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 33 
SUMMARY 34 

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are symbionts of most terrestrial 35 

plants.  They commonly harbour endobacteria of a largely unknown biology, referred to as MRE 36 

(Mollicutes/mycoplasma-related endobacteria).  Here, we propose to accommodate MRE in the 37 

novel genus ‘Candidatus Moeniiplasma.’  Phylogeny reconstructions based on the 16S rRNA 38 

gene sequences cluster ‘Ca. Moeniiplasma’ with representatives of the class Mollicutes, whereas 39 

phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage 40 

sharing ancestry with the members of the family Mycoplasmataceae.  Cells of ‘Ca. 41 

Moeniiplasma’ reside directly in the host cytoplasm and have not yet been cultivated.  They are 42 

coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane.  43 

However, the draft genomes of ‘Ca. Moeniiplasma’ suggest that this structure is not a Gram-44 

positive cell wall.  The evolution ‘Ca. Moeniiplasma’ appears to be driven by an ultrarapid rate 45 

of mutation accumulation related to the loss of DNA repair mechanisms.  Moreover, molecular 46 

evolution patterns suggest that, in addition to vertical transmission, ‘Ca. Moeniiplasma’ is able to 47 

transmit horizontally among distinct Glomeromycota host lineages and exchange genes.  On the 48 

basis of these unique lifestyle features, the new species ‘Candidatus Moeniiplasma 49 

glomeromycotorum’ is proposed. 50 
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 51 

INTRODUCTION 52 

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are obligate biotrophs forming 53 

symbiotic associations with the roots of most terrestrial plants (Smith & Read, 2008; Gutjahr & 54 

Parniske, 2013).  They improve plant mineral nutrient uptake in exchange for photosynthates and 55 

are important members of terrestrial ecosystems.  Based on electron microscopy studies, it has 56 

been known for decades that AMF harbour endobacteria in the cytoplasm of their hyphae and 57 

spores, referred to as bacterium-like organelles, or BLOs (Mosse, 1970; MacDonald & Chandler, 58 

1981; MacDonald et al., 1982; Scannerini & Bonfante, 1991).  These bacteria display diverse 59 

morphologies, including coccoid cells that remain unclassified and are referred to as 60 

Mollicutes/mycoplasma-related endobacteria or MRE, based on the 16S rRNA gene phylogenies 61 

that cluster them with members of the class Mollicutes (Naumann et al., 2010).  MRE have been 62 

found in AMF from nearly all major lineages of Glomeromycota surveyed to date (Naumann et 63 

al., 2010; Desirò et al., 2013; Desirò et al., 2014; Toomer et al., 2015).  The MRE genomes are 64 

characterized by a highly reduced gene content that is indicative of metabolic dependence on the 65 

fungal host (Naito et al., 2015; Torres-Cortés et al., 2015).  For example, MRE are incapable of 66 

amino acid and nucleic acid biosynthesis, and so these metabolites must be obtained from the 67 

AMF host cytoplasm.  Similarly, the MRE genomes do not encode enzymes catalyzing the TCA 68 

cycle and oxidative phosphorylation.  Remarkably, the MRE genomes harbour multiple genes 69 

horizontally acquired from AMF (Naito et al., 2015; Torres-Cortés et al., 2015).  While the role 70 

of MRE in the biology of AMF is unknown, their broad distribution across the host taxa suggests 71 

that MRE may modulate the impact of AMF on terrestrial ecology.  To recognize this unique 72 
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lineage of endosymbionts, we propose the new genus ‘Candidatus Moeniiplasma’ and the new 73 

species ‘Candidatus Moeniiplasma glomeromycotorum.’ 74 

 75 

METHODS 76 

16S rRNA gene and multilocus phylogenies.  To elucidate the relationship between MRE and 77 

other lineages within the Mollicutes class, we conducted phylogenetic reconstructions based on 78 

the sequences of 16S rRNA gene and proteins encoded by 19 conserved genes (dnaG, infC, 79 

nusA, rplA, rplB, rplC, rplE, rplF, rplM, rplN, rplP, rplT, rpmA, rpsB, rpsC, rpsE, rpsJ, rpsS, 80 

smpB), selected based on the Genomic Encyclopaedia of Bacteria and Archaea, GEBA (Wu et 81 

al., 2009).  Sequences of these genes were extracted from the de novo sequenced metagenomes 82 

of MRE associated with Dentiscutata heterogama (Torres-Cortés et al., 2015), Racocetra 83 

