
22 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Alpha-Enolase (ENO1), a potential target in novel immunotherapies

Published version:

DOI:10.2741/4526

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1632372 since 2017-05-16T11:22:33Z



	

	

	

	

This	is	an	author	version	of	the	contribution	published	on:	
Questa	è	la	versione	dell’autore	dell’opera	in:	

	Frontiers	Biosciences.	2017	
	ovvero	[Cappello	P.,	1;22,	Front	Biosci,	2017,	pagg.944-959]	



Alpha-Enolase	(ENO1),	a	potential	target	in	novel	immunotherapies	

	

Paola	Cappello1,2,3,	Moitza	Principe1,3,	Sara	Bulfamante1,3,	Francesco	Novelli1,2,3,4	

	

1Department	 of	Molecular	 Biotechnology	 and	 Health	 Sciences,	 University	 of	 Turin,	 Turin,	 10126	 Italy,	 2Molecular	 Biotechnology	
Center,	 University	 of	 Turin,	 Turin,	 10126	 Italy,	 3Center	 for	 Experimental	 Research	 and	 Medical	 Studies,	 4Immunogenetics	 and	
Transplantation	Biology	Service,	Azienda	Universitaria	Ospedaliera	Città	della	Salute	e	della	Scienza	di	Torino,	Torino	10126	Italy	

	

TABLE	OF	CONTENTS	

	

1.	Abstract	

2.	Introduction	

3.	Immune	response	to	TAA	in	cancer	patients	

4.	Role	of	ENO1	in	cancer	

4.1.	Metabolic	functions	of	ENO1	in	tumors	

4.1.1.	Potential	approaches	to	target	the	metabolic	function	of	ENO1	

4.2.	Pro-invasive	function	of	ENO1	

4.2.1.	Potential	approaches	to	target	the	pro-invasive	function	of	ENO1	

5.	Anti-ENO1	vaccine	and	mechanisms	of	protection	

6.	Conclusions	

7.	Acknowledgements	

8.	References	

	

1.	ABSTRACT		

	

Alpha-enolase	(ENO1)	is	a	metabolic	enzyme	involved	in	the	synthesis	of	pyruvate.	It	also	acts	as	a	plasminogen	receptor	
and	mediates	the	activation	of	plasmin	and	extracellular	matrix	degradation.	In	tumor	cells,	ENO1	is	up-regulated	and	supports	the	
Warburg	effect;	it	is	expressed	at	the	cell	surface,	where	it	promotes	cancer	invasion,	and	is	subjected	to	a	specific	array	of	post-
translational	 modifications,	 namely	 acetylation,	 methylation	 and	 phosphorylation.	 ENO1	 overexpression	 and	 post-translational	
modifications	could	be	of	diagnostic	and	prognostic	value	in	many	cancer	types.	Information	on	the	biochemical,	proteomics	and	
immunological	 characterization	 of	 ENO1,	 and	 particularly	 its	 ability	 to	 trigger	 a	 strong	 specific	 humoral	 and	 cellular	 immune	
response,	make	 this	ubiquitous	protein	an	 interesting	 tumor	 target;	DNA	vaccination	with	ENO1	 in	preclinical	models	efficiently	
delays	the	development	of	very	aggressive	tumors	such	as	pancreatic	cancer.	This	review	aims	to	analyze	the	main	stages	by	which	
the	tumor	associated	antigen	(TAA)	ENO1	has	become	a	promising	target	that	opens	potential	avenues	for	cancer	immunotherapy.	

	

2. INTRODUCTION 
 



Tumor immunotherapy is mostly based on the overexpression of tumor associated antigens (TAAs) in cancer, compared to 
normal tissues and on the ability of the immune system to recognize them and to induce a specific immune response (1). In 1943, the 
pioneering study of Gross and colleagues proved that tumors induced by oncogenic viruses were rejected through the recognition of 
tumor antigens, and that chemically-induced tumors were able to immunize mice to recognize a second exposure of the same tumor 
cells (2). Further studies in the late 70s also demonstrated the presence of tumor antigens in a mouse teratocarcinoma cell line (3) and 
in spontaneous mouse tumors (4), indicating that tumor antigens were not strictly artifacts induced by chemical treatment and that 
they are also likely to be present in human tumors (5). As TAAs have been shown to be increasingly important as immunotherapy 
targets, many groups have looked for not yet characterized or more immunogenic new TAAs, by developing different approaches. 
Some strategies were based on the reactivity of cytotoxic T lymphocytes (CTL) isolated from cancer patients against the autologous 
tumor (6-9), while others focused on the antibody response of cancer patients.  

 
3. IMMUNE RESPONSE TO TUMOR ASSOCIATED ANTIGENS IN CANCER PATIENTS 

 
A methodology known as serological analysis of recombinant cDNA expression libraries (SEREX) (10) has been useful to 

identify several hundreds of TAAs (11, 12). A similar technique, exploiting the presence of antibodies in the sera of cancer patients, 
coupled with a proteomic approach, is SERological Proteome Analysis (SERPA), which allowed to identify TAAs in  many kind of 
tumors (13, 14), and in particular against pancreatic ductal adenocarcinoma (PDA), which is one of most aggressive solid tumors 
(15). Among these antigens, alpha-enolase (ENO1) was identified as a promising TAA due to its ability to induce a humoral and/or 
cellular immune response in cancer patients (16). Moreover, overexpression of ENO1 at mRNA and protein level was observed in 
different tumor types including brain, breast, cartilage, cervix, colon, eye, gastric, head and neck, kidney, leukemia, liver, lung, 
muscle, ovary, pancreas, prostate, skin and testis cancers (17-50) (Table 1). 

