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Abstract 

In this work we tested consistency and reliability of satellite-derived Prescription Maps (PMs) respect to those that can 

be obtained by aerial imagery. Test design considered a vineyard of Moscato Reale sited in Apulia (South-Eastern Italy) 

and two growing seasons (2013 and 2014). Comparisons concerned Landsat 8 OLI images and aerial datasets from 

airborne RedLake MS4100 multispectral camera. We firstly investigated the role of spatial resolution in radiometric 

features of data and, in particular, of NDVI maps and consequently of vigour maps. We first measured the maximum 

expected correlation between satellite- and aerial-derived maps. We found that, without any pixel selection and spatial 

interpolation, correlation ranges between 0.35 and 0.60 depending on the degree of heterogeneity of the vineyard. We 

also found that this result can be improved by operating a selection of those pixels representing vines canopy in aerial 

imagery and spatially interpolating them. In this way correlation coefficient can be improved up to 0.85 (minimum 

0.60) suggesting an excellent capability of satellite data to approximate aerial ones at vineyard level. Prescription maps 

derived from vigour one demonstrated to be spatially consistent; but we also found that the quantitative interpretation of 

mapped vigour was not changing in strength according to datasets and time of acquisition. Therefore, in spite of a 
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satisfying consistency of spatial distribution, results showed that vigour strength at vineyard level from aerial and 

satellite datasets is generally not consistent, partially for the presence of a bias (that we modelled).  

 

Introduction 

In the last years, new agricultural practices based on Geomatic techniques have been experimented and, sometimes, 

successfully entered the operational farming workflow. Nowadays the rapid evolution of new instruments and 

techniques, and the related cost reduction drive to consider a new deal for precision farming, where the adaptation of 

cultural practices to spatial and temporal crop/soil variation is the new frontier (Moran et al. 1997; Cook and Bramley 

1998). This approach is basically focused on rationalization of field management and maximization of production (Arnò 

et al. 2005; Delenne et al. 2010; Song et al. 2014). A double benefit is expected: mitigation of crops environmental 

impact and maximization of farmer’s profit. These factors are particularly important in viticulture, where the final 

product (wine) shows a potentially high added value that can be obtained with on time management decisions based on 

spatial variability knowledge of vineyards (Bramley et al. 2005; Profitt et al. 2006; Hall et al. 2011; King et al. 2014). 

Optical remote sensing has already proved to be effective for this task, permitting to monitor vegetation in space and 

time; particularly in the last decades it has shown its capability for describing some plants biophysical features, such as 

vigour, that can be used as proxies of fruit/wine quality and expected yield (Johnson et al. 2001; Hall et al. 2002). Many 

spectral indices obtained from multispectral imagery were proposed, mainly combining the red and near infrared bands 

acquired by sensors (Bannari et al. 1995; Zhang et al. 2006). Some of them proved to give a consistent estimation of 

plant vegetative vigour, that can be related to biophysical parameters through regressive mathematical models (Montero 

et al. 1999; Haboudane et al. 2002). The most widely used spectral index is the Normalized Difference Vegetation 

Index (NDVI) that demonstrated to be strictly related with some biophysical characteristics (Lanjeri et al. 2001; 

Johnson 2003), making possible to describe spatial and temporal variation of grapevine quality and production.  

Nevertheless vineyards represent a challenge in the application of remote sensing technologies due to the discontinuous 

nature of grapevine canopies, their moderate cover, and consequently the prominent background and shadow influences 

on the measured reflectance signal (Dobrowski et al. 2002), which have to be necessarily processed to separate 

vegetation from background. Once spectral bands are rigorously pre-processed and combined along spectral index 

formula, one can investigate spatial variability of the index, interpret it and, finally, derive georeferenced prescription 

maps (hereinafter called PMs) to use for applying viticultural practices at different rate/intensity. The final aim is to 

tend at homogenizing crop features and maximizing grape quality and quantity, reducing, at the same time, the farming 

environmental impact and the production cost (Dry 2000; Haselgrove et al. 2000; Petrie et al. 2000).  
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Remotely sensed data from Unmanned Aerial Vehicle (UAV) and piloted airplane are, at the moment, the most used 

ones in precision farming. UAV technology is greatly appreciated since it allows to collect images with very high 

spatial resolution (Rey et al. 2013). This peculiarity minimize commission between vegetated and not-vegetated pixels, 

potentially permitting an efficient separation that certainly can improve interpretation. Unfortunately, this peculiarity 

requires that, to image the entire vineyard, a huge amount of tiles is needed and, consequently, have to be mosaicked 

during orthoimage generation. This operation, from the remote sensing point of view, introduces a not negligible 

radiometric uncertainty, since original radiometry of tiles is highly altered to recover a convenient spectral homogeneity 

of the final product. The most of software used for this task apply different colour balance algorithms neglecting any 

rigorous processing of the original radiometry (image calibration) required to recover surface reflectance, and, 

therefore, spectral indexes used for agronomic interpretation. Practically this general superficiality in UAV imagery 

processing determines that: a) generated orthoimages are not radiometrically correct, b) radiometry is not homogeneous 

over the scene, c) derived spectral indexes values are unusual. These premises drive, at the moment, to be suspicious 

about the effective potentialities of UAV images for remote sensing in viticulture: we are convinced that, without a 

further improvement in data radiometric pre-processing, results from this type of imagery is not reliable to describe 

vegetation biophysical dynamics and monitoring crop status. On the contrary aerial and satellite imagery are generally 

not affected by these kinds of limitations. In fact, sensor features and flight heights are generally adequate to image the 

entire vineyard with a single acquisition, guaranteeing radiometric homogeneity for all pixels of the scene. Due to high 

performance of sensors and chance to acquire images at a specific time without limitation due to cloud coverage, aerial 

data are probably the best solution to monitor crops, but also the most expensive choice (Matese et al. 2015). 

