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Abstract

Heart failure is a leading cause of morbidity and mortality in patients affected by different disorders

associated to intravascular hemolysis. The leading factor is the presence of pathologic amount of

pro-oxidant free heme in the bloodstream, due to the exhaustion of the natural heme scavenger

Hemopexin (Hx). Here, we evaluated whether free heme directly affects cardiac function, and tested

the therapeutic potential of replenishing serum Hx for increasing serum heme buffering capacity.

The effect of heme on cardiac function was assessed in vitro, on primary cardiomyocytes and H9c2

myoblast cell line, and in vivo, in Hx-/- mice and in genetic and acquired mouse models of

intravascular hemolysis.  Purified Hx or anti-oxidants N-Acetyl-L-cysteine and α-tocopherol were

used to counteract heme cardiotoxicity.

In mice, Hx loss/depletion resulted in heme accumulation and enhanced reactive oxygen species

(ROS) production in the heart, which ultimately led to severe systolic dysfunction. Similarly, high

ROS reduced systolic Ca2+ transient amplitudes and fractional shortening in primary cardiomyocytes

exposed to free heme. In keeping with these Ca2+ handling alterations, oxidation and CaMKII-

dependent phosphorylation of Ryanodine Receptor 2 were higher in Hx-/- hearts than in controls.

Administration of anti-oxidants prevented systolic failure both in vitro and in vivo. Intriguingly, Hx

rescued contraction defects of heme-treated cardiomyocytes and preserved cardiac function in

hemolytic mice.

We show that heme-mediated oxidative stress perturbs cardiac Ca2+ homeostasis and promotes

contractile dysfunction. Scavenging heme, Hx counteracts cardiac heme toxicity and preserves left

ventricular function. Our data generate the rationale to consider the therapeutic use of Hx to limit

the cardiotoxicity of free heme in hemolytic disorders.

Keywords: Heme, Hemopexin, ROS, Heart, Systolic function
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Introduction

Heart failure, one of the leading causes of morbidity and mortality worldwide, is a

multifactorial complex disorder that leads to a disturbance of the normal pump activity of the heart

to meet the metabolic demands of the body [1]. Excess production of reactive oxygen species (ROS)

has been implicated in progression of chronic heart failure as well as in other cardiovascular

disorders including ischemia-reperfusion injury and cardiovascular complications of hemolytic

diseases [2-7].

Free heme is a strong driver of oxidation and it has been shown to affect the function of

various cell components within the cardiovascular system [8]. Heme promotes endothelial

dysfunction by inducing the expression of adhesion molecules and reducing nitric oxide (NO)

availability, which causes vasoconstriction [9-14]. Moreover, heme-derived ROS induce the

proliferation of smooth muscle cells, that participate in vasculopathy associated with

atherosclerosis and hypertension [15]. Finally, heme causes oxidant damage to thick filament

proteins, leading to contractile dysfunction in human cardiomyocytes in vitro [16].

Under physiologic conditions, heme levels are maintained in plasma at very low

concentration (0.2 µmol/L) [17]. However, in pathologic conditions associated with intravascular

hemolysis such as hemolytic anemias (i.e. hemoglobinopathies or G6PD deficiency), heme levels rise

up to 20-50 µmol/L [17]. Interestingly, β-thalassemia intermedia, a paradigmatic disorder of chronic

hemolysis with increased free heme, has been associated with systolic and diastolic dysfunction,

leading to the development of heart failure, which is a life-threatening complication in these

patients [18]. Although progresses have been made in the knowledge of the pathogenesis of organ

damage related to hemolytic disorders, the molecular mechanisms leading to impaired heart

function are still largely unknown and the potential contribution of free heme-driven oxidative

stress on left ventricular dysfunction has not been clarified yet.
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Hemopexin (Hx) is a plasma acute phase glycoprotein produced by the liver and able to bind

an equimolar amount of heme with high affinity [19]. Upon heme binding, the Hx-heme complex is

taken up by the liver and heme catabolized by heme oxygenases [19]. In this way, Hx works as a

plasma buffering system to keep circulating heme at very low concentration. Nevertheless, during

sustained hemolysis, Hx is fully saturated and free heme levels rise, leading to tissue oxidative

damage [9, 20-22]. Recent studies have highlighted the potential therapeutic role of exogenous Hx

in mouse models of sickle cell disease. In sickle cell disease mice, exogenous Hx markedly reduces

inflammatory vasculopathy, prevents the development of severe acute vaso occlusive events and

improves cardiac function [9, 23, 24]. Given these data, we asked whether the beneficial effect of

Hx on the cardiovascular system might be due not only to preservation of vascular homeostasis but

also to specific effects on the heart.

Here, we show that heme impairs calcium homeostasis in cardiomyocytes, and in turn

impairs cardiac contractility, both in vitro and in in vivo models of hemolytic disorders. Hx preserves

systolic function by preventing heme-driven ROS production and Ca2+ mishandling in

cardiomyocytes. We propose non-hemopexin bound heme (NHBH) as new factor contributing to

cardiotoxicity in chronic hemolytic diseases, such as β-thalassemia, together with free pathologic

iron (non-transferrin bound iron, NTBI). Our results support the use of Hx as a therapeutic option to

prevent severe heart complication related to NHBH in chronic hemolytic diseases.

Methods

Mouse neonatal cardiomyocyte isolation and culture

Spontaneously beating neonatal cardiac myocytes were prepared from hearts of 1- to 2-day-old

mouse pups. Pups were anesthetized by hypothermia, sacrificed via decapitation and hearts were

removed. Atria were cut off and ventricles were minced and pre-digested overnight at 4°C in



Ingoglia et al.