 
ENO1 has been shown to induce autoantibody production in many types of cancer patients. More in detail with the SERPA 

technique has been found the presence of anti-ENO1 antibodies in cholangiocarcinoma, breast cancer, head and neck cancer, 
leukemia, lung cancer, pancreatic cancer and melanoma patients (39, 42, 50-62). In late stage of lung and breast cancers, anti-ENO1 
autoantibodies have been found decreased suggesting that they may serve as a prognostic marker to monitor disease progression (63). 
An explanation could be that tumor cells reduce the circulating levels of anti-ENO1 antibodies through physical absorption and 
neutralization with surface-expressed and secreted ENO1, as suggested by in vivo experiment (64). Interestingly in lung cancer the 
higher presence of anti-ENO1 antibodies after surgery correlated with a lower hazard ratio and a better progression-free survival (64). 
A spontaneous immune responses to ENO1 has also manifested in patients with primary and metastatic melanomas (65) (Table 1). 

 
Circulating anti-ENO1 antibodies have been found in several autoimmune disease such as lupus nephritis (66, 67) and 

autoimmune retinopathy (68) as well as in cancer-associated retinopathy (69, 70). In breast cancer patients with associated 
retinopathy an increased incidence of autoantibodies in general has been observed (71, 72). Moreover, antibodies against citrullinated 
ENO1 epitopes were observed in rheumatoid arthritis patients (73, 74). The correlation between cancer and autoimmunity could be 
due to the production of immunogenic and pro-inflammatory stimuli by tumor cell death and to the resulting activation of the 
inflammatory process within the tumor microenvironment, which concurs to increase the presentation of self-antigens to the immune 
system (75). 

 
Almost two-thirds of PDA patients display an antibody response against ENO1, which is absent or present at a very low 

frequency in healthy donors, non-PDA cancer and chronic pancreatic patients (15) suggesting its diagnostic value in PDA (16). 
Autoantibodies from PDA patients specifically recognize two highly phosphorylated acid isoforms of ENO1 (identified as ENO1,2). 
ENO1,2 isoforms are up-regulated in PDA compared to normal pancreas and display phosphorylation of serine 419, which is absent 
in other tumor cell lines (57, 76). Importantly, the presence of autoantibodies against ENO1,2 discriminate PDA patients with normal 
levels of CA19.9. and complement the diagnostic performance of serum CA19.9., increasing the sensitivity from 62% to 95%. The 
presence of anti-ENO1,2 antibodies correlate with a longer progression-free survival and a better clinical outcome in PDA patients 
treated with standard gemcitabine-based chemotherapy (57). In general, phosphorylation of a protein is associated with a higher 
affinity of its peptides for Major Histocompatibility Complex (MHC) molecules (77), suggesting that peptides from phosphorylated 
ENO1,2 could be better or more frequently presented by specific MHC complex to T cells. The detection of specific autoantibodies 
for phosphorylated isoforms of ENO1 indeed correlates with a higher frequency of the allele HLA-DRB1*8 among PDA patients. 
Furthermore, repeated in vitro stimulation of peripheral blood mononuclear cells (PBMC) from HLA-DRB1*8 healthy subjects with 
phosphorylated ENO1 peptide (predicted by a bioinformatics algorithm) elicits a significant CD4+ T cell proliferative response 
compared to the unphosphorylated ENO1 peptide (78). An ENO1 natural antigenic HLA-DRB1*8-restricted peptide from a 
squamous cell carcinoma cell line (OSC-20), which is specifically recognized by the CD4 cytotoxic T cell line TcOSC-20 has been 
also identified (79). Many TAAs stimulate an integrated humoral and cellular response by activating both T and B cells (16), and this 
coordinate response is one of the main effector mechanism exploitable by tumor immunotherapy. 

 
To date, a coordinate specific response to ENO1 has only been demonstrated in head and neck cancer (79, 80), melanoma 

(65) and pancreatic cancer patients (47, 81-83) (Table 1). PDA patients with anti-ENO1 circulating antibodies display peripheral T 
cells that secreted IFN-γ when they are activated in vitro with recombinant ENO1 (47). In vitro, ENO1 is also able to elicit specific 
proliferation and activation of T cells and differentiation of specific CTL from healthy donor PBMC. ENO1-specific CTL spare in 
vitro normal skin Human Leukocyte Antihen (HLA)-matched fibroblasts from killing, but induce the inhibition of HLA-matched 
PDA cells in vitro and in vivo (47). 