Nevertheless, many satellite data at medium/high geometric resolution have been recently made available for free. In 

particular the NASA (National American Space Agency) Landsat and ESA (European Space Agency) COPERNICUS 

Sentinel I-II datasets (Malenovský et al. 2012; Frampton et al. 2013) can be considered the reference products for this 

type of application. It is our opinion that they can give an important contribution in precision farming both at regional 

and single-field/vineyard level. Satellite platforms in fact, compatibly with cloud cover, can ensure regular acquisitions 

in time, mandatory for a precision viticulture approach to vineyard management (Bramley 2001; Bramley et al. 2003). 

Specifically referring to the Landsat 8 mission, in this work, we demonstrate that, based on OLI data, we can generate 

estimations of vineyard vigour in space and time, consistent with the ones that can be obtained from aerial imagery. In 

fact, spatial variation may depend on physical environment factors, like soil, topography and climate, that can condition 

the differential response of vineyard (Jackson 2008) and, a medium resolution level, may be sufficient to map their 

effect. 
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Some works have investigated satellite data potential to evaluate changes in vegetation characteristics aimed to 

applications in precision farming, demonstrating their utility (Thenkabail 2003; Sibanda et al. 2015). It is well known  

that coarse resolution (Ground Sample Distance, GSD, between 250 and 1000 m) satellite images, like those recorded 

by TERRA/AQUA MODIS and ENVISAT MERIS sensors, due to their very high temporal resolution (up to 1-2 

acquisitions/day), are the most suitable ones to describe phenology of vegetation (Testa et al. 2014). Unfortunately, 

while working at vineyard/filed level such GSD is not proper. We therefore excluded this type of data from our work 

focusing on applications where a continuous monitoring of vegetation is not required and occasional acquisitions are 

enough. In particular we tested data consistency and reliability between aerial and mid-resolution satellite multispectral 

acquisitions aimed at generating PMs for calibrating differential interventions on the test vineyard sited in Apulia 

(South-Eastern Italy). Two growing seasons (2013 and 2014) and two acquisitions per season (June and September) 

were compared. Satellite dataset was acquired by Landsat 8 OLI (Operational Land Imager) sensor, while aerial dataset 

consisted of four RedLake MS4100 multispectral images (Green, Red, NIR). Both datasets were radiometrically pre-

processed and used to generate vigour maps of the vineyard at the observed dates. It is worth to remind that vigour 

maps are generally the starting point to derive operational PMs useful to drive vineyard differential management at the 

ground. Satellite-based maps were therefore compared with the correspondent ones from aerial datasets and their 

consistency tested. This research was run inside the framework of the Research Project “Promotion of Ecologically 

Sustainable Processes for Valorisation of Agrifood Production in Apulia – ECO_P4” (task “Improvement of 

sustainability and efficiency of viticultural and oenological practices and valorisation of local vines biodiversity through 

precision viticulture techniques” led by the University of Foggia) PON02_00186_2866121 Financed by the EU and 

Italian Government (MiUR, MiSE). 

 

Materials and Methods 

Test Area 

The test site was a vineyard of about 3.7 ha. The wine grape variety was Moscato Bianco, a typical white-berry 

genotype for the growing area, locally named as Moscato Reale for the DOC designation. The centre of the study area is 

located at 611895 E, 4548884 N in the UTM 33N WGS84 reference frame. The vineyard (property of Torrevento 

winery) is representative of those devoted to Moscato Reale production in the highlands extended on cretaceous 

limestone basement in the central part of the Apulia region. Vines were planted (in 2002) at 1.00 x 2.30 m apart. 

Average edaphic properties were those of a gravel soil, poor in organic matter and scarce or poor in macro- and micro-

elements, except for Fe3+ that showed a discreet concentration. Plants were trained to Vertical Shoot Positioned system 

and cane pruned at 12-13 buds/vine. According to the farm practices, vine canopy was uniformly mechanically topped 
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at the end of June, and no bunch thinning was applied. The vineyard received 300 kg ha-1 of organ-mineral fertilizer, as 

average dose. The irrigation was calibrated according to the seasonal weather. During 2013 growing season, about 600 

m3 ha-1 of irrigation water were supplied. This amount is the normal farm annual volume as suggested by historical 

values of ETo and pluviometry (Forte et al. 2005); adopted Kc values are those proposed by Allen et al. (1998); RDI 

(Regulated Deficit Irrigation) was set to 30% ETC as suggested by Romero et al. (2013) for optimal balance among 

vine vigor-grape yield-wine quality. In 2014, since exceptionally copious rains (68% higher than usual) befall from 

April to September, only 200 m3 ha-1 of irrigation water were supplied in mid-late August (the warmer and dryer 

period), corresponding to about 33% of usual seasonal volume. The vineyard produced 12 and 13 t ha-1 of grapes, 

respectively in the two years. 

 

 

Fig. 1 Study area location: Apulia, South-Eastern Italy. Geographic System: WGS84 - UTM Zone 33N 

 

Aerial Dataset 

Four aerial acquisitions were acquired by the airborne RedLake MS4100 high resolution multispectral camera along 

2013 and 2014 growing seasons. Sensor was mounted on board of the piloted light aircraft SKY ARROW 650 TC by 

TERRASYSTEM s.r.l. Technical features of images are reported in Table 1. MS4100 is a high resolution 3-CCD digital 

multispectral camera for remote sensing applications. Camera Field-of-View (FOV) is 60 degrees, focal length 14.0 

1000 m ensuring a 

spatial resolution of about 0.5 m. Images were acquired using the colour-infrared (CIR) MS4100 configuration, 

providing multispectral images in the Green, Red and Near Infrared (NIR) bands (Figure 2). Times of flights were 

intended to describe vineyard at fully developed vine canopy stage (end of June/beginning of July) and at grape harvest 

or pre-harvest one (end of August/beginning of September). 
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Table 1 Technical features of aerial images used in this study. 

