

This is a pre print version of the following article:

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Increased hepatic glucose production and insulin resistance in subjects with non-alcoholic fatty liver disease is associated to increased plasma concentrations of glucogenic amino acids

Original Citation:	
Availability: This version is available http://hdl.handle.net/2318/1631995	since 2017-04-13T10:20:22Z
Terms of use:	
Open Access Anyone can freely access the full text of works made available under a Creative Commons license can be used according to t of all other works requires consent of the right holder (author protection by the applicable law.	he terms and conditions of said license. Use

(Article begins on next page)

Increased hepatic glucose production and insulin resistance in subjects with NAFLD is associated to increased plasma concentrations of glucogenic amino acids

Melania Gaggini¹, Fabrizia Carli¹, Chiara Rosso², Veronica Della Latta¹, Demetrio Ciociaro¹, Milena Marietti², Emma Buzzigoli¹, Maria L. Abate², Roberto Gambino², Maurizio Cassader², Antonina Smedile², Elisabetta Bugianesi², Amalia Gastaldelli^{*}

¹Cardio-metabolic Risk Laboratory, Institute of Clinical Physiology, CNR, Pisa, ²Division of Gastroenterology and Hepatology and Lab. of Diabetology, Dept. of Medical Sciences, University Of Torino, Torino, Italy

Submitting author's email: amalia.gastaldelli@ifc.cnr.it

 Young Investigator Bursary
bo you want to apply for a Young Investigator Bursary?: No Young Investigator Award 2017
br>Do you want to apply to the YI Award?: No

Background and Aims: The liver plays a central role in the regulation of glucose metabolism, being the major site of endogenous glucose production (EGP) during fasting and of glucose storage (as glycogen) during postprandial state. NAFLD subjects have increased insulin resistance (IR), especially in the liver (Hep-IR) and are at higher risk of hyperglycemia and type 2 diabetes (T2DM). However, the pathophysiological mechanisms for increased EGP and Hep-IR are still not known. Since both amino-acids and lipids contributes through gluconeogenesis to EGP, the goal was to evaluate if concentrations of glucogenic amino-acids (glutamate, alanine, branched chain amino acids (BCAA), and aromatic amino acids (AAA)) were increased and associated with EGP and Hep-IR in lean (ie without the confounding presence of obesity) non diabetic NAFLD.

Methods: We studied 44 non diabetic NAFLD subjects with liver biopsy (29 non-Obese, NAFLD-NO and 15 Obese NAFLD-Ob) and 20 non-obese controls (CT). We measured fasting EGP (by tracer infusions), plasma amino acid and free fatty acid (FFA) concentrations by GCMS and calculated Hep-IR (EGPxInsulin), HOMA and Adipo-IR (FFAxInsulin). Non-normally distributed variable were In-transformed.

Results: From CT to NAFLD-NO to NAFLD-Ob we observed the increase in EGP (584 ± 44 to 710 ± 23 to 839 ± 40 umol/min, p<0.0002) and Hep-IR (52 ± 6 to 96 ± 6 to 166 ± 23 umol/kg/min x mU/l, p<0.001). Both EGP and In(Hep-IR) increased proportionally to In(ALT) (R=0.47 and R=0.55, p<0.0005), In(AST) (R=0.39 and R=0.48, p<0.003), and degree of fibrosis (R= 0.55 and R=0.44, p<0.001). EGP correlated positively with In(BCAA) (R= 0.35, p<0.009), In (AAA) (R=0.48, p<0.0002), and In(glutamate) (R=0.29, p<0.03); In(Hep-IR) with In (AAA) (R=0.33, p<0.01), and In(alanine) (R=0.29 p<0.03). Fibrosis score was positively correlated to In(AAA) (R=0.34, p<0.005), In(glutamate) (R=0.38, p<0.001), In(BCAA) (R=0.30, p<0.01), In(alanine) (R=0.29, p<0.02).

Conclusions: Higher glucogenic amino-acid concentrations observed in NAFLD are positively associated to increased EGP, Hep-IR and fibrosis score and might explain, at least in part, the increased risk of hyperglycemia and T2DM observed in NAFLD.

Disclosure of Interest: None Declared