 
The response of T cells against ENO1 does not always lead to an effector function as, in some circumstances, ENO1-

specific T cells display a T regulatory (Treg) phenotype. The presence of ENO1-specific Treg cells in mice with ENO1-
overexpressed lung tumors has been demonstrated. In particular, Treg cells isolated from tumors suppressed the proliferation of 
ENO1-specific CD4+ T cells, and mice bearing ENO1-overexpressed tumors showed a reduced production of anti-ENO1 antibodies 



(64). These results indicate that the presence of anti-ENO1 antibodies correlates with the anti-tumor effector responses and that these 
are impaired by anti-ENO1 Treg cells (64). In an extensive ex vivo phenotypic characterization of PDA infiltrating-tumor T cells, it 
has been found a statistically significant increase in the percentage of ENO1-specific Treg T cell clones (TCC) generated from T cells 
that infiltrate cancer tissue compared to TCC generated from T cells that infiltrate the healthy pancreatic tissue (82). These Treg TCC 
also inhibit the proliferation and cytotoxic activity of ENO1-specific effector Th1 and Th17, TCC generated from PDA tissue-
infiltrating T cells (82). Th1 and Th17 TCC from PDA tissue-infiltrating T cells have an anti-tumor effector function, and are 
increased in healthy pancreatic mucosa compared to PDA tissue (82), suggesting that recruitment of anti-tumor Th17 cells to the 
tumor site is impaired by the immunosuppressive microenvironment, in which Treg cells play an important role (84-86). The 
presence of ENO1-specific T cells in the peripheral blood of many PDA patients, is triggered by in vitro re-stimulation with 
recombinant ENO1. Moreover, ENO1-specific TCC generated from PDA patient PBMC display a more pronounced Th1 than Treg 
phenotype, as observed in the tumor (83). These data suggest that although the recruitment of ENO1-specific T cells from peripheral 
blood to the tumor is repressed by many immunosuppressive mechanisms (83), their presence in peripheral blood is relevant to 
prevent metastasis through the removal of cancer-circulating cells (87, 88). Indeed PDA patients with a higher number of ENO-
specific TCC from PBMC show significantly longer survival, underlying the importance of ENO1-specific response to improve PDA 
patient anti-tumor immunity (83). 

 
4.	ROLE	OF	ENO1	IN	CANCER	

	

ENO1	is	a	multi-functional	protein,	which	mainly	acts	as	an	enzyme	and	a	plasminogen	receptor,	thus	playing	a	critical	role	
in	 cancer	 proliferation,	 metastasis	 and	 spreading	 (16,	 89).	 Its	 enzymatic	 function	 is	 carried	 out	 by	 the	 conversion	 reaction	 of	
dehydration	of	2-phospho-D-glycerate	to	phosphoenolpyruvate	 in	the	final	step	of	 the	glycolytic	pathway,	while	 in	tumors	ENO1	
implicated	in	the	maintenance	of	“aerobic	glycolysis”	(90).	At	the	surface	of	cancer	cells,	ENO1	acts	as	a	plasminogen	receptor	and,	
by	promoting	plasminogen	activation	into	plasmin,	a	serine-protease	involved	in	extracellular	matrix	degradation,	ENO1	favors	cell	
invasion	and	metastasis	(89,	91).	Due	to	ENO1	upregulation	in	several	tumors	and	the	correlation	with	shorter	overall	survival	 in	
cancer	patients	(16,	91),	several	groups	have	focused	on	the	study	of	the	perturbation	of	ENO1	expression	in	tumors.	

	

4.1.	Metabolic	functions	of	ENO1	in	tumors		

Reprogramming	 of	 metabolism	 is	 a	 well-known	mechanism	 carried	 out	 by	 cancer	 cells,	 which	 demand	 a	 high	 rate	 of	
glycolysis	to	satisfy	the	increasing	requirements	for	nucleotide,	lipid	and	protein	synthesis	and	to	maintain	rapid	proliferation	(92).	
Although	the	Tricarboxylic	Acid	(TCA)	cycle	and	Oxidative	Phosphorylation	(OXPHOS)	would	generate	more	ATP,	cancer	cells	tend	to	
utilize	the	less	efficient	method	of	glycolysis,	producing	large	quantities	of	pyruvate	and	lactate,	even	in	the	presence	of	abundant	
oxygen;	 this	phenomenon	 is	 known	as	 “aerobic	glycolysis”	or	 the	“Warburg	effect”	 (93).	 The	most	 relevant	data	 concerning	 the	
metabolic	 function	of	ENO1	 in	tumor	cells	are	related	to	 its	role	 in	maintaining	the	Warburg	effect;	 inhibition	of	ENO1	has	been	
shown	to	increase	reactive	oxygen	species	(ROS)	that	are	mainly	generated	through	the	sorbitol	and	NADPH	oxidase	pathways	(94).	
In	particular,	ENO1-silenced	cells	from	breast,	lung	and	pancreatic	cancers	display	increased	glucose	uptake	and	consequently	leads	
to	an	excess	of	intracellular	glucose,	which	is	forced	towards	alternative	pathways,	such	as	the	pentose	phosphate	pathway	(PPP)	
and	the	polyol	pathway	(PP),	with	a	consequent	decrease	in	lactate	levels	(94).	Similar	results	in	terms	of	inhibition	of	glycolysis	are	
obtained	 after	ENO1	 silencing	 in	 endometrial	 carcinoma	 cells	 (EC);	 the	mRNA	 level	 of	 lactate	 dehydrogenase	A	 (LDHA)	 and	 the	
protein	level	of	cell	glycolysis-associated	LDHA	is	decreased	in	ENO1-silenced	EC	as	well	as	the	amount	of	extruded	lactate	into	the	
media	(95).	These	metabolic	changes	increase	the	oxidative	stress	induced-autophagy,	the	fatty	acid	oxidation	and	the	amino	acid	
catabolism,	resulting	in	less	growth	and	senescent	phenotype	of	cancer	cells	(94).	Taken	together,	these	data	confirm	that	ENO1	is	
essential	 for	maintaining	tumor	metabolism	and	suggest	that	therapies	targeting	the	metabolic	function	of	ENO1	are	effective	 in	
blocking	tumor	progression.	

