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Abstract

Uncertainty evaluation for functional spatial prediction remains an open issue. Prediction of a curve at
an unmonitored location can be obtained using a functional kriging with external drift model that takes
into account the effect of exogenous variables (either scalar or functional). To evaluate the uncertainty of
a predicted curve, a semi-parametric bootstrap for spatially correlated data is adapted to functional data.
Confidence bands are obtained by ordering the bootstrapped predicted curves in two different ways according
to band depth and L2 distance. The proposed approach is illustrated on a well known data set of Canadian
temperature.
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1. Introduction
The use of geostatistical techniques for functional data was first addressed in the seminal paper by Goulard
& Voltz (1993), but it has received increasing interest over the last few years, motivated by the availability of
complex data sets, where data are collected over space and e.g. time or depth, giving rise to data that can be
considered as spatially dependent curves (Horváth & Kokoszka (2012)). With the aim of predicting a whole
curve at an unmonitored location, several authors have extended ordinary kriging to the case of functional
data, where the mean function is assumed to be constant (see e.g. Delicado et al. (2010), Giraldo et al.
(2011), Nerini et al. (2010)). A slightly more complex alternative that allows the mean function to depend
on longitude and latitude was considered by Caballero et al. (2013) and Menafoglio et al. (2013). Further,
Ignaccolo et al. (2014) proposed the so called functional kriging with external drift, that allows the mean
function to depend on scalar and/or functional exogenous variables.
When predicting a curve, it is important to provide as well a measure of its uncertainty; however, literature
concerning prediction uncertainty in the case of functional data is still very limited. An interesting approach
to this matter, given the lack of distribution functions, is to use resampling methods. Ferraty et al. (2010)
proposed the use of ‘wild bootstrapping’ for functional regression but with a scalar response, where the
bootstrap samples are obtained multiplying the scalar errors by iid random variables constrained to satisfy
certain properties. We propose a semi-parametric bootstrap approach for spatially correlated functional data
that allows to obtain uncertainty bands for a predicted curve, in the case of kriging with external drift with
functional response. We evaluate the performance of the proposed methodology on a well known data set.

2. Functional kriging with external drift (FKED)
Let Υs = {Ys(t); t ∈ T} be a functional random variable observed at location s ∈ D ⊆ Rd, whose realization
is a function of t ∈ T , where T is a compact subset of R. Assume that we observe a sample of curves Υsi ,
for si ∈ D, i = 1, . . . , n, that take values in a separable Hilbert space of square integrable functions. The set
{Υs, s ∈ D} constitutes a functional random field or a spatial functional process (Delicado et al. (2010)), that
can be non-stationary and whose elements are supposed to follow the model Υs = µs + εs. The term µs is
interpreted as a drift describing a spatial trend while εs represents a residual random field that is zero-mean,
second-order stationary and isotropic. At the generic site si, i = 1, . . . , n, and at point t, the model can be
rewritten as a functional concurrent linear model Ysi(t) = µsi(t) + εsi(t) with the drift

µsi(t) = α(t) +
∑
p

γp(t)Cp,i +
∑
q

βq(t)Xq,i(t) (1)
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where α(t) is a functional intercept, Cp,i is the p-th scalar (constant-in-time) covariate at site si, Xq,i is the
q-th functional covariate at site si, γp(t) and βq(t) are the covariate coefficients and εsi(t) represents the resid-
ual spatial functional process {εs(t), t ∈ T, s ∈ D} at the site si. Once the functional regression model (1) has
been fitted by means of a GAM representation (for details see Ignaccolo et al. (2014)), the functional residuals
esi(t) = Ysi(t)−µ̂si(t) can be used to predict the residual curve at an unmonitored site s0 via ordinary kriging
for functional data (Giraldo et al. (2011)), according to which ês0(t) =

∑n
i=1 λiesi(t), with kriging coefficients

λi ∈ R. More complex alternatives, where the kriging coefficients are not constant are available (Ignaccolo et
al. (2014)). The prediction at the unmonitored site s0 is obtained by adding up, as in the classical regression

kriging, the two terms, i.e. Ŷs0(t) = µ̂s0(t) + ês0(t), where µ̂s0(t) = α̂(t) +
∑
p γ̂p(t)Cp,0 +

∑
q β̂q(t)Xq,0(t)

depends on the covariate values Cp,0 and Xq,0(·) at the site s0.

3. Uncertainty evaluation
The following bootstrapping algorithm is an extension of the work by Iranpanah et al. (2011) to the func-
tional workframe. It allows to obtain uncertainty bands for a predicted curve Ŷs0(t) at an unmonitored site s0.

Algorithm

1. Estimate the drift µs following Model (1) and subtract it from the observed data to obtain the functional
residuals εsi(t) = Ysi(t)− µ̂si(t).

2. Estimate the residual covariance matrix Σ by means of the trace-semivariogram (Giraldo et al. (2011)),
estimated as:

υ̂(h) =
1

2 |N(h)|
∑

i,j∈N(h)

∫
T

(
εsi(t)− εsj (t)

)2
dt

where N(h) = {(si, sj) : ‖si − sj‖ = h}. Once estimated, the empirical trace-semivariogram provides
a cloud of points (hg, υ̂(hg)), g = 1, . . . , G to which a parametric model (e.g. exponential, spherical,
Matérn) can be fitted as in classical geostatistics. Decompose the estimated covariance matrix using its
Cholesky decomposition as Σ̂ = L̂L̂T and transform the functional residuals to make them (spatially
uncorrelated):

ζn×M = (ζ(s1), . . . , ζ(sn))
′

= L̂−1n×n (Yn×M − µ̂n×M ) . (2)

3. Generate B bootstrap samples ζ∗(s1), . . . , ζ∗(sn) from ζ(s1), . . . , ζ(sn) using the smoothed bootstrap
as suggested in Cuevas et al. (2006); here Fn, the empirical distribution function of {ζ(s1), . . . , ζ(sn)},
is replaced by a smooth version F̂n to avoid appearance of repeated measures. In practice a booststrap
sample ζ∗(s1), . . . , ζ∗(sn) from F̂n can be obtained as

ζ∗si(tj) = ζ0si(tj) + Zi(tj), j = 1, . . . ,M,

where ζ0(si) is drawn from Fn, (Z(t1), . . . , Z(tM )) ∼ MVN(0M , κΣζ), Σζ is the covariance matrix of
{ζ(t)} and κ is a smoothing parameter.