verrucosa, and Rhizophagus clarus (Naito et al., 2015).  Sequences from non-MRE species were 84 

obtained from IMG (Markowitz et al., 2012).  The 16S rRNA and amino acid sequences were 85 

aligned using MUSCLE (Edgar, 2004).  Sequence alignments were adjusted manually.  Amino 86 

acid sequence alignments were concatenated in Geneious 9.1.2 (Biomatters Ltd).  Bayesian 87 

analyses were performed in MrBayes 3.2 (Ronquist et al., 2012).  16S rRNA gene sequences 88 

were analyzed under the nucleotide substitution model GTR+I+ Γ (Tavaré, 1986) in a run of 89 

1,000,000 generations with 25% burn-in.  Amino acid sequences were examined under the model 90 

mixed+I+Γ in a run of 100,000 generations with 25% burn-in.  The average standard deviation of 91 

split frequencies was used as a convergence diagnostic.  Maximum Likelihood analyses were 92 

conducted using PhyML (Guindon et al., 2010) run with 1,000 bootstrap.  The GTR+I+Γ model 93 

was used for 16S rRNA gene sequences. The Rtrev+I+Γ (Dimmic et al., 2002) model identified 94 

by MrBayes as the model that best fits these data was used for amino acid sequences.  95 
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 96 

Cultivation.  In our cultivation attempts, we focused on MRE of Rhizophagus clarus NB112A, 97 

which originated in Namibia and its experimental population is maintained at the International 98 

Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi, INVAM (Morton et al., 1993).  99 

Unlike many other AMF, R. clarus can be readily maintained in vitro in association with root-100 

inducing T-DNA-transformed chicory roots grown on MSR medium (Cranenbrouck et al., 2005) 101 

at 28ºC.  In addition, a draft genome sequence is available for its MRE (Naito et al., 2015) to 102 

inform media formulations.  AMF filtrates containing MRE cells were subjected to different 103 

cultivation media, supplements, temperatures, and atmospheres.  Media included Brain Heart 104 

Infusion, BHI (Bacto), PPLO Broth Base (BBL), 2x BHI, and 2x PPLO.  They were 105 

supplemented with horse (Sigma), bovine (Sigma), and porcine serum (Sigma) at concentrations 106 

of 1 to 20% in 5% increments, yeast extract and TC yeastolate (Bacto) at concentrations of 0.1%, 107 

0.25%, 0.5% and 1%, Tween®80 (Sigma) at concentrations of 0.05% and 0.5%, and AMF spore 108 

extracts.  AMF spore extracts were made by harvesting spores and hyphae of R. clarus NB112A 109 

grown in vitro by manually removing all associated root structures, and dissolving the Phytagel-110 

solidified medium in 10 mM sodium citrate buffer (pH 6; Fisher Scientific) at 30ºC for 20 min.  111 

Isolated spores and hyphae were then manually crushed, ground, and passed through a 0.22 μm 112 

filter.  The filtrate was added directly to the MRE cultivation medium.  Incubation conditions 113 

included ambient temperature, 28ºC, and 30ºC as well as ambient, microaerophilic, increased 114 

CO2, and anaerobic atmosphere.  All factors (cultivation medium, supplement, temperature and 115 

atmosphere) were tested combinatorially.  Each medium and supplement condition was prepared 116 

as a liquid culture and inoculated at day 0 with AMF filtrate containing MRE cells, followed by 117 

incubation at every combination of temperature and atmospheric conditions.  On day 0, 1, 3, 7, 118 
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14, 21, and 30, a portion of the liquid culture was subcultured onto a solid medium of the same 119 

type, solidified with agar Noble (Difco), and incubated for an additional 14 days, at the same 120 

temperature and atmospheric conditions as before.  Any colonies that arose were genotyped by 121 

16S rRNA gene sequencing, but none were identified as MRE.   122 

 123 

Transmission Electron Microscopy.  To explore MRE cell ultrastructure, spores of R. clarus 124 

NB112A were subjected to high-pressure/freeze-substitution in order to preserve fungal and 125 

bacterial cytology, processed as described in Desirò et al. (2016), and observed under 126 

transmission electron microscope. 127 

 128 

Fluorescent in situ hybridization.  Fluorescent in situ hybridization (FISH) was performed on 129 

fixed and crushed spores of R. clarus NB112A.  The MRE-specific probe BLOgrBC (5’-130 

