
20 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A core calculus for dynamic delta-oriented programming

Published version:

DOI:10.1007/s00236-017-0293-6

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1633408 since 2018-07-25T15:19:51Z

This is the author's version of the contribution published as:

Damiani, F., Padovani, L., Schaefer, I., Seidl, C. A core calculus for dynamic delta-oriented programming.

Acta Informatica (2017).

doi:10.1007/s00236-017-0293-6

The publisher's version is available at:

 http://link.springer.com/article/10.1007/s00236-017-0293-6

When citing, please refer to the published version.

The final publication is available at

link.springer.com

http://link.springer.com/article/10.1007/s00236-017-0293-6

Noname manuscript No.
(will be inserted by the editor)

A Core Calculus for Dynamic Delta-Oriented Programming

Ferruccio Damiani · Luca Padovani ·
Ina Schaefer · Christoph Seidl

the date of receipt and acceptance should be inserted later

Abstract Delta-oriented programming (DOP) is a flexible approach to the implementation
of software product lines (SPLs). Delta-oriented SPLs consist of a code base (a set of delta
modules encapsulating changes to object-oriented programs) and a product line declaration
(providing the connection of the delta modules with the product features). In this paper,
we present a core calculus that extends DOP with the capability to switch the implemented
product configuration at runtime. A dynamic delta-oriented SPL is a delta-oriented SPL
with a dynamic reconfiguration graph that specifies how to switch between different feature
configurations. Dynamic DOP supports also (unanticipated) software evolution such that at
runtime, the product line declaration, the code base and the dynamic reconfiguration graph
can be changed in any (unanticipated) way that preserves the currently running product,
which is essential when evolution affects existing features. The type system of our dynamic
DOP core calculus ensures that the dynamic reconfigurations lead to type safe products and
do not cause runtime type errors.

1 Introduction

A software product line (SPL) is a family of software systems with well-defined commonal-
ities and variabilities that are developed by (re)using common artifacts (Pohl et al. [2005]).
Many industries have successfully adopted an SPL development approach for building fam-
ilies of related systems with better quality, shorter time-to-market, and lower production
costs. Modern software systems tend to be extremely long-lived. Hence, they have to evolve
to meet changing user requirements or resource constraints over time. To remain opera-
tional over long periods, these systems additionally need to be designed to adapt at runtime

This work has been partially supported by: project HyVar (www.hyvar-project.eu), which has received fund-
ing from the European Union’s Horizon 2020 research and innovation programme under grant agreement No.
644298; by ICT COST Action IC1402 ARVI (www.cost-arvi.eu); by ICT COST Action IC1201 BETTY
(http://www.behavioural-types.eu/); and by Ateneo/CSP D16D15000360005 project RunVar.

F. Damiani · L. Padovani
Università di Torino

I. Schaefer · C. Seidl
Technische Universität Braunschweig

2 Ferruccio Damiani et al.

due to both reconfiguration and evolution. Conventional (static) SPLs fail to provide mecha-
nisms for addressing these new requirements. Dynamic software product lines (Hallsteinsen
et al. [2008], Capilla et al. [2014]) focus on engineering adaptive systems using a dedicated
variability model describing all possible configurations a system may adapt to at runtime.
Delta-oriented programming (DOP) (Schaefer et al. [2010], Bettini et al. [2013b]) is a flex-
ible approach for implementing SPLs that has so far only been used to implement variability
which is bound before compile-time. In this paper, we present dynamic DOP to realize run-
time variability and evolution based on DOP. We provide a formal foundation for dynamic
DOP together with a type system ensuring the type safety of dynamic reconfiguration.

A delta-oriented SPL consists of a code base comprising a set of delta modules and
a product line declaration linking delta modules to the product features (Schaefer et al.
[2010]). A delta module encapsulates modifications to an object-oriented program. A par-
ticular product in a delta-oriented SPL is generated by applying the modifications contained
in the suitable delta modules to a core program that, without loss of generality, can always
be assumed to be empty (Schaefer and Damiani [2010]). A dynamic delta-oriented SPL
adds to these a dynamic reconfiguration graph defining which configurations the system
can adapt to at runtime and describing how existing objects need to be reconfigured in case
they are instances of classes changed by the reconfiguration. To mitigate the runtime over-
head caused by reconfiguration, it would be desirable that existing objects are reconfigured
on demand only when their fields are accessed or a method is called upon them. Besides
reconfiguration at runtime by changing the currently enabled features, dynamic DOP also
supports unanticipated evolution by introducing or removing products from the product line
and modifying the implementation of existing products. This evolution can be carried out at
runtime relying on similar principles as reconfiguration at runtime.

In summary, the contributions of this work are as follows:

– we extend DOP to model dynamic SPLs;
– we define a core calculus that formalizes the operational semantics of dynamic DOP

runtime reconfiguration and evolution and that supports lazy object reconfiguration;
– we provide a type system for the dynamic DOP core calculus ensuring that dynamic

reconfiguration and evolution leads to type safe products and does not cause runtime
type errors.

It is worth observing that the dynamic reconfiguration graph, which is the novel program-
ming construct introduced in this paper, is decoupled from the structure of the code base
(i.e., from delta modules). So it could be used in connection with other approaches for im-
plementing SPLs, like, e.g., Feature-oriented programming (FOP) (Batory et al. [2004],
Kästner et al. [2008])—we refer to Schaefer et al. [2012] for a survey on approaches for
implementing SPLs.

The paper is organized as follows. Section 2 introduces dynamic DOP by means of
examples. Section 3 recalls the core calculus for DOP called IF∆J (Bettini et al. [2013b]).
Section 4 presents syntax, type system, operational semantics, and type soundness of the
core calculus for dynamic DOP called IFD∆J. Section 5 discusses related work. Section 6
concludes by outlining possible directions for future work. The appendix contains the proofs
of the main results.

Preliminary versions of the material presented in this paper appeared in (Damiani and
Schaefer [2011], Damiani et al. [2012b]). This paper contains new and improved explana-
tions and examples, more details of the formalization, and the proofs of the main results.

A Core Calculus for Dynamic Delta-Oriented Programming 3

BankPL

Basic Flex Delete Log

require

Fig. 1 Feature model for the Bank PL

2 Dynamic Delta-Oriented Programming

To illustrate dynamic delta-oriented programming, we introduce an example of a simple
product line of programs for supporting the activities of a bank, which we will call the
Bank PL. The example aims at illustrating the main concepts of dynamic delta-oriented
programming, rather than at providing a realistic product line case study. We use a feature
model as variability model for illustrative purposes for our example as presented in Figure 1.
A feature model is a compact representation of all permissible configurations of an SPL that
describes configurable functionality on a conceptual level in terms of features that can be
selected or deselected: an optional feature (hollow circle) may be selected or deselected and
a mandatory feature (filled circle) has to be selected. The root feature of a feature model is
implicitly regarded as being mandatory. Furthermore, if a child feature is selected, then its
parent feature has to be selected as well. In addition, cross-tree constraints (dashed arrows)
may be used to specify the dependency of one on another. A valid product of a feature model
obeys all configuration rules imposed by the feature model and its cross-tree constraints.
Both our example SPL and the IFD∆J core calculus presented in Sections 3 and 4 use a
JAVA-like syntax. In order to improve readability, in the example we use a richer syntax,
including void, the primitive types int and boolean, arrays, the shortcut syntax for opera-
tions on strings, conditional and loop statements, and the sequential composition. Encoding
in IFD∆J syntax is straightforward—see Bettini et al. [2013b] for examples. The products
in the Bank PL represent the actual configurations a concrete bank can decide to operate
in. These configurations are described as the set of selected features Basic, Flex, Delete and
Log. The feature Basic is mandatory and comprises the fundamental functionality of a bank:
the ability to execute commands (by means of a class Controller) like creating a new ac-
count (by means of a class AccountScanner), retrieving an account, updating the balance of
an account and deducting the transaction fee. The feature Flex is optional and provides the
functionality for managing an arbitrary number of accounts. The feature Delete is optional
and provides the functionality for deleting an account. The feature Log is also optional and
ensures that all the operations performed on an account are logged. In addition, the feature
Log requires the presence of the feature Delete.

A dynamic delta-oriented product line consists of a code base, a product line declaration
and a dynamic reconfiguration graph, which we describe in the rest of this section.

2.1 Product-Line Code Base

When using DOP for SPL development, a product line code base consists of a set of delta
modules, which are containers for a sequence of modifications to an object-oriented pro-
gram. The modifications may add, remove or modify classes. Modifying a class means
to change its super class, to add or to remove fields or methods or to modify methods.

4 Ferruccio Damiani et al.

The modification of a method can either replace the method body by another implemen-
tation, or wrap the existing method using the original construct (similar to the Super()

call in AHEAD (Batory et al. [2004])). The original construct expresses a call to the
method with the same name before the modifications and is bound at the time the product
is generated. Before or after the original construct, other statements can be introduced to
wrap the existing method implementation. In addition to proactive product line development
(building a product line entirely anew), DOP also supports extractive product line develop-
ment (Krueger [2002]), starting from an existing legacy product (Schaefer and Damiani
[2010]).

Listing 1 contains the code base for the Bank PL. The delta module DBasic intro-
duces, by modifying the empty program, the code of (what we assume to be) an existing
legacy product, realizing the feature Basic. The feature Basic is implemented by the classes
Account, Bank, AccountScanner, Controller and Main.

– The class Account, which represents a bank account, contains a balance field and an
owner field, an update method for manipulating the balance, and a toString method
to produce a textual representation of the data of an account.

– The class Bank, which represents the bank, contains the field accountAt for storing
the accounts, the field next for storing the identifier of the next account to be created
(the identifier of each account is its position in the array accountAt), the field fee for
storing the fee to be charged on an account for each update operation, a method init

for initializing a Bank object after creation, a method isValid for checking whether
a given account number is valid (i.e., associated with an existing account), a method
addAccount for adding a new account (when the accountAt array is full, the new ac-
count is not added and the value -1 is returned), a method retrieveAccount to retrieve
an account from its identifier (when there is no account with such an identifier, the value
null is returned), and a method update for manipulating the balance of an account
given its identifier (when there is no account with such an identifier, the value false is
returned).

– The class AccountScanner, whose implementation details are omitted, defines a method
nextAccount, which parses the data of an account from an input stream.

– The accounts of the bank are manipulated through the class Controller, which provides
a method execute for executing the commands, represented by the strings "add" (for
adding a new account), "retrieve" (for printing the details of an existing account), and
"update" (for updating the balance of an account).

– The class Main provides a method main, which starts the application by creating a scan-
ner, an account scanner, a bank and a controller for the management of the bank ac-
counts, after which it loops forever by reading commands from the input stream and
passing them to the controller.

The delta module DFlex implements the feature Flex by modifying the class Bank. It
modifies the method init so that, when a new Bank object is initialized, the field fee is
set to 3 (a “flexible bank” requires an increased transaction fee in order to cover the costs
brought by the flexibility). It further modifies the method addAccount so that, when the
array accountAt is full, its size is doubled.

The delta module DDelete implements the feature Delete. It modifies the class Bank

by adding the method deleteAccount (for deleting an account) and modifying the method
isValid (for ensuring that deleted accounts are not valid). It also modifies the Controller

class so that the command delete is accepted.

A Core Calculus for Dynamic Delta-Oriented Programming 5

delta DBasic {
adds class Account {

int balance; String owner;
void update(int amount) { balance = balance + amount; }
String toString() { return owner + ":" + balance; }
}
adds class Bank {

Account[] accountAt; int next; int fee;
void init(int n) { accountAt = new Account[n]; fee = 2; }
boolean isValid(int id) { return ((0 <= id) && (id <= next−1)); }
int addAccount(Account a) { if (next == accountAt.length) { return −1; } accountAt[next] = a; return next++; }
Account retrieveAccount(int id) { if (!(isValid(id))) { return null; } return accountAt[id]; }
boolean update(int id, int x) { if (!(isValid(id))) { return false; } accountAt[id].update(x−fee); return true; }
}
adds class AccountScanner ... // parses data of Account type
adds class Controller {

Scanner s; AccountScanner as; Bank b;
void init(Scanner scanner, AccountScanner accounScanner, Bank bank) { s=scanner; as=accountScanner; b=bank; }
void execute(String command) {

if (command.equals("add")) { Account a = as.nextAccount(); System.out.println(b.addAccount(a)); return; }
if (command.equals("retrieve")) { int id = s.nextInt(); System.out.println(b.retrieveAccount(id)); return; }
if (command.equals("update")) { int id = s.nextInt(); int amount = s.nextInt(); b.update(id,amount); return; } }

}
adds class Main {

void main() {
Scanner scanner = new Scanner(System.in);
AccountScanner accountScanner = new AccountScanner(System.in);
Bank bank = new Bank().init(100);
Controller controller = new Controller().init(scanner,accountScanner,bank);
while (true) { String command = scanner.next(); controller.execute(command); } }

}
}

delta DFlex {
modifies class Bank {

modifies void init(int n) { accountAt = new Account[n]; fee = 3; }
modifies int addAccount(Account a) {

if (next == accountAt.length) { Account[] newAccountAt = new Account[next∗2];
for (int i= 0; i < next; i++) { newAccountAt[i] = accountAt[i]; } }

accountAt = newAccountAt; return original(a); }
}
}

delta DDelete {
modifies class Bank {

modifies boolean isValid(int id) { return (original(id) && (accountAt[id]!=null)); }
adds boolean deleteAccount(int id) { if (isValid(id)) { accountAt[id] = null; return true; } else return false; }
}
modifies class Controller {

modifies void execute(String command) {
original(command);
if (command.equals("delete")) { int id = s.nextInt(); System.out.println(a.delete(id)); return; } }

}
}

delta DLog {
modifies class Account {

adds String log;
modifies void update(int x) { log = log + "[update:" + x + "]"; original(x); }
adds String getLog() { return log; }
}
modifies class AccountScanner ... // to initialize the field log
modifies class Controller {

modifies void execute(String command) {
original(command);
if (command.equals("getLog")) { int id = s.nextInt(); Account a = b.retrieveAccount(id); if (a == null) {

System.out.println(null); } else { System.out.println(a.getLog()); } return; } }
}
}

Listing 1: Code base of the Bank PL

6 Ferruccio Damiani et al.

features Basic, Flex, Delete, Log
configurations Basic & (Log −> Delete)
deltas
{ DBasic }
{ DFlex when Flex, DDelete when Delete }
{ DLog when Log }

Listing 2: Declaration of the Bank PL

The delta module DLog implements the feature Log. It modifies the class Account by
introducing the field log (for recording the operations executed on the account), modifying
the update method accordingly, and adding the method getLog (for returning the log). It
also modifies the AccountScanner class to ensure that the field log is properly initialized,
and further modifies the Controller class so that the command getLog is accepted.

2.2 Product-Line Declaration

The delta modules of a product line code base describe which modifications to perform
on an object-oriented program. To specify a full SPL, it is further necessary to define which
features exist, which configurations of features are considered valid and which delta modules
are associated with which features. We allow specifying this information in a product-line
declaration. Listing 2 shows the product line declaration for the Bank PL.

In the example, the essential elements of a product-line declaration are demonstrated:
Line 1 defines the principally available features of the SPL. Line 2 represents all valid con-
figurations in terms of a propositional formula over features1. Lines 3–6 associate each delta
module with an activation condition in a when clause to specify that the delta module is only
applied if the specified features are part of the configuration.