Date Time Sun elevation (°) Sun azimuth (°) 

20/06/2013 about 09:45:00z 66.908073 134.424940 

23/09/2013 about 12:00:00z 45.723776 206.578138 

03/07/2014 about 14:00:00z 48.108801 258.621737 

10/09/2014 about 10:45:00z 52.003827 201.908168 

 

 

Fig. 2 MS4100 filter design (CIR acquisition mode). Courtesy of TERRASYSTEM s.r.l. 

 

Satellite Dataset 

Four OLI Landsat 8 Level 1 data products (hereafter called L8 OLI images) were selected and obtained for free from 

EarthExplorer distribution system [earthexplorer.usgs.gov/]. Selection was done looking for those L8 scenes whose 

acquisition date was the closest as possible to the correspondent one of the aerial dataset. Technical features of 

downloaded satellite images are reported in Table 2.  

Panchromatic (band 8), cirrus (band 9) and thermal bands (band 10 and 11) were not considered for this work. 

Radiometric resolution is 12-bits (rescaled to 16-bits when processed into Level-1 data products) 

(https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf). Table 3 shows acquisition 

dates and time gaps between the aerial and satellite images.  
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Table 2 Technical features of Landsat 8 OLI images (GSD = Ground Sample Distance). 

Scene ID 
Acquisition 

Date 
Time Sun elevation Sun azimuth Path Row 

LC81880312013171LGN00 20/06/2013 09:36:45.6624467z 65.66734236 132.1547381 188 31 

LC81880312013251LGN00 08/09/2013 09:36:51.4855442z 50.40467477 150.3510512 188 31 

LC81880312014174LGN00 23/06/2014 09:34:33.1216337z 65.2684883 130.9534334 188 31 

LC81880312014238LGN00 26/08/2014 09:34:54.9808560z 54.20301251 144.9282278 188 31 

 

OLI bands 
GSD 

(m) 

Wavelength  

(nm) 
OLI bands 

GSD 

(m) 

Wavelength 

 (nm) 
OLI bands 

GSD 

(m) 

Wavelength 

 (nm) 

Band 1  30 433-453 Band 5 30 845-885 Band 9 30 1360-1390 

Band 2 30 450-515 Band 6 30 1560-1660 Band 10 100 10600-11200 

Band 3 30 525-600 Band 7 30 2100-2300 Band 11 100 11500-12500 

Band 4 30 630-680 Band 8 15 500-680  

 

Table 3 Available images. “I” and “II” are used to identify images respectively acquired at fully developed vine canopy (I) and at the 

at grape harvest or pre-harvest (II). 

 
Date Data source 

Time Gap 

[dd] 

I 2013 
20/06/2013 Aerial 

0 
20/06/2013 Satellite 

II 2013 
08/09/2013 Satellite 

15 
23/09/2013 Aerial 

I 2014 
23/06/2014 Satellite 

10 
03/07/2014 Aerial 

II 2014 
26/08/2014 Satellite 

15 
10/09/2014 Aerial 

 

Aerial Images Pre-processing 

Aerial data were provided “rescaled” at-sensor-radiance calibrated [W·m-2·sr-1·µm-1]. Right scale recovering was done 

applying equation [1] as suggested by data providers: 

 

𝐿𝜆(𝑥, 𝑦) =
𝐷𝑁(𝑥,𝑦)

300
               [1] 

 

Where DN(x,y) is the digital number of the raw data. At-sensor-radiance calibrated images were successively 

atmospherically corrected, based on the Chavez (1996) Dark Object Subtraction (DOS) approach. At-the-ground 

reflectance was obtained by equation [2] derived by Moran et al. (1992) RTM. In this case the contribution of upwelling 

transmittance was neglected due to the low flight height. 
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𝜌𝜆(𝑥, 𝑦) =
𝜋∙𝑑2∙[𝐿𝜆(𝑥,𝑦)−�̂�𝜆

𝑎𝑡𝑚
 ]

[𝜏𝜆𝑑𝑜𝑤𝑛∙sin[𝛽(𝑥,𝑦)]∙𝐼𝜆+𝐸𝑑𝑜𝑤𝑛]
             [2] 

 

where 𝜌𝜆 is the at-the-ground reflectance value, 𝐿𝜆 is the at-sensor-radiance [W·sr-1·m-2·μm-1] obtained by [1], �̂�𝜆
𝑎𝑡𝑚

 is 

the upwelling atmospheric scattered radiance [W·sr-1·m-2·μm-1], d the Sun-Earth distance coefficient (astronomical 

units), 𝐸𝑑𝑜𝑤𝑛 the scattered downwelling contribution (that we assumed equal to 𝜋 ∙ �̂�𝜆
𝑎𝑡𝑚

), 𝜏𝜆𝑑𝑜𝑤𝑛 the atmospheric 

downwelling transmittance, β the sun incidence angle (rad), 𝐼𝜆 the sun irradiance [W·m-2·μm-1] calculated from the 

experimental Planck emission curve corrected at the Top-of-Atmosphere (Gomarasca 2009). β was assumed constant 

over the vineyard and equal to the sun elevation angle at the moment of the acquisition, since the topography of the area 

can be retained flat. 

Technical features of RedLake MS4100 bands used during pre-processing are reported in Table 4. 

 

Table 4 RedLake MS4100 bands width features and the correspondent Sun irradiance values. 

Band Centre wavelength [µm] Band pass [µm] Irradiance [W·m-2·µm-1] 

Green 0.550 ± 0.005 0.040 ± 0.005 1909.0 

Red 0.670 ± 0.005 0.040 ± 0.005 1538.0 

NIR 0.800 ± 0.005 0.040 ± 0.005 1147.0 

 

Satellite Images Pre-processing 

L8 OLI images were calibrated and atmospherically corrected using the complete RTM formulation by Moran et al. 