	

4.1.1.	Potential	approaches	for	targeting	the	metabolic	function	of	ENO1	

The	metabolic	switch	that	occurs	in	cancer	cells	may	provide	promising	novel	targets	for	cancer	therapy.	There	is	growing	
evidence	 to	 support	 the	 potential	 role	 of	many	 enzymes,	 transporters	 or	 transcription	 factors	 as	 suitable	 candidate	 targets	 for	
cancer	treatment	(96,	97).	In	particular,	there	are	at	least	four	different	approaches:	i)	inhibition	of	glycolytic	pathway	enzymes,	ii)	
inhibition	of	pentose	phosphate	pathway	enzymes,	iii)	promotion	of	the	OXPHOS	process	and	iv)	attenuation	of	HIF-1	activity	(97).	
In	the	glucose	metabolic	pathway	there	are	multiple	therapeutic	targets,	which	could	be	potential	targets	for	anti-cancer	strategies	
and	 offer	 promising	 clinical	 potential	 (98-103).	 Among	 this,	 the	 inhibition	 of	 a	 key	 glycolytic	 enzyme,	ENO1	might	 represent	 an	
interesting	 approach.	 Chemical	 enolase	 inhibitors	 are	 sodium	 fluoride	 (104),	D-tartonate	 and	 3-aminoenolpyruvate	 2-phosphate	
(102,	105),	but	none	of	these	are	appropriate	for	use	in	therapeutic	protocols.	The	translational	relevance	of	ENO1	targeting	was	



demonstrated	by	the	use	of	phosphonoacetohydroxamic	acid	(PhAH),	a	pan-enolase	transition-state	analogue	inhibitor	(106),	 for	
the	 treatment	 of	 glioblastoma	 (107),	 and	 recently	 for	 pancreatic,	 breast	 and	 lung	 cancers	 (94).	 PhAH	 inhibits	 enolase	 both	
enzymatic	activity	and	proliferation	in	cancer	cells	 (94,	107).	The	small	molecule,	named	“ENOblock”	(AP-III-a4),	which	is	the	first	
non-substrate	 analogue	 that	 directly	 binds	 to	 ENO1	 and	 inhibits	 its	 activity	 (108)	 decreases	 cancer	 cell	 viability	 under	 hypoxic	
conditions.	 Under	 normoxic	 conditions,	 ENOblock	 reduces	 cancer	 cell	 invasion/migration	 in	 vitro	 and	 in	 vivo	 without	 inducing	
cytotoxicity	and	synergizes	with	microtubule-destabilizing	drugs,	suggesting	that	this	ENO	inhibitor	is	suitable	for	biological	assays.	
In	tumors	such	as	Non-Hodgkin's	Lymphomas	(NHLs)	and	breast	cancer,	 inhibition	of	ENO1	decreased	tolerance	to	hypoxia	while	
increasing	sensitivity	to	radiation	therapy,	thus	indicating	that	ENO1	may	favor	chemoresistance	(109,	110).		

	

All	these	ENO1	inhibitors	are	very	attractive	candidate	compounds	for	pharmacokinetic	and	pharmacodynamic	studies	to	
assess	 their	 potential	 as	 anti-cancer	 drugs,	 but	 still	 require	 concerted	 efforts	 to	 develop	 suitable	 drugs	 for	 use	 in	 vivo	without	
affecting	normal	cells.	

	

4.2.	Pro-invasive	function	of	ENO1		

Overexpression	of	ENO1	has	been	correlated	with	size,	disease	stage,	metastasis	and	prognosis	for	many	tumors	(16,	91).	
The	pro-invasive	function	of	ENO1	 is	mainly	linked	to	its	role	as	a	plasminogen	receptor;	ENO1	 facilitates	the	binding	of	elevated	
concentrations	 of	 plasminogen	 which,	 after	 conversion	 into	 the	 serine	 protease	 plasmin,	 promotes	 extracellular	 matrix	 (ECM)	
degradation.	 At	 the	 cell	 surface,	 ENO1	 is	 part	 of	 a	 multi-protein	 complex	 including	 the	 uPA	 receptor	 (uPAR),	 integrins	 and	
cytoskeletal	proteins,	responsible	 for	adhesion,	migration	and	proliferation	(91),	while	 in	the	cytoplasm,	ENO1	 interacts	with	the	
cytoskeleton	to	promote	migration	of	tumor	cells	by	providing	ATP	(111,	112).	The	spreading	and	invasion	of	cancer	cells	in	vivo	is	
strictly	related	to	the	high	expression	of	ENO1.	ENO1	silencing	in	tumor	cells	not	only	reduces	glycolysis	but	also	migration	and	in	
vitro	 invasion,	as	well	as	 tumorigenesis	and	metastasis	 in	vivo	 (18,	48,	94,	95,	113),	mirroring	 the	different	 functions	of	ENO1	 in	
tumor	cells.	These	effects	are	mediated	by	 inactivation	of	PI3K/AKT	pathway	and	 its	downstream	signals	 including	glycolysis,	cell	
cycle	progression,	and	epithelial-mesenchymal	 transition	 (EMT)-associated	genes	 in	non-small	 cell	 lung	cancer	 (113),	glioma	 (18,	
113)	and	endometrial	cancer	(95).	