GCCAATCCTACCCTTGTCA-3’) (Naumann et al., 2010) and the universal bacterial probe 131 

EUB338I (Amann et al., 1990) were used as described by Naumann et al. (2010) with slight 132 

modifications.  Specifically, AMF spores were immobilized in polyacrylamide pads for the 133 

procedure, and probes were hybridized at a stringency of 30% formamide.  Cells were visualized 134 

using the DeltaVision RT system (Applied Precision). 135 

 136 

16S rRNA gene sequence diversity.  To explore the extent of MRE diversity across different 137 

Glomeromycota hosts, we reconstructed the genealogy of MRE using 16S rRNA gene sequences.  138 

In these reconstructions, we included MRE diversity from previously published reports 139 

(Naumann et al., 2010; Desirò et al., 2014; Naito et al., 2015; Toomer et al., 2015; Torres-Cortés 140 

et al., 2015) as well as sequences newly generated from several populations of R. clarus 141 
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representing different geographic locations.  We explored MRE diversity in R. clarus because 142 

this species is one of few AMF hosts that appear to harbour a homogenous MRE population 143 

(Naito et al., 2015).  Accessions of R. clarus AU402B, CL156, KR104, MG104A, ND269B, and 144 

WV219A were obtained from INVAM.  AMF spores (isolates) were extracted from the 145 

cultivation medium by wet-sieving and sucrose centrifugation (Daniels & Skipper, 1982), 146 

followed by surface decontamination as described in Mondo et al. (2012), and whole genome 147 

(WG) amplified using Illustra™ GenomiPhi-V2 kit (GE Healthcare, Piscataway, NJ).  WG 148 

amplification products were diluted 1:20 in water for subsequent PCR reactions.  Bacterial 16S 149 

rRNA gene fragments were PCR-amplified using MRE-specific primers 109F1 (5’-150 

ACGGGTGAGTAATRCTTATCT-3), 109F2 (5’-ACGAGTGAGTAATGCTTATCT-3), 151 

1184R1 (5’-GACGACCAGACGTCATCCTY-3), 1184R2 (5’-152 

GACGACCAAACTTGATCCTC-3), and 1184R3 (5’-GATGATCAGACGTCATCCTC-3) 153 

(Naumann et al., 2010) and Phusion®High-Fidelity DNA polymerase (New England Biolabs).  154 

PCR reactions contained 1 μL diluted WG-amplified product, 0.02 U μL-1 Phusion polymerase, 155 

1x Phusion HF Buffer with 1.5 mM MgCl2, 180 μM each dNTP, and primers added as a 2:1 156 

mixture of the two forward primers (0.75 μM and 0.375 μM) and a 2:1:1 mixture of the three 157 

reverse primers (0.75 μM, 0.375 μM, and 0.375 μM).  Cycling conditions were 5 min initial 158 

denaturation at 98°C followed by 15 cycles of 10 sec at 98°C, 30 sec at 50°C, and 1 min at 72°C, 159 

followed by a final extension of 10 min at 72°C.  The 1063 bp amplicons were purified using 160 

QIAquick PCR purification kit (Qiagen), and cloned using the TOPO® TA Cloning® Kit for 161 

Sequencing (Invitrogen Life Technologies).  Plasmid DNA from 16 recombinant bacterial 162 

colonies per sample was amplified using the Illustra TempliPhi 100/500 DNA Amplification Kit 163 

(GE Healthcare Life Sciences).  Plasmid inserts were cycle-sequenced with the BigDye 164 



 8

Terminator 3.1 Cycle Sequencing Kit (Applied Biosystems) using T3 and T7 primers.  165 

Sequences were edited in Geneious 9.1.2 (Biomatters Ltd).  To facilitate analyses and display of 166 

the MRE 16S rRNA gene data, we used MOTHUR (Schloss et al., 2009) to cluster at a 94% 167 

similarity level gene fragments cloned and sequenced from each AMF spore (isolate) and to 168 

identify a sequence representative for each cluster.  The 94% 16S rRNA gene sequence 169 

similarity level is recommended for delineation of species in the Mollicutes (Brown et al., 2007).  170 

The representative MRE sequences were aligned in MUSCLE (Edgar, 2004).  Phylogenies were 171 

reconstructed under the GTR+I+Γ (Tavaré, 1986) nucleotide substitution model implemented in 172 

MrBayes 3.2 (Ronquist et al., 2012), with analyses conducted for 15,000,000 generations with 173 

