
3756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Social Network De-Anonymization Under
Scale-Free User Relations

Carla-Fabiana Chiasserini, Senior Member, IEEE, Michele Garetto, Member, IEEE,
and Emilio Leonardi, Senior Member, IEEE

Abstract— We tackle the problem of user de-anonymization in
social networks characterized by scale-free relationships between
users. The network is modeled as a graph capturing the impact of
power-law node degree distribution, which is a fundamental and
quite common feature of social networks. Using this model, we
present a de-anonymization algorithm that exploits an initial set
of users, called seeds, that are known a priori. By employing the
bootstrap percolation theory and a novel graph slicing technique,
we develop a rigorous analysis of the proposed algorithm under
asymptotic conditions. Our analysis shows that large inhomo-
geneities in the node degree lead to a dramatic reduction in the
size of the seed set that is necessary to successfully identify all the
other users. We characterize this set size when seeds are properly
selected based on the node degree as well as when seeds are
uniformly distributed. We prove that, given n nodes, the number
of seeds required for network de-anonymization can be as small
as nε , for any small ε > 0. In addition, we discuss the complexity
of our de-anonymization algorithm and validate our results
through numerical experiments on a real social network graph.

Index Terms— Computer networks, online social networks,
user de-anonymization.

I. INTRODUCTION

THE INCREASING availability of always-on connectivity
on affordable portable devices, coupled with the prolif-

eration of services and online social platforms, has provided
unprecedented opportunities to interact and exchange informa-
tion among people. At the same time, electronic traces of our
communications, searches and mobility patterns, specifically
their collection and analysis by service providers and unin-
tended third parties, are posing serious treats to user privacy,
raising a number of well known and hotly debated issues
which have recently caused quite a stir in the media.

A distinctive feature of this trend is the uncontrolled pro-
liferation of different accounts/identities associated to each
individual: most of us have more than one mobile subscription,
more than one email address, and a plethora of accounts on
popular platforms such as Facebook, Twitter, LinkedIn, etc.

Manuscript received June 30, 2015; revised January 25, 2016; accepted
March 24, 2016; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor A. Wierman. Date of publication April 27, 2016; date of current version
December 15, 2016. Preliminary results were presented at the International
Conference on Computer Communications (INFOCOM) 2015.

C.-F. Chiasserini and E. Leonardi are with the Politecnico di Torino,
Turin 10129, Italy, and also with the Institute of Electronics, Computer and
Telecommunication Engineering of the National Research Council of Italy,
Turin 10129, Italy (e-mail: chiasserini@polito.it; emilio.leonardi@polito.it).

M. Garetto is with the University of Torino, Turin 10124, Italy (e-mail:
michele.garetto@unito.it).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. This consists of a 327-kB
PDF containing proofs.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2016.2553843

A specific issue that naturally arises in this context is
the identification of the different identities/accounts belong-
ing to the same individual. This problem, which has strong
implications with user privacy, is known in the scientific
literature as social network de-anonymization (or reconcilia-
tion). The two most frequently cited reasons why companies/
organizations are interested in network de-anonymization are
user profiling (for targeted advertising and marketing research)
and national security (i.e., the prevention of terrorism and other
forms of criminal activity).

It is fundamental to notice that privacy concerns related
to de-anonymization are very subjective: some people do not
care at all about providing “personally identifiable informa-
tion” (PII) in their service registrations, explicitly linking
their accounts “for-free”.1 As we will see, such users play
a fundamental role in network de-anonymization, acting as
“seeds” to identify other users. On the other extreme, some
people are totally obsessed by the idea of Big Brother spying
into their life and compiling tons of personal information on
all of us. Such users try to hide themselves behind anonymous
identities containing the minimum possible amount of personal
data and linkage information with other identities. In the worst
case (for the entity trying to de-anonymize) an identity consists
just of a random identifier (e.g., a code or label).2

One recent [1]–[4], dramatic discovery in the network
security field is the following: user privacy (in terms of
anonymity) cannot be guaranteed by just resorting to anony-
mous identifiers. In particular, the identities used by a user
across different systems can be matched together by using
only the network structure of the communications made
by users (i.e., electronic traces of who has come in con-
tact with whom). More formally, considering just the sim-
ple case of two systems, the (disordered) vertices of two
social network graphs, whose edges represent the observed
contacts among users in the two systems, can be per-
fectly matched under very mild conditions on the graph
structures.

In particular, as anticipated, the complexity of the network
de-anonymization problem can be greatly reduced by having
an initial (even small) number of user identifiers already
correctly matched (the seeds). Such initial side information is

1Many systems and applications strongly encourage (or even enforce) users
to provide information such as email address/cell-phone number as part
of account creation and maintenance, or for the purpose of backup and
synchronization with cloud services.

2In our work, we will assume that each random identifier is at least
guaranteed to be uniquely and statically assigned to a single user of a
system/application.

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3757

often available, thanks to users who have explicitly linked their
accounts, to the presence of compromised or fake users, as
well as other forms of external information providing total or
partial correlations among identities. Starting from the seeds,
one can design clever algorithms to progressively expand the
set of matched user identifiers, incurring only negligible error
probability [5].

In previous work [6] the number of seeds that allow almost
perfect de-anonymization of two networks has been character-
ized for the case of Erdös–Rényi random graphs, adopting a
convenient probabilistic model to generate the two graphs from
the (unknown) graph describing the complete set of human
relationships among people. By reducing the graph matching
problem to a bootstrap percolation problem, the authors of [6]
identify a phase transition in the number of seeds required by
their algorithm. In particular, in the case of a sparse network
with n nodes and average node degree Θ(logn), the number
of seeds that are provably sufficient to match all nodes scales
as Θ(n

log4/3 n
), which is only a poly-log factor less than n.

One obvious limitation of the results in [6] is that they
apply only to Erdös–Rényi random graphs, which are a poor
representation of real social networks (see Section IX for a
more detailed discussion of previous work).

In this work we address the problem of user
de-anonymization in the case of graphs that account for
a relevant characteristic of social networks, namely, scale-free
relationships between users. Our main contributions are as
follows.

• We consider the underlying social network to be rep-
resented by a graph with power-law node degree,
specifically, a Chung-Lu random graph [7] with constant
average node degree. We then propose a novel algorithm
for graph matching, hereinafter referred to as degree-
driven graph matching (DDM), and show that DDM
successfully matches a large fraction of the nodes.

• Similarly to [6], we are interested in the scaling law
of the number of seeds that are needed to make the
nodes’ identification process ‘percolate’, i.e., to propagate
over the entire set of nodes. However, our results mark
a striking difference with respect to those obtained for
Erdös–Rényi graphs. In particular, when initial seeds are
uniformly distributed among the vertices, we show that
order of n

1
2+ε seeds (for an an arbitrarily small ε) are

sufficient to match almost all vertices, even in the case
of constant average node degree.

• We obtain even more remarkable results when initial
seeds can be chosen (e.g., by the attacker) considering
their degree: in this case, as few as nε seeds are sufficient.
The implications of these results are clear: scale-free
social networks can be surprisingly simple to match
(i.e., de-anonymize), especially when initial seeds are
properly selected among the population.

• We empirically validate our findings running the DDM
algorithm on a realistic data set (e.g., a Facebook
snapshot). This validation is important because our
model captures, in isolation, only the impact of power-
law degree, without jointly accounting for other salient
features of real social networks such as clustering,

community structure and so on. Our experimental results
confirm that real social networks can be de-anonymized
starting from very limited side information.

The rest of the paper is organized as follows. Section II
provides some definitions, describes the problem under study
and outlines the proposed DDM algorithm. Section III presents
preliminary results on Erdös–Rényi and Chung-Lu graphs.
Section IV details the DDM algorithm, whose properties are
then analysed in Section V, when the initial seeds can be
chosen based on their degree. The analysis is extended to the
case where seeds are uniformly distributed in Section VI. The
complexity of the DDM algorithm is discussed in Section VII.
Section VIII validates our theoretical results using a real-world
data set. In Section, IX we discuss previous work, highlighting
the novelty of our contribution. Finally, Section X draws some
conclusions.

II. MODEL AND MATCHING ALGORITHM

A. Basic Assumptions

We study the network de-anonymization problem in the case
of two social networks represented by graphs G1(V1, E1) and
G2(V2, E2), respectively. However, our model and analysis can
be extended to the case in which more than two networks
are available. G1 and G2 can be considered to be sub-graphs
of a larger, inaccessible graph, Gg(V , E), representing the
ground-truth, i.e., the underlying social relationships between
individuals. We will assume for simplicity that all the above
graphs have the same set of vertices V with cardinality
|V| = n, i.e., V1 = V2 = V , although this assumption
can be easily removed by seeking to match only the inter-
section of vertices belonging to G1 and G2 (see [8] for an
analysis with no-coincident node sets in Erdös–Rényi graphs).
We remark that G1 and G2 do not necessarily represent subsets
of social relationships as observed in totally different systems
(e.g., Facebook and Twitter). They could also be obtained
within the same communication system (i.e., from traces of
emails, or from traces of phone calls), due to the fact that
users employ two ID’s in the same system (i.e., two email
addresses, or two SIM cards).

We need a mathematical model describing how
edges E1 and E2 are selected from the ground-truth set
of edges E . Any such model will necessarily be an imperfect
representation of reality, since a large variety of different
situations can occur. A user might employ either of her ID’s to
exchange messages with a friend, or use only one of them to
communicate with a given subset of friends. General, realistic
models trying to capture possibly heterogeneous correlations
(positive or negative) in the set of neighbors of a vertex
as seen in G1 and G2 become inevitably mathematically
intractable. We therefore resort to the same assumption
adopted in previous mathematical work [2], [4]–[6]:
each edge in E is retained in G1 (or G2) with a fixed
probability s, independently between G1 and G2, and
independently of all other edges.3 This model serves as a
reasonable, first-step approximation of real systems, which

3Two different sampling probabilities s1 and s2, respectively for G1 and G2,
could be considered as well.

3758 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

permits obtaining fundamental analytical insights. Moreover,
authors in [2] and [4] have experimentally found that the
above assumption is largely acceptable in their scenario.

Another key element is the model for the underlying social
graph Gg. To understand the impact of the power-law distribu-
tion of vertex degree, which characterizes realistic social net-
works, we have chosen a simple model known in the literature
as Chung-Lu random graph [7]. In contrast to the classic model
of Erdös–Rényi, Chung-Lu graphs permit considering a fairly
general vertex degree distribution while preserving the nice
property of independence among edge probabilities, which is
of paramount importance in the analysis.