5

calcium-free HEPES-buffered Hanks’ solution, pH 7.4, containing 0.5 mg/ml trypsin (USB

Corporation, Cleveland, Ohio). The following day, ventricles were incubated at 37°C for 5 minutes

in calcium-free HEPES buffered Hanks’ solution, pH 7.4, containing 330 U/ml collagenase type II

(Worthington Biochemical, Lakewood, NJ). The digestion step was repeated 3-4 times. To reduce

the contribution of non-myocardial cells, cells were pre-plated for 1h. The myocyte-enriched cells

remaining in suspension were plated on 35-mm tissue culture dishes at a density of 1.5*105 cells

per dish. Culture dishes were pre-coated with a solution of 0.2% gelatin (Sigma-Aldrich, Saint Louis,

MO) and 15 mg/mL fibronectin for 30 minutes. Myocytes were cultured in a Dulbecco’s modified

Eagle’s medium/Medium 199 (Gibco, Carlsbad, CA) mix containing 10% horse serum, 5% fetal

bovine serum, and 5 mmol/L penicillin/streptomycin (Gibco, Carlsbad, CA).

The rat-derived myoblast cell line H9c2 (ATCC CRL-1446™) was cultured in Dulbecco’s modified

Eagle’s medium/Medium 199 (Gibco, Carlsbad, CA) containing 10 % fetal bovine serum, and 5

mmol/L penicillin/streptomycin (Gibco, Carlsbad, CA).

Heme treatment

Hemin chloride was dissolved in dimethyl sulfoxide to obtain a 4-mmol/L stock solution, diluted, and

mixed 1:1 with human serum albumin (CSL Behring, Switzerland) or Hx (CSL Behring, Switzerland).

Cardiomyocytes were treated with albumin-heme, Hx-heme or heme 5 to 10 μmol/L in culture

medium until 8 hours. After treatment, cells were washed twice. H9c2 cells were treated with Hx-

heme or heme 5 to 10 μmol/L in culture medium until 8 hours. After treatment, cells were washed

twice.

Mice and Treatments
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C57BL/6 Hx-/- mice and Hbbth3/+ mice as a model of β-thalassemia were described previously [20, 25-

29]. All mice were housed in our animal facility, with a 12-h dark/light cycle and access to standard

laboratory chow and tap water ad libitum. Sex- and age-matched C57BL/6 wild-type mice were used

as controls.

C57BL/6 wild-type mice were administered intraperitoneally (i.p.) with 25 mg/kg phenylhydrazine

(PHZ, Sigma-Aldrich, Saint Luis, USA) twice a week for 4 weeks. PHZ-treated mice were injected i.p.

with 160 mg/Kg Hx dissolved in PBS or 400 mg/kg α-tocopherol (Sigma-Aldrich) dissolved in corn oil

or with vehicle on the day of PHZ injection. Control animals were injected with PBS or corn oil.

Animals were anesthetized by intramuscular injection of Zoletil (80 mg/kg)/Xylazine (16 mg/kg), and

serum and tissue samples were collected and kept frozen until analysis.

All animal procedures were performed conform the guidelines from Directive 2010/63/EU of the

European Parliament on the protection of animals used for scientific purposes. This study was

approved by the Italian regulatory authority (approval reference number 87/2015-PR).

Heme Content

Heme content in cells and tissues was quantified fluorometrically by the method of Sassa[30, 31].

Briefly, tissues or cells were homogenized in phosphate buffer saline (PBS) and protein content was

determined by using the Bio-Rad protein assay system (Bio-Rad, Munchen, Germany). Ten ug of

protein samples were incubated with 0.5 mL of 2 M Oxalic Acid (Sigma-Aldrich) at 95°C for 30 min.

Samples were subsequently centrifuged at 14000 rpm for 5 min. Fluorescence emission in the

supernatant was determined spectrofluorimetrically (Glomax, Promega Italia). Excitation and

emission wavelengths were set at 405 and 662 nm, respectively. The background was evaluated by

measuring fluorescence in non-boiled samples.
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Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA, from cells or tissues, was extracted using Pure Link RNA Mini Kit (Ambion, Life

Technologies Italia, Milano, Italy). One µg total RNA was reverse transcribed using M-MLV reverse

transcriptase and random primers (Life Technologies Italia). qRT-PCR was performed on a 7300 Real

Time PCR System (Applied Biosystems, Life Technologies Italia). Primers and probes were designed

using the ProbeFinder software (http://www.roche-applied-science.com). All results were

normalized to 18S mRNA.

Protein Extraction and Western Blotting

Tissue and cell proteins were extracted as reported [20] and concentration was determined using

the Bio-Rad protein assay system (Bio-Rad, Munich, Germany). Fifty µg total protein or 0.25 µL

mouse serum in 8 µL of Laemly Buffer were separated on 4%, 8% or 12% sodium dodecyl sulfate

polyacrylamide gel electrophoresis and analyzed by Western blotting using antibodies against HO-

1 (dilution 1:300, Enzo Life Sciences), TfR1 (dilution 1:1000, Invitrogen), ox-CAMKII (dilution 1:1000,

Gene Tex), tot-CAMKII (dilution 1:1000, Cell Signaling), RYR2 pSer 2814 (dilution 1:2500, Badrilla),

total RYR2 (dilution 1:5000, Thermo Scientific), PLB pThr17 (dilution 1:1000, Badrilla), total PLB

(1:1000, Merck Millipore), Hx (1:1000)[20], N-Tyr (1:1000, Merck Millipore).

RyR2 oxidation

To detect RyR2 protein oxidation, hearts were homogenized in 120 mmol/L NaCl, 50 mmol/L Tris-

HCl (pH 8.0) and 1% Triton X-100, supplemented with protease and phosphatase inhibitors. After 30

min incubation on ice, lysates were centrifuged at 3000 rpm for 5 min at 4°C and

immunoprecipitated. Four mg of pre-cleared extracts were incubated with 20 µL of protein G-

Sepharose (Amersham Biosciences, Buckinghamshire, UK) and 4 µg of anti-RYR2 antibody (Thermo



Ingoglia et al.