Typically, more than one delta module must be used for the generation of a product.
However, the order in which the delta modules are applied may not be chosen arbitrarily if
multiple delta modules modify overlapping parts of the object-oriented program. To accom-
modate for that case, we allow the specification of application orders on delta modules to
state that a certain group of delta modules may only be applied after another group of delta
modules. Groups of delta modules are defined by a list of delta modules enclosed by { ..

} as presented in Listing 2, e.g., in Line 5. Within each group, delta modules may be applied
in an arbitrary order.

To obtain a product for a particular configuration, first, those delta modules are col-
lected that have a valid activation condition according to the selected features. After that,
a sequence for the delta modules is established according to the application order before
the modifications specified in the delta modules are applied incrementally according to the
established order. The first delta module is applied to the empty product. The modifications
of a delta module are applicable to a (possibly empty) product if each class to be removed or
modified exists and, for every modified class, if each method or field to be removed exists, if
each method to be modified exists and has the same signature as the modified method, and
if each class, method or field to be added does not exist. During the generation of a product,
every delta module must be applicable. Otherwise, the generation of the product fails. In
particular, if applied to the empty product, the first delta module can only contain additions.

1 It is generally not possible to enumerate all possible configurations due the sheer number in any non-
trivial SPL. However, there are other ways of representing valid configurations of an SPL, e.g., see (Batory
[2005]) for other representations.

A Core Calculus for Dynamic Delta-Oriented Programming 7

Listing 3 presents the product generated when all the features (Basic, Flex, Delete and
Log) are selected. Note that a method-modify operation that uses the original construct
adds a new method with a fresh name that is used (instead of original) in the body of
the modified method in the generated product. The name of the new method is denoted by
m$δ , where m is the name of the modified method and δ is the name of the delta module
that contains the method-modify operation (cf. methods update$Dlog, isValid$Delete,
addAccount$DFlex, execute$DLog and execute$DDelete in Listing 3).

2.3 Product Line Dynamic Reconfiguration Graph

Reconfiguration alters the currently active configuration by enabling or disabling certain
features to realize different functionality. A reconfiguration may be prompted manually or
by any other external event. The change of feature in the active configuration also affects
the code realizing that configuration: When reconfiguration is performed at compile time,
the respective source code has to be re-assembled and deployed. However, when reconfig-
uration is performed during runtime, not only the code has to be re-assembled but also the
objects in the heap must be updated accordingly if their respective classes are affected by
the reconfiguration. A class C is affected by a reconfiguration if it is recoded or reallocated:

– A class C is recoded if its code (or that of one of its superclasses) is changed. This means
that fields and methods may be added, removed, or modified.

– A class C is reallocated if its object instances are changed. Note that, if the reconfigura-
tion changes the value of some fields of C, then C is reallocated even if it is not recoded.

The notion of affected class (formalized in Section 4.1) will be used to avoid inconsistent
behavior: switching to the new feature configuration is enabled only if all methods that are
on the call stack have receivers whose classes are unaffected by the reconfiguration. Such
restriction applies also to those evolutions that change the implementation of individual
features. Note that the classes that are recoded and/or reallocated by a reconfiguration or
evolution can be determined statically.

The dynamic reconfiguration graph is a directed graph whose nodes are (a subset of) the
configurations and each edge is labeled by a set of object reconfiguration clauses. When two
feature configurations ϕ and ψ are adjacent in the dynamic reconfiguration graph, then it is
possible to change the feature configuration of the currently running product from ϕ to ψ .
The object reconfiguration clause that labels the edge from ϕ to ψ specifies how to recon-
figure the objects on the heap that are instances of the affected classes. An object reconfig-
uration clause OR has the following syntax

C→ C′{pre: Ay= . . .; post: Bz= . . .; this.f= z′;}

which specifies the new class C′ of an object of class C and the rearrangements of its fields in
the new configuration (each class has an implicit default constructor that is used for creating
the new object). The pre-reconfiguration assignments Ay= . . ., where A denotes a type and
y denotes a local variable, are used to retrieve (from the heap before the reconfiguration) val-
ues that are necessary for the object reconfiguration. The post-reconfiguration assignments
Bz= . . ., where B denotes a type and z denotes a local variable, take care of the proper mi-
gration from the old to new feature configuration of classes. Namely, either the content of a
variable y′ ∈ y or the address of a newly created object is assigned to each of the variables
z, whose types refer to the new configuration. Unmodified fields (i.e., fields that occur both

8 Ferruccio Damiani et al.

class Account {
int balance;
String owner;
String log;
String toString() { return owner + ":" + balance; }
void update(int x) { log = log + "[update:" + x + "]"; update$DLog(x); }
void update$Dlog(int amount) { this.balance = this.balance + amount; }
String getLog() { return log; }
}

class Bank {
Account[] accountAt;
int next;
int fee;
void init(int n) { accountAt = new Account[n]; fee = 3; }
boolean isValid(int id) { return (isValid$Delete(id) && (accountAt[id]!=null)); }
boolean isValid$Delete(int id) { return ((0 <= id) && (id <= next−1)); }
int addAccount(Account a) {

if (next == accountAt.length) { Account[] newAccountAt = new Account[next∗2];
for (int i= 0; i < next; i++) { newAccountAt[i] = accountAt[i]; } }

accountAt = newAccountAt;
return addAccount$DFlex(a); }

int addAccount$DFlex(Account a) { if (next == accountAt.length) { return −1; } accountAt[next] = a;
return next++; }

Account retrieveAccount(int id) { if (!(isValid(id))) { return null; } return accountAt[id]; }
boolean update(int id, int x) { if (!(isValid(id))) { return false; } accountAt[id].update(x−fee); return true; }
boolean deleteAccount(int id) { if (isValid(id)) { accountAt[id] = null; return true; } else return false; }
}

class AccountScanner ... // parses data of Account type

class Controller {
Scanner s;
AccountScanner as;
Bank b;
void init(Scanner scanner, AccountScanner accounScanner, Bank bank) { s=scanner; this as=accountScanner;

b=bank; }
void execute(String command) {

execute$DLog(command);
if (command.equals("getLog")) { int id = s.nextInt();

Account a = b.retrieveAccount(id);
if (a == null) { System.out.println(null); }

else { System.out.println(a.getLog()); }
return; }

}
modifies void execute$DLog(String command) {

execute$DDelete(command);
if (command.equals("delete")) { int id = s.nextInt(); System.out.println(a.delete(id)); return; }

}
void execute$DDelete(String command) {

if (command.equals("add")) { Account a = as.nextAccount(); System.out.println(b.addAccount(a)); return; }
if (command.equals("retrieve")) { int id = s.nextInt(); System.out.println(b.retrieveAccount(id)); return; }
if (command.equals("update")) { int id = s.nextInt(); int amount = s.nextInt(); b.update(id,amount); return; }

}
}

class Main {
void main() {

Scanner scanner = new Scanner(System.in);
AccountScanner accountScanner = new AccountScanner(System.in);
Bank bank = new Bank().init(100);
Controller controller = new Controller().init(scanner,accountScanner,bank);
while (true) { String command = scanner.next(); controller.execute(command); }
}
}

Listing 3: Product generated when the features Basic, Flex, Delete and Log are selected

A Core Calculus for Dynamic Delta-Oriented Programming 9

DeleteLogBank

DeleteBank

BasicBank

FlexDeleteLogBank

FlexDeleteBank

FlexBank

Fig. 2 Dynamic reconfiguration graph of the Bank PL (abstract graphical representation)—the gray box
highlights the part of the graph that is the same as in Fig. 4

in C and C′ with the same name and type) are copied by default and the remaining fields are
initialized to the default values associated to their type (as in JAVA). Then, the assignments
this.f= z′ allow the programmer to update the value of the (unmodified and new) fields
of the reconfigured object of class C′ by using variables z′ ∈ z. Note that the fields of C′ are
not visible in the pre-reconfiguration assignments and the fields of C are not visible in the
post-reconfiguration assignments. This makes it possible to handle reconfigurations where
C and C′ contain two fields with the same name and different types.

Empty pre: and post: clauses are omitted. If the classes C and C′ are equal, only the
name of the affected class C is written, instead of C→ C. Moreover, if C is (recoded and)
not reallocated, then the entire body {...} of the reconfiguration clause is omitted—note that
specifying the empty body has a different meaning from specifying no body (for instance, an
empty body must be specified when an object is reconfigured by dropping some of its fields
and preserving the value of the fields that are not dropped).

Each edge of the dynamic reconfiguration graph is labeled by an object reconfigura-
tion clause OR. The operational semantics (Section 4.3) uses the clause to check that the
reconfiguration associated to a given edge can be safely performed in a given state of the
computation. To prevent reconfiguration of an object while a method is currently executed
on it, an object reconfiguration clause must be present for each affected class.

Listing 4 describes the dynamic reconfiguration graph for the Bank PL (the product line
declaration is in Listing 2). The first part of the description, beginning with the keyword
nodes, declares the nodes of the graph by associating each name of a node with a distinct
configuration, e.g., FlexDeleteBank with the configuration {Basic, Flex, Delete}.

The second part of the description, beginning with the keyword edges, declares the edges
of the graph, which specify the possible runtime reconfigurations, e.g., between BasicBank

and FlexBank (and vice versa). Figure 2 depicts (an abstract graphical representation of) the
dynamic reconfiguration graph described in Listing 4.

– The edge BasicBank=>FlexBank affects the class Bank for which it contains an object
reconfiguration clause. The class Bank is both recoded (because the method addAccount

is modified) and reallocated (because the value of the fee field is changed). The real-
location is needed because a “flexible bank” requires an increased transaction fee in
order to cover the costs brought by the flexibility. This is achieved by inserting suitable
operations in the body of the object reconfiguration clause.

– The edge BasicBank=>DeleteBank affects the classes Bank and Controller. There-
fore, it contains an object reconfiguration clause for each of them. Both the classes
Bank and Controller are recoded and not reallocated. Hence, the object reconfigura-

10 Ferruccio Damiani et al.

nodes
BasicBank = Basic;
FlexBank = Basic, Flex;
DeleteBank = Basic, Delete;
DeleteLogBank = Basic, Delete, Log;
FlexDeleteBank = Basic, Flex, Delete;
FlexDeleteLogBank = Basic, Flex, Delete, Log;

edges
BasicBank => FlexBank {

Bank { pre: int tmpFee = this.fee;
post: this.fee = tmpFee + 1; }

}
FlexBank => BasicBank {

Bank { pre: int tmpFee = this.fee;
post: this.fee = tmpFee − 1; }

}
BasicBank => DeleteBank {

Bank,
Controller
}
DeleteBank => DeleteLogBank {

Account { post: this.log = ""; },
Controller,
AccountScanner
}
DeleteLogBank => FlexDeleteLogBank {

Bank { pre: int tmpFee = this.fee;
post: this.fee = tmpFee + 1; }

}
FlexDeleteLogBank => FlexDeleteBank {

Account { },
Controller,
AccountScanner
}
FlexDeleteBank => DeleteBank {

Bank { pre: int tmpFee = this.fee;
post: this.fee = tmpFee − 1; }

}

Listing 4: Dynamic reconfiguration graph of the Bank PL

tion clauses have no body. Classes Account, AccountScanner and Main are unaffected.
Hence, there are no object reconfiguration clauses for them.

– The edge DeleteBank=>DeleteLogBank affects the classes Account, AccountScanner
and Controller and contains object reconfiguration clauses for these classes. Class
Account is both recoded and reallocated. Its object reconfiguration clause specifies that
the new field log is initialized to the empty string (the other fields, which are not changed
by the reconfiguration, are implicitly copied). Since the classes AccountScanner and
Controller are recoded (and not reallocated) their object reconfiguration clauses have
no body. Class Main is unaffected, so there is no object reconfiguration clause for it.

– The edge FlexDeleteLogBank=>FlexDeleteBank recodes and reallocates the Account
class, it recodes (but does not reallocate) classes AccountScanner and Controller, and
it does not affect classes Bank and Main. Note that the object reconfiguration clause for
the class Account has an empty body so that the log field is dropped and the other fields
are preserved.

– The remaining transitions are similar in nature to the ones described above.

A reconfiguration ϕ=>ψ is enabled when there is no running method invoked on an
instance of a class affected by the reconfiguration. As already pointed out at beginning of
Section 2.3, the switch to a new feature configuration is enabled only if all methods that are

A Core Calculus for Dynamic Delta-Oriented Programming 11

on the call stack have receivers whose classes are unaffected by the reconfiguration. This
condition is sufficient to enforce type soundness.

For instance, when the running product is in any configuration ϕ of the Bank PL (cf. List-
ing 4) and the first statement in the body of method main of class Main is being executed
or the statement String command = scanner.next(); in the body of the while loop of
the same method is being executed (cf. Listing 1), all the reconfigurations to any node
adjacent to ϕ in the dynamic reconfiguration graph (cf. Figure 2) are enabled. Instead,
when the method execute of class Controller is the last invoked and currently execut-
ing method, only the reconfigurations BasicBank=>FlexBank, FlexBank=>BasicBank and
DeleteLogBank=>FlexDeleteLogBank are enabled.

The core calculus for dynamic DOP (Section 4) models a lazy update of the heap so
that each object is reconfigured only if and when the running product accesses it.2 To model
lazy heap update, a queue of pending reconfiguration operations is maintained while the
heap is partitioned in regions. If there are n pending reconfiguration operations, then there
are n+1 regions (numbered form 0 to n). The 0-th region contains the objects that have not
yet been reclassified by any of the pending operations, the 1-st region contains objects that
have passed the first pending operation and so on. The n-th region contains the objects that
have passed all pending operations. When the 0-th region becomes empty, it is destroyed
and the first pending operation is removed from the queue. Whenever the running product
requires accessing an object that is not in the n-th region, all the pending reconfigurations
on the object are performed and the object is moved in the n-th region (which may in turn
imply the reconfiguration of other objects).

2.4 Evolving Dynamic Delta-Oriented SPLs

Reconfiguring an SPL means selecting a new valid configuration of features and activating
it. However, over the course of time, new or changed requirements on the SPL may cause
the SPL itself to change, e.g., by adding new features and delta modules, by deleting old
features and delta modules, or by making existing features optional or mandatory. While
this distinction of reconfiguration and evolution is essential at a conceptual level (Seidl
et al. [2014]), at the implementation level of source code, changes associated with both re-
configuration and evolution manifest as modifications of the source code, in our case during
runtime. As a consequence, the product line declaration, the dynamic reconfiguration graph,
or the code base may have to be replaced. At runtime, these artifacts can safely be replaced
if the following two conditions hold:

1. Currently running product is preserved: For the current configuration, the new code base
and the new product line declaration describe the same product (obtained by applying
the same delta modules in the same order).

2. Pending reconfigurations are preserved: In the new reconfiguration graph, the edges
associated with the pending reconfigurations/evolutions are unchanged and all the prod-
ucts reached by these edges are preserved by the new code base and the new prod-
uct line declaration. Otherwise, application of the pending reconfigurations/evolutions
would have to be performed before the update, which might take indefinite amounts of
time if a method remains on the call stack.