	

4.2.1.	Potential	approaches	for	targeting	the	pro-invasive	function	of	ENO1	

The	 prognostic	 value	 of	 high	 ENO1	 expression	 and	 its	 correlation	 with	 worse	 survival	 has	 been	 confirmed	 in	 several	
tumors	(18,	19,	25,	33,	34,	36,	37,	42,	57)	(Table	1).	In	parallel,	the	protective	role	of	anti-ENO1	antibodies	in	cancer	patients	has	
been	also	highlighted,	suggesting	that	their	use	in	cancer	therapy	could	represent	a	good	strategy.	

	

In	pancreatic	cancer	patients,	the	presence	of	anti-phosphorylated-ENO1	antibodies	correlates	with	a	longer	response	to	
therapy	 	 as	well	 as	 overall	 survival	 (57).	 By	 contrast,	 in	 the	 late-stage	 of	 disease	 in	 lung	 and	 breast	 cancer	 patients,	 there	 is	 a	
marked	decrease	 in	basal	 levels	 of	 anti-ENO1	 autoantibodies	 as	 a	 common	event,	which	 correlates	with	 a	better	prognosis	 and	
longer	survival	(63).	This	is	due	to	physical	absorption	and	neutralization	of	anti-ENO1	Ab	to	surface-expressed	and	secreted	ENO1,	
respectively	(64).	In	fact,	in	vivo	adoptive	transfer	of	anti-ENO1	specific	antibodies	to	mice	results	in	accumulation	of	antibodies	in	
subcutaneous	tumors	that	expressed	high	levels	of	ENO1,	and	a	consequent	reduction	of	free	circulating	anti-ENO1	antibodies.	In	
addition,	patients	who	underwent	surgery	display	an	increase	of	anti-ENO1	Ab,	a	 lower	hazard	ratio,	and	better	progression-free	
survival	 (64).	 In	 vivo	 adoptive	 transfer	 of	 anti-ENO1	 antibody	 in	 mice	 previously	 injected	 with	 tumor	 cells	 results	 in	 a	 strong	
inhibition	 of	 tumor	 metastasis	 in	 lungs	 and	 bone	 (43).	 A	 monoclonal	 antibody	 against	 ENO1	 blocks	 the	 interaction	 between	
plasminogen	and	ENO1,	which	leads	to	the	inhibition	of	in	vitro	and	in	vivo	migration	and	invasion	(48).	However,	targeting	of	the	
surface	 ENO1	 by	 the	 monoclonal	 antibody	 (mAb)	 did	 not	 affect	 in	 vitro	 cell	 proliferation	 (48).	 Of	 note,	 the	 in	 vivo	 passive	
immunotherapy	using	a	single	administration	of	Adeno-Associated	Virus	(AAV)-expressing	cDNA	coding	for	anti-ENO1	mAb	greatly	
reduces	tumor	spreading	in	the	lungs	of	immunosuppressed	mice	injected	with	PDA	cells,	to	a	much	greater	extent	than	soluble	IgG	
injected	twice	a	week	(48).	

	



To	define	 surface	molecules	 targetable	 by	 peptides	 to	 develop	 nanocarriers	 for	 specific	 delivery	 of	 chemotherapy	 into	
tumor	 cells,	 ENO1	 has	 been	 identified	 as	 a	 specific	 target	 of	 a	 12-mer	 peptide	 (114).	 An	 in	 vitro	 panning	 of	 a	 phage-displayed	
peptide	library	against	the	colorectal	cancer	cell	line	HCT116	identified	36	phages	displaying	peptides	capable	of	stronger	binding	
compared	 to	 the	 control	 phage.	 Of	 these,	 three	 phage	 clones	 were	 subsequently	 validated	 in	 vivo	 for	 the	 increased	 ability	 to	
accumulate	at	 the	 tumor	mass	 compared	 to	normal	organs	 such	as	brain,	 lungs	and	heart.	 These	 three	phage	 clones	are	highly	
specific	 for	 surface	 binding	 of	 different	 tumor	 cell	 lines	 as	 well	 as	 HCT116,	 such	 as	 A498	 (renal	 cell	 carcinoma),	 B16-F10	
(melanoma),	 H640	 (lung	 carcinoma),	 HTB-10	 (neuroepithelioma),	 MDA-MB-231	 (breast	 carcinoma),	 Mia-Pa-Ca2	 (pancreatic	
adenocarcinoma),	PC-3	 (prostatic	adenocarcinoma)	and	SKOV3	 (ovarian	carcinoma).	Two	phages	were	chosen	 for	 in	 vitro	 and	 in	
vivo	pre-clinical	studies	(114).	Synthetic	peptide	conjugates	were	incorporated	into	liposomes	filled	with	chemotherapeutic	drugs	
and	assessed	 for	 their	 in	 vitro	 and	 in	 vivo	 cytotoxic	ability	against	 colorectal	 cancer	 cell	 line.	One	peptide	 in	particular	was	very	
efficient	in	delivering	drugs	into	tumor	cells	and	decreasing	tumor	growth	compared	to	liposomes	filled	with	drugs	that	were	not	
covered	with	 peptide	 (114).	 The	 LC-MS/MS	 analysis	 of	 the	 sequences	 bound	 by	 this	 peptide	 revealed	ENO1	 as	 its	 target	 (114).	
Overall,	 these	data	 indicate	 that	 targeting	of	ENO1	 represents	a	potential	 strategy	 for	gene-based	 therapy,	 immunotherapy	and	
chemical	cancer	treatment.	