(1992), based on a DOS approach (eq. 3): 

 

𝜌𝜆(𝑥, 𝑦) =
𝜋∙𝑑2∙[𝐿𝜆(𝑥,𝑦)−�̂�𝜆

𝑎𝑡𝑚
 ]

𝜏𝜆𝑢𝑝∙[𝜏𝜆𝑑𝑜𝑤𝑛∙sin[𝛽(𝑥,𝑦)]∙𝐼𝜆+𝐸𝑑𝑜𝑤𝑛]
             [3] 

 

where 𝜌𝜆 is the at-the-ground reflectance value, 𝐿𝜆 is the at-sensor-radiance [W·sr-1·m-2·μm-1] obtained by applying 

gain and offset values supplied with L8 OLI images, �̂�𝜆
𝑎𝑡𝑚

 is the upwelling atmospheric scattered radiance [W·sr-1·m-

2·μm-1] estimated by DOS, d the Sun-Earth distance coefficient (astronomical units), 𝐸𝑑𝑜𝑤𝑛 the scattered downwelling 

contribution (that we assumed equal to 𝜋 ∙ �̂�𝜆
𝑎𝑡𝑚

), 𝜏𝜆𝑢𝑝 and 𝜏𝜆𝑑𝑜𝑤𝑛 are respectively the atmospheric upwelling and 

downwelling transmittance, β the local sun incidence angle (rad) and 𝐼𝜆 the Sun irradiance [W·m-2·μm-1] calculated 

according to eq. 4 [http://semiautomaticclassificationmanual. readthedocs.org/en/latest/Landsat_conversion.html]. 
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 𝐼𝜆 = 𝜋 ∙
𝐿𝑚𝑎𝑥


𝜌𝑚𝑎𝑥
                 [4] 

 

where 𝐿𝑚𝑎𝑥
  is the maximum band radiance value and 𝜌𝑚𝑎𝑥

  the correspondent maximum reflectance value. Both values 

were obtained from the metadata file (*.MTL) of L8 OLI imagery. Again, for the same reasons as above, β was 

assumed constant over the vineyard and equal to the sun elevation angle at the moment of the acquisition. 𝜏𝜆 was 

considered constant over the scene, equal for both images and just band dependent (Table 5). 𝜏𝜆 values refer to a 

summertime mid-latitude low-hazy atmosphere (20 km visibility) according to Fenn et al. (1985). 

 

Table 5 Atmospheric transmittance values for each band given for a reference summertime mid-latitude low-hazy atmosphere. 

 

L8 OLI band 

n. 

Atmospheric 

transmittance 

1 0.50 

2 0.60 

3 0.65 

4 0.65 

5 0.80 

6 0.89 

7 0.92 

 

Vigour Map Generation 

Vineyard vigour is generally intended as the strength of the vegetative behaviour of plants (Winkler et al. 1974). Many 

works found and modelled some correlations between vigour and other properties of plants and/or grapes (Price and 

Bausch 1995; Pinter et al. 2003; Johnson et al. 2003; Cortell et al. 2008). In remote sensing, vigour is generally 

represented by specific spectral indices obtained as mathematical aggregation of bands acquired by multi- or hyper-

spectral sensors. Vigour can be investigated at plant level or at vineyard level. According to L8 spatial resolution the 

first approach cannot be taken into consideration; therefore we tested performances of aerial and satellite data in zoning 

the vineyard according to the different vigour it expresses in its different parts. Moreover, it was not our intention to 

explore how spectral indexes can be related to biophysical properties of plants/fruits. Differently, we compared satellite 

and aerial derived vigour maps at vineyard level, showing how similar PMs can be obtained. As representative of 

spectral indexes we selected the Normalized Difference Vegetation Index (NDVI), which is probably the most widely 

used one in for vegetation studies. NDVI can be calculated according to the canonical formulation given by Rouse et al. 

(1974) [5]: 
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𝑁𝐷𝑉𝐼(𝑥, 𝑦) =
𝜌𝑁𝐼𝑅(𝑥,𝑦)−𝜌𝑅𝐸𝐷(𝑥,𝑦)

𝜌𝑁𝐼𝑅(𝑥,𝑦)+𝜌𝑅𝐸𝐷(𝑥,𝑦)
              [5] 

 

where 𝜌𝑁𝐼𝑅(𝑥, 𝑦) and 𝜌𝑅𝐸𝐷(𝑥, 𝑦) are respectively the at-the-ground reflectance in the NIR and RED bands. In our case 

study NIR and RED are respectively bands 3 and 2 for MS4100 images and bands 5 and 4 for the L8 OLI ones. Since 

vineyards are characterized by discontinuous surfaces where grapevine canopies is alternated with bare soil (or with a 

vegetation different from vine foliage), they represent a particularly difficult challenge for medium resolution images; 

in fact reflectance of each pixel results from the joint contribution of bare soil and grapevine canopy. Nevertheless, one 

can suppose that, due to the regular texture of vineyards, spectral index differences among pixels are mainly due to their 

vegetated component. Therefore, we can imagine that these differences can be related to a different strength of 

grapevines in the different part of vineyard. According to this hypothesis we considered two types of L8-based vigour 

maps: a) the ones directly derived from the original NDVI values by Nearest Neighbour (NN) oversampling from 15 to 

0.5 m; b) the ones obtained by spatial interpolation of the original NDVI values achieved by Thin Plate Spline (TPS) 

method. 

Differently, aerial images, in force of their higher spatial resolution, permit to separate vegetation from background 

(soil) at pixel level; potentially each single plant behaviour could be investigated. This situation makes possible to map 

vineyard vigour with a higher accuracy, but it drives the user to preventively recognize and separate vines canopy pixels 

from the others. For this task we used the “Local maxima and minima” tool available in SAGA GIS 2.2.0 over aerial 

derived NDVI images. This automatic approach permits the user to forget about the selection of an opportune NDVI 

threshold that, necessarily, has to be changed according to the season. Extraction of canopy pixels determines that 

spectral continuity of images is broken (Figure 3) and, consequently, a spatial interpolation step has to be done to 

recover it. For this work, for each aerial image, we tested spatial autocorrelation of extracted canopy pixels by semi-

variogram and spatial interpolation was achieved by TPS using a grid size of 0.5 m. It is worth to remind that, for this 

work, we referred as “NDVI maps” those directly generated by application of [5] to the calibrated images; as “vigour 

maps” those generated through spatial interpolation (by geostatistic techniques) of distributed points corresponding to 

the centres of vines canopy pixels. 
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Fig. 3 a) Satellite NDVI map and pixel centers used for spatial interpolation by TPS used to generate SINT05 image. b) Example of 

aerial NDVI map where vines canopy pixels have been selected by the “Local Minima and Maxima“ algorithm of SAGA GIS.  