Definition 1: A Chung-Lu graph is a random graph
of n vertices where each vertex i is associated with a positive
weight wi. Let w̄ = 1

n

∑
n wi be the average weight. Given

two vertices i, j ∈ V , with i �= j, the undirected edge (i, j) is
included in the graph with probability

pij = min
{wiwj

nw̄
, 1

}
, (1)

independently of the inclusion of any other edge in E .
To avoid pathological behavior, it is customary in the

Chung-Lu model to assume that the maximum vertex weight
is O(n1/2). Doing so, weight wi essentially coincides with the
average degree of vertex i, i.e., pij = wiwj/(nw̄). For simplic-
ity, in our work we will assume that weights are deterministic4

(but note that they depend on n, albeit we avoid explicitly
indicating this). A suitable way to obtain a power-law degree
sequence with exponent β (with 2 < β < 3, as typically
observed in real systems) is to set wi = w̄ β−2

β−1 (n
i+i0

)1/(β−1)

where i0 can be chosen such that the maximum degree is
O(n1/2). Also, we will assume w̄ to be a finite constant,
although our analysis can be easily extended to the more
general case in which w̄ scales with n.

B. Problem Definition

The network de-anonymization problem under study can
be formulated as follows. We assume the underlying social
network graph Gg(V , E) to be a known instance of a
Chung-Lu graph having power-law degree distribution with
exponent β (with 2 < β < 3). However, we cannot access
its edge set E . Instead, we know the complete structure of
two sub-graphs G1 and G2 obtained by independently sampling
each edge of E with probability s. In other words, each edge
in E is assumed to be (independently) sampled twice, the
first time to determine its presence in E1, the second time to
determine its presence in E2. Note that sets V1 and V2 include
the same vertices but the correspondence between vertices
in the two graphs is unknown. The objective is therefore to
find the correct match among them, i.e., to identify all pairs
of vertices [i1, i2] ∈ V1 × V2 such that i1 and i2 correspond
to the same vertex i ∈ V .

We define the graph of all possible vertex pairs as the
pairs graph P(V, E), with V = V1 × V2 and E = E1 × E2.
In P(V, E) there exists an edge connecting [i1, j2] with [k1, l2]
iff edge (i1, k1) ∈ E1 and edge (j2, l2) ∈ E2. We will slightly

4Our results generalize to the case of weights being random variables.

abuse the notation and denote the pairs graph referring to
G1(V1, E1) and G2(V2, E2) by P(Gg). We will refer to pairs
[i1, i2], whose vertices correspond to the same vertex i ∈ Gg

as good pairs, and to all others (e.g., [i1, j2]) as bad pairs. Also,
we define pairs such as ([i1, j2], [i1, k2]) or ([i1, j2], [k1, j2])
as conflicting pairs, and pairs that are adjacent on P(Gg) as
neighbors. The generic pair will be denoted by [∗1, ∗2].

As mentioned, [2]–[4] showed that network graph de-
anonymization can be achieved even in the case where no
a-priori matched vertices, i.e., the so-called seed set,5 are
available. However, in this case the de-anonymization pro-
cedure does not scale with the number of nodes, due to its
exponential complexity. Thus, in this work we consider that
de-anonymization is performed with the help of a seed set
denoted by A0(n) and with cardinality a0. In particular, we
will consider two variants of the problem which differs in the
way seeds are assumed to be selected among the n vertices.
In the first variant, they are assumed to be selected at wish,
using just information on the vertex degree. In the second, we
assume that they are selected uniformly at random among all
vertices.

C. Overview of the DDM Algorithm

Before providing a high-level description of our matching
algorithm (DDM), we remark that we limit our study to
de-anonymization procedures that assume the availability of
a seed set and can be mapped into bootstrap percolation
processes, such as the PGM (percolation graph matching)
procedure in [6]. Such procedure has been shown to be
successful in the case of Erdös–Rényi graphs. In essence,
PGM maintains a mark counter, initialized to zero, for any
pair [∗1, ∗2] ∈ P(Gg) that can still potentially be matched.
The counter is increased by one whenever the candidate pair
becomes neighbor of an already matched pair. Among the
candidate pairs whose counter is larger than or equal to a fixed
threshold r, the algorithm selects one uniformly at random,
adding it to the set of matched pairs. After this, counters are
updated. Note that some candidate pairs might have to be
permanently discarded because they are conflicting with pre-
viously matched pairs. The algorithm proceeds until no more
pairs can be matched. Of course seeds will be matched irre-
spective of their mark counter. The PGM algorithm, although
potentially suboptimal, has linear complexity and is simple
enough that its performance can be predicted using known
results from bootstrap percolation [9], establishing a lower
bound on the number of seeds required to correctly match
almost all vertices. A more formal description of the PGM
algorithm is given in Alg. 1, where:

• Bt(Gg) is the set of pairs in P(Gg) that at time step t
have already collected at least r marks. It is composed
of B′

t(Gg) and B′′
t (Gg), comprising good and bad pairs,

respectively.6

5We will refer to the seed set as a subset of vertices, or, equivalently, of
good vertex pairs, that have been identified a-priori.

6The dependency of the sets At(P(Gg)), Bt(P(Gg)), Zt(P(Gg)) on the
generic pairs graph P(Gg) is simply indicated by At(Gg), Bt(Gg), Zt(Gg),
respectively, and it is dropped whenever not strictly necessary.

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3759

Algorithm 1 The PGM Algorithm

1: A0 = B0 = A0(n), Z0 = ∅, t = 0
2: while At \ Zt �= ∅ do
3: t = t + 1
4: Randomly select a pair [∗1, ∗2] ∈ At−1 \ Zt−1 and

add one mark to all neighbor pairs of [∗1, ∗2] in
P(Gg).

5:
Let ΔBt be the set of all neighbor pairs of [∗1, ∗2]
in P(Gg) whose mark counter has reached threshold
r at time t.

6:
Construct set ΔAt ⊆ ΔBt as follows. Order the pairs
in ΔBt in an arbitrary way, select them sequentially
and test them for inclusion in ΔAt:

7: if the selected pair in ΔBt has no conflicting pair in
At−1 or ΔAt then

8: Insert the pair in ΔAt

9: else
10: Discard it
11: Zt = Zt−1∪[∗1, ∗2], Bt = Bt−1∪ΔBt, At = At−1∪

ΔAt
12: return T = t, ZT = AT

• At(Gg) is the set of matchable pairs at time t. In general,
At(Gg) and Bt(Gg) do not coincide as Bt(Gg) may include
conflicting pairs that are not present in At(Gg). At(Gg)
includes two subsets of good and bad pairs, denoted by
A′

t(Gg) and A′′
t (Gg), respectively.

• Zt(Gg) is the set of pairs in At−1(Gg) that have been
matched at time t. By construction, |Zt(Gg)| = t ∀t.

Let T be the time step at which the algorithm terminates.
Note that, since |Zt(Gg)| = t ∀t, |AT (Gg)| = |ZT (Gg)| = T .

In our work, since we want to establish the minimum
number of required seeds by means of bootstrap percolation
theory, we keep the simplicity of the PGM algorithm, adding
some fundamental improvements to exploit the heterogeneity
of vertex degrees. Before explaining our approach, we make
the following observations on the PGM algorithm described
above for Erdös–Rényi graphs. First, in PGM pairs are selected
irrespective of the degree of their constituting vertices. Indeed,
in Erdös–Rényi graphs this is not so important since vertices
degree (which is binomially distributed) is highly concentrated
around the mean, and all matchable pairs are essentially
equivalent. Second, there exists a unique threshold r, common
to all pairs, which is a fixed parameter of the algorithm subject
to the constraint r ≥ 4.

Our DDM algorithm for power-law graphs is based instead
on partitioning the pairs in P(Gg) based on the degree of
their constituent vertices. The sub-graph corresponding to a
partition is called slice. Then the algorithm employs a careful
expansion of the set of matched pairs through the various
slices, using different thresholds r and seed sets at the various
stages of the process.

In particular, we first isolate a specific slice P1 of P(Gg),
induced by vertices having large (but not too large) degree.
P1 includes pairs whose vertices have weights between
α1 = nγ and α2 = nγ/2, where γ is a constant (slightly)

smaller than 1/2. This slice is somehow the crucial one:
we show that its percolation triggers the entire matching
process, as the identification of all other vertices in the
network follows easily after we correctly match all pairs
in P1. Note that degrees of vertices in P1 are fairly homoge-
neous (a constant factor of difference), so that the results for
Erdös–Rényi graphs can be applied to this slice, using a proper
threshold r.

Vertices having degree smaller than those in P1 are par-
titioned in geometric slices Pk including vertex pairs with
weights between αk and αk+1 = αk/2, with k ≥ 2. Then, a
top-down cascading process is unrolled starting from P1 and
using a proper threshold r, where matched pairs in a slice are
used as seeds to identify the good pairs in the slice below,
and so on. Vertices with very large degree are identified at the
end, using as seed set a properly defined subset of previously
matched pairs with relatively small degree.

Here we have provided just the basic idea of our DDM
algorithm: many subtleties must be addressed to show its
correctness. Among them, we emphasize the problem that
the DDM algorithm has no direct access to vertex weights
(i.e., it does not know the original degree of a vertex
in Gg), and can only make use of the observable vertex degrees
in G1 and G2. As a consequence, in our analysis we need to
show that our matching algorithm is sufficiently robust also in
the presence of imperfect (estimated) vertex partitioning.

At last, we remark that, when w̄ is finite, a non-negligible
fraction of good pairs cannot be identified, no matter which
matching algorithm is used. This fact can be immediately
grasped by observing that any good pair [i1, i2] can be
identified only if both i1 and i2 have at least r neighbors
in G1 and G2, respectively. Clearly, since the average node
degree is assumed to be constant, a non-vanishing fraction of
vertices in Gg gives origin to vertices with degree smaller than
the required r in either G1 or G2.

III. PRELIMINARY RESULTS

In this section we first introduce some useful properties of
the PGM algorithm applied to Erdös-Rényi graphs, extending
in part results already derived in [6]. We then present some
related, preliminary results that will be used in the analysis
of our DDM algorithm for Chung-Lu graphs. Specifically,
we consider a subgraph of a Chung-Lu graph whose vertices
have similar weight (i.e., a slice) and prove that:

• such slice can be bounded from below and above by two
Erdös-Rényi graphs including the same vertices and with
properly defined edge probabilities (Proposition 1). This
implies that also the pair graph of the Chung-Lu slice
is upper and lower bounded by the pair graphs of the
corresponding Erdös-Rényi graphs (Proposition 1);

• the PGM algorithm successfully percolates over the slice,
matching all good pairs under properly defined conditions
on the seed set. This is proven for a slice that includes
all and only the pairs whose vertex weights fall within
a predefined range (Theorem 2), as well as for a slice
whose pairs have been selected based on the estimated
weights (Corollary 3).