In the rest of this section, we illustrate three different evolution examples for the Bank PL.

2 The formalization performs the least amount of necessary updates. An implementation may choose to
follow a more eager strategy.

12 Ferruccio Damiani et al.

BankPL

Basic Flex Delete Log Corporate

Fig. 3 Feature model for the evolved Bank PL

Example 1 Assume that the Bank PL has to evolve to meet changed or entirely new require-
ments: The features Flex and Delete are made mandatory, which consequentially discards the
products BasicBank, FlexBank, DeleteBank, and DeleteLogBank). A new optional feature
Corporate is introduced for opening a new kind of account with reduced fees, reserved to the
employees of corporations that signed an agreement with the bank, which consequentially
creates the new products FlexDeleteCorporateBank and FlexDeleteLogCorporateBank.
Adding the feature Corporate is challenging as the Bank PL was designed without foresee-
ing the possibility of having accounts of different kinds with different transaction fees. In
particular, the deduction of transaction fees which are the same for all the accounts is built
into the class Bank, which is introduced by the delta module DBasic for the feature Basic

(cf. Figure 1). The feature model of the evolved Bank PL is shown in Figure 3.
To evolve the implementation of the Bank PL, the following changes have to be made:

– Modify the code base by adding the delta modules DCorporate and DCorporateLog

as illustrated in Listing 5. DCorporate moves the logic for deducting fees from the
class Bank to the class Account, introduces the class CorporateAccount for the new
kind of account and modifies the class AccountScanner to parse corporate accounts.
DCorporateLog modifies the class Account to ensure that fees are logged.

– Modify the product-line declaration so that discarded products may no longer be created
and all new products are supported. The resulting declaration is shown in Listing 6.

– Modify the dynamic reconfiguration graph by: (i) removing the nodes for the dropped
products together with their incident edges; and (ii) adding the nodes for the new prod-
ucts and the new edges. The resulting graph is illustrated in Listing 7 and its abstract
graphical representation is presented in Figure 4. Note that, in the course of evolution,
the edge FlexDeleteLogBank=>FlexDeleteBank remains unchanged (cf. Listing 4 and
Figure 2), while the other three edges are new.

– The edge FlexDeleteBank=>FlexDeleteCorporateBank specifies that the class
Bank is both recoded and reallocated. Classes Account and AccountScanner are
recoded (but not reallocated).

– The edge FlexDeleteCorporateBank=>FlexDeleteLogCorporateBank is largely
similar to the edge DeleteBank=>DeleteLogBank in Listing 4, the only difference is
that it also contains the object reconfiguration clause for the class CorporateAccount,
which is both recoded and reallocated.

– The edge FlexDeleteLogCorporateBank=>FlexDeleteLogBank contains an ex-
ample of an object reconfiguration clause where objects are reconfigured to be
instances of a class with a different name. In particular, all objects of the class
CorporateAccount are reconfigured to new objects belonging to the class Account
due to the fact that the class CorporateAccount is dropped by the reconfiguration.
Furthermore, the change of account type is logged. The other object reconfiguration
clauses specify that the classes Account and AccountScanner are recoded (but not
reallocated).

When the running program conforms to one of the two configurations FlexDeleteBank
or FlexDeleteLogBank, both the product line declarations in Listing 2 and Listing 6 de-

A Core Calculus for Dynamic Delta-Oriented Programming 13

delta DCorporate {
modifies class Account {

adds void chargeFee() { balance = balance − getFee(); }
adds int getFee() { return 3; }
}
adds class CorporateAccount extends Account {

String corporation;
modifies toString() { return corporation + "," + original(); }
int getFee() { return 1; }
}

modifies class Bank{
removes int fee;
modifies void init(int n) { accountAt = new Account[n]; }
modifies boolean update(int id, int x)
{ if (!(isValid(id))) { return false; } accountAt[id].update(x); accountAt[id].chargeFee(); return true; }

}
modifies class AccountScanner ... // to parse corporate accounts
}

delta DCorporateLog {
modifies class Account {

modifies void chargeFee() { original(); log = log + "[fee:" + getFee() + "]"; }
}
}

Listing 5: Delta modules for the evolved Bank PL

features Basic, Flex, Delete, Log, Corporate
configurations Basic & Delete & Flex
deltas
{ DBasic }
{ DFlex,

DDelete }
{ DLog when Log }
{ DCorporate when Corporate }
{ DCorporateLog when Corporate & Log }

Listing 6: Declaration of the evolved Bank PL

FlexDeleteBank FlexDeleteCorporateBank

FlexDeleteLogBank FlexDeleteLogCorporateBank

Fig. 4 Dynamic reconfiguration graph of the evolved Bank PL (abstract graphical representation)—the gray
box highlights the part of the graph that is the same as in Fig. 2

scribe the same product by applying the same delta modules in the same order. Therefore,
when either there are no pending reconfigurations or the only pending reconfiguration is
FlexDeleteLogCorporateBank=>FlexDeleteLogBank3 (which is preserved), the product
line declaration, code base, and dynamic reconfiguration graph of the Bank PL can safely
evolve as described above.

3 This implies that the running program conforms to configuration FlexDeleteLogBank.

14 Ferruccio Damiani et al.

nodes
FlexDeleteBank = Basic, Flex, Delete;
FlexDeleteLogBank = Basic, Flex, Delete, Log;
FlexDeleteCorporateBank = Basic, Flex, Delete, Corporate;
FlexDeleteLogCorporareBank = Basic, Flex, Delete, Corporate, Log;

edges
FlexDeleteBank => FlexDeleteLogBank {

Account { post: this.log = ""; },
Controller,
AccountScanner
}
FlexDeleteLogBank => FlexDeleteBank {

Account { },
Controller,
AccountScanner
}
FlexDeleteBank => FlexDeleteCorporateBank {

Account,
Bank { },
AccountScanner
}
FlexDeleteCorporateBank => FlexDeleteLogCorporateBank {

Account { post: this.log = ""; },
CorporateAccount { post: this.log = ""; },
Controller,
AccountScanner
}
FlexDeleteLogCorporateBank => FlexDeleteLogBank {

Account,
CorporateAccount −> Account { pre: String tmpLog = this.log;

post: this.log = tmpLog + "[Till now it was a Corporate Account]"; },
Bank { post: this.fee = 3; }
AccountScanner
}

Listing 7: Dynamic reconfiguration graph of the evolved Bank PL

In the previous example, the Bank PL evolved by adding features and delta modules.
The following example sketches an evolution that is performed by dropping features and
delta modules.

Example 2 Assume that the evolved Bank PL illustrated in Example 1 has to evolve further
by “disabling” the feature Log (i.e., by “disabling” any reconfiguration involving the prod-
ucts FlexDeleteLogBank and FlexDeleteLogCorporateBank) and by introducing a new
edge that specifies the direct reconfiguration from the product FlexDeleteCorporateBank
to the product FlexDeleteBank.

Whenever the running program conforms to one of the configurations FlexDeleteBank
or FlexDeleteCorporateBank and either there are no pending reconfigurations or the only
pending reconfiguration is FlexDeleteBank=>FlexDeleteCorporateBank4 (which is pre-
served), this evolution can be performed safely by modifying the dynamic reconfiguration
graph of the evolved Bank PL: The edge FlexDeleteBank=>FlexDeleteCorporateBank

is preserved and an edge FlexDeleteCorporateBank=>FlexDeleteBank is added as illus-
trated in Listing 8.

Moreover, although it is not necessary to achieve the desired behavior (cf. the explana-
tion at the beginning of the example), the following changes may be performed:

– The delta modules DLog (in Listing 1) and DCorporateLog (in Listing 5) can be dropped
from the code base.

4 This implies that the running program conforms to configuration FlexDeleteCorporateBank.

A Core Calculus for Dynamic Delta-Oriented Programming 15

FlexDeleteCorporateBank => FlexDeleteBank {
Account,
CorporateAccount −> Account { },
Bank { post: this.fee = 3; }
AccountScanner
}

Listing 8: Additional reconfiguration edge FlexDeleteCorporateBank=>FlexDeleteBank
introduced by evolution

features Basic, Flex, Delete, Corporate
configurations Basic & Delete & Flex
deltas
{ DBasic }
{ DFlex,

DDelete }
{ DCorporate when Corporate }

Listing 9: Declaration of the further evolved Bank PL

– The product line declaration can be changed as in Listing 9.
– The nodes FlexDeleteLogBank and FlexDeleteLogCorporateBank can be dropped

from the dynamic reconfiguration graph.

The last example of evolution replaces a delta module by two new delta modules that
modularize and improve the changes described by the original delta module.

Example 3 Assume that the Bank PL has to evolve further to support the runtime recon-
figuration from configuration FlexDeleteLogBank to configuration FlexBank. Adding this
runtime reconfiguration raises a subtle problem due to two reasons:

– When the running product is in a configuration that includes the feature Delete, it is
possible to delete accounts. This, in turn, sets elements of the array accountAt with
index i to null such that 0≤ i < next.

– All the configurations that do not include the feature Delete assume that the class Bank
satisfies the invariant (0≤ i < next)⇒ (accountAt[i] 6= null). Due to this reason, they
implement a variant of the method isValid that does not explicitly check for deleted
(and therefore invalid) account numbers as it lacks the condition accountAt[i]!=null.

Therefore, a runtime reconfiguration from a configuration including the feature Delete

to a configuration that does not include the feature Delete may lead to an inconsistent state.
However, this problem can be remedied by using a two-step evolution process.

In the first evolution step, which can be performed when the running product is in con-
figuration FlexDeleteLogBank and there are no pending reconfigurations, the Bank PL is
evolved into an intermediate product line by the following operations:

– Introduce the new delta modules DCheck and DDelete1 (shown in Listing 11), which
modularize and improved the change described by the delta module DDelete—namely
the modification of the method isValid is isolated into the delta module DCheck and
improved in order to ensure that the check accountAt[i]!=null is performed;

– Modify the product line declaration of Listing 2 to create the one shown in Listing 12:
– Introduce the new feature Delete1, which will replace the feature Delete in the final

product line.

16 Ferruccio Damiani et al.

FlexDeleteLogBank FlexDelete1LogBank

Fig. 5 Dynamic reconfiguration graph of the intermediate Bank PL (abstract graphical representation)—the
gray box highlights the part of the graph that is the same as in Fig. 6

Delete1LogBank

Delete1Bank

BasicBank

FlexDelete1LogBank

FlexDelete1Bank

FlexBank

Fig. 6 Dynamic reconfiguration graph of the final Bank PL (abstract graphical representation)—the gray box
highlights the part of the graph that is the same as in Fig. 5

FlexDeleteLogBank => FlexDelete1LogBank {
Bank { }
}

Listing 10: Additional reconfiguration edge FlexDeleteLogBank=>FlexDelete1LogBank

introduced by evolution

– Replace each product that does not include the feature Delete with a variant of the
product that implements a variant of the method isValid that performs the check
accountAt[i]!=null by utilizing the delta module DCheck.

– Replace each product that includes the feature Delete by an identical product that has
the feature Delete1 as substitute and is implemented by utilizing the delta modules
DCheck and DDelete1 as substitute for the delta module DDelete.

– Reintroduce the product for the feature configuration {Basic,Flex,Delete,Log}.
– Modify the dynamic reconfiguration graph of Listing 4 and Figure 2 to create the one

presented in Figure 5: Keep the node FlexDeleteLogBank. Drop all other nodes and
all edges. Introduce the node FlexDelete1LogBank for the configuration {Basic, Flex,
Delete1, Log} and the edge FlexDeleteLogBank=>FlexDelete1LogBank as illustrated
in Listing 10.

Once the first evolution step has been performed, the running product is in configuration
FlexDeleteLogBank. Therefore, when the main method of class Main is the only method
in the call stack, the reconfiguration FlexDeleteLogBank => FlexDelete1LogBank is en-
abled an can be performed.

In the second evolution step, which can be performed when the running product is in
configuration FlexDelete1LogBank, the intermediate Bank PL is evolved into the final
Bank PL by the following operations:

– Drop the delta module DDelete.
– Modify the product line declaration produced by the first evolution step to result in the

declaration presented in Listing 14 by the following two operations:
– Drop the feature Delete.

A Core Calculus for Dynamic Delta-Oriented Programming 17

delta DCheck {
modifies class Bank {

modifies boolean isValid(int id) { return (original(id) && (accountAt[id]!=null)); }
}
}

delta DDelete1 {
modifies class Bank {

adds boolean deleteAccount(int id) { if (isValid(id)) { accountAt[id] = null; return true; } else return false; }
}
modifies class Controller {

modifies void execute(String command) {
original(command);
if (command.equals("delete")) { int id = s.nextInt(); System.out.println(a.delete(id)); return; } }

}
}

Listing 11: Delta modules DCheck and Delete1

features Basic, Flex, Delete, Log, Corporate, Delete1
configurations ((Basic & (Log −> Delete1)) & !Delete)

| ((Basic & Flex & Delete & Log & !Corporate) & !Delete1)
deltas
{ DBasic }
{ DCheck when !Delete}
{ DFlex when Flex,

DDelete when Delete,
DDelete1 when Delete1 }
{ DLog when Log }

Listing 12: Declaration of the intermediate Bank PL

FlexDelete1LogBank => FlexBank {
Account { },
Bank { },
Controller,
AccountScanner
}

Listing 13: Additional reconfiguration edge FlexDelete1LogBank=>FlexBank introduced
by evolution

– Drop the configuration {Basic,Flex,Delete,Log} (which is the only configuration that
includes the feature Delete).

– Modify the dynamic reconfiguration graph from Figure 5 to create the one depicted in
Figure 6 by performing the following operations:

– Use the feature name Delete1 instead of Delete–also in the names of the nodes. Note
that this transformation preserves the currently running product.

– Add the edge FlexDelete1LogBank=>FlexBank as described in Listing 13.

Moreover, as soon as the currently running product reaches a configuration that does
not include the feature Delete1, both the product line declaration (in Listing 14) and the
dynamic reconfiguration graph of the final Bank PL can be changed by renaming the feature
name Delete1 to Delete. This renaming constituted a refactoring and, thus, can be performed
safely even if there are pending reconfigurations involving a node that includes the Delete1

feature.

18 Ferruccio Damiani et al.

features Basic, Flex, Delete1, Log, Corporate
configurations Basic & (Log −> Delete1)
deltas
{ DBasic }
{ DCheck }
{ DFlex when Flex,

DDelete1 when Delete1 }
{ DLog when Log }

Listing 14: Declaration of the final Bank PL

CD ::= class C extends C { FD; MD } classes
FD ::= C f fields
MD ::= C m (C̄ x̄){return e;} methods
e ::= x

∣∣ e.f ∣∣ e.m(e) ∣∣ new C() ∣∣ e.f= e
∣∣ null expressions

Fig. 7 Syntax of classes in IMPERATIVE FEATHERWEIGHT JAVA (IFJ).

3 A Quick Recapitulation of Imperative Featherweight Delta Java (IF∆J)

In this section, we recall IF∆J (IMPERATIVE FEATHERWEIGHT DELTA JAVA) (Bettini et al.
[2013b]), a core calculus for DOP of product lines of JAVA programs.