8

Scientific), for 2 h at 4°C. Immunoprecipitates were washed, treated with 2, 4-dinitrophenyl (DNP)

hydrazine, separated on 4% SDS-PAGE and transferred onto PVDF membranes. The RYR2 DNP-

derivatized carbonyls were detected using an OxyBlot Protein Oxidation Detection Kit (Merck

Millipore); total RYR2 was detected with an anti-RyR2 antibody (Thermo Scientific).

ROS Production Assay

Accumulation of ROS in heart homogenates or cells was assessed by using the oxidant-sensitive

fluorescent dye 29,79-dichlorodihydrofluoroscein diacetate (H2DCFDA; Molecular Probes, Inc.,

Eugene, OR) as previously described[32].  Heart homogenates or cell extracts were incubated with

5uM H2DCFDA in phosphate buffered saline (PBS) or in serum-free medium, respectively, for 30

min at 37 °C under 5% CO2 atmosphere. Fluorescence was recorded at excitation and emission

wavelengths of 485 nm and 530 nm respectively, by a fluorimeter plate reader (Promega). The

background fluorescence caused by PBS or medium and DCF was subtracted from the total

fluorescence in each well generated by cells in presence of DCF. Fluorescence intensity was

expressed as arbitrary fluorescence units/mg protein.

Following incubation for 6 h, adult rat cardiomyocytes media was discarded and replaced with the

ROS sensitive fluorescent dye CM-H2DCFDA (at 10 µM, Invitrogen, USA). For ROS measurements,

cells were excited at 485±15 nm on a Nikon Eclipse TE2000-U inverted microscope which was

provided with a fluorescence detection system (ION OPTIX, Milton, MA, USA). Emitted fluorescence

was collected at 535±20 nm for only 10 s every min to prevent photooxidation of the dye[33].

Lipid Peroxidation Assay

Lipid peroxidation from tissue extracts was measured with the colorimetric assay kit Bioxytech LPO-

586 from Oxis International (Portland, OR) according to the manufacturer’s instructions.
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Immunohistochemistry and histology

Hearts were fixed in 10% formalin overnight at room temperature and embedded in paraffin.

Microtome sections, 5-μm thick, were incubated overnight with anti-HO-1 (Enzo Life Sciences) or

anti- CD18 (Biolegend) antibody, both diluted 1:100, followed by biotin-conjugated secondary

antibody. For collagen quantification, sections were stained with Picrosirius Red[34]. The sections

were visualized on an Olympus BH-2 microscope, coupled to an Olympus camera. Collagen content

was calculated as a percentage of the red-stained area per section by using Image J program.

Echocardiography

Transthoracic echocardiography was performed with a small animal high-resolution imaging system

(VeVo2100, VisualSonics, Inc, Toronto, Canad) equipped with a 22-55 MHz trasducer (MicroScan

Transducers, MS500D)12. The mice, anesthetized by isoflurane (2%) inhalation and maintained by

mask ventilation (isoflurane 1%), were placed in a shallow left lateral decubitus position, with strict

thermoregulation (37+-1°C) to optimize physiological conditions and reduce hemodynamic

variability. Fur was removed from the chest by application of a cosmetic cream to gain a clear image.

Echocardiographic parameters were measured at the level of the papillary muscles in the

parasternal short-axis view (M mode). LV fractional shortening was calculated as follows: FS =

((LVEDD - LVESD)/ LVEDD) X 100, where LVFS indicates LV fractional shortening; LVEDD, LV end-

diastolic diameter; and LVESD, LV end-systolic diameter. LV ejection fraction was calculated

automatically by the echocardiography system. All measurements were averaged on 5 consecutive

cardiac cycles per experiment and cardiac function was assessed when heart rate was 450-500 bpm.

Adult rat cardiomyocyte isolation and culture
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A modified protocol for rat myocytes isolation[35] was used. Adult 8-10 week old Sprague dawley

rats (Janvier labs) were anaesthetized with isoflurane (2%) (Abbott, Wiesbaden, Germany).

Afterwards, hearts were carefully excised and mounted on a Langendorff-perfusion apparatus, and

subsequently perfused for 3 min with nominal Ca free solution. Next, the heart was perfused for

≈15 min with an "enzyme solution" containing (in mmol/L) NaCl 113, KCl 4.7, KH2PO4 0.6, Na2HPO4

x 2 H2O 0.6, MgSO4 x 7 H2O 1.2, NaHCO3 12, KHCO3 10, HEPES 10, Taurine 30, Glucose 5.5, BDM 10,

and CaCl2 0,0125, (all Roth, Karlsruhe, Germany), Liberase TM (1,5 mg, Roche, Mannheim,

Germany), Trypsin 2,5%, (180 µl, Gibco, Paisley, UK). After digesting the extracellular matrix up to

the point of visible tissue solution, the heart was transferred into a glass basin that was filled with

an enzyme-free "stop solution" that contained the same ingredients as the enzyme solution without

the enzyme, but with BCS 10%, The atria were afterwards carefully separated from the ventricles

and discarded. Subsequently, the ventricles were cut with preparatory scissors into small pieces of

tissue. The cell suspension was filtered through a nylon gaze. After sedimentation of the tissue, stop

solution was removed and replaced with a second enzyme free solution containing 5% BCS. Using

this solution, Ca reintroduction was performed by stepwise increasing [Ca] from 0.1-1.2 mmol/L. Ca

loaded cells were afterwards resuspended in Ca containing "cell culture media" consisting of M199

(Sigma-Aldrich) plus 1% Penicillin/Streptomycin and 1% Insulin-Transferrin-Streptomycin and

transferred into Laminin-coated culture dishes. Hemin (H651-9, Frontier Scientific) as diluted in PBS

to achieve a concentration of 50µM was added at 5 µM vs. PBS control (vehicle) to the culture dish.