3760 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

A. On Erdös-Rényi Graphs

We first recall the result in [6, Th. 1].
Theorem 1: Let the ground-truth graph be an Erdös-Rényi

random graph G(n, p). Let r ≥ 4 and the critical seed set size
be defined as:

ac =
(

1 − 1
r

) (
(r − 1)!
n(ps2)r

) 1
r−1

. (2)

For n−1
 ps2 ≤ s2n− 4
r , we have: that, if ao/ac → a > 1,

the PGM algorithm matches a number of good pairs equal to
|A′

T | = n − o(n) w.h.p. Furthermore, A′′
T = ∅ w.h.p.

Observe that under the assumptions of Theorem 1, we have
T = |AT | = |A′

T | = n − o(n). The two corollaries below,
which can be derived from the arguments presented in [6],
strengthen the result in Theorem 1 and will come in handy in
the following.

Corollary 1: For any ε > 0, define t0 = min
(
T, n−3/r−ε

(ps)2

)
.

Then, B′′
t0 = ∅ w.h.p.

The proof of this corollary is reported in the Supplemental
Material.

When t0 = T , the corollary guarantees that A′′
T ⊆ B′′

T = ∅,
i.e., no bad pairs are matched by the PGM algorithm. When

t0 < T

(

i.e., for p

√

n−3/r−ε−1

s2

)

, we complement the

above statement with the corollary below.
Corollary 2: Under the conditions of Theorem 1, for p
√
n−3/r−1

s2 , let t0 = n−3/r−ε

(ps)2 for any 0 < ε < 1
r .

Then, |B′
t0 | = n w.h.p.

The fact that, for some t0 < T , |B′
t0 | = n and B′′

t0 = ∅
jointly occur w.h.p. implies that the PGM algorithm matches
all the good pairs (i.e., |A′

T | = n and A′′
T = ∅) w.h.p. This is

because, by construction, A′
t0 = B′

t0 . Indeed, B′
t0 contains no

conflicting pairs and none of the pairs in B′
t0 can be blocked

by previously matched bad pairs since B′′
t0 = ∅.

B. On Chung-Lu Graphs

We now extend the above results to Chung-Lu graphs. First
we introduce the key concepts of perfect slices and increasing
property.

Definition 1: A perfect slice is a subgraph of Gg(V , E),
denoted by Gg

x(Vx, Ex), that includes vertices with weights
exactly in a properly defined range [wmin, wmax]. Similarly,
define Gx

1 and Gx
2 as perfect slices of, respectively, G1 and G2.

Finally, define a perfect slice of P(Gg), Px, as the the pairs
graph corresponding to Gg

x.
In the following, with abuse of language, we will use

the term perfect slice Px also to indicate the pairs in Px.
Furthermore, we will denote by Nx the number of nodes in
slice Gx

g , i.e., Nx = |Vx|. We observe that a perfect slice Px

can also be obtained by directly extracting from P(Gg) the
subgraph induced by those pairs whose vertices have weights
in the range [wmin, wmax].

Definition 2: Let H(V , EH) and K(V , EK) be two ran-
dom graphs insisting on the same set of vertices V , where
EH ⊆ EK , i.e., EH can be obtained by sampling EK . We define
the following partial order relationship: H(V , EH) ≤st

K(V , EK). Then, we can define a vertex property R satisfied

by a subset of vertices, and denote with R(H) ⊆ V the set
of vertices of H that satisfy property R. We say that R is
monotonically increasing with respect to the graph ordering
relation “≤st” if R(H) ⊆ R(K) whenever H ≤st K.

In our case, for any 0 ≤ t ≤ T , sets Bt, B′
t, B′′

t are
all monotonic increasing with respect to relationship “≤st”
defined on the pairs graph P(Gg). Below, we use this observa-
tion and show that, in the case of Chung-Lu graphs, a properly
defined perfect slice Px can be lower and upper bounded
(w.r.t. “≤st” relation) by pairs graphs corresponding to oppor-
tunely defined Erdös-Rényi graphs.

Proposition 1: Given a perfect slice Gg
x(Vx, Ex) obtained

from a Chung-Lu graph Gg with Nx = |Vx|, we have
G(Nx, pmin) ≤st Gg

x ≤st G(Nx, pmax) where G(Nx, pmin)
and G(Nx, pmax) are Erdös-Rényi graphs with pmin =
w2

min/(nw̄) and pmax = w2
max/(nw̄). Furthermore, consid-

ering the corresponding pairs graphs Px, P(G(Nx, pmin))
and P(G(Nx, pmax)), it holds P(G(Nx, pmin)) ≤st Px ≤st

P(G(Nx, pmax)).
Proof: Let Xi,j be the indicator function that is equal

to 1 if vertex ix ∈ Vx has an edge with a generic other vertex
jx ∈ Vx, and it is equal to 0 otherwise. Also, E[Xi,j] = pi,j .

In order to prove the first assertion, we build G(Nx, pmin)
by independently sampling the edges included in Gx(Vx, Ex)
with an appropriate probability value. Similarly, we build
G(Nx, pmax) by adding to Gx(Vx, Ex) edges with a properly
selected probability value.

Specifically, let us focus on a generic pair of nodes (i, j) of
the perfect slice Gx

g . We denote by Ymin the indicator function
that is equal to 1 if edge (i, j) exists in G(Nx, pmin) and it is
equal to 0 otherwise. We define Ymin = Xi,jZmin where Zmin

is a Ber
(

pmin
pi,j

)
. Then, we have E[Ymin] = E[Xi,j]E[Zmin] =

pmin, i.e., Ymin is Ber(pmin). Furthermore, by construction
Ymin ≤ Xi,j . The same rationale holds for any nodes pair in
Gx(Vx, Ex), thus G(Nx, pmin) will include only a fraction of
the edges in Ex (since Ymin = 0 if Xi,j = 0).

Similarly, let Ymax be the indicator function that is equal
to 1 if edge (i, j) exists in G(Nx, pmax), and it is equal
to 0 otherwise. We define Ymax = Xi,j + (1 − Xi,j)Zmax

where Zmax is a Ber
(

pmax−pi,j

1−pi,j

)
. Then, we have E[Ymax] =

pmax. Again, the same rationale holds for any nodes pair in
Gx(Vx, Ex), thus the edges in Ex will represent a subset of the
edges in G(Nx, pmax).

The second assertion is an immediate consequence of the
fact that, by construction, the “≤st” relationship is transferred
from graphs Gx(Vx, Ex), G(Nx, pmin) and G(Nx, pmax), to
the corresponding pairs graphs.

Next, we present our first main result, which shows that
the PGM algorithm can successfully match all good pairs in a
properly defined perfect slice in the case of Chung-Lu graphs.

Theorem 2: Consider Gg
x as defined in Proposition 1.

Applying the PGM algorithm to Px guarantees that
|AT (Gg

x)| = Nx and A′′
T (Gg

x) = ∅ w.h.p., provided that:

(i) Nx → ∞ as n → ∞;

(ii) pmin = w2
min/(nw̄) satisfies: pmin

√
N

−3/r−1
x

s2 ;

(iii) pmax = w2
max/(nw̄) satisfies: pmax ≤ N

− 4
r

x ;

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3761

(iv) wmax/wmin = 2;
(v) lim infNx→∞ ao/ac > 1, with ac computed from (2) by

setting p = pmin.

Under conditions (i)-(v), PGM successfully matches w.h.p. all
the good pairs (with no errors) also in any subgraph Gg

x′
of

Gg
x that comprises a finite fraction of vertices of Gg

x and all
the edges between the selected vertices.

Proof: First observe that, if we find t0 = o(Nx) such that
B′′

t0(Gg
x) = ∅ w.h.p., then we have w.h.p that ∀t ≤ t0:

|At(Gg
x)| = |B′

t(Gg
x)|

(a)

≥
|B′

t(G(Nx, pmin))| (b)
= |At(G(Nx, pmin))|

(c)
> t. (3)

In (3), inequality (a) holds by monotonicity of sets B′
t with

respect to “≤st”, while equality (b) descends from Theorem 1.
Inequality (c) descends from the following argument. Denoted
by TG = min{t s.t. |At(G(Nx, pmin)| = t}, by Theorem 1
we have TG = Nx − o(Nx). Since t0 = o(Nx), t0 < TG,
i.e., |At(G(Nx, pmin))| > t for t ≤ t0. From (3), we
immediately get t0 < T , with T = min{t s.t. |At(Gg

x)| = t}.
Now, let us define, for an arbitrarily small ε > 0, t0 =

N−3/r−ε
x

(pmaxs)2 ; observe that by construction t0 = o(Nx). We prove

that B′′
t0(G0) = ∅ exploiting the monotonicity of B′′

t0 with
respect to “≤st”. Indeed |B′′

t0(Gg
x)| ≤ |B′′

t0(G(Nx, pmax))|
(by Proposition 1), with B′′

t0(G(Nx, pmax)) = ∅ w.h.p. as
immediate consequence of Corollary 1 (recall that Nx → ∞
as n → ∞). Furthermore, by Corollary 2, for an arbitrary

0 < ε < 1/r, define t1 = N−3/r−ε
x

(pmins)2 = o(n0). We have:
|B′

t1(G(Nx, pmin))| = Nx. Next, by monotonicity, we have
|B′

t1(Gg
x)| ≥ |B′

t1(G(Nx, pmin))| = n0 (by Proposition 1),
provided that t1 ≤ T .

At last, since pmax/pmin = 4, we can always choose an

ε < ε such that T > t0 = N−3/r−ε
x

(pmaxs)2 >
N−3/r−ε

x

(pmins)2 = t1. Thus,
since B′

t0(Gg
x) is by construction non decreasing with t, we

have: |B′
t0(Gg

x)| ≥ |B′
t1(Gg

x)| = Nx. In conclusion, there
exists a t0 < T such that |B′

t0(Gg
x)| = Nx and B′′

t0(Gg
x) = ∅.