	

5.	ANTI-ENO1	VACCINE	AND	MECHANISMS	OF	PROTECTION		

	

Over	 the	 last	 decade,	 many	 scientists	 have	 invested	 great	 efforts	 in	 developing	 approaches	 for	 eliciting	 anti-tumor	
responses	by	priming	a	novel	or	boosting	an	existent	immune	response	against	tumor	cells.	These	have	included	tumor-targeting	
mAbs,	 oncolytic	 viruses,	 dendritic	 cell	 (DC)-based	 therapies,	 cytokines,	 immunomodulatory	 mAbs,	 pattern	 recognition	 receptor	
(PRR)	agonists,	peptides,	and	mRNA-	or	DNA-based	vaccines	(5,	115-122).	The	huge	amount	of	pre-clinical	and	clinical	results	led	to	
the	 approval	 of	 their	 use	 by	 the	 US	 Food	 and	 Drug	 Administration	 (FDA)	 agency	 and	 the	 European	 Medicines	 Agency	 as	
immunotherapy	in	cancer	patients.	The	great	clinical	success	of	immunotherapy	has	earned	the	title	"Breakthrough	of	the	Year"	in	
the	prestigious	Science	journal	(123).		

	

DNA-based	vaccines	may	represents	a	suitable	and	efficient	option	for	immunotherapy.	They	display	several	advantages	
in	that	they	are	stable,	do	not	contain	viral	proteins	that	could	down-regulate	the	immune	system	or	elicit	neutralizing	antibodies,	
and	are	safe,	as	several	studies	have	shown	that	mutations	arising	from	a	putative	integration	event	are	extremely	rare	(124).	On	
the	 other	 hand,	 DNA	 vaccination	 usually	 fails	 to	mount	 a	 strong	 immune	 response	 and	 requires	 additional	 adjuvant	 strategies.	
However,	 DNA	 fusion	 gene	 vaccine	 offers	 the	 opportunity	 to	 include	 different	 genes	 encoding	 a	 range	 of	 immunostimulatory	
molecules	or	short	hairpin	RNA	to	switch	off	suppressive	molecules,	either	into	the	vaccine	vector	or	by	a	separate	vector	(121).	A	
necked	plasmid,	pVax	vector,	approved	by	the	FDA	for	clinical	use,	was	used	to	express	full	length	human	ENO1	and	to	vaccinate	
mice	 that	had	been	genetically	 engineered	 to	develop	autochthonous	pancreatic	 adenocarcinoma	 (called	KC	and	KPC)	 (81).	 The	
identity	of	human	and	mouse	ENO1	is	up	to	95%	while	the	homology	is	up	to	99%,	and	some	CD8-specific	epitopes	that	are	shared	
between	human	HLA-A02	and	mouse	H-2b	molecule	tasks	were	also	found	(NetMHC	3.0.).	 In	this	setting,	KC	and	KPC	mice	were	
vaccinated	when	Pancreatic	Intraepithelial	Neoplasia	(PanINs)	lesions	were	already	present	and	received	a	total	of	three	and	four	
rounds	of	 immunization	every	3	and	2	weeks,	 respectively.	The	ENO1	 vaccine	 induces	a	 specific	 integrated	humoral	and	cellular	
response	that	efficiently	prolonged	mouse	survival	from	48	to	68	weeks	of	age	for	KC	mice,	and	from	29	to	35	weeks	of	age	for	KPC	
(81).		

	

There	are	several	protective	 immunological	mechanisms	 induced	by	the	ENO1	vaccine,	namely	high	 levels	of	anti-ENO1	
IgG,	activation	of	specific	Th1	and	Th17	cells,	as	well	a	large	recruitment	of	CD3	cells	into	the	tumor,	and	an	important	decrease	of	
circulating	myeloid-derived	 suppressor	 cells	 (MDSC)	 and	 both	 circulating	 and	 intra-tumoral	 Treg	 cells	 (125).	 Notably,	 the	 ENO1	
vaccine-induced	 IgG	 are	 able	 to	 mediate	 the	 complement-dependent	 cytotoxicity	 of	 PDA	 cells,	 and	 it	 was	 assumed	 that	 the	
cytokines	released	by	activated	Th1/Th17	cells	promoted	the	isotype	switching	necessary	to	activate	the	complement.	The	crucial	
role	 of	 anti-ENO1	 antibodies	 was	 confirmed	 by	 the	 observation	 that	 ENO1-vaccinated	mice	 showed	 B	 cells	 organized	 in	 dense	
aggregates	that	displayed	a	distinct	structure,	the	so-called	tertiary	lymphoid	tissue	(TLT),	which	was	not	found	in	normal	pancreas	
and	only	sporadically	in	PDA	of	untreated	mice	or	those	vaccinated	with	an	empty-vector	(126).	B	cells	organized	into	TLT,	namely	
CD20-TLT,	 are	 shown	 to	 correlate	with	 a	better	prognosis	 and	with	 a	 greater	 infiltration	of	 CD8+	 T	 cells	 in	 a	 cohort	 of	 104	PDA	
patients.	To	assess	the	role	of	tumor	infiltrating-CD20+	B	cells	(CD20-TIL)	compared	to	CD20-TLT,	mice	orthotopically	injected	with	