25% burn-in, and in PhyML (Guindon et al., 2010) with 1,000 bootstrap replications. 174 

 175 

RESULTS AND DISCUSSION 176 

Phylogeny reconstructions based on 16S rRNA gene sequences cluster MRE with the 177 

representatives of the class Mollicutes, albeit without resolving their taxonomic position relative 178 

to individual mollicute lineages (Figure 1) (Naumann et al., 2010).  In contrast, phylogenies 179 

derived from amino acid sequences of 19 conserved genes indicate that MRE share ancestry with 180 

members of the Mycoplasma pneumoniae group in the family Mycoplasmataceae (Figure 2).  181 

MRE appear to be uncultivable.  Therefore, they do not meet the minimal standards for 182 

description of a new species of the class Mollicutes (Brown et al., 2007).  Nevertheless, we 183 

recommend that MRE ubiquity and their potential ecological significance warrant a taxonomic 184 

proposal in accordance with the guidelines for a designation of a provisional Candidatus taxon 185 

(Murray & Stackebrandt, 1995). 186 

 187 
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Description of ‘Candidatus Moeniiplasma’ 188 

Moeniiplasma (Moe.ni.i.pla’sma. L. pl. neut. n. moenia, walls/fortifications; Gr. neut. n. plasma, 189 

that which is molded/shaped; N.L. neut. n. Moeniiplasma, shape surrounded by 190 

walls/fortifications). Representatives of ‘Ca. Moeniiplasma’ inhabit hyphae and spores of 191 

Glomeromycota and are transmitted vertically from one host generation to the next (Naumann et 192 

al., 2010; Naito, 2014).  In addition, phylogenetic data suggest a history of horizontal 193 

transmission in ‘Ca. Moeniiplasma’ (Toomer et al., 2015).  The occurrence of ‘Ca. 194 

Moeniiplasma’ varies among host populations from different geographic locations.  For example, 195 

in Cetraspora pellucida, Gigaspora margarita, Gi. rosea, and Rhizophagus clarus, ‘Ca. 196 

Moeniiplasma’ was detected in some populations but not in others (Naumann et al., 2010; Desirò 197 

et al., 2014; Toomer et al., 2015). 198 

 ‘Ca. Moeniiplasma’ resides directly in the cytoplasm of Glomeromycota (Figure 3, 199 

Naumann et al., 2010, and Desirò et al., 2013).  Cells are coccoid (diameter of 460 nm – 610 nm, 200 

measured in 8 cells) but may assume different shapes when, for example, compressed between 201 

the lipid bodies (not shown).  A thin homogenous layer is present outside the cell membrane, an 202 

unusual feature for the wall-less Mollicutes class (Figure 3, Naumann et al., 2010, and Desirò et 203 

al., 2013).  However, since the organization of such a layer changes depending on the sample 204 

preparation (from an electron-dense to a more transparent layer), and none of the draft genomes 205 

available for ‘Ca. Moeniiplasma’ reveals genes involved in the peptidoglycan synthesis (Naito et 206 

al., 2015; Torres-Cortés et al., 2015), we suggest that this structure is not a Gram-positive cell 207 

wall. 208 

The G+C content of ‘Ca. Moeniiplasma’ DNA is 32-34% (Naito et al., 2015; Torres-209 

Cortés et al., 2015), which is comparable to the 32% G+C content of the M. genitalium genome 210 
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(Fraser et al., 1995).  The draft genome assemblies span from 662,952 bp to 1,227,948 bp (Naito 211 

et al., 2015; Torres-Cortés et al., 2015), thus falling within the range of genome sizes exhibited 212 

by other members of the M. pneumoniae clade, from 580,070 bp in M. genitalium (Fraser et al., 213 

1995) to 1,358,633 bp in M. penetrans (Sasaki et al., 2002).  ‘Ca. Moeniiplasma’ utilizes the 214 

UGA codon to encode tryptophan rather than as a stop codon (Naito et al., 2015), codon usage 215 

shared with other SEM (Spiroplasma, Entomoplasma, and Mycoplasma) but not with AAA 216 

(Asteroleplasma, Anaeroplasma, Acholeplasma, and Phytoplasma) mycoplasmas (Razin et al., 217 

1998).  Not unlike other Mycoplasma genomes (Marenda, 2014), the genomes of ‘Ca. 218 