Hence, |A′
T (Gg

x)| = |A′
t0(Gg

x)| = |B′
t0(Gg

x)| = Nx and
|A′′

T (Gg
x)| = |B′′

t0(Gg
x)| = 0. The extension of previous

results to Gg
x′

is immediate in light of the fact that Gg
x′

inherits all properties of Gg
x.

Clearly, to build perfect slices it is necessary to have direct
access to vertex weights. In practice, graphs G1 and G2 can
be sliced by our algorithm only according to the observ-
able vertices degree. The vertex weight inferred from the
observable degree will be referred to as estimated weight.
Specifically, given a vertex i1 in G1 with observable degree Di

1,
the estimated weight associated to it is ŵ1

i = Di
1/s. By slicing

G1 on the basis of such estimated weights, it is clear that each
slice may include vertices with different weight than expected.
A similar observation holds for G2. We therefore define the
generic imperfect pair graph slice (or, simply, imperfect slice)
P̂x, as a subgraph of P(Gg) composed of vertices with
estimated weights in the range [wmin, wmax]. Imperfect slices
can be built so that the following three conditions are satisfied:

1) Only pairs formed by vertices whose actual weight is in
the interval [wmin, wmax] are included in P̂x;

2) A finite fraction (bounded away from 0) of good pairs
of Px is included in P̂x;

3) The following situation occurs with negligible probabil-
ity: a bad pair [i1, j2] is included in P̂x while none of
the pairs [i1, i2] and [j1, j2] are included.

The third condition ensures that every bad pair in P̂x conflicts
with at least one good pair in P̂x, thus it will not be matched by
the PGM algorithm when it (eventually) reaches the threshold.
In the Supplemental Material we show that imperfect slices
satisfying the above conditions can be built, provided that:

wmax

wmin
= 2 and wmax > 2

65
(ε′)2

log n with ε > 0. (4)

Considering imperfect slices, the following corollary imme-
diately follows from Theorem 2.

Corollary 3: Under the same conditions as in Theorem 2,
PGM can be successfully applied to an imperfect slice
P̂x ⊂ Px comprising a finite fraction of the pairs in Px and
satisfying the following constraint: a bad pair [i1, j2] ∈ Px is
included in P̂x only if either [i1, i2] or [j1, j2] are also in P̂x.

Proof: Essentially the scheme of Theorem 2 can be
repeated to show that there exists t1 < T such that Bt1(P̂x)
comprises all the good pairs in P̂x and no bad pairs. First
observe that P̂x can be always transformed into P(Ḡg

x) for
some Ḡg

x
by adding and removing only bad pairs. Second,

from Theorem 2 we know that, for t1 = (N̄x)−3/r−ε

(pmins)2 = o(N̄x),
it holds: B′

t1(P(Ḡg
x)) = N̄x where N̄x denotes the number

of vertices in Ḡg
x

(equal, by construction, to the number of
good pairs in P̂x). Third, again from Theorem 2, it holds that
B′′

t1(P(Ḡg
x)) = ∅.

Hence, if we prove that B′′
t1(P̂x) = ∅, we can conclude

that B′
t1(P̂x) = N̄x since condition B′′

t1(P̂x) = ∅ necessarily
implies B′

t(P̂x) = B′
t(P(Ḡg

x)) for every t ≤ t1. Indeed, by
construction, the subgraphs of P̂x and P(Ḡg

x) induced by their
good pairs are identical. To prove that B′′

t1(P̂x) = ∅, we can
repeat the same arguments as in the proof of Corollary 1:
we upper-bound the number of marks collected at time t by
every bad pair [i1, j2] ∈ P̂x with a binomial r.v. Bi(t, p2

maxs
2)

and, then, proceed exactly as in the proof of Corollary 1 to
show that P{B′′

t1(P̂x) �= ∅} → 0. The assert then follows
from the observation that, given condition 3) reported above,
no bad pairs can be matched for t > t1, because they will be
necessarily blocked by a previously matched good pair.

IV. DDM ALGORITHM

Here we present an overview and a detailed description of
our DDM algorithm.

A. Graph Slicing and Pairs Matching

In order to ensure that the matching process of good pairs
successfully percolates without errors, we perform a logical
partition of the pairs graph into perfect slices, as reported
below. Note that such slices are defined based on the order
of magnitude of the nodes degree. Indeed, depending on
the nodes degree, the matching process evolves differently,
i.e., it requires a different number of already matched pairs

3762 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 1. Graphical representation of slice partitioning. In the case of G1 and G2

the figure also highlights the sub-intervals within a slice that are used in the
proof given in in the Supplemental Material.

and a different expression for the threshold r. The perfect
slices partitioning is also depicted for Gg, G1 and G2 in Fig. 1.

(I) Slice P0 including pairs whose vertices have weights
between α0 = n1/2 and α1 = nγ , with 0 < γ < 1/2 to be
determined;

(II) Slice P1 including pairs whose vertices have weights
between α1 = nγ and α2 = nγ/2;

(III) Slices Pk including vertex pairs with weights between
αk and αk+1, with k ≥ 2, αk = αk−1/2, αk >

max(2 65
(ε′)2 log n, α∗

k); where α∗
k =

(
8w̄ log n

Cs2(1−ε)2

) 1
3−β

for arbi-

trarly chosen 0 < ε′ < 1
16 and 0 < ε < 1. We denote with K

the set of all k.
(IV) Slices Ph including vertex pairs with weights

between αh and αh+1, with αh = αh−1/2 and αh ≤
max(2 65

(ε′)2 log n, α∗
k) but s.t. αh → ∞ as n → ∞; We denote

with H the set of all h.
(V) Slices Pq including vertices with weights between αq

and αq+1, with αq = αq−1/2 and lim αq < ∞. We denote
with Q the set of all q.

Our algorithm exploits the above logical partition into
perfect slices as described below. We remark that, when it is
necessary to isolate a specific slice from the rest of the graph,
necessarily the algorithm has to be applied to an imperfect
slice.

[A)] First, we aim to match good pairs in P1, assuming that
the whole seed set A0 is included in it. As perfect slices are

inaccessible, we extract an imperfect slice P̂1, which is built
by exploiting the procedure described in in the Supplemental
Material. As shown there, P̂1 satisfies conditions 1), 2), 3)
stated in Section III. We then run the standard PGM algorithm
on P̂1 using a proper threshold r1, and show that percolation
takes places successfully. At this point, good pairs in P1 are
also matched as a consequence of condition 2 in Section III-B.

[B)] After that, a second imperfect slice, denoted by P̂0, is
defined. Such slice includes pairs of vertices with estimated
weight larger than vertices in P̂1.

[C)] We then consider the subgraph formed by remaining
pairs (P \ P̂0 ∪ P̂1) and use the pairs matched in A) as seeds
to successfully match the good pairs in slice P2, by setting a
proper threshold r2. Note that, in this phase of the algorithm,

Fig. 2. Example of the percolation process on the pairs graph, for slices
P2, . . . ,Pk . Columns correspond to different stages of the process. Grey and
white pairs denote bad and good pairs, respectively. Red pairs represent the
initial seeds in the first stage and matched pairs in the following stages.

the matching procedure is simpler than PGM, as all pairs with
at least r2 neighboring seeds are matched. Also, besides all
good pairs in P2, some good pairs in the rest of P \ P̂0 ∪ P̂1

may be matched as well. The same procedure is iterated, with
thresholds rk properly set at every stage, so that a top-down
cascade process is unrolled and all good pairs are matched
till slice Pk, with αk > max(2 65

(ε′)2 log n, α∗
k). The matching

process for slices from P2, . . . ,Pk is sketched in Fig. 2.
[D)] Next, we show all good pairs in Ph can be matched

following a similar approach to that described in C) and using
a proper threshold rh, except for an arbitrarily small fraction
of pairs. Likewise, we prove that, in the case of Pq , a fraction
of good pairs can be successfully matched.

[E)] Finally, all the remaining unmatched good pairs
in P̂0 can be matched by exploiting the edges with the already
matched pairs in Pk and using a proper threshold r0.

B. Detailed Description

In more details, our algorithm proceeds as follows. First, it
builds P̂1, which is an imperfect slice.

a) Buildind and deanonymizing slice P̂1: To this end, let
us consider G1 and G2, and partition the interval of the nodes
weights [wmin, wmax] into three sub-intervals (see Fig. 1).
An interval [wmin(1+2ε), wmax(1−2ε)], with 0 < ε < 1/16,
is defined as inner region, the range of values [wmin(1 + ε),
wmax(1 − ε)] \ [wmin(1 + 2ε), wmax(1 − 2ε)] is defined as
outer region, finally the remaining range of values correspond
to the forbidden region. The idea is to include in P̂1 pairs
of vertices whose estimated weights fall in either the inner or
the outer region, adding the extra constraint that only pairs for
which at least one vertex falls in the inner region are included
in P̂1. This expedient implies that [i1, j2] is included in P̂1

only if i1 (j2) falls in the inner region and i2 (j1) falls in the
inner plus outer region. In in the Supplemental Material we
show that, through the above procedure, we obtain slices that
satisfy conditions 1), 2) and 3) in Section III.

Next, given P̂1, the DDM algorithm matches all good pairs
therein, hence in P1. This is achieved by applying PGM with
threshold r1 ≥ 4[1+γ(1−β)]

1−2γ , as derived in Proposition 2 in the
next section.

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3763

Algorithm 2 The DDM Algorithm

Require: P(Gg)
1: Build imperfect slice P̂1

2: Apply PGM to P̂1 with seed set A0 and properly selected
r1. Obtain a set of matched pairs R1

3: Build P̂0

4: for k = 1 to |K| do
5: Sk

0 = P̂k−1 ∩Rk−1 and properly select threshold rk

6: Match all pairs in P̂k whose number of neighbors in
Sk

0 is greater or equal to rk. Obtain a set of matched
pairs Rk

7: for h = 1 to |H| do
8: Sh

0 = Sh−1
0 ∪Rh−1 and properly select threshold rh

9: Match all pairs in Ph whose number of neighbors in
R1 ∪R2 . . . ∪Rh−1 is greater or equal to rh.
Obtain a set of matched pairs Rh

10: for k = 1 to |Q| do
11: Sq

0 = Sq−1
0 ∪Rq−1 and properly select threshold rq

12: Match all pairs in Pq whose number of neighbors in
R1 ∪R2 . . . ∪Rq−1 is greater or equal to rq .
Obtain a set of matched pairs Rq

13: S0
0 = Sk

0 with k s.t. max(2 65
(ε′)2 log n, α∗

k) < αk < logξ n,
with ξ < ∞, and properly select threshold r0

14: Match all pairs in P̂0 whose number of neighbors in S0
0

is greater or equal to r0. Obtain a set of matched pairs
R0

15: return All matched pairs: R0 ∪R2 . . . ∪RQ

b) Buliding slice P̂0: Then DDM creates a slice that is
filled with all the pairs that have not been placed in P̂1 and
for which the estimated weight of at least one vertex exceeds
threshold (α1 + α2)/2.