3.1 Program Logic with Imperative Featherweight Java (IFJ)

IMPERATIVE FEATHERWEIGHT JAVA (IFJ) is an imperative version of FEATHERWEIGHT

JAVA (FJ) (Igarashi et al. [2001]), which supports a more flexible initialization of fields
(by field assignment expressions). Within this paper, IFJ serves as core calculus for JAVA

to implement the program logic of single products. Both FJ (Igarashi et al. [2001]) and the
implementation of IFJ (Bettini et al. [2013b]) define a cast construct. In favor of a more
concise presentation of our formalisation, without loss of generality, we do not treat the cast
construct explicitly.

The abstract syntax of the IFJ constructs is given in Figure 7. Following Igarashi et al.
[2001], we use the overline notation for possibly empty sequences. For instance, we write
“e” as short for a possibly empty sequence of expressions “e1, . . . ,en” and “MD” as short
for a possibly empty sequence of method definitions “MD1 . . .MDn”. The empty sequence is
denoted by •. We abbreviate operations on sequences of pairs in a similar way, e.g., we write
“C f” as short for “C1 f1, . . . ,Cn fn” and “C f;” as short for “C1 f1; . . .Cn fn;”. Sequences of
named elements (field, method or parameter names, field, method or class definitions, . . .)
are assumed to contain no duplicate names. The set of variables includes the special variable
this (implicitly bound in any method declaration), which cannot be used as the name of a
method’s formal parameter.

A class definition class C extends D { FD; MD } consists of its name C, its superclass D
(which must always be specified, even if it is Object), a list of field definitions FD and a list
of method definitions MD. The fields declared in C are added to the ones declared by D and its
superclasses. All fields are assumed to have distinct names (i.e., there is no field shadowing)
and public visibility. Each class is assumed to have an implicit constructor that initializes all
instance variables to null.

A class table CT is a mapping from class names to class definitions. The subtyping
relation <: on classes (types) is the reflexive and transitive closure of the immediate extends

A Core Calculus for Dynamic Delta-Oriented Programming 19

DM ::= delta δ {CO} delta modules
CO ::= adds CD | removes C | modifies C [extending C] { AO } class operations
AO ::= adds FD

∣∣ adds MD | removes a | modifies MD attribute operations

Fig. 8 Syntax of delta modules in IMPERATIVE FEATHERWEIGHT DELTA JAVA (IF∆J).

relation (the immediate subclass relation, given by the extends clauses in CT). The class
Object has no members and its definition does not appear in CT. We assume that a class table
CT satisfies the following sanity conditions: (i) CT(C) = class C . . . for every C ∈ dom(CT)
(ii) for every class name C (except Object) appearing anywhere in CT, we have C∈ dom(CT);
(iii) there are no cycles in the transitive closure of the immediate extends relation.

A program is a class table CT with a class class Main { C main() { return(e);} } for
some C and e.

3.2 Variability with Imperative Featherweight Delta Java (IF∆J)

IMPERATIVE FEATHERWEIGHT DELTA JAVA (IF∆J) is an extension to IFJ to support prod-
uct line development with DOP. The abstract syntax of the IF∆J constructs is given in Fig-
ure 8. The constructs for class definitions CD, field definitions FD and method definitions MD
are those of IFJ as presented in Figure 7. Delta module names are denoted by δ . A delta
module DM (see Figure 8) specifies a sequence of class operations. A class operation CO can
add, remove or modify a class. A class-modify operation possibly specifies the change of
the super class and specifies a sequence of attribute operations. An attribute operation AO

can add/remove a field/method or modify a method. A method-modify operation can either
replace the method body by another implementation or wrap the existing method using the
original construct. In both cases, the modified method must have the same signature as the
unmodified method.

With the notion of delta modules over IFJ, IF∆J product lines may be formalized. Fea-
ture names are denoted by ϕ and ψ . Occasionally we use ψ to denote also the set of features
occurring in the sequence ψ . A delta module table DMT is a mapping from delta module
names to delta modules. An IF∆J SPL is a 5-tuple L = (ϕ,Φ,DMT,∆,Π) consisting of: (i)
the features ϕ of the SPL; (ii) the set of the valid feature configurations Φ⊆P(ϕ);5 (iii) a
delta module table DMT containing the delta modules; (iv) a mapping ∆ : Φ→P(dom(DMT))
determining for which feature configurations a delta module must be applied (which is de-
noted by the when clause in the concrete examples); and (v) a totally ordered partition Π of
dom(DMT), determining the order of delta module application. The 4-tuple (ϕ,Φ,∆,Π) rep-
resents the product-line declaration, while the delta module table DMT represents the code
base.

We write CTψ to denote the class table generated for the feature configuration ψ and
write <:ψ to denote the subtype relation associated with the class table CTψ . We further
write fieldsψ(C) to denote all the fields FD of class C; methψ(m,C) to denote the definition MD

of method m of class C; and subclassesψ(C) to denote the subclasses of C in CTψ . The fields
lookup, method lookup and subclasses lookup functions are defined in Figure 9.

The IF∆J type system (Bettini et al. [2013b], Damiani and Schaefer [2012], Damiani
and Lienhardt [2016]) guarantees that, if an SPL L is well typed, then all its products are well-
typed IFJ programs. Hence, for every feature configuration ψ ∈Φ, the judgement ` CTψ ok

5 The calculus abstracts from the feature model concrete representation.

20 Ferruccio Damiani et al.

Fields lookup

fieldsψ (Object) = •
fieldsψ (D) = D g CSTψ (C) = class C extends D { C f; MH }

fieldsψ (C) = D g,C f

Method lookup

methψ (m,C) =

{
MD if MD= · · ·m · · · ∈ CTψ (C)
methψ (m,D) if · · ·m · · · 6∈ CTψ (C) and CTψ (C) = class C extends D{· · ·}

Subclasses lookup

subclassesψ (C) = {D ∈ dom(CTψ) | D<:ψ C}

Fig. 9 Auxiliary lookup functions for IMPERATIVE FEATHERWEIGHT DELTA JAVA (IF∆J).

can be derived by the typing rules given in Figure 10. Every well-typed IFJ program is
literally a well-typed JAVA program.

4 Runtime Variability with Imperative Featherweight Dynamic Delta Java (IFD∆J)

IMPERATIVE FEATHERWEIGHT DYNAMIC DELTA JAVA (IFD∆J) is an extension of IF∆J
for modeling dynamic software product lines (DSPLs) (Hallsteinsen et al. [2008], Capilla
et al. [2014]). In this section, we introduce syntax, type system, operational semantics and
type soundness of IFD∆J.

An IFD∆J DSPL is a 6-tuple L = (ϕ,Φ,DMT,∆,Π,RG) consisting of an IF∆J SPL L0 =
(ϕ,Φ,DMT,∆,Π) and a dynamic reconfiguration graph RG. The dynamic product line L is
well typed if L0 is well typed (cf. end of Section 3) and RG is well typed (cf. the typing rules
presented later in this section).

4.1 Syntax of Dynamic Reconfiguration Graphs

A reconfiguration declaration R (see Figure 11) consists of:

– an adjacency declaration ψ ⇒ ψ
′ specifying that the configuration ψ is adjacent to the

configuration ψ
′ in the reconfiguration graph; and

– a set of object reconfigurations OR where each object reconfiguration OR specifies how
to transform each object of class C in configuration ψ into an object of class C′ in con-
figuration ψ

′. For each class C, we assume the existence of another default constructor
C(C f) {this.f= f;} that takes initial values for all the fields of C. This constructor can
only be invoked in post-reconfiguration expressions.

A dynamic reconfiguration graph RG is a set of reconfiguration declarations with no dupli-
cated adjacency declarations.

Given a reconfiguration declaration R= ψ ⇒ ψ
′ {OR}, a class C ∈ dom(CTψ) is:

– removed by R if C 6∈ dom(CTψ
′); and

– state-modified by R if it is not removed and fieldsψ
′(C) 6= fieldsψ(C).

A reconfiguration declaration must contain an object reconfiguration for each removed or
state-modified class and may contain object reconfigurations for non state-modified classes.

A Core Calculus for Dynamic Delta-Oriented Programming 21

Expression typing:

(T-VAR)
Γ ` x : Γ (x)

(T-NULL)
Γ ` null :⊥

(T-NEW)
C ∈ dom(CTψ)

Γ ` new C() : C

(T-FIELD)
Γ ` e : C Af ∈ fieldsψ (C)

Γ ` e.f : A

(T-INVK)
Γ ` e0 : C0 methψ (m,C0) = B m(A1 _, . . . ,An _){_} Γ ` ei : Ti

(i∈1..n) Ti <:ψ Ai
(i∈1..n)

Γ ` e0.m(e) : B

(T-ASSIGN)
Γ ` e0.f : C Γ ` e1 : T T<:ψ C

Γ ` e0.f= e1 : C

Method definition typing:

(T-METHOD)
this : C, x : Ā ` e : T T<:ψ B

this : C ` B m (Ā x){return e;} ok

Class definition typing:

(T-CLASS)
this : C ` MD ok

` class C extends D { FD; MD } ok

Program typing:

(T-PROGRAM)
∀C ∈ dom(CTψ) ` CTψ (C) ok

` CTψ ok

Fig. 10 Typing rules for expressions, methods, classes and the program CTψ in IMPERATIVE FEATHER-
WEIGHT JAVA (IFJ). To reduce clutter, hereafter _ stands for an irrelevant sub-term.

A reconfiguration declaration specifies, given a heap (called the current heap), how to pro-
duce a new heap (called the reconfigured heap)—the operation semantics (given in Sec-
tion 4.3) performs the specified transformation lazily (i.e., each object is reconfigured only
when the running product accesses it). An object reconfiguration can be understood as an
operation that, given an object of the current heap, introduces a new object with the same
address in the reconfigured heap. Given an object o of class C, the reconfiguration operation
R behaves as follows:

– If there is an object reconfiguration OR = C→ C′ {· · ·}, then it adds to the reconfigured
heap an object o′ of type C′ with the same address of o and initializes all its fields f as
specified by the instruction in the body of OR.

– If there is no object reconfiguration OR= C→ ··· {· · ·}, then it copies the object into the
reconfigured heap.

A class C ∈ dom(CTψ) is:

– recoded by R if, for some superclass C0 of C in ψ (possibly C itself), either C0 is removed
or CTψ

′(C0) 6= CTψ(C0);
– reallocated by R if R contains an object reconfiguration for C; and

22 Ferruccio Damiani et al.

R ::= ψ ⇒ ψ
′ {OR} reconfiguration declarations

OR ::= C→ C′ {pre: Ay= p; post: Bz= q; this.f= z;} object reconfigurations
p ::= this | p.f pre-reconfiguration expressions
q ::= y | null | new C(z) post-reconfiguration expressions

Fig. 11 Syntax of reconfiguration declarations for IMPERATIVE FEATHERWEIGHT DYNAMIC DELTA
JAVA (IFD∆J).

– affected by R if it is recoded or reallocated.
We write affected(R), reallocated(R), recoded(R) to denote the set of the names of the classes
that are affected, reallocated or recoded by R, respectively. We write R(C) for the name of the
class in which the objects of C are reconfigured by R with the understanding that R(C) = C if
C 6∈ reallocated(R). More precisely:

R(C) =

{
C′ if R= ψ ⇒ ψ

′ {. . . ,C→ C′{. . .}, . . .}
C otherwise

4.2 Typing Dynamic Reconfiguration Graphs

A reconfiguration graph is well typed if each of its reconfiguration declarations is well typed.
The typing rules are listed in Figure 12.

The typing rule for a reconfiguration declaration R= ψ ⇒ ψ
′ {OR} provides guarantees

on how objects are reconfigured. Namely, it requires each of its object reconfigurations OR
to be well typed and the following condition to be satisfied:
Object reconfiguration condition 1 If (in ψ) C is a subclass of C0 and C0 is not removed

by R, then (in ψ
′) R(C) is a subclass of C0.

The condition prevents a field of class C0 (that, before the reconfiguration contains the ad-
dress of an object of some proper subclass C of C0) from containing, after the reconfiguration,
an object whose class (R(C)) is not a subclass of C0.

The typing rule for object reconfiguration C→ C′ {pre: Ay= p; post: Bz= q; this.f= z′;}
requires the following condition to be satisfied:
Object reconfiguration condition 2 If y of type A is assigned to z of type B, then the ob-

jects of every subclass D of A (in ψ) are reconfigured to be instances of a class D′ that is
a subclass of B (in ψ

′).
The condition ensures that fields of reconfigured objects are initialized with values of the
right type. The typing rule for object reconfiguration uses three different kinds of judgment
for typing the pre-reconfiguration assignments (Ay= p), the post-reconfiguration assign-
ments (Bz= q) and the fields initializations (this.f= z′), respectively (recall that field initial-
izations involve all the fields of the reconfigured object). These typing rules use the auxil-
iary lookup functions fieldsψ and subclassesψ given in Figure 9. The rule for the first kind of
judgment (T-PREASSIGN) and the rule for the third kind of judgment (T-POSTINITIALIZEFIELD) per-
form standard checks within the source feature configuration ψ and the target feature config-
uration ψ

′, respectively. There are three rules for the second kind of judgment, correspond-
ing to the three different kinds of right-hand sides of the assignment. Rule (T-POSTASSIGNNULL)
has nothing to check. Rule (T-POSTASSIGNNEW) performs standard checks within feature con-
figuration ψ

′. The most interesting rule is (T-POSTASSIGNVAR), which checks the second object
reconfiguration condition illustrated above.

A Core Calculus for Dynamic Delta-Oriented Programming 23

Reconfiguration declaration ` R ok

(T-RECONFIGURATION)
R= ψ ⇒ ψ

′ {OR}
R ` ORi ok (i=1..|OR|) C<:ψ C0 implies R(C)<:ψ ′ C

(C∈dom(CTψ), C0∈dom(CTψ)∩dom(CT
ψ ′))

0

` R ok

Object reconfiguration R ` OR ok

(T-OBJRECONFIGURATION)
R= ψ ⇒ ψ

′ {OR} ψ;C ` Ai yi = pi ok (i∈1..|Ay=p|)

R;y : A; z1 : B1, . . . ,zi−1 : Bi−1 ` Bi zi = qi ok (i∈1..|Bz=q|)
ψ
′;C′;z : B ` this.fi = zi ok (i∈1..|this.f=z|)

R ` C→ C′ {pre: Ay= p;post: Bz= q; this.f= z;} ok

Pre-reconfiguration assignment ψ;C ` Ay= p ok

(T-PREASSIGN)
ψ;C ` p : A′ A′ <:ψ A

ψ;C ` Ay= p ok

Pre-reconfiguration expression ψ;C ` p : D

(T-PREEXPTHIS)
_ ;C ` this : C

(T-PREEXPFIELD)
ψ;C ` p : D0 Df ∈ fieldsψ (D0)

ψ;C ` p.f : D

Post-reconfiguration assignment R;y : A;z : B ` Bz= q ok

(T-POSTASSIGNVAR)
R= ψ ⇒ ψ

′{_} R(D)<:ψ ′ B
(D∈subclassesψ (A))

R;_,y : A,_ ;_ ` Bz= y ok

(T-POSTASSIGNNEW)
C<:ψ ′ B D1 f1, . . . ,Dn fn = fieldsψ

′ (C) zi : Bi ∈ z : B (i∈1..n) Bi <:ψ ′ Di
(i∈1..n)

_⇒ ψ
′{_};_ ;z : B ` Bz= new C(z1, . . . ,zn) ok

(T-POSTASSIGNNULL)
_ ;_ ;_ ` Bz= null ok

Post-reconfiguration field initialization ψ
′;C′;z : B ` this.f= z ok

(T-POSTINITIALIZEFIELD)
Df ∈ fieldsψ

′ (C′) B<:ψ ′ D

ψ
′;C′;_,z : B,_ ` this.f= z ok

Fig. 12 Typing rules for reconfiguration declarations for IMPERATIVE FEATHERWEIGHT DYNAMIC DELTA
JAVA (IFD∆J).