syngeneic	PDA	cells	were	depleted	of	B	cells	by	a	single	injection	of	an	anti-CD20	Ab.	No	TLT	is	observed	in	this	implantable	tumor	
model,	 probably	 because	 of	 the	 absence	 of	 a	 chronic	 inflammatory	 response,	 but	 CD20-TIL	 are	 dramatically	 reduced	 in	 those	
receiving	the	Ab.	The	anti-CD20	treatment	 induces	a	significant	 increase	 in	genes	related	to	T	and	NK	cell	 recruitment	as	well	as	
genes	involved	in	lymphoid	tissue	structure	development	and	CD8+	T	cell	differentiation	and	maintenance,	suggesting	a	dual	role	of	
B	cells	 in	PDA	progression	 (126).	ENO1-vaccinated	mice	not	only	 show	more	TLT	 than	control	mice	but	also	a	higher	number	of	
tumor-infiltrating	CD3	cells	but	not	Treg	cells	(81).	

	

Another	 effect	 elicited	 by	 the	 ENO1-vaccine	 is	 the	 reduction	 of	 MDSC.	 Due	 to	 the	 expression	 of	 ENO1	 in	 activated	
monocytes,	its	presence	on	the	surface	of	both	human	and	mouse	MDSC	has	been	assessed.	In	PDA	patients,	myeloid	cells	express	
higher	 levels	of	ENO1	 and	 this	was	 further	 increased	by	 LPS	 stimulation,	 as	observed	on	MDSC	purified	 from	spleens	of	 tumor-
bearing	mice	 (127).	An	anti-ENO1	mAb	 is	able	 to	 limit	MDSC	adhesion	and	migration	on	and	through	a	monolayer	of	pancreatic	
endothelial	 cells,	 respectively.	 In	 addition,	 the	 anti-ENO1	 Ab	 reduces	 the	 in	 vivo	 migration	 of	 MDSC	 from	 the	 footpad	 to	 the	
draining	 lymph	 node.	 Antibodies	 induced	 by	 the	 ENO1-vaccine	 also	 limit	 the	 infiltration	 of	 MDSC	 into	 the	 tumor	 area	 of	 an	
orthotopic	 transplantable	model	 of	 PDA	 (127).	 However,	 the	 in	 vitro	 targeting	 of	 surface	 ENO1	 on	MDSC	 does	 not	 affect	 their	
suppressive	function	in	terms	of	T	cell	proliferation,	although	T	cells	co-cultured	with	ENO1-targeted	MDSC	secrete	much	more	IFN-
γ	and	IL17	and	less	IL10	and	TGF-b	compared	to	those	co-cultured	with	MDSC	treated	with	a	control	Ab	(127).	ENO1-targeting	does	

not	 affect	 co-stimulatory	 molecule	 expression	 on	MDSC,	 with	 the	 exception	 of	 CD80	 expression,	 which	 is	 up-regulated,	 but	 it	
decreases	arginase	activity	compared	to	that	of	control	MDSC	(127).	Overall,	these	results	demonstrate	that	the	ENO1-DNA	vaccine	
elicits	an	integrated	humoral	and	cellular	response	to	counteract	tumor	growth,	which	not	only	affects	the	tumor	cells	themselves	
but	also	 stromal	and	 reactive	cells.	Unfortunately,	 these	effects	don’t	 last	beyond	6	months	after	 immunization,	when	 the	mice	
died;	therefore	the	aim	is	to	combine	the	vaccination	with	other	strategies	to	enhance	the	specific	anti-ENO1	integrated	response.	
The	ENO1-DNA	vaccine,	however,	is	very	promising	as	it	efficiently	decreased	the	tumor	size	in	KC	mice,	which	were	therapeutically	
vaccinated	when	adenocarcinomas	were	well	established,	at	8	months	of	age	(81).	

	

6.	CONCLUSIONS	

	

The	evidence	obtained	so	far	demonstrate	the	role	of	ENO1	in	tumor	progression	and	the	concept	that	ENO1	vaccination	
effectively	 induces	an	 integrated	 immune	 response,	which	 is	 able	 to	 significantly	enhance	 the	 survival	of	 genetically-engineered	
mice	 (GEM)	 that	 spontaneously	 develop	 PDA.	 In	 addition,	 blocking	 ENO1	 by	 a	 specific	 monoclonal	 antibody,	 or	 its	 functional	
silencing	 by	 chemical	 inhibitors	 could	 complement	 and	 integrate	 the	 mechanisms	 that	 are	 employed,	 to	 target	 ENO1	 and	
counteract	 cancer	 progression	 and	 spreading.	Metabolic	 inhibition	of	ENO1	 blocks	 tumor	 cell	 proliferation	 and	 induces	 changes	
that	 can	be	perturbed	 to	definitively	 kill	 cells	 (Figure	1).	 Surface	blockade	of	ENO1	 by	mAb,	 instead,	may	efficiently	 inhibit	 PDA	
spreading	 and	 accumulation	of	myeloid	 cells	 in	 the	primary	 tumor,	which	 can	 suppress	 the	 anti-tumor	 response	 (Figure	1).	 The	
approach	of	 targeting	metabolic	and	 immunological	 functions	 in	 tumors	 could	be	 further	 strengthened	by	combining	 them	with	
pharmacological	inhibitors	of	immune	suppressor	cells.	For	example,	recent	data	have	shown	that	targeting	of	phosphoinositide-3-	
kinase	(PI3K)	γ	and	δ	isoforms	is	an	effective	way	to	unleash	the	suppressive	activity	of	tumor-associated	macrophages	(TAM)	and	