With abuse of notation, we will refer to this slice as P̂0.
By definition, P0 ⊆ P̂0 and Pk ∩ P̂0 = ∅ for any k > 2.

c) Deanonymizing slices Pk: Then, we fix r2 =
max

(⌈
6(4−β)
3−β + 1

⌉
, (α1)

4−β

√
n

)
(see Theorem 3) and match all

remaining pairs (i.e., pairs in P(Gg) \ (P̂1 ∪ P̂0)) that have at
least r2 neighbors among the matched pairs in P̂1. Let us call
this set R2. Note that, in Corollary 4 we show that, given only
a finite fraction of matched good pairs in P1, every good pair
in P2 can be matched, i.e., it belongs to R2. Furthermore,
by monotonicity of the number of neighbors with respect to
the vertex weight, it immediately follows that every good pair
eventually in P1 \ (P̂1 ∪ P̂0) also belongs to R2. Finally, by
Theorem 4, we can claim that no bad pair falls in R2.

Then, using the same procedure described above to build
imperfect slices, we “extract” from R2 a subset S2

0 ⊆ R2

satisfying the following two properties: i) every pair in S2
0

belongs to P2, ii) pairs in S2
0 are a finite fraction of all good

pairs in P2. As the next step, we set r3 and match all pairs in
P(Gg)\ (R2∪P̂1∪P̂0) that have at least r3 neighbors among
the matched pairs in S2

0 . The algorithm is then iterated for
every slice Pk, with k such that αk > max(2 65

(ε′)2 log n, α∗
k)

(see Proposition 3 in the Supplemental Material). So doing,
we show that every good pair in Pk (k > 1) is matched, while
no bad pairs are matched thanks to Theorem 4.

Observe that the validity of the whole recursion through k is
guaranteed again by sub-additivity of probability. Specifically,
given that the number of stages is by construction upper
bounded by log n

2 , for n > max(n(1)
th /η0, n

(2)
th):

�

(
∃k with αk > max

(

2
65

(ε′)2
log n, α∗

k

) ∣
∣
∣

either not all good pairs in Pk are matched

or some bad pair is matched
)
≤ n−1 log n, (5)

which goes to 0 as n grows large.
d) Deanonymizing slices Ph: The DDM algorithm then

proceeds by matching the good pairs within slices h. It fixes

the threshold to rh =
⌈

6(4−β)
3−β + 1

⌉
(see Theorem 5) and

starts considering an initial set of matched pairs Sh=k∗+1
0 =

Rk∗, where k∗ = max{k : αk > max(2 65
(ε′)2 log n, α∗

k)}.

All pairs that have at least rh neighbors in Sh=k∗+1
0 are

matched. Let Rh=k∗+1 denote the set of matched pairs. By
Theorem 5, Rh=k∗+1 contains an arbitrarily large fraction of
good pairs in Ph=k∗+1. Then set Sh

0 is updated according to
the recursion: Sh

0 = Sh−1
0 ∪ Rh−1, and, again, the matching

procedure is iterated to identify good pairs in the next slice
for any h such that αh → ∞. Theorem 6 guarantees that
at no stage of the algorithm any bad pair is matched, while
Theorem 5 guarantees that an arbitrarily large fraction of
good pairs in Ph are matched within step h (this because by
construction Sh

0 contains an arbitrarily large fraction of good
pairs in Ph−1).

e) Deanonymizing slices Pq: The same algorithm is then
applied to slices q with q < log2 nγ , in order to identify in
each of such slices at least a fraction f(αq) of good pairs.

f) Deanonymizing slice P̂0: At last, we set r0 = nγ/2 and
match pairs in P̂0 that have at least r0 neighbors in one of
the slices Sk

0 , for k satisfying max(2 65
(ε′)2 log n, α∗

k) < αk <

logξ n, with an opportunely defined ξ < ∞.
We remark that, at any stage k (with k > 1), h and q, the

matching procedure can be run on the graph that contains all
pairs but P̂0∪P̂1, without the necessity to extract from it slices
k, h or q. Nevertheless, the procedure to build imperfect slices
is adopted at the end of every stage k ≥ 1 to extract from the
set of good pairs matched within stage k a proper subset of
pairs to be used as seeds for the following stage.

The simplified DDM pseudo-code is presented
in Algorithm 2.

V. ANALYSIS OF THE GRAPH DE-ANONYMIZATION

PROCEDURE

Here we analyse the properties of the DDM algorithm and
prove the following main results.

• For a sufficiently large seed set, the DDM algorithm
successfully matches Θ(n) good pairs and no bad pairs.
Also, it matches all good pairs (except for a negligible
fraction) constituted by vertices with sufficiently high
weight, i.e., a weight that tends to infinity as n → ∞.

• The above results hold for a seed set as small as nε

(with any arbitrary ε > 0) when the seeds can be chosen

3764 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

based on the vertices observable degree. When, instead,
the seeds are uniformly distributed over the graph, n

1
2+ε

seeds are sufficient.
• In the more general case where seeds are arbitrarily

distributed, the key parameter for triggering the good
pairs identification process is represented by the size of
the set of edges between the seeds and the rest of pairs
in the graph.

A. Matching Pairs in P̂1 and P1

Our goal is to show that the process of good pair matching
percolates on P̂1 (and thus in P1 thanks to condition 2 in
Section III-B) faster than bad pairs, provided that a sufficient
number of seeds (|A0|) is available in P̂1. To prove the above
statement, we apply Proposition 3.

Proposition 2: Good pairs are successfully matched in P̂1 if
the following conditions are jointly satisfied: a) 1

4− 3
2r1

< γ <

1
β−1 , b) r1 ≥ 4[1+γ(1−β)]

1−2γ and c) |A0|
 n
(1−2γ)r1+γ(β−1)−1

r1−1 .
Proof: We start by showing that conditions (i)-(v) of

Theorem 2 are met. Then percolation in P̂1 immediately
follows from Corollary 3, in light of the fact that P̂1 satisfies
by hypothesis properties 1) 2) and 3).

First, we compute the number of good pairs in P1, denoted
by N1, and make sure that N1 grows to infinity when n → ∞
(as requested by condition (i) of Theorem 2).

We have:

N1 =
∑

i∈V
11{wi∈[α2,α1]} ≈

∫ α1

α2

nx−β dx = Cn1+γ(1−β)

where C is a proper constant term. Clearly, N1 → ∞ provided
that 1 + γ(1 − β) > 0, i.e., γ < 1

(β−1) . Now, probabilities
pmin and pmax, defined as in Theorem 2, satisfy the following
relationship:

pmin,max = Θ
(

n2γ

nw̄

)

= Θ(n2γ−1).

To verify condition (ii) in Theorem 2, we must enforce: − 3
2r1

−
1
2 < 2γ − 1, thus γ > 1

4 − 3
4r1

, and to verify condition (iii)

(i.e., pmax < N
− 4

r1
1), we must have: n2γ−1 ≤ n[1+γ(1−β)]4/r1

or, equivalently,

r1 ≥ 4[1 + γ(1 − β)]
1 − 2γ

. (6)

Next, condition (iv) immediately holds by construction. At last,
we observe that the critical seed size to match all good pairs
in P̂1 with no errors is given by:

ac(N1) =
(

1 − 1
r1

) (
(r1 − 1)!
N1p

r1
min

)1/(r1−1)

= Θ(n
(1−2γ)r1+γ(β−1)−1

r1−1).

Thus, condition (v) of Theorem 2 is surely satisfied if |A0|

n

(1−2γ)r1+γ(β−1)−1
r1−1 .

We emphasize that the above is one of our main results.
Essentially it states that we can choose any 1

4 ≤ γ < 1
2

and determine a minimal r1 and a minimal |A0| for which
Proposition 2 holds. Also, if our goal is to minimize |A0|

(hence, ac), γ should be chosen as close as possible to 1
2 (i.e.,

γ = 1
2 − ε for some small ε). Under such condition and for

a sufficiently large r1, we can make the seed set arbitrarily
small and still correctly match all pairs.

B. Matching Pairs in Pk

We now consider slices {Pk}k>1 and prove that: (i) the
process of matching good pairs successfully propagates from
one slice to the next and (ii) no errors are made. To this end,
we look at the number of edges from every good pair within
the k-th slice toward those already matched in the (k − 1)-th
slice and show that the probability that this number is smaller
than or equal to a threshold rk goes to 0 sufficiently fast.
At the same time we show that the number of edges from any
bad pair within a slice of index greater than k−1 toward good
pairs in the (k − 1)-th slice is sufficiently small to guarantee
that no bad pairs are matched. At last, we remark that the
whole cascading procedure is made slightly more involved by
the fact that the matching process of good pairs, starting from
the seed set in the (k − 1)-th slide, cannot be limited to the
pairs included in the k-th slide only.

Theorem 3: Consider a generic good pair [i1, i2] ∈ Pk, with
vertex weight wi ∈ [αk+1, αk] and 1 ≤ M < ∞. Then, for any
ε > 0, the number of its neighbor good pairs [l1, l2] ∈ Pk−1 is
greater than rk = max(M, (αk)4−β

√
n

) with probability greater

than 1 − n−2, as long as
(

8w̄ log n
Cs2(1−ε)2

) 1
3−β

= α∗
k < αk < nγ

(with 1/4 < γ < 1/2), and

n > n
(1)
th = max

{

exp
[
1
8

(w̄

Cs2

)2−β (ε

2M

)β−3
]

,

(
2w̄

Cs2ε

) 2
1−2γ

}

. (7)

Also, the above property holds uniformly over the good
pairs in Pk with a probability greater than 1−n−1, under the
same conditions as before on αk and n.

We remark that it is important to explicitly find the mini-
mum value of n for which the above theorem applies. Indeed,
later on we have to show that the same property on the number
of neighbors holds uniformly over all considered slices, for
sufficiently large n.