24 Ferruccio Damiani et al.

4.3 Operational Semantics of Imperative Featherweight Dynamic Delta Java (IFD∆J)

In order to properly model imperative features, we introduce the concepts of address, value,
object, stack and heap. Addresses, denoted by ι , are the elements of the denumerable set I.
Values, denoted by v, are either addresses or null. Objects are denoted by 〈C,f= v〉, where
C is the class of the object, f are the names of the fields and v are the values of the fields.
A stack ι is a possibly empty sequence of addresses (possibly containing duplicates). The
empty stack is denoted by •. A heap H is a mapping from addresses to objects. The empty
heap is denoted by /0.

Runtime expressions are obtained from expressions (cf. Figure 7) by adding the clause
for the expression that models the return from a method call (return(e)) and by replacing
all the variables (including this) by addresses. We use e to denote runtime expressions.

We introduce lazy heaps to account for the lazy reconfiguration of the heap. Lazy heaps
are defined by the grammar

L ::= H | H :R(L)

Intuitively, a lazy heap is either a heap H or a partially reconfigured heap of the form
Hn :Rn(Hn−1 :Rn−1(· · ·H1 :R1(H0) · · ·)), for some n≥ 1, where

– Hn is the part of the heap that has been reconfigured by Rn, . . . ,R1 and that may have
been subsequently modified by the execution of non-reconfiguration operations; and

– each Hi (1 ≤ i ≤ n− 1) is the part of heap that has been reconfigured by Ri, . . . ,R1
and that may have been subsequently modified by the execution of non-reconfiguration
operations before the invocation of Ri+1; and

– H0 is the heap before the invocation of R1.

If dom(H1)⊇ dom(H0), then all the objects in H0 have been reconfigured by R1 into H1.
Therefore, the objects in H0 are no longer needed and can be garbage collected. In our
formalization this amounts to replacing H1 : R1(H0) with H1. However, the operational
semantics does not explicitly model this replacement for simplicity.

We write L (ι) = 〈C,f = v〉 to mean that L has either the form H or H : _ for some
H such that H (ι) = 〈C,f = v〉. We further write L ∪{ι 7→ · · ·} to denote the lazy heap
obtained from L where the association ι 7→ · · · in H has been added. Similarly, we write
L [ι 7→ · · ·] to denote the lazy heap obtained from L where the association ι 7→ · · · in H
has been updated.

4.3.1 Reduction Rules

The state of a computation is a 4-tuple (ψ,L , ι ,e) consisting of a current feature configura-
tion ψ , a lazy heap L , a stack ι recording the addresses of the objects on which the running
methods have been invoked and a runtime expression e representing the bodies of the active
methods.

States evolve according to the relation =⇒, defined in Figure 13, by exploiting the aux-
iliary relation −→ which describes the computations within a given feature configuration.
The computation rules use the auxiliary lookup functions fieldsψ and subclassesψ given in
Figure 9. The relation =⇒ extends −→ by enabling reconfigurations whereby the features
ψ can be changed into ψ

′ if ψ and ψ
′ are adjacent. The reconfiguration rule can be ap-

plied nondeterministically whenever the current state of the computation satisfies the predi-
cate Enabled(R,L , ι ,e), which expresses whether the reconfiguration R is enabled. We will

A Core Calculus for Dynamic Delta-Oriented Programming 25

come back to the Enabled predicate later. Note that computation and congruence rules never
change the feature configuration (to avoid clutter, in the rules we replace the component ψ

with _).
The relation −→ is defined in terms of fairly standard notions of computation rules and

congruence rules. It ensures that the computation is carried out according to a call-by-value
reduction strategy. Congruence rules are standard. The only non-standard feature of −→,
which is in fact specific to IFD∆J, is the use of the auxiliary function olookup for accessing
objects in the lazy heap. We will come back to olookup shortly, when we describe the lazy
heap reconfiguration mechanism.

The initial program state associated with a program CTψ is (ψ, /0,•,e) where return(e)
is the body of the Main method, that is CTψ(Main)= class Main { C main() { return(e);} }.
We write CMain to denote the return type C of the main method of class Main.

4.3.2 Object Lookup and Lazy Heap Reconfiguration

The mutually recursive auxiliary functions olookup, oreconf and preeval are defined in Fig-
ure 14. Intuitively, the object lookup function olookup returns the object at address ι in the
lazy heap L , along with a possibly updated lazy heap L ′. In the simplest cases, correspond-
ing to the first two rules defining olookup, the object at ι is already up-to-date with respect
to the most recent reconfiguration (or no reconfiguration has occurred yet) so that olookup
returns the object in its present state along with an unchanged lazy heap. If the object is not
present in the most recently reconfigured heap (ι 6∈ dom(H)), then the object is first looked
up recursively in the lazy heap L that immediately precedes the last reconfiguration R and
then it is reconfigured by means of the oreconf auxiliary function.

The purpose of oreconf(ι ,R,L) is to reconfigure the object located at ι (which is as-
sumed to be found in the topmost heap of L) according to R. The function returns a triple
consisting of the reconfigured object, a heap of new objects that have been created as a con-
sequence of the reconfiguration of ι and the new lazy heap. There are two rules defining
oreconf: the first one deals with implicitly reconfigured objects (those whose class C has no
reconfiguration clause in R), which are returned unchanged; the second rule deals with ob-
jects whose class is explicitly reallocated by a clause C→ C′ {pre: Ay= p; post: Bz= q; this.f= z′;},
which specifies the new class C′ of the object and the rearrangements of its fields in the new
configuration. The pre-reconfiguration assignments Ay= p retrieve further objects necessary
for the reconfiguration by means of the preeval function. Notice that preeval may trigger fur-
ther reconfigurations (it calls olookup recursively) and that it defaults to null any attempt at
accessing null addresses (this is to ensure progress during the reconfiguration phase).6

The post-reconfiguration assignments Bz= q take care of the proper migration from the
old to new feature configuration of classes. In particular, pointers to either new or existing
(but possibly not reconfigured) objects q are assigned to variables z whose types refer to
the new configuration. Finally, the assignments this.f= z′ initialize the fields of the newly
created object of class C′. Overall, the operational semantics implements a high degree of
laziness in the sense that objects are reconfigured only when necessary (either because one
of their fields is accessed or because a method is invoked on them).

6 In a full-fledged language, the access to null would raise an exception for which the reconfiguration
operation should provide an appropriate handler.

26 Ferruccio Damiani et al.

Reduction rules ψ,L , ι ,e =⇒ ψ
′,L ′, ι ′,e′

(R-EVAL)
ψ,L , ι ,e−→ ψ,L ′, ι ′,e′

ψ,L , ι ,e =⇒ ψ,L ′, ι ′,e′

(R-RECONF)
R= ψ ⇒ ψ

′{· · ·} Enabled(R,L , ι ,e)
ψ,L , ι ,e =⇒ ψ

′, /0 :R(L), ι ,e

Computation rules ψ,L , ι ,e−→ ψ,L ′, ι ′,e′

(C-NEW)
ι fresh fieldsψ (C) = C f

_,L , ι ,new C()−→ _,L ∪{ι 7→ 〈C,f= null〉}, ι , ι

(C-FIELD)
olookup(ι ,L) = 〈C,f= v〉,L ′

_,L , ι , ι .fi −→ _,L ′, ι ,vi

(C-ASSIGN)
olookup(ι ,L) = 〈C,f= v〉,L ′

_,L , ι , ι .fi = v−→ _,L ′[ι 7→ 〈C, . . . ,fi = v, . . .〉], ι ,v

(C-INVK)
olookup(ι ,L) = 〈C, . . .〉,L ′ methψ (m,C) = _ m(_ x){returne0;}

_,L , ι , ι .m(v)−→ _,L ′, ιι ,return([x/v,
this /ι]e0)

(C-RET)
_,L , ιι ,return(v)−→ _,L , ι ,v

Congruence rules

_,L , ι ,e−→ _,L ′, ι ′,e′

_,L , ι ,e.f−→ _,L ′, ι ′,e′.f
_,L , ι ,e−→ _,L ′, ι ′,e′

_,L , ι ,e.m(e)−→ _,L ′, ι ′,e′.m(e)

_,L , ι ,ei −→ _,L ′, ι ′,e′i
_,L , ι ,v.m(v,ei,e)−→ _,L ′, ι ′,v.m(v,e′i,e)

_,L , ι ,e−→ _,L ′, ι ′,e′

_,L , ι ,e.f= e0 −→ _,L ′, ι ′,e′.f= e0

_,L , ι ,e−→ _,L ′, ι ′,e′

_,L , ι ,v.f= e−→ _,L ′, ι ′,v.f= e′
_,L , ι ,e−→ _,L ′, ι ′,e′

_,L , ι ,return(e)−→ _,L ′, ι ′,return(e′)

Fig. 13 Reduction, computation and congruence rules in IMPERATIVE FEATHERWEIGHT DYNAMIC DELTA
JAVA (IFD∆J).

4.3.3 The Enabled Predicate

The predicate Enabled(R,L , ι ,e) expresses the runtime checks to be performed in order to
ensure that the reconfiguration R = ψ ⇒ ψ

′ {OR} can be safely performed in a given state
(ψ,L , ι ,e) of the computation. It consists of the two following conditions:

Enabling condition 1 All methods that are currently executing are invoked on objects be-
longing to classes that are not affected by the reconfiguration; and

Enabling condition 2 The runtime expression e is well typed in configuration ψ
′ and its

type is a subtype of the return type of the method main of class Main.

A Core Calculus for Dynamic Delta-Oriented Programming 27

Object lookup olookup(ι ,L) = 〈C,f= v〉,L ′

olookup(ι ,H) = H (ι),H
L = H :_ ι ∈ dom(H)

olookup(ι ,L) = H (ι),L

ι 6∈ dom(H) olookup(ι ,L) = _,L ′ oreconf(ι ,R,L ′) = 〈C,f= v〉,H ′,L ′′

olookup(ι ,H :R(L)) = 〈C,f= v〉,H ∪{ι 7→ 〈C,f= v〉}∪H ′ :R(L ′′)

Object reconfiguration oreconf(ι ,R,L) = 〈C,f= v〉,H ,L ′

L (ι) = 〈C,f= v〉 C 6∈ reallocated(R)
oreconf(ι ,R,L) = 〈C,f= v〉, /0,L

R= ψ ⇒ ψ
′{· · ·C→ C′ {pre: Ay= p; post: Bz= q; this.f= z′;}· · ·}

L (ι) = 〈C, . . .〉 preeval(p[ι/this],L) = v,L ′ postassign(ψ ′,Bz= q[v/y]) = u,H

oreconf(ι ,R,L) = 〈C′,f= z′[u/z]〉,H ,L ′

Pre-reconfiguration auxiliary function preeval(p,L) = v,L ′

preeval(•,L) = •,L
p 6= • preeval(p,L) = v,L ′ preeval(p,L ′) = v,L ′′

preeval(pp,L) = vv,L ′′

preeval(ι ,L) = ι ,L
preeval(p,L) = null,L ′

preeval(p.f,L) = null,L ′

preeval(p,L) = ι ,L ′ olookup(ι ,L ′) = 〈C,f= u〉,L ′′

preeval(p.fi,L) = ui,L
′′

Post-reconfiguration auxiliary functions postassign(ψ,Bz= q) = v,H and posteval(ψ,q) = v,H

postassign(ψ,•) = •, /0
posteval(ψ,q) = v,H postassign(ψ,Bz= q[v/z]) = v,H ′

postassign(ψ,Bz= qBz= q) = vv,H ∪H ′

posteval(ψ,v) = v, /0
ι fresh fieldsψ (C) = C f

posteval(ψ,new C(v)) = ι ,{ι 7→ 〈C,f= v〉}

Fig. 14 Object lookup in a lazy heap for IMPERATIVE FEATHERWEIGHT DYNAMIC DELTA JAVA (IFD∆J).

The first condition aims to prevent inconsistent behavior. It is formalized as

classof(ιi,L) 6∈ affected(R) (1≤i≤n)

where ι = ι1 · · · ιn is the stack. The function classof(ι ,L) returns the name of the class of
the object of address ι in the already reconfigured part of the lazy heap L and is defined by:
classof(ι ,L) = C, if L (ι) = 〈C, . . .〉. As the stack ι contains addresses of objects on which there
is an active method invocation, such objects necessarily occur in the already reconfigured
part of the lazy heap L .

The second condition ensures that subject reduction (which is used to prove type sound-
ness) holds and is formalized by the judgment

Σ `ψ e : T

28 Ferruccio Damiani et al.

which must hold for some T<:ψ ′ methψ
′(main,Main),7 where the heap environment Σ = {ι :

clookup(ι ,L) | ι occurs in e} maps each address occurring in e to the name of the class of
the object at the address ι in the new configuration ψ

′. The auxiliary function clookup(_,_)
retrieves the class name of an object updated according to all the reconfigurations occurred
since its first allocation and is defined as follows

clookup(ι ,H) = C if H (ι) = 〈C, . . .〉

clookup(ι ,H :R(L)) =

{
C if H (ι) = 〈C, . . .〉
R(clookup(ι ,L)) if ι 6∈ dom(H)

The second condition of the predicate Enabled(R,L , ι ,e) requires type checking the
runtime expression e, which is the outcome of reduction steps performed on the bodies of
the active methods. In the considered core calculus, this condition is needed because the
types (classes) of the subexpressions of a method body do not (necessarily) occur within
the method definition. Instead, it could be dropped in a formalization where the type of
each subexpression of a method body occurs in the method definition, e.g., where method
definitions have the single static assignment (SSA) form (Cytron et al. [1991]):

C m(A1 x1, . . . ,Ap xp) {B1 y1 = e1; . . . ;Bq yq = eq; return yq}

where (for all i ∈ 1..q) ei is of the form either z, or z.f, or z.f= z′, or z.m(z) for some z, z′, z ∈
{x1, . . . ,xn,y1, . . . ,yi−1}. In fact, in such a formalization, the second condition of the predicate
Enabled(R,L , ι ,e) would be implied by the first object reconfiguration condition (which is
statically checked by (T-RECONFIGURATION) of Fig. 12) because, by the first condition of the
predicate, all the classes occurring in the definition of an active method are defined both in
the current and in the reconfigured program.

4.4 Type Soundness of Imperative Featherweight Dynamic Delta Java (IFD∆J)

Type soundness is stated as follows (the notion of initial state and the notation CMain have
been introduced at the end of Section 4.3.1).