 

Datasests Comparison: Map Correlation 

We firstly compared vigour maps from satellite and aerial datasets for the four acquisitions. Comparisons were achieved 

at different spatial resolutions, assuming that this is the most important responsible of eventual differences. 

Comparisons concerned both NDVI and vigour maps. Test design is shown in Figure 4.  

 

 

Fig. 4 Experiment design used to test aerial and satellite derived NDVI/vigour maps. Ri are the calculated Pearson’s correlation 

coefficients between compared image, whose meaning is reported in the text. 

 

Preliminarily, we oversampled L8 NDVI images to 15 m to artificially reduce resolution difference between data, 

making successive comparisons easier by limiting the effects of radiometric borders. Oversampling was performed by 

bilinear method. A 15 m resolution version of aerial-derived NDVI maps was also generated using the mean value 

down-sampling method. 

Since our main goal was to test aerial versus satellite vigour maps consistency, we selected the Pearson’s correlation 

coefficient as a measure of similarity. Though in literature different approaches are proposed to test maps similarity 
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(Tagarakis et al. 2013) most of them are applied to compare already classified representations (discrete). Since we 

focused on vigour maps similarity (therefore on continuous representations of a spectral index) these approaches were 

retained not proper. We admit that, using Pearson’s correlation coefficient the absolute strength of signal is neglected 

and only the relative distribution of values is tested; thus, well correlated datasets could be shifted/scaled of a large 

amount. We tried to recover this information comparing, in a further step, class statistics of the obtained PMs (see 

“Results and Discussions”, Tables 9 and 10).   

The following labels were assigned to aerial-derived products used for comparisons: a) A05 are the aerial derived NDVI 

maps; b) A15 are the aerial derived NDVI maps down-sampled at 15 m; c) AINT05 are the vigour maps obtained by 

spatial interpolation (TPS) with a 0.5 m Ground Sample Distance (GSD); d) A05NN are the A15 images resampled 

back to 0.5 m by NN method. The latter represents the way a sensor with the same features as MS4100, at the same 

time, would have seen the area with a GSD of 15 m. This, somehow, define the best approximation of the scene that a 

sensor with a 15 m GSD can generate of the area. The consistency it shows respect to the original 0.5 GSD image can 

be assumed as the upper limit of correlation we expected from the comparison with L8 OLI imagery. 

The following labels were assigned to satellite-derived NDVI/vigour maps used for comparisons: a) S15 are the satellite 

derived NDVI maps oversampled to 15 m GSD by bilinear interpolation; b) SINT05 are the L8-derived vigour maps 

generated by spatial interpolation (TPS) from 15 to 0.5 m considering the centres of the S15 pixels. We assume that this 

data is the best starting point to derive PMs with 0.5 m resolution from satellite imagery. According to the above 

mentioned labels we tested the following: a) the correlation between A05 and A05NN (R1) defines the maximum 

expected similarity that the difference of resolution of the two compared datasets allows. In fact the maximum 

reachable similarity strictly depends on the difference of spatial resolution of data that are compared. We also 

investigated the relationship between R1 and GSD, testing correlation between A05 and many different A05NN 

obtained by down-sampling A05 to a variable GSD varying between 1 and 30 m with a step size of 1 m (Figure 5); b) 

the correlation between A15 and S15 (R2 ) represents the similarity between aerial and satellite acquisitions at the 

satellite resolution (15 m); c) the correlation between AINT05 e A05 (R3) can be used to evaluate the effects of 

background on vigour maps in aerial acquisitions; d) the correlation between AINT05 and SINT05 (R4) is probably the 

most important from an operational point of view, since it measures the similarity between aerial- and satellite-derived 

vigour maps in the ordinary workflow; e) the correlation between A05 and S15 (R5) finally was used to test aerial and 

satellite NDVI maps similarity at the aerial image resolution (0.5 m). A similarity coefficient was defined as the ratio 

between R5 and R1, being R1 the maximum expected value for the Pearson’s correlation coefficient and R5 the one 

resulting comparing the original NDVI maps (A05 and S15). Since R4 values demonstrated (see Results and Discussion 

paragraph) a satisfying degree of correlation between aerial- and satellite-derived vigour maps, we also tested the 
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strength of differences in terms of vigour values by computing for AINT05 and SINT05 the following statistical 

parameters: NDVI mean (μNDVI), standard deviation ( NDVI) and coefficient of variation ( . 

  

Datasests Comparison: Bias Modelling 

Correlation is a statistical operator able to test similarity, but not able to quantify differences between compared 

datasets. Once correlation is demonstrated (this was the case in our study), it is mandatory to model existing 

relationship, i.e. bias. We therefore randomly sampled 1000 pixels from AINT05 and SINT05 generating correspondent 

scatterplots. According to the previously found strong correlation a linear regression model (AINT05 = a*SINT05 + b) 

was calibrated for each period to correct satellite-derived vigour maps. The calibrated model was then applied to all 

SINT05 pixels to minimize bias effects and making following comparisons more consistent and reliable.  

 We tested and measured both vigour differences before and after bias modeling by computing some synthetic statistics 

(see paragraph “Generation of Prescription Maps”). Absolute value of vigour is, in fact, another important issue to deal 

with, because the strength of agronomic interventions in the different part of vineyards relies not only on position, but 

also on the size of mapped vigour differences. This fact turns to be more and more important if vigour maps (or 

possibly other spectral indices maps) are required to be related to ground surveyed biophysical parameters to calibrate 

regressive model able to map such parameters over the whole vineyards (Chappelle et al. 1992; Read et al. 2002; 

Haboudane et al. 2004; Yu et al. 2012).  