Proof: Given two good pairs [i1, i2] ∈ Pk and [l1, l2] ∈
Pk−1, we denote by 11i,l the indicator function associated to
the presence of an edge between [i1, i2] and [l1, l2] in P(Gg).
Note that E[11i,l] ≥ αk+1αks2

nw̄ = α2
ks2

2nw̄ = pmin, and that
11i,l’s are independent r.v.’s Thus, by denoting the number
of good pairs in Pk−1 by Nk−1 = Cnα

(1−β)
k , and defin-

ing μ = Nk−1pmin = Cns2α1−β
k

α2
k

2nw̄ = Cs2α3−β
k

2w̄ for any
rk < μ, we have:

�

⎛

⎝
∑

l∈Pk−1

11i,l ≤ rk

⎞

⎠ < �(Bi(Nk−1, pmin) ≤ rk)

≤ exp(−δ2μ/2) (8)

with δ = μ−rk

μ . In the above derivation, the first inequality
descends from the fact that

∑
[l1,l2]∈Pk−1

11i,l can be stochasti-

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3765

cally lower bounded by a sum of Nk−1 independent Bernoulli
r.v.’s with average pmin, while the second descends from the
Chernoff bound. Now, let us fix rk = max

(
M, (αk)4−β

√
n

)
=

o(μ). For any ε > 0 and choosing δ ≥ 1 − ε, we have that
whenever rk = (1 − δ)μ ≤ εμ,

�

⎛

⎝
∑

[l1,l2]∈Pk−1

11i,l ≤ rk

⎞

⎠ < exp(−(1 − ε)2μ/2).

It is straightforward to see that exp(−(1 − ε)2μ/2) < n−2

provided that μ > 4 logn/(1−ε)2, which corresponds to αk >
(

8w̄ log n
Cs2(1−ε)2

) 1
3−β

.

Then, we can claim that �
(∑

[l1,l2]∈Pk−1
11i,l ≤ rk

)
<

n−2 provided that for some ε > 0 jointly αk >

α∗
k =

(
8w̄ log n

Cs2(1−ε)2

) 1
3−β

and rk < (1 − δ)μ = εμ.
Recalling the expression of μ as well as that
rk = max

(
M, (αk)4−β

√
n

)
, the last condition can

be reformulated in terms of n as7: n > n
(1)
th =

max
{

exp
[

1
8

(
w̄

Cs2

)2−β
(

ε

2� 6(4−β)
3−β +1�

)β−3
]

,
(

2w̄
Cs2ε

) 2
1−2γ

}

.

At last, jointly considering all pairs in Pk, the probability
that

∑
[l1,l2]∈Pk−1

11i,l ≤ rk for some [i1, i2] ∈ Pk, is:

�

⎛

⎝∃[i1, i2] ∈ Pk|
∑

[l1,l2]∈Pk−1

11i,l ≤ rk

⎞

⎠

≤
∑

[i1,i2]∈Pk

�

⎛

⎝
∑

[l1,l2]∈Pk−1

11i,l ≤ rk

⎞

⎠ < nn−2 = n−1

(9)

provided that jointly n > n
(1)
th and α∗

k < αk < nγ , as
immediate consequence of probability sub-additivity.

We remark that, as a consequence of (4) and of the above
result, we have to impose αk > max

(
2 65

(ε′)2 log n, α∗
k

)
.

A stronger statement than the previous one is provided by
the following Corollary, which ensures that only a fraction of
the good pairs matched in the previous slice are enough to
guarantee percolation of good pairs in the current slice.

Corollary 4: Consider the good pairs [i1, i2] ∈ Pk, with
vertex weight wi ∈ [αk+1, αk]. Also, consider the subset
Sk

0 ⊆ Pk−1, such that |Sk
0 | is a fraction (ηk ≥ η0 >

0) of the good pairs in Pk−1. Given a generic good pair
[i1, i2] ∈ Pk, for any ε > 0, with probability greater than
1−n−2, the number of its neighbor good pairs in Sk

0 is greater

than rk = max(M, (αk)4−β

√
n

). This result holds as long as
(

8w̄ log n
ηCs2(1−ε)2

) 1
3−β

= α∗
k < αk < nγ (with 1/4 < γ < 1/2),

and n > n
(1)
th /η. Also, the above property holds uniformly

over the good pairs in Pk with a probability greater than
1 − n−1, under the same conditions as before on αk and n.

Proof: The proof follows exactly the same lines as the
proof of Theorem 3, by replacing Nk−1 with ηNk−1.

7The second term in the right hand side of the inequality can be easily
obtained by upper bounding αk with nγ .

Similarly, the theorem below proves that the probability that
a bad pair has a number of neighbor good pairs greater than
or equal to a given threshold tends to zero.

Theorem 4: Consider the bad pairs [i1, j2], with vertex
weights wi, wj < αk, being αk < nγ (γ < 1/2). Uniformly
over such pairs [i1, j2], the number of their neighbor good

pairs [l1, l2] ∈ Pk−1 is smaller than rk = max
(
M, (αk)4−β

√
n

)
,

for M =
⌈

6(4−β)
3−β + 1

⌉
, with probability greater than 1−n−1.

The result holds for any

n > n
(2)
th = max

{

(2C0)
2(4−β)
3−β ,

(10Cs2

w̄2

) 2(4−β)
3−β

e

� 6(4−β)
3−β

+1�(1+log(2/ min(1,C0)))
(
� 6(4−β)

3−β
+1�− 1

10

)
3−β

2(4−β) −3

⎫
⎪⎬

⎪⎭
, (10)

where C0 = w̄

4Cs2� 6(4−β)
3−β +1�1/(4−β) .

Proof: The proof can be found in in the Supplemental
Material.

Corollary 4 and Theorem 4 provide the basic tools to show
that the DDM algorithm can match all good pairs in slices Pk

for k ≥ 2, with αk > max(2 65
(ε′)2 log n, α∗

k). That is, the good

pair matching process successfully percolates from one slice
to the next till we reach α∗

k, without requiring a pre-existing
seed set in Pk.

C. Matching Pairs in Ph and Pq

We now turn our attention to vertices with weight αh ≤
max(2 65

(ε′)2 log n, α∗
k). Previous recursion over the slices can-

not be further employed because either Corollary 4 does not
apply, or (4) does not hold. Thus DDM is forced to operate
in a different way. Before going into the details of how the
DDM algorithm operates, we introduce Theorems 5, 6 and 7,
which enlighten the basic properties of the graph that
will be exploited by the DDM algorithm. In particular,
Theorems 5 and 7 provide weaker versions of Theorem 4,
while Theorem 6 strengthens the statement of Theorem 4.

Theorem 5: Consider the good pairs [i1, i2] ∈ Ph, with ver-
tex weight wi ∈ [αh+1, αh]. Also, assume that, for some η > 0,
at least a fraction η of neighbor good pairs, [l1, l2] ∈ Ph−1,
have been previously identified. Then, for any 0 < ε < 1,
at least a fraction (1− ε) of pairs [i1, i2] ∈ Ph have a number
of neighbors among the identified pairs [l1, l2] ∈ Ph−1 greater

than rh =
⌈

6(4−β)
3−β + 1

⌉
w.h.p., as long as αh → ∞.

Proof: The proof can be found in the Supplemental
Material.

Furthermore, consider slices in the interval h ∈
[hmin, hmax], where hmin has been chosen so as to
guarantee αhmin ≥ (8w̄ log n

Cs2(1−ε)2)
1

3−β , while hmax is such

that that αhmax → ∞. Then a sufficiently large n can be
found such that uniformly on h ∈ [hmin, hmax] we have
μh > max

(
2rh,−8 log ε

2

)
(i.e., exp(−δ2μh/2) < ε/2).

This is because, by construction, for every n, μh is
decreasing with h. Thus, if for a given n the expression
μhmax > max

(
2rh,−8 log ε

2

)
holds, the relationship is

3766 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

automatically satisfied for any h < hmax. Now, for n ≥ n
(3)
th ,

by sub-additivity of probability we can bound the probability
that the DDM algorithm at some stage fails to identify at
least a fraction 1− ε of good pairs. Specifically, the bound is

given by:
∑hmax

hmin
exp

(
− ε2

(
1 − ε

2

)
Nh/8

)
=

∑hmax
hmin

exp
(

− ε2
(
1 − ε

2

)
Nhmin2(h−hmin)(β−1)/8

)
=

Θ(exp(−ε2(1 − ε/2)Nhmin+1/8)) → 0. We conclude
that, for any ε > 0, we can iteratively identify at least a
fraction 1 − ε of good pairs jointly in all slices w.h.p., as
long as for each slice h the assumptions of Theorem 5 are
satisfied for some η > 0.

Theorem 6: Consider the bad pairs [i1, l2], with ver-
tex weight wi < 2 max(2 65

(ε′)2 log(n), α∗
k) and wl <

2 max(2 65
(ε′)2 log(n), α∗

k). Uniformly over such pairs [i1, l2],
for any sufficiently large n with a probability greater than
1 − n−1, the number of their neighbor good pairs [j1, j2],

with weight wj < α∗
k is smaller than rh =

⌈
6(4−β)
3−β + 1

⌉
.

Proof: The proof can be found in the Supplemental
Material.

Theorem 7: Consider the good pairs [i1, i2] ∈ Pq, with
vertex weight wi ∈ [αq+1, αq]. A finite fraction f(αq) (0 <
f(αq) < 1) of such pairs have a number of neighbors
among the identified pairs [l1, l2] ∈ Pq−1 greater than rq =⌈

6(4−β)
3−β + 1

⌉
, with a probability at least 1− n−1. This result

holds provided that at least a fraction f(αq−1) ≥ f(αq) of
neighbor good pairs [l1, l2] ∈ Pq−1 (i.e., pairs whose vertices
have weight wj ∈ [αq, αq−1]) have been previously identified.
The above property holds for properly selected values of

f(αq), whenever αq > (32w̄
Cs2f(αq))

1
3−β and n >

2αβ−1
q

104Cs2f(αq) .

Proof: The proof can be found in the Supplemental
Material.

D. Matching Pairs in P0 and P̂0

Theorem 8 guarantees that every good pair in P̂0 (and, thus,
in P0) is matched, while no bad pairs are matched. This holds
provided that r0 = nγ/2 and one of the slices Sk

0 is used
as seed set, for k satisfying max(2 65

(ε′)2 log n, α∗
k) < αk <

logξ n, with an opportunely defined ξ < ∞.
Theorem 8: Consider a generic good pair [i1, i2] ∈ P̂0 and

a slice Pk satisfying max(2 65
(ε′)2 log n, α∗

k) < αk < logξ n,
for some ξ < ∞. For a sufficiently large n, with probability
greater than 1 − n−1, the number of good pairs [l1, l2] ∈ Sk

0

(with Sk
0 ⊆ Pk and |Sk

0 |
|Pk| > η > 0) that are neighbors of [i1, i2]

is greater than r0 = nγ/2. Also, for sufficiently large n, with
probability greater than 1−n−2, the number of neighbor good
pairs [l1, l2] ∈ Pk of a bad pair [i1, j2] ∈ P̂0 is smaller than
r0. The above properties hold uniformly over all good pairs
in P̂0 w.h.p.