In an independent set of experiments, an equal volume of 50 µM heme solution was mixed with a

50 µM Hx solution and incubated for 1 hour at 37 degrees in the dark, in order to form a Hx-Heme

complex. Hemopexin-Heme solution was similarly added to an according culture dish at 5 µM. In

some experiments, N-Acetyl-L-cysteine (NAC, A7250 from Sigma-Aldrich) was added at 10 mM to

heme-treated cells. Cell were afterwards cultured for 6 h at 37°C in darkness.
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Ca2+ Measurements

Following incubation for 6 h, cell culture media was discarded and replaced with the Ca2+ sensitive

fluorescent dye Fura-2 AM (at 10 µM, Invitrogen, USA). For Ca2+ measurements, cells were excited

at 340 nm and 380 nm and emitted fluorescence was collected at 510 nm. Ca2+ transient amplitude

was assessed as the 340/380 nm fluorescence ratio (F340nm/F380nm in ratio units, r.u.) after

subtraction of background fluorescence at each excitation wavelength[33]. Myocytes were field-

stimulated at 20±4 V at 1 Hz for ~5 min until steady-state conditions were achieved. Myocytes were

superfused with an experimental "normal Tyrode's (NT)" solution containing (in mmol/L) NaCl 140,

KCl 4, glucose 10, HEPES 5, MgCl2 1, CaCl2 1.2, which has supplemented with PBS (vehicle) or hemin

(at 5 µM) at 22°C (pH 7.4). Red light transillumination was used to visualize myocytes sarcomeres.

Statistical Analysis

Results were expressed as mean±SEM. Prism software (GraphPad software Inc, La Jolla, CA) was

used for statistical analysis. Comparisons between 2 groups were performed with 2-sided Welch t

tests and among >2 groups with 1- or 2-way ANOVA followed by the Bonferroni post-test. A value

of P<0.05 was considered significant.

Results

Hemopexin protects neonatal cardiomyocytes from heme accumulation and ROS production

Recently, we showed that, by scavenging heme, Hx prevents heme accumulation in

endothelial and immune cells, thus limiting heme toxicity [9, 36]. To evaluate whether

cardiomyocytes (CMs) may also be affected by pathologic free heme, we treated mouse neonatal

CMs with 10 µM heme, in presence of either Hx or Albumin (a low affinity heme-binding protein

[17]).
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Hx-heme-treated CMs were protected from heme accumulation, compared to cells treated

with albumin-heme or heme alone (Figure 1A), indicating that Hx prevents heme entry in cardiac

cells. Consistently, the mRNA and protein levels of the heme-degrading enzyme Heme Oxygenase

(HO)-1 were significantly more elevated in cells treated with either albumin-heme or heme alone

compared to cells treated with Hx-heme (Figure 1B, C). These results were confirmed in the H9c2

myoblast cell line treated with Hx-heme or heme alone (see Figure 2 in [37]).  Moreover, in CMs the

heme-mediated induction of the iron exporter Ferroportin (Fpn) was abrogated by Hx treatment

while the down-regulation of the iron importer Transferrin receptor 1 (TfR1) was significantly

reduced by Hx (see Figure 3 in [37]) further indicating that Hx limits heme-iron accumulation within

the cell. Consistently, Hx treatment blunted heme-mediated induction of the heme exporter Feline

Leukemia Virus subgroup C Receptor 1(Flvcr1) [31, 38, 39] in H9c2 cells (see Figure 3 in [37]). Taken

together, these data demonstrate that Hx prevents/limits heme accumulation in CMs.

Being heme a well-known pro-oxidant agent [17], we then evaluated ROS levels in CMs

exposed to heme alone or bound to either Hx or albumin. In the presence of Hx-heme complexes,

CMs were protected from ROS formation, if compared to CMs treated with either albumin-heme

complexes or heme alone (Figure 1D). Staining of CMs with a fluorescent probe for specific detection

of mitochondrial superoxide (Mito-sox) confirmed lower oxidative stress in cells exposed to Hx-

heme than in those exposed to albumin-heme or heme alone (Figure 1E). Consistently, the mRNA

levels of Glutathione reductase (Gsr), -Glutamylcysteine synthetase (-Gcs) and thioredoxin

reductase (Thiored red), anti-oxidant systems important in resistance of cardiac cell to oxidative

damage [40, 41], were increased to a higher extent in CMs treated with either albumin-heme or

heme alone, compared to cells treated with Hx-heme (Figure 1F and see Figure 3 in [37]). The data

were reproduced in H9c2 cells in which we were also able to demonstrate that Hx limits protein

nitrosylation, another hallmark of cellular oxidative damage (see Figure 2 in [37]).
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Taken together, these data demonstrate that Hx protects cardiac cells against heme accumulation

and related oxidative stress.

Hemopexin prevents heme-driven oxidative stress in the heart

To assess whether the protective role of Hx observed in vitro is relevant also in vivo, we took

advantage of Hx knockout (Hx-/-) mice [25]. 3 month-old Hx-/- mice showed a higher content of heme

in the heart than age-matched wild-type animals (Figure 2A). Consistently, HO-1 mRNA and protein

levels were higher in hearts from Hx-/- mice than in controls (Figure 2B). Immunohistochemistry for

HO-1 on heart sections indicated higher HO-1 expression in cardiomyocytes from Hx-/- mice than in

wild-type animals (Figure 2B). Moreover, the mRNA levels of Fpn and Flvcr1a were increased in Hx-

/- mice, whereas those of the iron importers Divalent Metal Transporter 1 (Dmt1) and Tfr1 were

decreased (see Figure 4 in [37]). TFR1 down-modulation was also confirmed at the protein level (see

Figure 4 in [37]).