 

Generation of Prescription Maps 

Vigour maps ordinarily are used to generate PMs useful for operating selectively over the vineyard addressing 

agronomic interventions aimed at maximizing productivity or, simply, at guaranteeing an homogeneous behaviour of 

the whole vineyard. From AINT05 and SINT05 vigour maps we derived PMs by clustering. The combined Minimum 

Distance/Hill-climbing method (Forgy 1965; Rubin 1967) was performed in SAGA GIS, determining, for each vigour 

map, three different vigour classes. For each cluster the correspondent NDVI mean value was calculated and used to 

operationally interpret it. We used a vigour distance coefficient (VD) to compare vigour performances of defined 

clusters (eq. 6) that farmers can easily translate into agronomic drivers. 

 

𝑉𝐷 =
(𝜇𝐿/𝐻−𝜇𝑀)

𝜇𝑀
 ∙ 100               [6] 
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where μM is the mean value calculated for the central cluster and μL/H the mean value of the most (H) and less (L) active 

clusters. 

 

Result and Discussions 

Four aerial and four satellite images were calibrated into at-the-ground reflectance value (𝜌𝜆) using respectively [2] and 

[3]. Correspondent NDVI and, consequently, vigour maps were calculated from the calibrated bands for all the dates 

and both the datasets (aerial and satellite) at the original GSD (aerial = 0.5 m, satellite = 30 m). Satellite imagery were 

therefore oversampled to a 15 m GSD by bi-linear interpolation in order to artificially increment the number of pixels 

representing vineyard. This operation is specifically achieved to improve spatial interpolation of pixels at a lower GSD 

(0.5 m). Aerial and satellite maps similarity was tested for all the above described image pairs generating results of 

Table 6.  

 

Table 6 Correlation coefficients. “I” = fully developed vine canopy period (end of June/beginning of July); “II”= grape harvest/pre 

harvest period (end of August/beginning of September). Ri meaning: see “Materials and methods” section. 

 R1 R2 R3 R4 R5 Maps similarity [%] 

I 2013 0.48 0.80 0.45 0.81 0.40 82.47 

II 2013 0.39 0.80 0.44 0.67 0.33 83.02 

I 2014 0.35 0.74 0.32 0.85 0.28 79.71 

II 2014 0.58 0.73 0.58 0.60 0.42 73.23 

 

R1 values show that, generally, the world seen with different GSD by the same sensor at the same time determines not 

too similar representation ranging between 0.35 and 0.58 depending on the composition of pixels at the moment of the 

flight, i.e. on the season. This is clearly the effect given by the mixed nature of pixels with higher GSD. R1 values have 

to be assumed as the reference upper thresholds of correlation we cannot overcome comparing a 30 m with a 0.5 m 

GSD acquisitions. Differently, R2 values are higher (between 0.73 and 0.80) and show that the spectral content of aerial 

and satellite images at the spatial resolution of satellite (15 m) are very similar. This confirms that, in spite of the time 

gap between aerial and satellite acquisitions, spectral content persists and can successfully be compared. R3 values 

suggest that the contribution of soil spectrum to signal in mixed pixels is significant and it weighs for about 50%. 

Focusing on R4 values (always > 0.6), we can definitely state that spectral information that can be obtained from 

satellite image well fits, at the vineyard scale, the ones you can get from aerial higher resolution images. In particular, at 

the start of season aerial and satellite information concerning plants vigour is higher. This suggests that local vegetation 

activity variations occurring along season in consequence of summer weather generate evidences at the end of season. 

Since these cannot be detected by satellite we can suppose that the effect of summer induced stresses operates locally at 
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plant scale. R4 values are the most important ones since they measure aerial- and satellite-derived vigour maps at the 

highest spatial resolution (0.5 m). This is the one we retain appropriate to investigate vineyard internal variability 

looking for clusters of vegetative activity to base the extraction of PMs. R5 absolute values (Table 6) could appear not 

so encouraging if read without the right interpretative key, given by R1, that is the maximum value R5 can reach. For 

this reasons we used the above mentioned similarity coefficient (SC) as final measure of consistency between aerial- 

and satellite-derived NDVI maps. Table 6 shows that SC is always above 73%, definitely confirming that L8 OLI 

images can detect the most of vineyard variability. And, in spite of variations induced locally (at single plant level) from 

the develop of weather along the growing season of grapevine, the general trend of vineyard performance is correctly 

detected by satellite imagery. Moreover, SC remains quite stable during the season, demonstrating that seasonality, at 

vineyard level, can be mapped reasonably with the same consistency in different moments of the season.  

Since R1 is assumed as reference maximum threshold to refer our similarity measures to, we explore its dependence 

from GSD. We tested 30 different GSD (from 1 to 30 m, with 1 meter step) comparing the original 0.5 GSD aerial 

images with their down-sampled versions (by Pearson’s correlation coefficient). Results are reported in Figure 5, for all 

the dates. Figure 5 shows that, as expected, R1 decreases by decreasing image spatial resolution (i.e. higher GSD), but 

its value, for the same GSD, depends on the acquired scene. In particular, we can say that the factor that strongly 

conditions this effect is the spatial frequency of mixed pixels. Since during grapevine growing season the ratio between 

vegetation and soil, within each pixel, varies according to the canopy evolution, we cannot model, once for all, this 

relationship. Nevertheless, SC values of Table 6 encourage us about the stability of approximation given by lower 

resolution sensors respect to the higher resolution ones. 

 

 

Fig. 5 R1 vs GSD. The role of GSD in conditioning consistency between images acquired at different spatial resolutions; trends refer 

to the four acquisition dates (“I and “II” like in Table 3). 
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Figure 6 shows final vigour maps. In general, “low frequency” spatial variations of vineyard vigour detected by satellite 

and aerial sensors are consistent. Aerial-derived maps, naturally, can detect even local variations that satellite is not able 

to appreciate. Nevertheless, consistency of spatial distribution of vigour is greatly satisfying.  