Proof: The proof can be found in the Supplemental
Material.

VI. UNIFORMLY DISTRIBUTED SEEDS

So far we assumed that all the initial seeds in A0 belong
to P1. Now, we show that DDM can properly percolate when

seeds are uniformly distributed over the slices. Note that,
although the uniform distribution is likely one of the most
relevant cases, our results hold for any arbitrary distribution
of the seeds over the graph. We start introducing the key
parameter that characterizes the ability to start the bootstrap
percolation process over P1 (and then over the whole P).

Definition 3: We denote the set of edges between the seed
set A0 and the rest of pairs P(Gg) \ A0, by ∂A0.

Then we can prove the following result.
Theorem 9: Whenever the seed set A0 is chosen in such a

way that:

|∂A0|
 n
γ+

(1−2γ)r1+γ(β−1)−1
r1−1 , (11)

our DDM algorithm percolates identifying Θ(n) good pairs.
Proof: First, by exploiting the monotonicity property of

the percolation process, we show that a properly dimensioned
set of seeds belonging to slice Pk, k > 1, is at least equivalent
to a single seed belonging to P1, i.e., it has an equivalent or
stronger impact on the evolution of mark counters of other
pairs. Similar arguments can be used to show that a group of
seeds in P1 behaves as a seed in P0.

More formally, we start by considering, as before, the
evolution of the PGM algorithm operating with a seed
set A0 of pairs in P1. Then we compare it to the evolution of
a modified version of the PGM algorithm operating on a seed
set A∗

0, which differs from A0 in that a fraction of seeds in P1

is replaced with groups of seeds in Pk. The modified version
of the PGM algorithm handles every group of seeds belonging
to Pk as a single seed (i.e., all the seeds in the same group are
selected by the algorithm at the same time and simultaneously
included in Z). Also, while proceeding, the two versions of
the algorithm process exactly the same sequence of seeds.
We show that, by properly setting the size of the group
of seeds in Pk, denoted by Sk, we can guarantee that the
process of matching good pairs percolates faster starting from
A∗

0 than from A0.
Consider a generic good pair [i1, i2] in P1. Note that, by

construction, the number of edges between [i1, i2] and a given
good pair [l1, l2] ∈ A0 is either 0 or 1. The probability that
such edge exists in P(Gg) is upper-bounded by p1,1 = wiα1

nw̄ .
Instead, the probability that at least an edge exists between
[i1, i2] in P1 and the corresponding group of Sk seeds in Pk

is lower-bounded by p1,Sk
= 1 − (1 − wiαk+1

nw̄)Sk . By setting
Sk > α1

αk+1
+ ε, for any ε > 0, it can be easily shown that, for

sufficiently large n, p1,Sk
> p1,1. In other words, the group

of Sk seeds belonging to Pk in A∗
0 distributes to any good

pair in P1 \ A0 a number of marks that upper bounds those
distributed by the corresponding seed in A0. This immediately
implies that B′

t(A∗
0)\A0 ⊇ B′

t(A0)\A0 for any t. Therefore, at
t1 defined as in Theorem 2, B′

t1(A∗
0) must necessarily include

all pairs in P1 \ A0. In addition, it is straightforward to show
that every pair in A0 \ A∗

0 has at least r1 neighbors among
good pairs in P1 \ A0 and, thus, it is included in B′

t1(A∗
0).

Next, we have to show that B′′
t1(A∗

0) = ∅. This can be done
by following the lines of Theorem 2, i.e., uniformly upper-
bounding the probability of adding marks at any time t to bad
pairs in P1, and, then, repeating the arguments of Corollary 1.

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3767

To conclude the proof, we underline that in the extreme
case where all seeds in |A0| are replaced by groups of seeds
in Pk, we have |A∗

0| = Sk|A0|. The equality corresponds to
|∂A0| = Θ

(
αk

w̄ Sk|A0|
)
, which yields |∂A0| = Θ (nγ |A0|).

Then, iterating the previous argument for all slices containing
seeds and using (7), we get the assertion.

From (11), it immediately descends that, for any choice
of seeds, we can correctly match Θ(n) good pairs provided
that the size of the seed set is at least of order n

1
2+ε, for an

arbitrarily small ε. This is achieved by choosing γ sufficiently
close to 1/2 and r1 large enough.

VII. COMPUTATIONAL COMPLEXITY

OF THE DDM ALGORITHM

We now address the computational complexity of our algo-
rithm assuming that G1 and G2 are given and that we have
the list of nodes sorted in decreasing order based on their
observable degree. This implies that the selection of nodes
within a given slice can be accomplished directly exploiting
the above list, without any additional sorting cost.

The algorithmic complexity of the PGM algorithm over
P̂1 is determined by considering that at every step t a
good pair is chosen and all its neighbor pairs (which are
by construction O

(
(N1

α2
1

n)2
)

) are sequentially explored, and

eventually placed in ΔB(t) and then in ΔA(t) (see Alg. 1).
All previous steps require a number of operations that is linear
with the number of explored pairs (we remark that, in order to
reduce the complexity of the algorithm, pairs are dynamically
generated as they are explored for the first time). Taking into
account that the algorithm stops after at most N1 steps, the

complexity is then given by O

(

N1

(
N1

α2
1

n

)2
)

.

Similarly, the complexity of matching pairs in slice Pk

(respectively, Ph and Pq) is O
(
Nk(Nk

α2
k

n)2
)

(respectively,

O
(
Nh(Nh

α2
h

n)2
)

and O
(
Nq(Nq

α2
q

n)2
)

). This is because

pairs in Sk
0 (respectively, Sh

0 , Sq
0) are to be sequentially

selected, and, for each of them, all neighbor pairs must be
explored.

The total complexity of our algorithm is given by the sum of
the above terms, i.e., O(nΔ2) where Δ2 is the second moment
of the node degree. Note that Δ2 is O(n

3−β
2).

VIII. EXPERIMENTAL VALIDATION

Our results hold asymptotically as the number of nodes
tends to infinite, thus it is difficult to validate them considering
networks of finite size. Nevertheless, in this section, we
show that the dramatic impact of power-law degree on the
performance of graph matching algorithms is evident even on
small-scale systems. Another important goal of this section
is to compare the performance achieved by graph-matching
algorithms (PGM or DDM) in Chung-Lu graphs, with the
performance obtained in real social networks. Recall that
the former only capture effects due to the (marginal) degree
distribution of the nodes, while the latter possess several other
structural features not reproduced by the Chung-Lu model.

Fig. 3. Number of matched good pairs vs number of seeds, for different
graphs and algorithms: Chung-Lu vs G(n, p), PGM vs DDM, fixed s = 0.7.

In this section, we first consider synthetic ground-truth
(Chung-Lu and G(n, p)) graphs containing 63,731 nodes, with
average node degree 25.64. The reason for these specific
values is that, in the following, we will consider an early
snapshot of Facebook having exactly these properties. The
considered snapshot, first analyzed in [10], contains (undi-
rected) friendship relationships among users, and it is publicly
available at [11]. The maximum node degree is 1,098, and the
power law exponent, estimated using the maximum-likelihood
approach [12], is 2.94.

Our evaluation proceeded as follows. First, we generated a
Chung-Lu graph using a sequence of node weights ωi exactly
matched to the degree sequence of the Facebook snapshot.
By so doing, we obtained a synthetic graph of the kind
analyzed in this paper, and which at least preserves the degree
distribution of a real social network. We also generated a
G(n, p) graph with the same number of nodes and average
node degree, as reference. The above two graphs (either the
Chung-Lu or the G(n, p)) were taken as the ground-truth8 Gg,
and we used an edge sampling probability s = 0.7 to generate
G1 and G2. On these two systems, we compared the perfor-
mance of the original PGM algorithm and the DDM algorithm.
Results are shown in Fig. 3, where curves labelled CL refer to
the Chung-Lu graph. Note that, for the G(n, p) graph, we do
not distinguish PGM from DDM, since the two algorithms
obtain here the same performance. Seeds are selected uni-
formly at random among all nodes, and we averaged the results
of 1000 runs in which the set of seeds varies. We observed
the following facts: i) for fixed r, the critical number of seeds
is largely smaller in CL than in G(n, p) (by more than an
order of magnitude) confirming the dramatic impact of power-
law degree distribution on graph-matching performance;
ii) the standard PGM algorithm performs quite well, when we
run it on the CL graph. Specifically, the error ratio of PGM
was found to be negligible (smaller than 1e-4) for r = 8 and
r = 16, and only around 2.6% with r = 4 (the appearance of
such non-negligible errors is explicitly highlighted in Fig. 3 by
an arrow); iii) errors are essentially eliminated by PGM with

8Ideally, one would like to assess the performance of graph matching
algorithms given real graphs G1 and G2, but this is hard to do without
knowledge of the ground-truth. Therefore, to check the validity of our results,
we used a known graph (synthetic or real) as ground-truth.

3768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 4. Number of good (thick lines) and bad (thin lines) matches vs number
of seeds, using the Facebook snapshot as ground-truth. Comparison between
DDM and PGM, for fixed s = 0.7.

sufficiently large r, but at the expense of reducing the final
number of correctly matched pair, since nodes having degree
smaller than r either in G1 or in G2 cannot be matched by
PGM; iv) the DDM algorithm, by using different r for different
nodes, can easily overcome the above limitation of PGM, as
can be seen by the curved labelled9 DDM (r = 8 → 3).