Moeniiplasma’ are extraordinarily plastic, a phenomenon related to the retention of 219 

recombination machinery and mobile genetic elements (Naito et al., 2015; Naito & Pawlowska, 220 

2016). 221 

FISH experiments with probes specifically targeting ‘Ca. Moeniiplasma’ (Naumann et 222 

al., 2010) indicate that cells of these endobacteria are present in high numbers in the host 223 

cytoplasm (Figure 4). Quantitative PCR results support these observations, suggesting that ‘Ca. 224 

Moeniiplasma’ can reach nearly 1000 cells per AMF spore (Desirò et al., 2014), an estimate 225 

based on evidence of a single rRNA locus in the MRE genomes (Naito et al., 2015; Torres-226 

Cortés et al., 2015). 227 

 228 

Description of ‘Candidatus Moeniiplasma glomeromycotorum’ 229 

‘Candidatus Moeniiplasma glomeromycotorum’ (glo.me.ro.my.co.to’rum L. neut. n. 230 

glomeromycotorum, inhabitant of Glomeromycota).  [(Mollicutes) NC; NA; C; NAS; 231 

oligonucleotide sequences of unique regions of the 16S rRNA gene 5’-232 

GCCAATCCTACCCTTGTCA-3’ (Naumann et al., 2010) and 5’-233 
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ATCCRTAGACCTTCMTCCTTC-3’ (Desirò et al., 2013); S (Glomeromycota, cytoplasm of 234 

mycelium and spores); M].  The phenotypic description is the same as that given above for the 235 

genus.  Electron micrographs are shown in Figure 3. 236 

Extensive intrahost diversity of ‘Ca. Moeniiplasma glomeromycotorum’ 16S rRNA gene 237 

sequences is one of the most striking features exhibited by these organisms (Naumann et al., 238 

2010; Desirò et al., 2014; Toomer et al., 2015).  Heritable endobacteria, such as ‘Ca. 239 

Moeniiplasma glomeromycotorum’, are not expected to be diverse within host individuals 240 

because transmission bottlenecks limit the number of bacterial cells that are found in each new 241 

intrahost population (Moran et al., 2008).  In ‘Ca. Moeniiplasma glomeromycotorum’, two 242 

factors appear to contribute to intrahost population diversity: (1) an ultrarapid rate of mutation 243 

accumulation (Naito & Pawlowska, 2016), which is likely related to the loss of DNA repair 244 

mechanisms (Naito et al., 2015), and (2) recombination evident across DNA sequences sampled 245 

from ‘Ca. Moeniiplasma glomeromycotorum’ populations associated with highly divergent AMF 246 

hosts (Toomer et al., 2015; Naito & Pawlowska, 2016), consistent with retention of active 247 

recombination machinery in the ‘Ca. Moeniiplasma’ genomes (Naito et al., 2015). 248 

 The genealogy of ‘Ca. Moeniiplasma glomeromycotorum’ reconstructed using 16S 249 

rRNA gene sequences (Figure 5) confirmed previous reports that, with few exceptions, ‘Ca. 250 

Moeniiplasma glomeromycotorum’ sequences from a single host are dispersed across divergent 251 

clusters comprising ‘Ca. Moeniiplasma glomeromycotorum’ associated with highly divergent 252 

Glomeromycota species (Naumann et al., 2010; Desirò et al., 2014; Naito et al., 2015; Toomer et 253 

al., 2015).  Based on ‘Ca. Moeniiplasma glomeromycotorum’ genome sequences (Naito et al., 254 

2015; Torres-Cortés et al., 2015), this pattern appears to reflect the diversity of ‘Ca. 255 

Moeniiplasma glomeromycotorum’ genotypes within a population, with a single rRNA locus per 256 
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genome, rather than diversity of multiple rRNA loci present in every genome of a genetically 257 

uniform population.  In addition, no genetic differentiation is apparent among ‘Ca. 258 

Moeniiplasma glomeromycotorum’ populations associated with isolates of a single AMF host 259 

from different geographic regions, e.g. R. clarus (Figure 5).  This pattern is not unexpected given 260 

low genetic differentiation of AMF from different geographic locations (Rosendahl et al., 2009; 261 

den Bakker et al., 2010). 262 

 While only 10% of the Glomeromycota taxonomic diversity has been surveyed for the 263 

presence of ‘Ca. Moeniiplasma glomeromycotorum’ thus far, the host taxa sampled represent the 264 

phylogenetic breadth of the phylum.  Consequently, it is likely that a large portion of ‘Ca. 265 