Theorem 1 (Type soundness) Let L = (ψ,Φ,DMT,∆,Π,RG) be a well-typed IFD∆J dy-
namic SPL. If (ψ, /0,•,e) is the initial state for a valid product CTψ and (ψ, /0,•,e) =⇒∗
(ψ ′,L ′, ι ,e′) X−→, then e′ is either

1. null, or
2. an address ι such that L (ι) = 〈C,f= v〉 with C<:ψ ′ CMain, or
3. an expression containing either null.f or null.f= v or null.m(v) for some f, v, m, and

v.

For the sake of simplicity, the theorem is stated for a reduction sequence starting from
an initial state in which both the heap and the stack are empty. However, since the statement
considers an arbitrarily long sequence of reductions, the resulting state for which properties
1–3 hold may have been reached after an arbitrary number of reconfigurations. The proof of
the theorem is done using the standard technique of subject reduction and progress. In par-
ticular, the subject reduction theorem considers reduction steps starting from more general
configurations of stack and heap. The characterization of those configurations that are reach-
able from the initial state of a well-typed SPL requires additional definitions. The details can
be found in Appendix A.

7 The first enabling condition ensures that methψ
′ (main,Main) = methψ (main,Main).

A Core Calculus for Dynamic Delta-Oriented Programming 29

5 Related Work

5.1 Feature-Oriented Programming (FOP)

Feature-oriented programming (FOP) (Batory et al. [2004], Kästner et al. [2008], Schaefer
et al. [2012]) is a compositional approach for implementing SPLs in which code fragments
are associated with product features and assembled to implement a particular configura-
tion of features. Other compositional approaches use aspects (Kästner et al. [2007], Aracic
et al. [2006]), mixins (Smaragdakis and Batory [2002]), hyperslices (Tarr et al. [1999])
or traits (Ducasse et al. [2006]) to implement product line variability (see Lopez-Herrejon
et al. [2005] as well as Bettini et al. [2013c] for a discussion of some of them with respect
to FOP).

For the implementation of dynamic SPLs (Hallsteinsen et al. [2008], Capilla et al.
[2014]) in FOP, (Rosenmüller et al. [2011a]) support flexible feature binding to allow select-
ing features statically at compile-time using superimposition or dynamically at build-time
using the decorator pattern. The variability of feature binding is achieved by code transfor-
mations for integrating static and dynamic feature bindings. They also use transformation
rules on feature models to provide composition safety of dynamic binding. Rosenmüller
et al. [2011b] extend their approach to support runtime adaptation and self-configuration
on top of flexible binding units. They use feature-based adaptation rules to describe SPL
adaptation in a declarative way. The adaptation mechanism transforms the feature model of
an SPL according to the binding units of the generated DSPL, thus allowing to change the
behavior of a program at run-time. However, this approach for dynamic adaptation does not
allow to change the state of the program (i.e., a dynamic reconfiguration cannot add/remove
or change the value of fields), which is in contrast to the mechanism proposed in this article.

FeatureC++ (Apel et al. [2005]) provides means to dynamically compose feature mod-
ules. In particular, the authors investigate the combination of FOP and aspect-oriented pro-
gramming (AOP) to eliminate shortcomings of FOP to capture dynamic cross-cutting mod-
ularity. However, runtime reconfiguration including an update of the heap structures accord-
ing to the new feature configuration is not supported. Günther and Sunkle [2010] present
an extended version of rbFeatures, a FOP implementation in Ruby, which provides runtime
adaptation, variant modification and configuration of software product lines. New features
can be added at runtime, but other change operations, such as deselecting or removing fea-
tures, are not supported. Apel et al. [2010] propose the FFJ/FFJPL core calculus that models
FOP of SPLs of FEATHERWEIGHT JAVA programs. Although in FFJ/FFJPL, feature com-
position is modeled as a static process (done before compilation), the formalization leaves
open when feature composition is performed. Therefore, it could be used to model dynamic
feature composition at run time. As DOP is an extension of FOP (Schaefer and Dami-
ani [2010]), the mechanism for runtime adaptation and dynamic evolution of product lines
proposed in this article can also be applied to FOP product lines.

5.2 Aspect-Oriented Programming (AOP)

Aspect-oriented programming (AOP) (Kiczales et al. [1997]) has been used to implement
SPLs (Groher and Voelter [2009], Alves et al. [2007]) and supports the dynamic selection
of aspects at runtime, e.g., in CeasarJ (Aracic et al. [2006]) or AspectJ (Kiczales et al.
[2001]). Aspects do not add or remove existing fields so that heap updates are not neces-
sary when aspects are added or removed at runtime. Thus, dynamic DOP supports more

30 Ferruccio Damiani et al.

flexible changes of functionality at runtime. For a detailed comparison of AOP and DOP
consider (Bettini et al. [2013c]).

Chakravarthy et al. [2008] describe a technique to provide binding-time flexibility in
a modular and convenient manner. They use a combination of design-patterns and AOP to
achieve binding-time flexibility. A pattern encapsulates the variation point and targeted as-
pects set the binding times of the pattern participants. However, they do not consider the
evolution of feature models and, therefore, handle only anticipated change. Ribeiro et al.
[2009] investigate whether AspectJ provides modularity when implementing features with
flexible binding times. This study leads to the conclusion that, in a general case, AspectJ
does not provide modularity in a DSPL. Dinkelaker et al. [2010] propose an approach for
DSPLs which combines dynamic aspects, runtime models of aspects, as well as detection
and resolution of aspect interactions but they do not consider the change of features at run-
time. Andrade et al. [2014] create three AspectJ-based idioms to implement flexible feature
bindings and evaluate those using case studies. The idioms are based on exploiting specific
language features of AspectJ and the aspect weaving capabilities, but they do not provide
means to update existing objects.

5.3 General Object-oriented Programming (OOP)

In general object-oriented programming (OOP), there are several approaches to modify the
functionality of objects at runtime. Primitives for dynamic object reclassification (i.e., for
changing at runtime the class membership of an object) are present, e.g., in the dynami-
cally typed languages SMALLTALK and CLOS. In the programming language gbeta (Ernst
[1999]), classes can be composed dynamically and objects can be reassigned to other classes
at runtime. The proposed mechanism is relatively flexible but it is not type safe.

FickleII (Drossopoulou et al. [2002]) is a core JAVA-like object-oriented language where
objects are allowed to change their class at runtime. Ancona et al. [2007] have developed
a translation from Fickle into JAVA that has proven correctness. In FickleII , only objects
belonging to special classes, called root and state classes, can be reclassified and the type
system restricts the use of these classes (in particular, state classes may not be used as
types for fields). The Fickle3 calculus (Damiani et al. [2003]) eliminates the need to declare
explicitly the classes of the objects that may be reclassified. Reclassification may be decided
by the client of a class, allowing unanticipated object reclassification. However, the type
system restricts the use of the classes of the objects that may be re-classified. More recently,
typestate-oriented programming (Aldrich et al. [2009], Saini et al. [2010]) has overcome
some of the limitations in FickleII /Fickle3, e.g., the inability to track the states of fields.

In Bettini and Bono [2008] as well as Bettini et al. [2011], an extension of FJ with
object composition and delegation is presented. In that calculus, methods can be changed
dynamically at runtime on an existing object as a consequence of object composition and
“redefining” methods (a runtime version of standard method overriding).

Dynamic trait replacement is the ability to change the behavior of an object at runtime
by replacing one trait for another. In the prototype-based language SELF, dynamic trait
replacement can be achieved by changing the reference to the parent of an object. In the
class-based setting, dynamic trait replacement has been formalized through the JAVA-like
language Chai3 (Smith and Drossopoulou [2005]). The language Chai3 contains an operator
for replacing a trait in an existing object. This operator requires that the trait to be replaced
corresponds exactly to a named trait used in the object’s class definition. This makes the

A Core Calculus for Dynamic Delta-Oriented Programming 31

flexibility/expressivity of Chai3 similar to the one of FickleII (Drossopoulou et al. [2002]).
Bettini et al. [2013a] propose a more flexible dynamic trait replacement operator.

In ObjectTeams (Herrmann [2007]), objects can be assigned different roles at runtime
such that the behavior may change dynamically. Context-oriented programming (Hirschfeld
et al. [2008]) allows defining several layers of behavior that can be switched on or off dy-
namically at runtime.

Dynamic classes (Johnsen et al. [2009]) perform (in a type-sound manner) run-time
updates of object-oriented systems by adding or refining classes or by removing redundant
program parts. In particular, Johnsen et al. [2009] model asynchronous updates in presence
of concurrency, while the formalization of dynamic DOP presented in this paper does not
model concurrency.

A recently proposed aspect-based dynamic software updating model combines object-
oriented and aspect-oriented techniques to build an update analyzer that automatically com-
pares two versions of a JAVA program and extracts the necessary updates expressed as
aspects (Cech Previtali and Gross [2011]). JAVADAPTOR (Pukall et al. [2013]) is a dy-
namic software update approach that provides JAVA with the same runtime capabilities
known from dynamically typed languages (possibly causing program inconsistencies) and
runs on basis of all major standard JAVA virtual machines. Subsequently, extensions of the
JAVA HotSpot VM that support type-safe flexible dynamic software updates have been pro-
posed (Würthinger et al. [2013], Gu et al. [2014]). In particular, Gu et al. [2014] support
lazy object updates by means of a transformer construct that closely resembles our object
reconfiguration construct (although it does not support migration of objects from one class
to another with a different name).

While the above approaches could be used to implement dynamic SPLs, neither of them
relates the changes in the altered functionalities to product features. Dynamic DOP combines
an established software product line engineering approach with the capability of type-sound
runtime reconfiguration and runtime evolution.

6 Conclusion and Future Work

We presented a core calculus providing a formal definition of dynamic DOP. DOP is an
approach to construct SPLs. Dynamic DOP adds to DOP a dynamic reconfiguration graph
which specifies which configurations can be updated at runtime, and how to update the
program’s heap to go to another configuration. A Bank Product Line example was used to
illustrate both DOP and dynamic DOP: the generation of a product was presented, as well
as several scenarios of runtime update. The dynamic reconfiguration graph was decoupled
from the notion of DOP so that it could be used in connection with other approaches for
constructing SPLs. The core calculus is equipped with a type system that was proved to be
sound.

With this formal foundation of dynamic delta-oriented programming, it is possible to
switch the implemented product configuration at runtime. Furthermore, it is also possible
to perform (unanticipated) evolution of the product line declaration, the dynamic reconfig-
uration graph, and the code base of an SPL with updates as soon as possible while still
preserving the currently active product. Finally, the type system of our dynamic DOP core
calculus ensures that the dynamic reconfigurations lead to type safe products and do not
cause runtime type errors.

The core calculus does not model multi-threaded applications and we do not address
implementation issues. The transition between products depends on both the reconfigura-

32 Ferruccio Damiani et al.

(WF-HEAPENV)
Σ(ι) ∈ dom(CTψ)

(ι∈dom(Σ))

ψ Σ

(WF-LAZYHEAPENV)
ψ Σ ψ

′ Θ R= ψ
′⇒ ψ {_}

(dom(Σ)\head-dom(Θ))∩ tail-dom(Θ) = /0 Σ(ι) = R(Θ(ι)) (ι∈dom(Σ)∩head-dom(Θ))

ψ Σ :R(Θ)

Fig. 15 IFD∆J: Rules for well-formed heap environments.

tion graph and the current system state. A limitation of the proposed approach is that, if
the method of some classes never leave the call stack (e.g., the main method for simple
JAVA programs) changes to these classes, let us call them fixed classes, will not be possi-
ble with dynamic DOP (without a system shutdown). Therefore, an arbitrary product line
can be configured to a product for which the reconfiguration graph will disallow a further
product change. This limitation can be mitigated by adopting suitable programming patterns
that limit the number of fixed classes and allow to significantly change the behavior of the
application without changing these classes. In future work, we aim to extend the calculus to
model multi-threaded applications.

Recently, proof systems for the verification of delta-oriented SPLs (Hähnle and Schaefer
[2012], Damiani et al. [2012a], Bubel et al. [2016]) and model-based testing frameworks for
delta-oriented SPLs (Lochau et al. [2012], Damiani et al. [2013]) have been proposed. In
future work, we plan to extend these approaches to dynamic delta-oriented SPLs.

A prototypical implementation of DOP which supports SPLs of JAVA 1.5 programs is
available (Koscielny et al. [2014]). In future work, we would like to investigate the pos-
sibility to implement dynamic DOP for (a suitable subset of) JAVA. This implementation
poses several challenges. In particular: the proposed approach goes beyond the capabil-
ities of a regular JAVA VM (although, as pointed out in Section 5.3, extensions of the
JAVA HotSpot VM that support flexible dynamic software updates have been recently pro-
posed (Würthinger et al. [2013], Gu et al. [2014])); the memory footprint of skipping the up-
dated code can be significant; managing multiple heaps would require a customized runtime
environment; and interaction with the garbage collection process and multi-threading must
be addressed. Another interesting direction for future work is to investigate software engi-
neering methodologies and tools for supporting evolution of dynamic delta-oriented SPL:
evolving complex systems with many classes and feature interactions is quite challenging.

A Proof of Theorem 1 (Type Soundness)

In order to be able to formulate the type soundness of IFD∆J by means of a subject-reduction theorem and a
progress theorem for the small-step semantics, we need to formulate a type system for runtime expressions.
Expressions containing a stupid selection, i.e., a field selection null.f or a method invocation null.m(· ·
·), are not well typed according to the IFJ source level type system (cf. Figure 10). However, a runtime
expression without stupid selections may reduce to a runtime expression containing a stupid selection. The
type system for runtime expressions contains a rule for assigning any type T to the value null (so that stupid
selection can be typed).

An heap (type) assumption Σ is a mapping from addresses to class names. The empty-heap assumption
is denoted by •. A lazy-heap assumption Θ is either a heap assumption Σ or a partially reconfigured heap
assumption of the form

Σn :Rn(Σn−1 :Rn−1(· · ·Σ1 :R1(Σ0) · · ·))

A Core Calculus for Dynamic Delta-Oriented Programming 33

The head domain of Θ is head-dom(Θ) = dom(Σn), the tail domain of Θ is tail-dom(Θ) =
⋃

i∈0..n−1 dom(Σi),
the full domain of Θ is full-dom(Θ) = head-dom(Θ)∪ tail-dom(Θ). We say that the lazy-heap assump-
tion is well formed w.r.t. the feature configuration ψ to mean that the judgement ψ Θ can be derived by
the rules in Figure 15. All the lazy-heap assumptions mentioned in the rest of this paper are well-formed
w.r.t. a feature configuration that is either explicitly mentioned or understood from the context. According
to rule (WF-HEAPENV), a heap assumption Σ is well formed in the configuration ψ if every class mentioned
in Σ is defined in ψ . A lazy heap assumption Σ : R(Θ) is well formed in the configuration ψ if so is Σ and
if Θ is well formed in the target reconfiguration ψ

′ of R. Additionally, all addresses in dom(Σ) that are not
in the domain of the topmost heap in Θ must refer to objects created after any other object in Θ , and the
correspondence between the class of the objects whose address in Σ and the class of the same objects in Θ is
given by R.