To evaluate the oxidative stress in the heart, we analysed ROS levels and lipid peroxidation

in Hx-/- and wild-type mice. Both ROS and lipid peroxidation were increased in the heart of Hx-/- mice

compared to that of wild-type animals (Figure 2C, D). Consistently, the oxidative stress responsive

gene Gsr was up-regulated in the heart of Hx-/- mice compared to wild-type animals (Figure 2E).

Altogether, these data demonstrate a critical role for Hx in preventing heme-driven oxidative stress

in the myocardium.

Hemopexin prevents heme overload-induced heart dysfunction

To evaluate whether heme-driven oxidative stress impairs heart function, we performed

echocardiography on Hx-/- and control mice. Cardiac contractility was severely impaired in 3 month-

old Hx-/- mice compared to wild-type controls, as evidenced by significantly lower fractional
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shortening (FS) and ejection fraction (EF) (Figure 3A-C). Notably, in Hx-/- mice, systolic dysfunction

worsened at 6 months of age (Figure 3A-C), indicating an age-dependent progression of ventricular

dysfunction, which was not associated to left side chamber dilation or left ventricular hypertrophy

(Table 1). No evidences of collagen deposition or leukocyte infiltration in Hx-/- heart were observed,

despite a slight transcriptional up-regulation of pro-inflammatory Interleukin  6 (IL-6) and tumor

necrosis factor-α (TNF-α) (see Figure 5 in [37]). To dissect the cardiotoxic effect of free heme, we

evaluated systolic function in Hbbth3/+ mice used as model of non-transfusion dependent β-

thalassemia intermedia [29, 42]. Interestingly, a similar systolic dysfunction was observed in β-

thalassemic mice (Figure 3D-F and Table 2) that are hallmarked by a high rate of intravascular

hemolysis as evidenced by Hx depletion in serum, HO-1 induction at mRNA and protein level in the

heart and altered cardiac expression of iron and anti-oxidant genes (see Figure 6 in [37]). These data

further strength the link between plasma Hx depletion/heme overload and defective heart function.

Finally, to demonstrate that exogenous heme is the main responsible for systolic dysfunction

when Hx is lost, we performed echocardiography in wild-type mice treated with the hemolytic agent

phenylhydrazine (PHZ). PHZ treatment resulted in an almost complete depletion of serum Hx and in

an up-regulation of heme- and oxidative stress-responsive genes in the heart (see Figure 7 in [37]).

Consistently with our observations in both Hx-/- mice and β-thalassemic mice, a significant reduction

of FS and EF was observed in PHZ-treated wild-type animals (Figure 3G-I).

These data collectively indicate that heart free heme accumulating when Hx is lost is responsible for

systolic dysfunction.

Hemopexin prevents heme overload-induced Ca2+ mishandling
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In a next step, we aimed to investigate the cellular mechanisms underlying reduced systolic

function associated with heme overload and oxidative stress, observed in Hx-/- mice. Since oxidative

stress is known to directly impair Ca2+ handling [43], we investigated ROS production and Ca2+

handling in isolated adult rat CMs exposed to 5 µM heme for 6 h. In agreement with data on pro-

oxidant effects of heme in neonatal mouse CMs (Figure 1D-F), oxidative stress was significantly

increased in adult rat CMs exposed to free heme (see Figure 1 in [37]). Accordingly, heme-treated

adult CMs had significantly reduced systolic Ca2+ transient amplitudes (by 37%, Figure 4A-C) in the

face of slowed relaxation kinetics, indicating reduced SR Ca2+ re-uptake upon heme exposure (Figure

4D). In line with this, fractional shortening of isolated heme-treated CMs was significantly reduced

as compared to vehicle-treated CMs (Figure 4E). Vice versa, ROS-scavenging by the use of NAC (10

mM) attenuated heme-dependent Ca2+-mishandling and largely preserved single cell contractility

(Figure 4A-E). As well as NAC, Hx co-treatment significantly improved systolic Ca2+ transients and

accelerated Ca2+ transient decay kinetics, which resulted in a significant improvement of

cardiomyocyte contractility (Figure 4A-E).

In keeping with these Ca2+ handling alterations, Hx-/- hearts displayed a higher amount of

oxidized ryanodine receptor 2 (RYR2) than wild-type controls (Figure 5A), which may have further

contributed to disturbed SR Ca handling on top of decreased SR Ca2+ reuptake, which was evidenced

by slower kinetics of diastolic Ca2+ decay. Furthermore, Hx-/- hearts showed a more pronounced

oxidation of the intracellular stress kinase Ca2+/Calmodulin-dependent protein kinase II (CaMKII)

(Figure 5B). Consistently, CaMKII-dependent phosphorylation of RyR2 (Ser-2814) and

Phospholamban (PLB) (Thr-17) were significantly higher in Hx-/- hearts than in wild-type controls

(Figure 5C, D).

Altogether, these data unravel a key role for Hx in preventing systolic dysfunction related to

heme-driven oxidative stress and Ca2+ mishandling.
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Hemopexin cardioprotective effect is mediated by its anti-oxidant properties

Our data demonstrate that free heme accumulating in the heart when Hx is lost promotes

systolic dysfunction. Moreover, our in vitro results suggest that Hx is protective because it limits

heme-driven oxidative stress, as well as the anti-oxidant NAC. To confirm these data in vivo, we

performed rescue experiments in hemolytic mice treated with either Hx or the anti-oxidant agent

α-tocopherol.

