicroCal) 

and plotted against the weight ratio of the concentrations of peptide to heparan sulfate. 

Titration of the pure peptide into HEPES buffer resulted in a negligible endothermic 

reaction due to dilution. All experiments were carried out in duplicate. 



Hemolysis assay 

Red blood cells (RBC) were obtained from citrated human blood by centrifugation (1,500 

x g; 10 min), washed three times with isotonic 20 mM phosphate- NaCl buffer (pH 7.4), 

and suspended in the same buffer at a concentration equivalent to 5% of the normal 

hematocrit. Forty-microliter aliquots of this RBC suspension were added to 0.96 ml of 

Pep19-4LF dilutions prepared in the same isotonic phosphate solution, incubated at 37°C 

for 30 min, and centrifuged (1,500 x g, 10 min). The supernatants were analyzed 

spectrophotometrically (with absorbance at 543 nm) for hemoglobin, and results were 

expressed as the percentage released with respect to sonicated controls (100% release) 

or controls processed without peptide (0% release). 

Materials 

Unless otherwise stated, all compounds were from Sigma-Aldrich Company Ltd (Poole, 

Dorset, UK). Ringer’s Lactate was from Baxter Healthcare Ltd (Deerfield, IL); Thiopental 

sodium from Archimedes Pharma Limited (Reading, UK). 

 

 

 

 

Supplemental Figure 1. Entire study course of hemorrhagic shock in rats. 
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