Moeniiplasma glomeromycotorum’ diversity has been discovered already, with the 16S rRNA 266 

gene sequences accumulated to date (Figure 5) displaying 79% similarity.  While this degree of 267 

intraspecific sequence similarity is inconsistent with the recommendation that a 94% sequence 268 

similarity at the 16S rRNA gene should be used for separation of species in Mollicutes (Brown et 269 

al., 2007), it reflects the unique biological properties of ‘Ca. Moeniiplasma glomeromycotorum’.  270 

In particular, all ‘Ca. Moeniiplasma glomeromycotorum’ share: (i) the common habitat of the 271 

Glomeromycota cytoplasm, (ii) an ultrarapid mutation rate, and (iii) the ability to exchange genes 272 

across different genotypes.  In addition, the present species delineation proposal for ‘Ca. 273 

Moeniiplasma glomeromycotorum’ is consistent with species definitions in other heritable 274 

endobacteria, such as Buchnera aphidicola (Munson et al., 1991) and Wolbachia pipientis (Lo et 275 

al., 2007).  These species share some of the molecular evolution patterns exhibited by ‘Ca. 276 

Moeniiplasma glomeromycotorum’. 277 
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While no type material designation is necessary for a provisional taxon (Labeda, 1997), 278 

we point out that AMF, which are hosts of ‘Ca. Moeniiplasma glomeromycotorum’, are 279 

available at INVAM, http://invam.wvu.edu/. 280 
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 407 

Figure Legends 408 

Fig. 1.  Phylogenetic placement of ‘Ca. Moeniiplasma glomeromycotorum’ based on 16S rRNA 409 

gene sequences.  Bayesian posterior probabilities greater than 0.90 are indicated above branches.  410 

Branches with Maximum Likelihood bootstrap support greater than 70% are thickened.  MRc, 411 

‘Ca. Moeniiplasma glomeromycotorum’ of Rhizophagus clarus; MRv, ‘Ca. Moeniiplasma 412 

glomeromycotorum’ of Racocetra verrucosa; MDh, ‘Ca. Moeniiplasma glomeromycotorum’ of 413 

Dentiscutata heterogama. 414 

Fig. 2.  Phylogenetic placement of ‘Ca. Moeniiplasma glomeromycotorum’ based on 415 

concatenated amino acid sequences of 19 conserved proteins.  Bayesian posterior probabilities 416 

greater than 0.90 are indicated above branches.  Branches with Maximum Likelihood bootstrap 417 

support greater than 70% are thickened.  MRc, ‘Ca. Moeniiplasma glomeromycotorum’ of 418 

Rhizophagus clarus; MRv, ‘Ca. Moeniiplasma glomeromycotorum’ of Racocetra verrucosa; 419 

MDh, ‘Ca. Moeniiplasma glomeromycotorum’ of Dentiscutata heterogama. 420 

Fig. 3.  Transmission electron micrographs of ‘Ca. Moeniiplasma glomeromycotorum’ in the 421 

cytoplasm of R. clarus NB112A.  A. Endobacteria (b) are directly embedded in the fungal 422 

cytoplasm (fc), near the fungal nucleus (n) and lipid bodies (lb).  B. A homogenous electron-423 

dense layer (arrowhead) is consistently present outside the membrane of the endobacteria, while 424 

many ribosomes populate their cytoplasm.  Scale bars: A, 0.32 µm; B, 0.10 µm. 425 

Fig. 4.  FISH of ‘Ca. Moeniiplasma glomeromycotorum’ within the cytoplasm of a crushed 426 

spore of R. clarus NB112A.  A. MRE visualized with the MRE-specific probe, BLOgrBC (red).  427 

B. MRE visualized with the universal bacterial probe EUB338I (green).  C. An overlay of A and 428 

B.  Scale bars, 5 µm. 429 
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Fig 5.  Genealogy of ‘Candidatus Moeniiplasma glomeromycotorum’ based on 16S rRNA gene 430 

sequences.  Bayesian posterior probabilities greater than 0.90 are indicated above branches.  431 

Branches with Maximum Likelihood bootstrap support greater than 70% are thickened.  Each 432 

sequence represents ‘Candidatus Moeniiplasma glomeromycotorum’ 16S rRNA genes sampled 433 

from a distinct Glomeromycota isolate and clustered at a 94% sequence similarity level. 434 