Wild-type mice were treated with PHZ and Hx, α-tocopherol or vehicle for 4 weeks. As

expected, α-tocopherol treatment prevented ROS accumulation and the induction of anti-oxidant

genes in the heart (Figure 6A, B and see Figure 8 in [37]). Hx treatment similarly prevented heme

accumulation within the heart as demonstrated by the blunted induction of HO-1 in Hx-treated

hemolytic mice, and normalised anti-oxidant gene expression profile (Figure 6C, D). Importantly,

when mice were treated with PHZ together with either Hx or α-tocopherol, systolic function was

preserved (Figure 6E-J).

We conclude that Hx is cardioprotective because it limits heme-driven oxidative damage.

Discussion

Here, we show that Hx preserves systolic function by preventing heme-driven ROS

accumulation in cardiomyocytes and the ensuing perturbation of Ca2+ handling (Figure 7). This has

potentially important implications for patients suffering from pathologic conditions associated with

free heme and heme overload, such as hemolytic anemias and hemoglobinopathies.

Data obtained in Hx-/- mice indicate that Hx has a key homeostatic role in preserving ventricular

function under steady-state, when the physiological rate of hemolysis is very low and is well-

controlled by physiologic systems such as Hx or haptoglobin [44]. Although a role for pathologic free

iron (non-transferrin bound iron, NTBI) has been suggested in non-transfusion-dependent and
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transfusion-dependent hemolytic anemias [45, 46], our data highlight a novel concept that heart

might be susceptible to acute exposure to free heme (non-hemopexin bound heme, NHBH), and

that Hx critically maintains cardiomyocyte function by scavenging free heme and avoiding cell heme

overload (Figure 7). The specific uptake of Hx-heme complexes by the liver ultimately allows safe

terminal heme detoxification [19].

Notably, the cardioprotective role of Hx can be even more critical in circumstances of chronic

hemolysis as occurs in hemolytic disorders when huge amount of hemoglobin is released into the

bloodstream. It has been shown that free hemoglobin affects heart function in rabbits and

exacerbates cardiotoxicity of LPS in experimental models of sepsis [47-49]. The heme moiety of

hemoglobin, which is released following hemoglobin oxidation in the pro-oxidant plasma milieu, is

thought to mediate hemoglobin toxicity [50]. Our finding that Hx prevents systolic dysfunction in an

experimental model of intravascular hemolysis, such as in PHZ-treated mice, supports this view and

conclusively proves a causative role for NHBH in left ventricular dysfunction associated to hemolytic

disorders. Furthermore, Hx could be important in case of cardiac valve surgery, where mechanical

forces and shear stress are significantly increased [51, 52]. Consistently, hemolysis associated to

high shear stress has been reported after mitral valve repair [51, 52] and could contribute to heart

failure in these patients.

Finally, we can speculate that Hx is beneficial during cardiac infarction, when myoglobin is released

from injured cardiomyocytes. Once liberated from muscle cells, myoglobin rapidly auto-oxidizes,

which in turn promotes the spontaneous loss of hemin [53-56] that might contribute to the

establishment of oxidative stress and systolic dysfunction.

Heme is a strong driver of oxidation since iron can participate in the Fenton reaction for producing

the hydroxyl radical. As a hydrophobic molecule, heme intercalates into lipid membranes promoting
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lipid peroxidation, both at the plasma membrane and in subcellular compartments [8, 13] [17].

Consistently, we measured increased lipid peroxidation in both cells and tissues exposed to free

heme, which can be rescued by α-tocopherol, an agent able to react with lipid radicals and interrupt

the oxidation reaction. Mechanistically, heme-derived ROS may directly modify Ca2+ handling

proteins (such as the RyR2 or SERCA2a) [35, 57], and may also activate intracellular stress kinases,

such as CaMKII [58], which in turn phosphorylate the same  Ca2+ effectors and ultimately exacerbate

Ca2+ mishandling. In agreement, heme has been previously reported to promote oxidation of

myofilament proteins, including filamin C, myosin heavy chain, cardiac myosin binding protein C,

and α-actinin in human cardiomyocytes [16].

Our data further extend this view and indicate that free heme triggers oxidation of major regulators

of Ca2+ trafficking, such as RyR2, in vivo. Furthermore, oxidatively activated CaMKII was increased in

Hx-/- hearts and was paralleled by CaMKII-specific hyperphophorylation of RyR2 and PLB. Altogether,

these modifications of Ca2+ effectors were associated with impaired intracellular Ca2+ handling,

resulting in decreased single cell contractility, which points to disrupted Ca2+ handling in cardiac

myocytes as a major mechanism underlying the impaired cardiac function of Hx-/- mice. In particular,

the finding that Ca2+ transient decay kinetics, as an approximation of SR Ca2+ reuptake, were

significantly slower in the absence of Hx,  suggests that the direct effects of ROS on SERCA2a/PLB

function overcome CaMKII-dependent effects on PLB, which would instead lead to accelerated SR

Ca2+ reuptake.  On the other hand, CaMKII-dependent regulation of RyR2 and heme-induced

oxidation of RyR2 both contribute to diastolic SR Ca2+ leakage and SR Ca2+ depletion and tend to

decrease SR Ca2+ stores. Intriguingly, treatment with Hx or NAC preserves intracellular Ca2+ handling

and single cell contractility and thus further supports a model where direct heme/ROS-mediated

effects on Ca2+ handling proteins is the main cause of reduced cardiac function when Hx is depleted.
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Intriguingly, intracellular hemin can trigger oxidative modification of the mitochondrial outer

membrane voltage-dependent anion channel (VDAC) [59], thus impairing mitochondrial Ca2+ influx

[60]. This has been uncovered in endothelial cells and a similar mechanism is likely to occur in

cardiomyocytes. Given the close juxtaposition of SR RyR Ca2+ channels and mitochondrial calcium

transporters [61], alterations in sarcoplasmic Ca2+ homeostasis are expected to further amplify

mitochondrial ROS generation [62], exacerbating the pro-oxidant cardiomyocyte status.