A rather different picture emerged when we took the real
Facebook snapshot as the ground-truth graph. Results are
shown in Fig. 4, where we used a log y scale to better show the
extent of the errors. In the plot, we adopt the same line style
for a given version of algorithm (with specified parameters),
and we use thick curves to represent correctly matched pairs,
and thin curves to represent the corresponding errors. We show
the performance of three versions of PGM (with r = 4, 8, 16)
and one version of DDM, with r = 12 → 4. We observed
the following facts: i) PGM produces a very large number
of errors, especially for small r. In particular, for r = 4, the
number of errors even exceeds the number of correct matches:
PGM makes so many errors that it fails to reach all matchable
pairs. With r = 8, the error ratio is still very high (29%),
while for r = 16 it is about 6.7%; ii) the position of the phase
transition is roughly the same in the Facebook system and in
the corresponding CL graph (i.e., around 1,000 for r = 8);
iii) DDM (r = 12 → 4) performs quite well, correctly
matching more than 30K nodes with error ratio around 1.7%
(one can use different choices of rmax and rmin to trade-
off error ratio, critical number of seeds and total number of
matched pairs; we do not show these trade-offs for lack of
room).

We believe that the main reason why the Facebook graph
is much harder to match than its CL counterpart is related
to its large clustering coefficient (14.8%). Indeed, we have
shown in a parallel work [13] that clustering can severely
degrade the performance of graph matching algorithms based
on bootstrap percolation. This suggests that, in the case of real
social networks with significant degrees of clustering, more
sophisticated algorithms are necessary to bring down the errors
to an acceptable rate.

9Hereinafter, we will denote by DDM (r = rmax → rmin) a version of
DDM which employs r = rmax in the first slice, and progressively reduces
the threshold down to r = rmin to match low-degree nodes.

Fig. 5. Number of good (thick lines) and bad (thin lines) matched pairs for
DDM (r = 12 → 4), in the Facebook graph, for different values of thinning
probability s and seed selection strategy.

At last, we show in Fig. 5 the impact of the thinning
probability s and the seed selection strategy. In particular, we
consider the Facebook system and the DDM algorithm (r =
12 → 4). The curve labelled s = 0.7 is the same as in Fig. 4.
We tried both a larger value of s = 0.9 and a smaller value
s = 0.5. Moreover, in the case of s = 0.7, we investigated
what happens when seeds are selected uniformly at random
among nodes with degree larger than or equal to 100 (labelled
by “high-degree seeds”). As expected: i) as s decreases, the
critical number of seeds increases, as well as the error ratio (for
s = 0.5, the error ratio of our algorithm is 5.7%, suggesting
that the matching problem becomes harder and harder to solve
(if not impossible) for small s (in line with theoretical results
in [2]; ii) far fewer seeds are necessary when one can select
seeds among high-degree nodes, confirming the fact that what
really matters is the cardinality of the set of edges going out
of the seed set, rather than the number of seeds alone.

IX. RELATED WORK

In this section we first summarize the contribution of [14]
on bootstrap percolation in random graphs. Then we limit our-
selves to mentioning papers that have proposed and analysed
algorithms to solve the network de-anonymization problem
in the case of the random graph model introduced in [2],
i.e., when G1 and G2 are obtained by independent edge
sampling of the unknown ground-truth graph Gg. For a more
general overview on network de-anonymization, we recom-
mend the bibliography in [6] and [4].

The work in [14] analyses bootstrap percolation
in Chung-Lu graphs. Similarly to our work, it considers
different slices of the graph, each including nodes with dif-
ferent degree. It then leverages the results by Janson et al. [9]
and the monotonicity property of bootstrap percolation,
in order to show that percolation successfully occurs.
Unlike [14], however, network de-anonymization has to
deal with both good and bad pairs, and it turns out that
the aforementioned monotonic property holds for both of
them. This leads to the need for a different algorithm and a
significantly more complex analysis.

For the case in which Gg is an Erdös–Rényi graph, [2]
finds sufficient conditions on p and s under which users
can in principle be identified even in the absence of seeds.

CHIASSERINI et al.: SOCIAL NETWORK DE-ANONYMIZATION UNDER SCALE-FREE USER RELATIONS 3769

In particular, graphs whose average vertex degree is of order
log n (or larger) can potentially be de-anonymized when s
is Θ(1). The analysis of [2] is independent of the specific
matching algorithm and consists in showing that the solution
of the network de-anonymization problem corresponds w.h.p.
to the unique minimum of a specific objective function, under
the above mentioned conditions. A similar approach has been
adopted in [4] to show the conditions on the sampling proba-
bility under which graph de-anonymization can be successfully
performed, either exactly or with an arbitrarily small percent-
age of errors, in the case of configuration graphs. The work
in [4] also presents a greedy approximation to the optimal
algorithm, which, unlike the optimal one, is computationally
feasible (it has polynomial complexity). Another attempt to
devise a polynomial time algorithm for matching two similar
graphs without side information (i.w., without seeds) has been
done in [15].

In [6] the PGM algorithm has been proposed as a simple
and scalable algorithm for network de-anonymization, when
an initial set of seeds is available. By exploiting bootstrap
percolation results in [9], the authors carry out an asymptotic
analysis of the minimal number of seeds needed to almost
perfectly de-anonymize the network in the case in which Gg

is an Erdös–Rényi random graph, showing in particular the
existence of a phase transition.

An algorithm to reconcile scale-free networks has been
recently proposed in [5]. Differently from us, in [5] authors
do not identify any phase transition effect related to bootstrap
percolation. Actually, they consider a simple direct identifi-
cation strategy that requires Ω(n

log n) seeds and essentially
prove that their algorithm is unlikely to match bad pairs.
Also, their analysis is complicated by the adoption of the
preferential attachment model by Barabási and Albert [16],
whereas here we adopt a different model of scale-free networks
(the Chung-Lu model) that greatly simplifies the analysis.

Finally, a preliminary version of our work has
appeared in [17]. In parallel and independently from
us, another network de-anonymization algorithm has been
recently proposed and analyzed in [18], adopting exactly the
same Chung-Lu model considered in this paper. Even if the
algorithm in [18] exhibits significant differences with respect
to our DDM algorithm, it achieves essentially the same
performance in terms of the asymptotic minimum number
of seeds needed to guarantee an almost perfect network
de-anonymization.

X. CONCLUSIONS

We analytically investigated the de-anonymization problem
in social networks represented by scale-free graphs, by exploit-
ing bootstrap percolation results and a novel graph slicing
technique. Our main finding is that, to successfully identify
most of the nodes, the seed set can be as small as nε (for
any ε > 0) when seeds are properly selected, and of the order
of n

1
2+ε when they are uniformly distributed among the

nodes. Our asymptotic results have been empirically validated
by simulation experiments on synthetic graphs as well as on
a Facebook snapshot. Our work can be extended along

several directions, including the effect of spurious edges
in the network graphs, that of erroneously selected seeds
and partially overlapping node sets, as done in [8] for
Erdös–Rényi graphs.

REFERENCES

[1] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
Proc. 30th IEEE Symp. Secur. Privacy, May 2009, pp. 173–187.

[2] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized
networks,” in Proc. 17th SIGKDD, 2011, pp. 1235–1243.

[3] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proc. ACM Conf. Comput. Commun.
Secur. (CCS), 2012, pp. 628–637.

[4] S. Ji, W. Li, M. Srivatsa, and R. Beyah, “Structural data de-
anonymization: Quantification, practice, and implications,” in Proc.
ACM Conf. Comput. Commun. Secur. (CCS), 2014, pp. 1040–1053.

[5] N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for
social networks,” in Proc. VLDB, 2014, pp. 377–388.

[6] L. Yartseva and M. Grossglauser, “On the performance of percolation
graph matching,” in Proc. 1st ACM Conf. Online Social Netw., 2013,
pp. 119–130.

[7] F. Chung and L. Lu, “The average distance in a random graph with given
expected degrees,” Internet Math., vol. 1, no. 1, pp. 91–113, 2004.

[8] E. Kazemi, S. H. Hassani, and M. Grossglauser, “Growing a graph
matching from a handful of seeds,” in Proc. Endowment Int. Conf. Very
Large Data Bases (VLDB), 2015, pp. 1010–1021.

[9] S. Janson, T. Łuczak, T. Turova, and T. Vallier, “Bootstrap percolation
on the random graph Gn,p,” Ann. Appl. Probab., vol. 22, no. 5,
pp. 1989–2047, 2012.

[10] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in Facebook,” in Proc. 2nd WONS, 2009,
pp. 37–42.

[11] Facebook Friendships Network Dataset—KONECT. (May 2015).
[Online]. Available: http://konect.uni-koblenz.de/networks/facebook-
wosn-links

[12] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-
tions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703, 2009.

[13] C.-F. Chiasserini, M. Garetto, and E. Leonardi, “Impact of clustering on
the performance of network de-anonymization,” in Proc. ACM COSN,
2015, pp. 83–94.

[14] H. Amini and N. Fountoulakis, “Bootstrap percolation in power-law
random graphs,” J. Statist. Phys., vol. 155, no. 1, pp. 72–92, 2014.

[15] P. Pedarsani, D. R. Figueiredo, and M. Grossglauser, “A Bayesian
method for matching two similar graphs without seeds,” in Proc. IEEE
51st Allerton, Oct. 2013, pp. 1598–1607.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] C. F. Chiasserini, M. Garetto, and E. Leonardi, “De-anonymizing
scale-free social networks by percolation graph matching,” in Proc.
INFOCOM, 2015, pp. 1–9.

[18] K. Bringmann, T. Friedrich, and A. Krohmer, “De-anonymization of
heterogeneous random graphs in quasilinear time,” in Proc. 22nd Annu.
Eur. Symp. Algorithms (ESA), 2014, pp. 197–208.

Carla-Fabiana Chiasserini (M’98–SM’09) received the Ph.D. degree from
the Politecnico di Torino in 2000, where she is currently an Associate
Professor. She has authored over 260 papers at major venues. She serves
as an Associate Editor of several prestigious journals. Her research interests
include protocols and performance analysis of wireless networks.

Michele Garetto (M’04) received the Dr.Ing. degree in telecommunication
engineering and the Ph.D. degree in electronic and telecommunication engi-
neering from the Politecnico di Torino, Italy, in 2000 and 2004, respectively.
In 2002, he was a Visiting Scholar with the Networks Group, University of
Massachusetts, Amherst, MA, USA, and in 2004, he held a post-doctoral
position with the Electrical and Computer Engineering Department, Rice
University, Houston, TX, USA. He is currently an Assistant Professor with
the University of Torino, Italy.

Emilio Leonardi (M’99–SM’09) received the Dr.Ing. degree in electronics
engineering and the Ph.D. degree in telecommunications engineering from the
Politecnico di Torino in 1991 and 1995, respectively. He is currently a Pro-
fessor with the Dipartimento di Elettronica e Telecomunicazioni, Politecnico
di Torino. His research interests are in the field of performance evaluation of
complex networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