As reductions may create and reconfigure objects, (lazy) heap assumptions need to be updated accord-
ingly. To this aim, we define the relation c between lazy heap assumptions inductively as follows:

Σ ⊇ Σ
′

Σ c Σ
′

Σ ⊇ Σ
′

Θ cΘ
′

Σ : R(Θ)c Σ
′ : R(Θ ′)

Evaluation contexts, which reflect the congruence rules (see Figure 13), are defined as follows:

E ::= []
∣∣ E.f

∣∣ E.m(e)
∣∣ v.m(v,E,e) ∣∣ E.f= e

∣∣ v.f= E
∣∣ return(E)

A run-time expression e is well formed w.r.t. a stack ι = ι1ι2 · · · ιn (n≥ 0), written wf(ι ,e), if e is of the
form

E1[return(E2[return(· · ·En[return(e)] · · ·)])]
where E1, . . . , En, e do not contain occurrences of return.

Typing rules for runtime expressions are shown in Figure 16; these rules are of the shape Θ `ψ ι , e : T.
In Figure 16 we also present the notion of well-formed lazy heap and of well-formed state. The notion of
well-formed lazy heap ensures that the environment Θ maps all the addresses in the lazy heap into the type
of the corresponding object and that for every object stored in the lazy heap, the fields of the object contain
appropriate values.

The next lemma states that the olookup function returns an object of the expected type and a new lazy
heap that is well typed if so is the original lazy heap. In fact, the statement of the lemma involves a number
of auxiliary functions of Figure 14 as these functions are mutually recursive and therefore it is necessary to
prove their correctness collectively. Well-foundedness of these functions (and of the proof of the lemma) is
guaranteed by the fact that a lazy heap consists of a finite number of reconfigurations.

Lemma 1 Let (*) Θ ψ L and suppose ` R ok for all clauses R occurring in L . Then:

1. if olookup(ι ,L) = o,L ′, then there exists Θ ′ cΘ such that Θ ′ ψ L ′ and L ′(ι) = o;
2. if oreconf(ι ,R,L) = o,H ,L ′, then there exist Σ and Θ ′ c Θ such that {ι : R(clookup(ι ,Θ))},Σ :

R(Θ ′) ψ {ι 7→ o},H : R(L ′) where R= ψ
′⇒ ψ{· · ·};

3. if ψ;clookup(ι ,Θ) ` Ay= p ok and preeval(p[ι/this],L) = v,L ′, then there exists Θ ′ cΘ such that
Θ ′ `ψ v : D and D<:ψ A;

4. if ψ;clookup(ι ,Θ) ` p : D and preeval(p[ι/this],L) = v,L ′, then there exists Θ ′ cΘ such that Θ ′ ψ

L ′ and Θ ′ `ψ v : D′ and D′ <:ψ D.

Proof We prove all items simultaneously, and we proceed by induction on the depth of L , where the depth
of a lazy heap is the number of reconfigurations that occur in it (an heap H has depth 0):

1. In the base case it must be L = H for some H and o = H (ι). We conclude immediately by taking
Θ ′ = H .
In the inductive case we have L =H : R(L1) where R=ψ

′⇒ψ{· · ·} and we distinguish two subcases.
If ι ∈ dom(H), then o=H (ι) and we conclude immediately by taking Θ ′ =Θ . Suppose ι 6∈ dom(H).
Then (O1) olookup(ι ,L1) = _,L ′

1 and (O2) oreconf(ι ,R,L ′
1) = o,H ′,L ′′

1 and L ′ = H ∪{ι 7→ o}∪
H ′ : R(L ′′

1). From (*) we deduce Θ = Σ : R(Θ1) for some Σ and Θ1 such that Θ1 ψ
′ L1. From (O1)

and the induction hypothesis we deduce that there exist Θ ′1 cΘ1 such that Θ ′1 ψ
′ L ′

1 . From (O2) and
item (2) we deduce that there exist Σ ′ and Θ ′′1 cΘ ′1 such that {ι : R(clookup(ι ,Θ))},Σ ′ : R(Θ ′′1)ψ {ι 7→
o},H : R(L ′′

1). We conclude by taking Θ ′ = Σ ∪{ι : clookup(ι ,Θ))}∪Σ ′ : R(Θ ′′1).
2. Follows from item (3) and Lemma 3.
3. From (T-PREASSIGN) we deduce ψ;clookup(ι ,Θ) ` p : A′ and A′ <:ψ A. By item (4) we deduce that there

exists Θ ′ cΘ such that Θ ′ `ψ v : D with D<:ψ A′. We conclude by transitivity of <:ψ .
4. We proceed by induction on the structure of p and by cases on the rule for preeval applied:

34 Ferruccio Damiani et al.

Runtime expression typing:

(RT-VAR)
Θ `ψ ι : clookup(ι ,Θ)

(RT-NEW)
C ∈ dom(CTψ)

Θ `ψ new C() : C

(RT-NULL)
T ∈ {⊥}∪{Object}∪dom(CTψ)

Θ `ψ null : T

(RT-FIELD)
Θ `ψ e : C A f ∈ fieldsψ (C)

Θ `ψ e.f : A

(RT-INVK)
Θ `ψ e : C methψ (m,C) = B m(Ā_)_ Θ `ψ e : T T<:ψ Ā

Θ `ψ e.m(e) : B

(RT-ASSIGN)
Θ `ψ e0.f : C Θ `ψ e1 : T T<:ψ C

Θ `ψ e0.f= e1 : C

(RT-RETURN)
Θ `ψ e : C

Θ `ψ return(e) : C

Well-formed lazy heap:

(WF-HEAP)
dom(H) = dom(Σ) (H (ι) = 〈C,f1 = v1, . . . ,fn = vn〉 implies

Σ(ι) = C fieldsψ (C) = C1 f1, . . . ,Cn fn Σ `ψ vi : Ti
(i∈1..n) Ti <:ψ Ci

(i∈1..n)) (ι∈dom(H))

Σ ψ H

(WF-LAZYHEAP)
dom(H) = dom(Σ)

R= ψ
′⇒ ψ {_} Θ ψ

′ L (H (ι) = 〈C,f1 = v1, . . . ,fn = vn〉 implies
Σ(ι) = C fieldsψ (C) = C1 f1, . . . ,Cn fn Σ :R(Θ) `ψ vi : Ti

(i∈1..n) Ti <:ψ Ci
(i∈1..n)) (ι∈dom(H))

Σ :R(Θ) ψ H :R(L)

Well-formed state:

(WF-CONF)
ι ⊆ head-dom(Θ) wf(ι ,e) Θ ψ L Θ `ψ e : T

Θ `ψ L , ι ,e : T

Fig. 16 Typing rules for runtime expressions, lazy heaps and states for IMPERATIVE FEATHERWEIGHT DY-
NAMIC DELTA JAVA (IFD∆J).

– (p= this) Then v= ι and we conclude by taking Θ ′ =Θ and D= D′ = clookup(ι ,Θ).
– (p= p′.f and preeval(p′[ι/this],L) = null,L ′). Then v= null. By induction hypothesis there

exists Θ ′ cΘ such that Θ ′ ψ L ′. We conclude by taking D′ = D.
– (p= p′.f and preeval(p′[ι/this],L) = ι ′,L ′′ and olookup(ι ′,L ′′) = 〈C′,f= u〉,L ′). From rule

(T-PREEXPFIELD) we deduce ψ;clookup(ι ,Θ) ` p′ : D0 and Df ∈ fieldsψ (D0). By induction hypoth-
esis (on p′) there exists Θ ′′ cΘ such that Θ ′′ ` ι ′ : D′0 and D′0 <:ψ D0, therefore Df ∈ fieldsψ (D

′
0).

A Core Calculus for Dynamic Delta-Oriented Programming 35

By induction hypothesis (on the depth of Θ ′′) there exists Θ ′ cΘ ′′ such that Θ ′ ψ L ′. From (*)
and (WF-HEAP) we conclude Θ ′ `ψ v : D′ for some D′ <:ψ D.

The next two lemmas prove fundamental properties about the post-reconfiguration clauses. As the code
in these clauses can only create objects in the current feature configuration, the lazy heap is unaffected by
their execution except for the topmost level.

Lemma 2 Let R= ψ ⇒ ψ
′{· · ·} and:

1. Σ1 ` vi : Ci and Ci <:ψ Ai for every i ∈ 1..|v|;
2. Σ2 ` ui : Di and Di <:ψ ′ Bi for every i ∈ 1..|u|;
3. R;y : A;z : B ` Bz= q ok;
4. posteval(ψ ′,q[v/y][u/z]) = u,H .

Then there exists Σ such that:

– R(Σ1),Σ2,Σ `ψ
′ H ;

– R(Σ1),Σ2,Σ ` u : D and D<:ψ ′ B.

Proof By cases on the shape of q.

– (q= null) We conclude by taking Σ = • and D= B.
– (q= yi) By hypothesis we have Σ1 ` vi : Ci and Ci <:ψ Ai. From (T-POSTASSIGNVAR) we deduce R(Σ1) `

vi : R(Ci) and R(Ci)<:ψ ′ B. We conclude by taking Σ = • and D= R(Ci).
– (q= new C(z1, . . . ,zn)) Then u= ι and H = {ι 7→ 〈C,f1 = z1[u/z], . . . ,fn = zn[u/z]〉}. Let Σ = {ι : C}

and D = C and D1 f1, . . . ,Dn fn = fieldsψ
′ (C). From rule (T-POSTASSIGNNEW) we have D = C <:ψ ′ B.

Also, from the same rule we deduce that for every i ∈ 1..n we have zi : Bi ∈ z : B and Bi <:ψ ′ Di. Now
zi[u/z] = u j for some j ∈ 1..|u|. By hypothesis we have Σ2 ` u j : D j and D j <:ψ ′ B j . We conclude
R(Σ1),Σ2,Σ `ψ

′ H by transitivity of <:ψ .

Lemma 3 Let R= ψ ⇒ ψ
′{· · ·} and:

1. Σ1 ` vi : Ci and Ci <:ψ Ai for every i ∈ 1..|v|;
2. Σ2 ` ui : Di and Di <:ψ ′ Bi for every i ∈ 1..|u|;
3. R;y : A;z : B ` B′ z′ = q ok;
4. postassign(ψ ′,B′ z′ = q[v/y][u/z]) = u′,H ;

Then there exists Σ such that:

– R(Σ1),Σ2,Σ `ψ
′ H ;

– R(Σ1),Σ2,Σ ` u′i : D′i and D′i <:ψ ′ B
′
i for every i ∈ 1..|u′|.

Proof By induction on |u′|. If |u′|= 0, then H = /0 and we conclude immediately by taking Σ = •. Suppose
|u′|> 0. Then B′ z′ = q= B′ z′ = qB′′ z′′ = q′ and u′ = u′u′′ where

– posteval(ψ ′,q′[v/y][u/z]) = u′,H

– postassign(ψ ′,B′′ z′′ = q′[v/y][uu′/zz′]) = u′′,H ′

From Lemma 2 we deduce that there exists Σ ′ such that R(Σ1),Σ2,Σ
′ `ψ

′ H and R(Σ1),Σ2,Σ
′ ` u′ : D′

and D′ <:ψ ′ B
′.

By induction hypothesis we deduce that there exists Σ ′′ such that R(Σ1),Σ2,Σ
′′ `ψ

′ H ′ and for every
i ∈ 1..|u′′| we have R(Σ1),Σ2,Σ

′′ ` u′′i : D′i and D′i <:ψ ′ B
′
i.

We conclude by taking Σ = Σ ′,Σ ′′.

We are now ready to formally state the subject reduction theorem, whose proof relies upon the auxiliary
lemmas just presented.

Theorem 2 (Subject reduction) Let Θ `ψ L , ι ,e : T and methψ (main,Main) = C0 main(){_}. Then:

1. if ψ,L , ι ,e−→ ψ,L ′, ι ′,e′, then there exist Θ ′ cΘ and T′ <:ψ T such that Θ ′ `ψ L ′, ι ′,e′ : T′.
2. if ψ,L , ι ,e =⇒ ψ

′, /0 : R(L), ι ,e, then there exists T′ <:ψ ′ C0 such that • : R(Θ) `ψ
′ (/0 : R(L)), ι ,e : T′.

36 Ferruccio Damiani et al.

Proof The proof of item (1) is almost standard, the only notable exception being the fact that heap is accessed
through the auxiliary function olookup(_,_) which may trigger object reconfiguration. Lemma 1 guarantees
that the object returned by olookup(_,_) has the right type and that the new heap is still well formed in
the current configuration. Item (2) is obvious, since the new heap environment is updated according to the
structure of the new heap and the Enabled predicate guarantees that the runtime expression e is still well
typed in the new configuration.

The progress theorem and its proof are standard.

Theorem 3 (Progress) Let Θ `ψ L , ι ,e : T and ψ,L , ι ,e X−→. Then:

1. either e is a value, or
2. for some evaluation context E we can express e as

(a) E[null.f] for some f, or
(b) E[null.f= v] for some f and v, or
(c) E[null.m(v)] for some m and v.

We conclude with type soundness, which is a straightforward corollary of subject reduction and progress.

PROOF OF THEOREM 1 (TYPE SOUNDNESS). Immediate by Theorems 2 and 3.

References

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-oriented programming.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’09, pages 1015–1022, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-768-4. doi: 10.1145/1639950.1640073. URL http://doi.acm.org/10.1145/
1639950.1640073.

Vander Alves, Pedro Matos Jr, Leonardo Cole, Alexandre Vasconcelos, Paulo Borba, and Geber Ramalho.
Extracting and Evolving Code in Product Lines with Aspect-Oriented Programming. In Transactions on
aspect-oriented software development IV, pages 117–142. Springer, 2007.

Davide Ancona, Christopher Anderson, Ferruccio Damiani, Sophia Drossopoulou, Paola Giannini, and Elena
Zucca. A provenly correct translation of fickle into java. ACM Trans. Program. Lang. Syst., 29(2),
April 2007. ISSN 0164-0925. doi: 10.1145/1216374.1216381. URL http://doi.acm.org/10.1145/
1216374.1216381.

Rodrigo Andrade, Henrique Rebêlo, Márcio Ribeiro, and Paulo Borba. Flexible feature binding with aspectj-
based idioms. J. UCS, 20(5):692–719, 2014.

Sven Apel, Thomas Leich, Marko Rosenmller, and Gunter Saake. Featurec++: On the symbiosis of feature-
oriented and aspect-oriented programming. In Robert Glück and Michael Lowry, editors, Generative
Programming and Component Engineering, volume 3676 of Lecture Notes in Computer Science, pages
125–140. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-29138-1. doi: 10.1007/11561347 10. URL
http://dx.doi.org/10.1007/11561347_10.

Sven Apel, Christian Kästner, Armin Gröβ linger, and Christian Lengauer. Type safety for feature-oriented
product lines. Automated Software Engg., 17(3):251–300, September 2010. ISSN 0928-8910. doi: 10.
1007/s10515-010-0066-8. URL http://dx.doi.org/10.1007/s10515-010-0066-8.

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of caesarj. In Awais Rashid
and Mehmet Aksit, editors, Transactions on Aspect-Oriented Software Development I, volume 3880 of
Lecture Notes in Computer Science, pages 135–173. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-
32972-5. doi: 10.1007/11687061 5. URL http://dx.doi.org/10.1007/11687061_5.

Don Batory. Feature models, grammars, and propositional formulas. In Henk Obbink and Klaus Pohl, editors,
Software Product Lines, volume 3714 of Lecture Notes in Computer Science, pages 7–20. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-28936-4. doi: 10.1007/11554844 3. URL http://dx.doi.org/
10.1007/11554844_3.