It is of note that SR Ca2+ leakage resulting from either hyper-phosphorylation or oxidation of RyR2

is a major determinant of ventricular arrhythmias [43, 63] and these electrical abnormalities also

represent one of the most severe complications in patients carrying mechanical circulatory support

devices, a condition in which the heart is subjected to high shear stress [64]. Our data showing RyR2

alterations and Ca2+ mishandling in heme-exposed cardiomyocytes thus suggest that heme might

display a pro-arrhythmogenic effect.  This is of particular interest in the context of non-transfusion

dependent β-thalassemic syndromes, largely complicated by heart failure and severe arrhythmias

[65-67].

Altogether, our findings have important implications for the treatment of pathologic conditions

associated with heme overload. In fact, heart disease is the primary determinant of prognosis and

survival in hemolytic disorders [18, 68]. In β-thalassemia patients, cardiac complications represent

the primary cause of mortality and one of the major causes of morbidity [18, 68]. In these patients,

heart failure is the result of impaired left systolic function and ventricular dilatation, resulting from

multiple factors [18]. Among them, NTBI has been recently recognized as initiating factor of

cardiomyopathy in β-thalassemic patients [45, 46, 69]. NTBI results from multiple blood

transfusions and increased iron absorption associated with ineffective erythropoiesis, and it is

cleared preferentially by the liver and the myocardium, at a rate exceeding 200 times that of

transferrin-bound iron [45, 70]. In the heart, NTBI catalyzes the formation of free radicals, resulting
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in oxidative stress that eventually contributes to organ dysfunction. Here, we propose NHBH as new

and additional factor participating to left ventricular dysfunction in β-thalassemia. Indeed, our data

in β-thalassemic mice highlight an association between Hx depletion/heme overload in the heart

and systolic dysfunction, suggesting that the sequestration of NHBH by exogenous Hx might provide

further benefits in limiting free-heme related organ damage. We can speculate that a combined

therapy with iron and heme chelators would be beneficial in counteracting cardiac damage induced

by NTBI and NHBH. Collectively, our data support the use of Hx as a therapeutic option to

prevent/limit heme-driven cytotoxicity in heme-overload conditions.
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Tables
Table 1. Echocardiographic parameters of Wt and Hx-/- mice.

Table 2. Echocardiographic parameters of Wt and β-thalassemic (β-Thal) mice.
ECHOCARDIOGRAPHY Wt β -Thal t-test

Left ventricle internal dimension (diastole) (mm) 4,09 ± 0,32 4,60 ± 0,35 NS

Left ventricle internal dimension (systole) (mm) 2,59 ± 0,22 3,28 ± 0,32 P < 0.05

Intraventricular septum (diastole) (mm) 0,66 ± 0,12 0,77 ± 0,08 NS

Intraventricular septum (systole) (mm) 1,22 ± 0,14 1,24 ± 0,12 NS

Left posterior wall (diastole) (mm) 0,77 ± 0,10 0,80 ± 0,08 NS

Left posterior wall (systole) (mm) 1,21 ± 0,21 1,15 ± 0,16 NS

Hypertrophic index 0,98 ± 0,16 1,41 ± 0,08 P < 0.05

Left ventricle mass (mg) 86,29 ± 27,07 116,65 ± 23 NS

ECHOCARDIOGRAPHY Wt Hx -/- t-test
Left ventricle internal dimension (diastole) (mm) 3,35 ±  0,25 3,65 ± 0,27 NS

Left ventricle internal dimension (systole) (mm) 1,84 ± 0,07 2,42 ± 0,27 P < 0.01

Intraventricular septum (diastole) (mm) 0,79 ± 0,09 0,79 ± 0,04 NS

Intraventricular septum (systole) (mm) 1,25 ± 0,13 1,24 ± 0,06 NS

Left posterior wall (diastole) (mm) 0,74 ± 0,08 0,82 ± 0,06 NS

Left posterior wall (systole) (mm) 1,13 ± 0,11 1,21 ± 0,06 NS

Hypertrophic index 0,83 ± 0,13 0,97 ± 0,07 NS

Left ventricle mass (mg) 70,26 ± 11,52 79,69 ± 13,56 NS
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Figure legends

Figure 1. Hemopexin protects neonatal cardiomyocytes from heme accumulation and ROS

production. Data on neonatal cardiomyocytes isolated from the hearts of postnatal day 0-1 wild-

type (Wt) pups, untreated (NT) or treated with 10 µM Hx-heme complex, 10 µM Albumin (Alb)-

heme complex or 10 µM heme for 8 hours, are shown. (A) Cardiomyocyte heme content. (B) qRT-

PCR analysis of Ho-1 mRNA levels. (C) Western blot analysis of HO-1. (D) Cardiomyocyte ROS content

and (E) immunofluorescence analysis of super-oxide radical formation (super-oxide radical was

stained with Mito-sox fluorescent probe. Nuclei were stained with DAPI). (F) qRT-PCR analysis of Gsr

mRNA levels. Results shown are representative of three independent experiments. One-way

analysis of variance with Bonferroni post-test analysis was performed. *P < 0.05; **P < 0.01; ***P <

0.001. Values represent mean ± SEM. AU, arbitrary units; RQ, relative quantity; FIU, fluorescence

intensity unit.