regulatory	T	cells,	 respectively,	 thus	reinforcing	the	anticancer	 immune	response	 (128-130).	 Inhibitory	targeting	of	PI3Kγ,	 in	 fact,	
stimulates	anti-tumor	 immune	 responses,	 leading	 to	 improved	survival	and	 responsiveness	 to	 standard-of-care	chemotherapy	 in	
animal	models	of	PDA.	PI3Kγ		 selectively	drives	 immunosuppressive	 transcriptional	programming	 in	macrophages,	which	 inhibits	

adaptive	 immune	 responses	and	promotes	 tumor	 cell	 invasion	and	desmoplasia	 in	PDA.	 Inhibition	of	PI3Kγ	 in	PDA-bearing	mice	

reprograms	 TAM	 to	 stimulate	 CD8+	 T	 cell-mediated	 tumor	 suppression	 and	 to	 inhibit	 tumor	 cell	 invasion,	 metastasis	 and	
desmoplasia	(130).	These	results	suggest	that	the	combination	of	the	ENO1-DNA	vaccine	and	the	PI3Kγ	inhibitor	enhances	the	anti-

tumor	response.	Studies	are	currently	ongoing	to	verify	the	hypothesis	that	the	targeting	of	myeloid	suppressive	cells,	via	genetic	
or	pharmacological	PI3Kγ	 inhibition	synergizes	with	ENO1-DNA	vaccination	by	 inducing	 the	sustained	 immune	response	 that	can	
effectively	counteract	PDA.	Of	note,	all	these	approaches	can	be	easily	translated	into	clinical	practice	as	most	inhibitors,	as	well	as	
the	AVV	vectors,	are	already	used	in	the	clinic,	and	the	pVAX	used	for	the	DNA	vaccination	has	been	approved	by	the	FDA.		
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Table	1.	ENO1	expression	and	the	immune	response	in	cancers	and	any	clinical	correlation	

Cancer	 ENO1	overexpression	 Immune	response	 Clinical	correlation	 References	

Brain	 mRNA	 	 DP	 (17,	18)	

Breast	 mRNA,	protein	 Antibody	 DP,	DFS,	M	 (19-24,52,	63,	71)	

Cartilage	 Protein	 	 DFS	 (25)	



Cervix	 mRNA,	protein	 	 	 (17,	26,	27)	

Cholangiocarcinoma	 	 Antibody	 	 (51)	

Colon	 mRNA,	protein	 	 	 (17,	28,	29)	

Eye	 mRNA	 	 	 (17)	

Gastric	 mRNA,	protein	 	 	 (17,	30,	31)	

Head	and	neck	 mRNA,	protein	 Antibody,	T	cell	 OS,	PFS	 (32,	33,53,	54,	79,	80)	

Kidney	 mRNA,	protein	 	 OS,	DFS	 (17,	34)	

Leukemia	 Protein	 Antibody	 	 (35,55,	56)	

Liver	 mRNA,	protein	 	 M	 (17,	36,	37)	

Lung	 mRNA,	protein	 Antibody	 DP,	OS,	PFS,	M	 (17,	38-43,59-64,	70)	

Muscle	 mRNA	 	 	 (17)	

Ovary	 mRNA,	protein	 	 	 (17,	44)	

Pancreas	 mRNA,	protein	 Antibody,	T	cell	 OS,	PFS	 (17,	45-48,57,	78,	81)	

Prostate	 mRNA,	protein	 	 	 (17,	49)	

Skin	 mRNA	 Antibody,	T	cell	 	 (50,58,	65)	

Testis	 mRNA	 	 	 (17)	

DP:	disease	progression,	DFS:	disease-free	survival,	M:	malignancy,	OS:	overall	survival,	PFS:	progression-free	survival.	

	

Figure	1.	Cartoon	shows	multiple	 localizations	of	ENO1	 in	tumor	cells	 (yellow	square),	myeloid	cells	 (green	square)	and	potential	
effects	 of	 ENO1	 targeting	 on	 tumor	 (red	 and	 blue	 squares).	 Inhibition	 of	 cytoplasmic	 ENO1	 by	 chemical	 inhibitors	 leads	 to	
senescence	 and	 blocking	 of	 cell	 cycle	 (yellow	 square).	 ENO1	 targeting	 on	 cell	 surface	 of	myeloid	 cells	 inhibits	 their	 endothelial	
adhesion,	invasion	and	migration	(green	square)	and	modulates	their	restraining	functions.	Anti-ENO1antibodies	induced	by	ENO1-
DNA	 vaccine	 elicit	 complement-dependent	 cytotoxicity	 of	 tumor	 cells	 and	 together	 Th1/Th17	 cells	 significantly	 delay	 PDA	
progression	 (red	 square).	 Lastly,	 anti-ENO1	 antibodies	 impair	 PDA	 cell	 invasion	 and	 migration	 and	 ultimately	 metastasis	 (blue	
square).	Target	ENO1	with	mAb	could	have	a	multiple	effects.	Surface	blockade	of	ENO1	by	mAb	inhibits	PDA	cells	spreading	and	
prevents	the	migration	of	myeloid	cells	to	the	primary	tumor.	
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