4. The final bootstrap sample Y ∗s1 , . . . , Y
∗
sB is obtained using an inverse transform:

Y ∗si(t) = µ̂si(t) + L̂ζ∗si(t).

The bootstrap samples are then fed into the FKED method to obtain B prediction curves at the unmonitored
location s0. The 2.5th and 97.5th quantiles of the distribution of these B curves will determine the upper
and lower limits of the uncertainty band for the predicted curve Ŷs0(t). To do so, the B curves need to be
ordered. There is not a unique way of ordering functional data; here we consider two ordering techniques:
band depth (Lopez-Pintado & Romo (2009)) and L2 distance between curves.
The band in R2 delimited by k = 2 curves is defined as:

B(yi1 , yi2) = {(t, y(t)) : t ∈ T,minr=1,2yir (t) ≤ y(t) ≤ maxr=1,2yir (t)} .
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The sample band depth (BD) of a curve y(t) can be calculated as

BDn,2(y) =

(
n
2

)−1 ∑
1≤i1<i2≤n

I {G(y) ⊆ B(yi1 , yi2)} .

i.e. the proportion of bands delimited by 2 curves containing the whole graph G(y) = {(t, y(t)) : t ∈ I} of
y(t). The bigger the band depth value, the more central the curve is. Band depth can be calculated for
bands delimited by more than two curves, but the order induced when k > 2 remains stable (Lopez-Pintado
& Romo (2009)), and using k = 2 is computationally more efficient. To avoid problems such as ties and
crossing over of the curves delimiting the band, that may happen for k = 2, a modified version is available;
the modified band depth (MBD) can be estimated as:

MBDn,2(y) =

(
n
2

)−1 ∑
1≤i1<i2≤n

λ ({t ∈ T : minr=i1,i2yr(t) ≤ y(t) ≤ maxr=i1,i2yr(t)})
λ (T )

where λ is the Lebesgue measure on T, with the difference that the MBD takes into account whether a
portion of the curve is in the band (for further details see Lopez-Pintado & Romo (2009)).
Alternatively, the curves can be ordered based on their L2 distance from the originally predicted curve Ŷs0(t)
(Cuevas et al. (2006)), where distance between two curves x and y is calculated as:

||x− y|| =
(∫

T

(x(t)− y(t))
2
dt

)1/2

. (3)

The lower/upper limits of a 95% confidence band (based on band depth) are obtained by taking the pointwise
(w.r.t. t) minimum/maximum of the 95% deepest curves (i.e. those closest to the center of the distribution).
On the other hand, the 95% confidence ball (based on L2 distance) is made of the 95% curves closest to the
original FKED predicted curve.

4. Canadian temperature data set
We illustrate our proposal for uncertainty evaluation on a well known data set, the Canadian temperature
data, that has been widely used in the functional data literature (see, for example, Ramsay & Silverman
(2006), Giraldo et al. (2010), Menafoglio et al. (2013), Scheipl et al. (2013)). The data set consists of daily
annual mean temperature collected at 35 meteorological stations in Canada’s Maritimes Provinces over the
period 1960-1994 (Figure 1). For further details on the dataset, the reader is referred to one of the references
above. Data were converted to functional observations through smoothing by using penalized cubic B-splines
with 120 basis functions and penalty parameter equal to zero. These values were chosen using functional
cross-validation. We have chosen five locations at random and used them as validation stations. These can
be seen in red in Figure 1(a). The FKED model, with longitude and latitude as covariates, was then fitted
to the remaining 30 stations and predicted temperature curves were obtained for the 5 validation stations.
For each of these sites, a bootstrap sample of predicted curves of size B = 1000 was obtained following the
algorithm illustrated in Section 3. Band depth was calculated using the modified version MBD. The resulting
prediction balls/bands are shown in Figure 2. The uncertainty bands are fairly narrow, as expected when
observing the small variability between curves in Figure 1(b). Overall, the two uncertainty measures seem
to agree well, although in some cases the confidence ball appears to be slightly narrower than the confidence
band. The bands appear to be wider for Station 1 than for the remaining stations, specially in winter,
suggesting greater uncertainty in that station. This may be due to the fact that this is an inland station,
while the other four validation stations are closer to the coast.

5. Conclusions and future work
Spatial functional analysis provides an interesting alternative to spatio-temporal modelling, allowing to pre-
dict a whole curve taking into account exogenous covariates and the underlying spatial structure. Here, we
propose a bootstrap approach to estimate uncertainty bands for a predicted curve has been proposed, and
its validity has been illustrated in a well known data set. We are currently running a simulation study to
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evaluate the performance of the method proposed. Numerical results will be presented at the conference.
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Figure 1: (a) Locations of the 35 meteorological stations in Canada’s Maritimes Provinces area
(validation stations numbered in red). (b) Temperature curves (raw data)
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Figure 2: Original data (black dots), FKED predicted curve (red line), 95% prediction ball (pink)
based on L2 distance and 95% prediction band (blue line) based on MBD for validation stations
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