Figure 2. Hemopexin prevents heme-driven cardiac oxidative stress. Data on the heart of Wt and

Hx-/- mice are shown. (A) Heme content (n=5). (B) qRT-PCR, representative western blot and

immunohistochemistry analysis for HO-1. (C) ROS content (n=13) and (D) malondialdehyde (MDA; n

=8) content. (E) qRT-PCR analysis of Gsr mRNA levels. In Western blot shown in B, each lane

represents an individual animal; Bip was used as loading control. Unpaired t-test analysis with

Welch's correction was performed. Values represent mean ± SEM. *P<0.05.

Figure 3. Hemopexin prevents heme overload-induced heart dysfunction. Data on the heart of Wt

and Hx-/- mice (A-C), Wt and β-thalassemic (β-Thal) mice (D-F) and PHZ-treated Wt mice (G-I) are

shown. (A) Representative M-mode echocardiogram of a Wt and an Hx-/- mouse. (B) Fractional

shortening and (C) ejection fraction at 3 (Wt n=10; Hx-/- n=20) and 6 (Wt n=5; Hx-/- n=3) months of

age. (D) Representative M-mode echocardiogram of a Wt and a β-thalassemic mouse. (E) Fractional

shortening and (F) ejection fraction (Wt n=3; β-Thal n=6). (G) Representative M-mode
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echocardiogram of a Wt mouse at time 0 and after 4 weeks of PHZ treatment. (H) Fractional

shortening and (I) ejection fraction (n=10). Two-ways analysis of variance with Bonferroni post-test

analysis (B-C) and unpaired t-test analysis with Welch's correction (E-F, H-I) were performed. *P <

0.05; **P < 0.01; ***P < 0.001. Values represent mean ± SEM.

Figure 4. Hemopexin prevents heme-induced Ca2+ mishandling. Data on isolated adult rat CMs

exposed to heme (5 µM), Hx-heme (5 µM), NAC-heme (10 mM) or vehicle (Nt) are shown.

Representative calcium transients (A), and representative single cell contractility (B) of untreated,

heme-treated, Hx-heme-treated and NAC-heme-treated CMs.  Bar graphs represent (C) systolic

calcium transient amplitude, as the difference of peak amplitude of the fluorescence (ΔF340/380 =

F340/380 peak − F340/380 basal), (D) relaxation kinetics as Ca2+ decay and (E) contractility of

untreated (n = 37) heme-treated (n = 103), heme-Hx-treated (n = 91) and heme-NAC-treated (n= 22)

CMs. t-test analysis with Welch's correction was performed. *P < 0.05. Values represent mean ±

SEM.

Figure 5. Hemopexin prevents oxidative alteration of Ca2+ handling proteins. Data on the heart of

Wt and Hx-/- mice are shown. (A) Immunoprecipitation of oxidized RyR2. RyR2 was

immunoprecipitated with a specific antibody and blotted with either oxyblot or the specific

antibody. (B) Western blot analysis of α and β oxidized CaMKII and total CaMKII. α and β oxidized

CaMKII were normalized on total CaMKII. Western blot analysis of (C) phosphorylated RyR 2 at

serine 2814 (RYR2 pSer2814) normalized on total RYR2, and (D) phosphorylated PLB at threonine 17

(PLB pThr17) normalized on total PLB. A representative blot of at least 3 independent experiments

is shown. For densitometry analyses on the right, n=5 for each genotype. In B-D, Total CaMKII, RYR2

and PLB are normalized on vinculin, used as a loading control. Unpaired t-test analysis with Welch's

correction was performed. *P < 0.05; **P < 0.01. Values represent mean ± SEM.

Figure 6. Hemopexin protective effects are mediated by its anti-oxidant properties
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Data on the heart of PHZ-treated Wt mice administered or not with α-tocopherol or Hx are shown.

(A) ROS content and (B) qRT-PCR analysis of Thiored Red and Gsr mRNA levels in untreated (n=12),

PHZ- (n=8) and PHZ-α-tocopherol-treated Wt mice (n=7). (C) qRT-PCR analysis of Ho-1 and (D)

Thiored Red and Gsr mRNA levels in untreated (n=12), PHZ- (n=6) and PHZ-Hx-treated Wt mice

(n=5). (E) Representative M-mode echocardiogram of Wt mice at time 0 and 4 weeks after PHZ or

PHZ and α-tocopherol treatment. (F) Fractional shortening and (G) ejection fraction of PHZ- (n=6)

mice and PHZ-α-tocopherol-treated mice (n=7) 4 weeks after the treatment. (H) Representative M-

mode echocardiogram of Wt mice at time 0 and 4 weeks after PHZ or PHZ and Hx treatment. (I)

Fractional shortening and (J) ejection fraction of PHZ- (n=12) and PHZ-Hx-treated mice (n=6) 4 weeks

after the treatment. One-way analysis of variance with Bonferroni post-test analysis (A-D) and two-

ways analysis of variance with Bonferroni post-test analysis (F-G, I-L) were performed. *P < 0.05;

**P < 0.01; ***P < 0.001. Values represent mean ± SEM.

Figure 7. A model for Hx function in the heart. In hemolytic conditions, non-hemopexin bound

heme (NHBH) level rises up and (A) heme accumulates within cardiomyocytes perturbing heme/iron

homeostasis and leading to ROS formation (cell on the left). ROS modify Ca2+-handling proteins

leading to altered Ca2+ fluxes within the cell (on the right). This ultimately results in impaired

contraction. The treatment with antioxidants (NAC or α-Tocopherol) rescues ROS-induced

cardiomyocyte damage. (B) Hx, by scavenging NHBH, preserves both heme/iron and Ca2+

homeostasis. Our data suggest that in hemolytic disorders, plasma heme scavenging capacity might

be increased by Hx administration thus limiting heme toxicity on the heart.
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Figure 1
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Figure 2
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Figure 3



Ingoglia et al.

32

Figure 4
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Figure 5
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Figure 6
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Figure 7