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement. IEEE Transactions
on Software Engineering, 30(6):355–371, 2004. ISSN 0098-5589. doi: http://doi.ieeecomputersociety.
org/10.1109/TSE.2004.23.

Lorenzo Bettini and Viviana Bono. Type safe dynamic object delegation in class-based languages. In Pro-
ceedings of the 6th International Symposium on Principles and Practice of Programming in Java, PPPJ
’08, pages 171–180, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-223-8. doi: 10.1145/1411732.
1411756. URL http://doi.acm.org/10.1145/1411732.1411756.

A Core Calculus for Dynamic Delta-Oriented Programming 37

Lorenzo Bettini, Viviana Bono, and Betti Venneri. Delegation by object composition. Science of Computer
Programming, 76(11):992 – 1014, 2011. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/j.scico.2010.04.
006. URL http://www.sciencedirect.com/science/article/pii/S0167642310000754.

Lorenzo Bettini, Sara Capecchi, and Ferruccio Damiani. On flexible dynamic trait replacement for java-like
languages. Science of Computer Programming, 78(7):907 – 932, 2013a. ISSN 0167-6423. doi: http://dx.
doi.org/10.1016/j.scico.2012.11.003. URL http://www.sciencedirect.com/science/article/
pii/S0167642312002092.

Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Compositional type checking of delta-oriented
software product lines. Acta Informatica, 50:77–122, 2013b. ISSN 0001-5903. doi: 10.1007/
s00236-012-0173-z. URL http://dx.doi.org/10.1007/s00236-012-0173-z.

Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Implementing type-safe software product lines using
parametric traits. Science of Computer Programming, 2013c. ISSN 0167-6423. doi: 10.1016/j.scico.2013.
07.016. URL http://www.sciencedirect.com/science/article/pii/S0167642313001901.

Richard Bubel, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, Olaf Owe, Ina Schaefer, and
Ingrid Chieh Yu. Proof Repositories for Compositional Verification of Evolving Software Systems,
pages 130–156. Springer International Publishing, Cham, 2016. ISBN 978-3-319-46508-1. doi:
10.1007/978-3-319-46508-1 8. URL http://dx.doi.org/10.1007/978-3-319-46508-1_8.

Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Corts, and Mike Hinchey. An overview of dynamic
software product line architectures and techniques: Observations from research and industry. Journal
of Systems and Software, 91(0):3 – 23, 2014. ISSN 0164-1212. doi: 10.1016/j.jss.2013.12.038. URL
http://www.sciencedirect.com/science/article/pii/S0164121214000119.

Susanne Cech Previtali and Thomas R. Gross. Aspect-based dynamic software updating: a model and its
empirical evaluation. In AOSD, pages 105–116, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0605-8. doi: 10.1145/1960275.1960289. URL http://doi.acm.org/10.1145/1960275.1960289.

Venkat Chakravarthy, John Regehr, and Eric Eide. Edicts: Implementing features with flexible binding times.
In Proceedings of the 7th International Conference on Aspect-oriented Software Development, AOSD ’08,
pages 108–119, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-044-9. doi: 10.1145/1353482.
1353496. URL http://doi.acm.org/10.1145/1353482.1353496.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, 1991. ISSN 0164-0925. doi: 10.1145/115372.115320. URL http://doi.acm.org/10.
1145/115372.115320.

Ferruccio Damiani and Michael Lienhardt. On Type Checking Delta-Oriented Product Lines, pages
47–62. Springer International Publishing, Cham, 2016. ISBN 978-3-319-33693-0. doi: 10.1007/
978-3-319-33693-0 4. URL http://dx.doi.org/10.1007/978-3-319-33693-0_4.

Ferruccio Damiani and Ina Schaefer. Dynamic delta-oriented programming. In Proceedings of the 15th
International Software Product Line Conference, Volume 2, SPLC ’11, pages 34:1–34:8, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0789-5. doi: 10.1145/2019136.2019175. URL http://doi.acm.
org/10.1145/2019136.2019175.

Ferruccio Damiani and Ina Schaefer. Family-Based Analysis of Type Safety for Delta-Oriented Software Prod-
uct Lines, pages 193–207. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-34026-
0. doi: 10.1007/978-3-642-34026-0 15. URL http://dx.doi.org/10.1007/978-3-642-34026-0_
15.

Ferruccio Damiani, Sophia Drossopoulou, and Paola Giannini. Refined effects for unanticipated object re-
classification: Fickle3. In Carlo Blundo and Cosimo Laneve, editors, Theoretical Computer Science,
volume 2841 of Lecture Notes in Computer Science, pages 97–110. Springer Berlin Heidelberg, 2003.
ISBN 978-3-540-20216-5. doi: 10.1007/978-3-540-45208-9 9. URL http://dx.doi.org/10.1007/
978-3-540-45208-9_9.

Ferruccio Damiani, Olaf Owe, Johan Dovland, Ina Schaefer, Einar B. Johnsen, and Ingrid C. Yu. A transfor-
mational proof system for delta-oriented programming. In Proceedings of the 16th International Software
Product Line Conference - Volume 2, SPLC ’12, pages 53–60, New York, NY, USA, 2012a. ACM. ISBN
978-1-4503-1095-6. doi: 10.1145/2364412.2364422. URL http://doi.acm.org/10.1145/2364412.
2364422.

Ferruccio Damiani, Luca Padovani, and Ina Schaefer. A formal foundation for dynamic delta-oriented soft-
ware product lines. In Proceedings of the 11th International Conference on Generative Programming and
Component Engineering, GPCE ’12, pages 1–10, New York, NY, USA, 2012b. ACM. ISBN 978-1-4503-
1129-8. doi: 10.1145/2371401.2371403. URL http://doi.acm.org/10.1145/2371401.2371403.

Ferruccio Damiani, Christoph Gladisch, and Shmuel Tyszberowicz. Refinement-based testing of delta-
oriented product lines. In Proceedings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, pages 135–

38 Ferruccio Damiani et al.

140, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2111-2. doi: 10.1145/2500828.2500841. URL
http://doi.acm.org/10.1145/2500828.2500841.

Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. A dynamic software product line ap-
proach using aspect models at runtime. In Fifth Domain-Specific Aspect Languages Workshop, volume 39,
page 40, 2010.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. More dy-
namic object reclassification: Fickle∥. ACM Trans. Program. Lang. Syst., 24(2):153–191, March
2002. ISSN 0164-0925. doi: 10.1145/514952.514955. URL http://doi.acm.org/10.1145/514952.
514955.

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: A mecha-
nism for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–388, March 2006. ISSN 0164-
0925. doi: 10.1145/1119479.1119483. URL http://doi.acm.org/10.1145/1119479.1119483.

Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic In-
heritance. PhD thesis, Department of Computer Science, University of Århus, Denmark, 1999. Url:
http://www.daimi.au.dk/~eernst/gbeta/.

Iris Groher and Markus Voelter. Aspect-Oriented Model-Driven Software Product Line Engineering. In
Transactions on aspect-oriented software development VI, pages 111–152. Springer, 2009.

Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lü. Low-disruptive dynamic
updating of java applications. Information and Software Technology, 56(9):1086 – 1098, 2014. ISSN
0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2014.04.003. URL http://www.sciencedirect.
com/science/article/pii/S0950584914000846.

Sebastian Günther and Sagar Sunkle. Dynamically adaptable software product lines using ruby metapro-
gramming. In Proceedings of the 2Nd International Workshop on Feature-Oriented Software Devel-
opment, FOSD ’10, pages 80–87, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0208-1. doi:
10.1145/1868688.1868700. URL http://doi.acm.org/10.1145/1868688.1868700.

Reiner Hähnle and Ina Schaefer. A liskov principle for delta-oriented programming. In Tiziana Margaria
and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, volume 7609 of Lecture Notes in Computer Science, pages 32–46.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34025-3. doi: 10.1007/978-3-642-34026-0 4. URL
http://dx.doi.org/10.1007/978-3-642-34026-0_4.

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic software product lines. Com-
puter, 41(4):93–95, 2008. ISSN 0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2008.
123.

Stephan Herrmann. A precise model for contextual roles: The programming language ObjectTeams/-
Java. Applied Ontology, 2(2):181–207, 2007. URL http://iospress.metapress.com/content/
M186325145U8166N.

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming. Journal of Object
Technology, 7(3):125–151, March 2008. ISSN 1660-1769. doi: 10.5381/jot.2008.7.3.a4. URL http:
//www.jot.fm/contents/issue_2008_03/article4.html.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: A minimal core calculus for
java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001. ISSN 0164-0925. doi: 10.
1145/503502.503505. URL http://doi.acm.org/10.1145/503502.503505.

Einar B. Johnsen, Marcel Kyas, and Ingrid C. Yu. Dynamic classes: Modular asynchronous evolution of dis-
tributed concurrent objects. In Ana Cavalcanti and Dennis R. Dams, editors, FM 2009: Formal Methods,
volume 5850 of Lecture Notes in Computer Science, pages 596–611. Springer Berlin Heidelberg, 2009.
ISBN 978-3-642-05088-6. doi: 10.1007/978-3-642-05089-3 38. URL http://dx.doi.org/10.1007/
978-3-642-05089-3_38.

Christian Kästner, Sven Apel, and Don Batory. A Case Study Implementing Features Using AspectJ. In Soft-
ware Product Line Conference, pages 223–232, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
doi: http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.12.

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software product lines. In Proceedings
of the 30th International Conference on Software Engineering, ICSE ’08, pages 311–320, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-079-1. doi: 10.1145/1368088.1368131. URL http://doi.acm.
org/10.1145/1368088.1368131.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. Springer, 1997.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. An
overview of aspectj. In Jørgen L. Knudsen, editor, ECOOP 2001 Object-Oriented Programming, vol-
ume 2072 of Lecture Notes in Computer Science, pages 327–354. Springer Berlin Heidelberg, 2001.
ISBN 978-3-540-42206-8. doi: 10.1007/3-540-45337-7 18. URL http://dx.doi.org/10.1007/

A Core Calculus for Dynamic Delta-Oriented Programming 39

3-540-45337-7_18.
Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze, Lorenzo Bettini, and Ferruccio Dami-

ani. Deltaj 1.5: delta-oriented programming for java 1.5. In PPPJ 2014, pages 63–74, 2014.
Charles Krueger. Eliminating the adoption barrier. IEEE Softw., 19(4):29–31, July 2002. ISSN 0740-7459.

doi: 10.1109/MS.2002.1020284. URL http://dx.doi.org/10.1109/MS.2002.1020284.
Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental model-based testing of delta-

oriented software product lines. In Achim D. Brucker and Jacques Julliand, editors, Tests and Proofs,
volume 7305 of Lecture Notes in Computer Science, pages 67–82. Springer Berlin Heidelberg, 2012.
ISBN 978-3-642-30472-9. doi: 10.1007/978-3-642-30473-6 7. URL http://dx.doi.org/10.1007/
978-3-642-30473-6_7.

Roberto E. Lopez-Herrejon, Don Batory, and William Cook. Evaluating support for features in advanced
modularization technologies. In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented Program-
ming, volume 3586 of Lecture Notes in Computer Science, pages 169–194. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-27992-1. doi: 10.1007/11531142 8. URL http://dx.doi.org/10.1007/
11531142_8.

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering - Foundations,
Principles and Techniques. Springer Berlin/Heidelberg, 2005.

Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz, Alexander Grebhahn, Reimar Schöter, and
Gunter Saake. JavAdaptor — Flexible Runtime Updates of Java Applications. Software—Practice and
Experience, 43(2):153–185, February 2013. doi: 10.1002/spe.2107.

Márcio Ribeiro, Rodrigo Cardoso, Paulo Borba, Rodrigo Bonifácio, and Henrique Rebêlo. Does aspectj pro-
vide modularity when implementing features with flexible binding times? Third Latin American Workshop
on Aspect-Oriented Software Development (LA-WASP 2009), Fortaleza, Ceara, Brazil, pages 1–6, 2009.

Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake. Flexible feature binding in software
product lines. Automated Software Engineering, 18(2):163–197, 2011a. ISSN 0928-8910. doi: 10.1007/
s10515-011-0080-5. URL http://dx.doi.org/10.1007/s10515-011-0080-5.

Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Tailoring dynamic software product
lines. SIGPLAN Not., 47(3):3–12, October 2011b. ISSN 0362-1340. doi: 10.1145/2189751.2047866.
URL http://doi.acm.org/10.1145/2189751.2047866.

Darpan Saini, Joshua Sunshine, and Jonathan Aldrich. A theory of typestate-oriented programming. In FTfJP,
pages 9:1–9:7. ACM, 2010. ISBN 978-1-4503-0540-2. doi: http://doi.acm.org/10.1145/1924520.1924529.
URL http://doi.acm.org/10.1145/1924520.1924529.

Ina Schaefer and Ferruccio Damiani. Pure delta-oriented programming. In Proceedings of the 2Nd In-
ternational Workshop on Feature-Oriented Software Development, FOSD ’10, pages 49–56, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0208-1. doi: 10.1145/1868688.1868696. URL http:
//doi.acm.org/10.1145/1868688.1868696.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-oriented pro-
gramming of software product lines. In Jan Bosch and Jaejoon Lee, editors, Software Product Lines:
Going Beyond, volume 6287 of Lecture Notes in Computer Science, pages 77–91. Springer Berlin Hei-
delberg, 2010. ISBN 978-3-642-15578-9. doi: 10.1007/978-3-642-15579-6 6. URL http://dx.doi.
org/10.1007/978-3-642-15579-6_6.

Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz Botterweck, Animesh
Pathak, Salvador Trujillo, and Karina Villela. Software diversity: state of the art and perspectives.
STTT, 14(5):477–495, 2012. doi: 10.1007/s10009-012-0253-y. URL http://dx.doi.org/10.1007/
s10009-012-0253-y.

Christoph Seidl, Ina Schaefer, and Uwe Aßmann. Integrated Management of Variability in Space and Time
in Software Families. In Proceedings of the 18th International Software Product Line Conference (SPLC),
SPLC’14, 2014.

Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented implementation technique for re-
finements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol., 11(2):215–255, April
2002. ISSN 1049-331X. doi: 10.1145/505145.505148. URL http://doi.acm.org/10.1145/505145.
505148.

Charles Smith and Sophia Drossopoulou. Chai: Traits for java-like languages. In AndrewP. Black, editor,
ECOOP 2005 - Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science, pages
453–478. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-27992-1. doi: 10.1007/11531142 20. URL
http://dx.doi.org/10.1007/11531142_20.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference on Software
Engineering, ICSE ’99, pages 107–119, New York, NY, USA, 1999. ACM. ISBN 1-58113-074-0. doi:
10.1145/302405.302457. URL http://doi.acm.org/10.1145/302405.302457.

40 Ferruccio Damiani et al.

Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Unrestricted and safe dynamic code evo-
lution for java. Science of Computer Programming, 78(5):481 – 498, 2013. ISSN 0167-6423.
doi: 10.1016/j.scico.2011.06.005. URL http://www.sciencedirect.com/science/article/pii/
S0167642311001456.

	ACTA-Informatica-Damiani-et-al-2017-COPERTINA.pdf
	main