Successively, we calculated some synthetic statistics (Table 7) quantifying differences between aerial- and satellite-

derived vigour maps (respectively AINT05 and SINT05) before and after vigour bias modelling: vineyard vigour mean 

value (μNDVI), standard deviation (σNDVI) and coefficient of variation (σ*). 

 

 

Fig. 6 a) Satellite-derived vigour maps (SINT05). b) Aerial-derived vigour maps (AINT05). Map grey levels (reported in legend) 

correspond to the interpolated NDVI values (“I and “II”like in Table 3). 
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Table 7 Overall statistics (mean, standard deviation and coefficient of variation) of the compared vigour maps (satellite SINT05 vs 

aerial AINT05).  “I” = fully developed vine canopy period (end of June/beginning of July); “II”= grape harvest/pre harvest period 

(end of August/beginning of September). 

 
Aerial (A) Satellite (S) S-A Satellite Corrected (SC-A) SC-A 

μNDVI σNDVI σ* μNDVI σNDVI σ* Δμ μNDVI σNDVI σ* Δμ 

I 2013 0.560 0.054 0.096 0.562 0.069 0.123 + 0.002 0.560 0.042 0.075 + 0.000 

II 2013 0.381 0.076 0.199 0.551 0.074 0.134 + 0.170 0.376 0.050 0.133 - 0.005 

I 2014 0.689 0.045 0.065 0.545 0.064 0.117 - 0.144 0.690 0.037 0.054 + 0.001 

II 2014 0.666 0.091 0.137 0.501 0.051 0.102 - 0.165 0.661 0.055 0.083 -0.005 

 

Results given in Table 7 show that vigour mean value at vineyard level is significantly different if measured on satellite 

or aerial imagery, if compared with uncertainty reference values (from 0.02 to 0.08) suggested in literature (Nagol et al. 

2009; Borgogno-Mondino and Lessio 2015; Borgogno-Mondino et al. 2016). This was expected since the aerial-derived 

vigour maps are obtained by spatial interpolation after selection of vines canopy pixels, excluding any effect of 

background that, on the contrary, cannot be eliminated from satellite observations.  

Moreover, it is worth to remind that time distance between compared aerial and satellite acquisitions ranged from 0 up 

to 15 days making conditions not perfectly fitting.  

Nevertheless, modelling bias between SINT05 and AINT05 (Table 8 and Figure 7), it is possible to reduce such 

difference recovering consistency between the two datasets.  

In fact, by applying calibrated regression to satellite images, differences between vineyard mean vigour values (Δμ) can 

be significantly lowered below NDVI uncertainty. This fact encourages us more and more in maintaining that satellite 

imagery generates information consistent with the one derivable from higher resolution devices at vineyard level. 

Moreover, the high correlation and the effectiveness of the tested correction suggests that behind residual differences 

(before correction) between the two datasets there is some un-modelled effect related to atmospheric conditions and 

time delay between acquisitions. In operational conditions this modelling would not be possible, since aerial data to 

compare satellite ones with, are not available. Given this strong linear relationship we can assume that this bias, leading 

to different interpretation of final PMs, could be minimized and effectively absorbed during calibration of eventual 

regression models linking spectral indices to ground observations of biophysical parameters. In other words, we can be 

sure that spatial pattern of vigour from satellite or aerial datasets is consistent, while its strength, being significantly 

different, could bring to different results. 
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Fig. 7 (a) Scatterplots relating vigour values from satellite (x axis) and aerial (y axis) for the compared pairs of images. (b) 

Cumulative frequency distributions (y axis) of vigour differences (x axis) between aerial and satellite vigour values before and after 

bias modelling (“I and “II” like in Table 3). 

Table 8 Correlation coefficients and linear regression parameters used to model vigour bias for the aerial and satellite tested image 

pairs (“I and “II” like in Table 3). 

 
I 2013 II 2013 I 2014 II 2014 

R4 0.81 0.67 0.85 0.60 

a 0.6089 0.6760 0.5665 1.0923 

b 0.2182 0.0036 0.3817 0.1130 

 

PMs for both aerial and satellite vigour maps were obtained by cluster analysis achieved by Minimum Distance/Hill-

climbing algorithm (SAGA GIS). As far as satellite maps clustering is concerned we run it both for corrected and not-

corrected vigour maps, obtaining (as expected) the same result since bias modelling was linear. In all the cases we asked 

for 3 clusters that successively were labelled as: LOW, MEDIUM and HIGH vigour clusters. PMs are shown in Figure 

8. Interpretation of clusters was achieved by calculating correspondent NDVI class mean (μcluster) and standard deviation 

(σcluster). Results are reported in Table 9 for both aerial- and satellite-derived PMs before and after correction. A Vigour 

Difference coefficient (VD, see eq. 6) was defined to measure vigour distance between LOW and HIGH clusters respect 
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to the MEDIUM one. Results again demonstrates that a bias concerning vigour values from satellite is present and that, 

on the contrary, the spatial consistency is satisfying also at PMs level. After bias removing, VD from satellite-and aerial 

PMs generated more similar information. Our idea is that, thanks to its linearity, bias could be absorbed using few 

ground observations, in particular when a spatial modelling of physiological parameters based on spectral indices is 

expected. This step was not considered in this work.  

 

 

Fig. 8 Prescription maps. Satellite (a),  aerial (b). Three vigour clusters (LOW, MEDIUM, HIGH) were mapped by Minimum 

Distance/Hill-climbing method. (“I and “II”like in Table 3). 
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Table 9 Statistic describing vigour clusters: mean, standard deviation and VD are reported for aerial PMs (“I and “II” like in Table 

3). 

  
Aerial 

  
LOW MEDIUM HIGH 

VD 

(LOW) 

% 

VD 

(HIGH) 

% 

I 2013 

area [%] 35.4 36.8 27.8 

-10.99 11.51 μcluster 0.502 0.564 0.629 

σcluster 0.021 0.018 0.023 

II 2013 

area [%] 19.8 45.4 34.8 

-29.19 22.52 μcluster 0.264 0.373 0.457 

σcluster 0.038 0.026 0.035 

I 2014 

area [%] 27.2 33.7 39.1 

-8.00 6.88 μcluster 0.630 0.684 0.731 

σcluster 0.024 0.016 0.015 

II 2014 

area [%] 27.1 32.9 40.0 

-17.07 14.75 μcluster 0.545 0.658 0.755 

σcluster 0.038 0.031 0.033 

 

Table 10 Statistics describing vigour clusters: mean, standard deviation and VD are reported for satellite PMs before and after bias 

removing (“I and “II”like in Table 3). 

  
Satellite Satellite corrected 

  
LOW MEDIUM HIGH 

VD 

(Low) 

% 

VD 

(High) 

% 

LOW MEDIUM HIGH 

VD 

(LOW) 

% 

VD 

(HIGH) 

% 

I 2013 

area [%] 30.6 49.0 20.3 

-13.90 18.32 

30.6 49.0 20.3 

-8.54 11.21 μcluster 0.487 0.565 0.669 0.514 0.562 0.625 

σcluster 0.024 0.025 0.035 0.015 0.015 0.021 

II 2013 

area [%] 18.9 46.1 35.0 

-19.27 15.89 

18.9 46.1 35.0 

-19.24 15.72 μcluster 0.436 0.540 0.626 0.298 0.369 0.427 

σcluster 0.033 0.025 0.034 0.022 0.017 0.023 

I 2014 

area [%] 24.2 50.3 25.5 

-16.03 15.22 

24.2 50.3 25.5 

-7.25 6.81 μcluster 0.458 0.545 0.628 0.640 0.690 0.737 

σcluster 0.025 0.022 0.026 0.014 0.012 0.015 

II 2014 

area [%] 25.2 40.5 34.3 

-13.33 11.44 

25.2 40.5 34.3 

-11.09 9.42 μcluster 0.432 0.499 0.556 0.585 0.658 0.720 

σcluster 0.023 0.017 0.017 0.025 0.019 0.019 

 

Looking at the spatial size of clusters, according to Tables 7 and 8, the following features can be observed: a) in satellite 

derived PMs MEDIUM cluster area is always higher respect to the aerial correspondent one; b) the highest differences 

concern area size of HIGH clusters that, in general, satellite tends to underestimate (up to 14 %); c) size of clusters of 

the same type is more consistent at the end of season; d) in general, aerial PMs can map smaller parts of vineyard 

where, probably, vigour maxima and minima locally occur; e) cluster geometry does not change in satellite PMs 

operating with bias removed-vigour maps or with the original ones. 
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Focusing on the strength of vigour of clusters (i.e. VD values), consistency of aerial- and satellite-derived PMs is not so 

satisfying if no bias modeling is performed. First impression is that these differences can lead to very different 

considerations concerning management of agronomic corrective interventions over the vineyard. Bias removing reduce 

these differences, but remaining ones are still significant especially at the end of the growing season.  

Further investigations could be addressed, in future, to evaluate if and how (as we hypothesize) few ground 

observations could help interpretation of both aerial and satellite PMs. This will lead to improve reliability of 

calibration of those corrective treatments aimed at making vineyard performance as much homogeneous as possible. 

 

Conclusions 

In this work we tested consistency and reliability of satellite-derived PMs respect to those that can be obtained by aerial 

imagery. Test design considered a vineyard of Moscato Reale sited in Apulia (South-Eastern Italy) and two growing 

seasons (2013 and 2014). Comparisons concerned Landsat 8 OLI images and aerial datasets from airborne RedLake 

MS4100 multispectral camera. We firstly investigate the role of spatial resolution in radiometric features of data and, in 

particular, of NDVI maps and consequently of vigour maps. We first measured the maximum expected correlation (R) 

between satellite- and aerial-derived spectral index maps. We found that without any pixel selection and spatial 

interpolation correlation ranges between 0.35 and 0.60 depending on the degree of heterogeneity of the observed 

surfaces. We also found that this result can be improved by operating a selection of those pixels representing vines 

canopy in aerial imagery and spatially interpolating them. Correlation coefficient concerning aerial vs. satellite vigour 

maps can be improved up to 0.85 (minimum 0.60), suggesting an excellent capability of satellite data to approximate 

aerial ones. 

Using remote sensing to monitor vineyard response to agro-environmental factors in terms of vigour, with special 

regard to the intra-vineyard variability, has great interest for growers when reliable information and moderate costs are 

provided. In both the years of the present study, satellite-derived vigour maps were quite consistent with aerial-derived 

ones in the sample vineyard, especially concerning spatial distribution of vigour differences. The consistence of aerial-

derived vigour maps with several ground observed grapevine physiological, reproductive and qualitative indices was 

tested in a previous study (de Palma et al. 2016), showing some good correlations. The possibility to adopt satellite 

images available for free, as a start point for obtaining reliable vigour maps, encourages the adoption of such 

technological approach in precision farming. Nevertheless, this study showed that the radiometric concerns affecting 

data processing (image calibration, atmospheric correction and spatial resolution of datasets) are not negligible aspects 

for a reliable and repeatable operational approach to remote sensing derived information for agricultural purposes. We 

found that the weakest point is the quantitative interpretation of mapped vigour that changes according to datasets and 
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time of acquisition. Effectiveness of bias modelling in satellite vigour maps, that was possible in our study since coeval 

aerial acquisitions were available, supports the idea that, only partially the quantitative interpretation of maps depends 

on systematic factors (e.g lightning conditions, background effects, etc.). Some others could not be directly modelled by 

relative comparisons between data, but probably require other auxiliary information from the field. We strongly believe 

that some few ground observations concerning directly NDVI measures or some other strictly related parameters (e.g 

LAI, LCC, etc.) are always desirable to calibrate, time to time, vigour maps from remote sensing systems. Moreover, 

agronomic interpretation of maps has to heavily rely on farmers experience that has to be intended as one of the main 

factors in the remote sensing application to the agronomic compartment.  
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