
13 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A 1NF temporal relational model and algebra coping with valid-time temporal indeterminacy

Published version:

DOI:10.1007/s10844-015-0367-2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1634551 since 2017-05-16T11:34:52Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Anselma, Luca; Piovesan, Luca; Terenziani, Paolo. A 1NF temporal relational
model and algebra coping with valid-time temporal indeterminacy.
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS. 47 (3) pp:
345-374.
DOI: 10.1007/s10844-015-0367-2

The publisher's version is available at:
http://link.springer.com/10.1007/s10844-015-0367-2

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/

Journal of Intelligent Information Systems manuscript No.
(will be inserted by the editor)

A 1NF temporal relational model and algebra coping

with valid-time temporal indeterminacy

Luca Anselma · Luca Piovesan · Paolo
Terenziani

Received: date / Accepted: date

Abstract In the real world, many phenomena are time related and in the last
three decades the database community has devoted much work in dealing with
“time of facts” in databases. While many approaches incorporating time in the
relational model have been already devised, most of them assume that the exact
time of facts is known. However, this assumption does not hold in many prac-
tical domains, in which temporal indeterminacy of facts occurs. The treatment
of valid-time indeterminacy requires in-depth extensions to the current relational
approaches. In this paper, we propose a theoretically grounded approach to cope
with this issue, overcoming the limitations of related approaches in the litera-
ture. In particular, we present a 1NF temporal relational model and propose a
new temporal algebra to query it. We also formally study the properties of the
new data model and algebra, thus granting that our approach is interoperable
with pre-existent temporal and non-temporal relational approaches, and is imple-
mentable on top of them. Finally, we consider computational complexity, showing
that only a limited overhead is added, when moving from the determinate to the
indeterminate case.

Keywords Relational Databases · Temporal data · Temporal Indeterminacy

1 Introduction

Given the relevance and di↵usion of time-related issues in real-world phenomena,
there has been much work over the last three decades in incorporating time into
data models, query languages, and database management system (DBMS) imple-
mentations. In particular, research about relational temporal databases (hence-
forth TDBs) demonstrates that time is a peculiar aspect that deeply a↵ects data

Luca Anselma · Luca Piovesan
Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
E-mail: anselma|piovesan@di.unito.it

Paolo Terenziani
DISIT, Università del Piemonte Orientale “Amedeo Avogadro”, Alessandria, Italy
E-mail: paolo.terenziani@mfn.unipmn.it

2 Luca Anselma et al.

semantics, so that the addition of some attributes (e.g., START and END times)
to relational tables is not enough, since many complex problems need to be tackled
in designing, querying and modifying time-varying tables.

“Two decades of research into temporal databases have unequivocally
shown that a time-varying table, containing certain kinds of DATE columns,
is a completely di↵erent animal than its cousin, the table without such
columns. E↵ectively designing, querying, and modifying time-varying tables
requires a di↵erent set of approaches and techniques than the traditional
ones taught in database courses and training seminars. . . . ” (Snodgrass,
1999).

The TDB community has studied such techniques in over twenty years (Özsoyoglu
and Snodgrass, 1995; Wu et al, 1997). Although TDB is still an open area of
research, many researchers have already consolidated a “basic core” of results,
by defining the TSQL2 consensus approach (Snodgrass, 1995). Nonetheless, the
research in this area is still very active, since several challenging open problems
need to be faced. One of them is temporal indeterminacy (i.e., “don’t know exactly
when” indeterminacy (Dyreson and Snodgrass, 1998)). While conventional TDB
approaches assume that the exact time of occurrence of facts is known, this is not
true in many application areas.

We illustrate some issues in dealing with temporal indeterminacy by drawing
examples from the medical domain. For instance, temporal indeterminacy natu-
rally involves all those facts that are subjective such as, for example, the onset
of a symptom. Furthermore, it can also concern both those facts that, although
objective, cannot be directly observed (see Example 1) and, in certain cases, also
observable facts (see Example 2).

Example 1 Bill su↵ered from pneumonia between March 17th (included) and April
2nd (excluded), but, considering also the possible incubation and remission peri-
ods, he was possibly infected between February 26th (included) and April 30th

(excluded)1.

Example 2 In a clinical trial, the patients treated with the drug A manifested
severe nausea on day 1 after the drug administration, and possibly also on days 2

1 In Example 1, the temporal indeterminacy stems from the fact that the history of an
infectious disease can be described under two di↵erent points of view: a clinical history and
a bacteriological one. Roughly speaking, the clinical history corresponds to the evolution of
the symptoms in the patient, and can be reasonably determined observing both subjective
and objective parameters. On the other hand, the bacteriological history describes the entire
life cycle of the presence of the pathogen in the host organism, starting from contagion and
ending with the complete elimination of the agent. Taking into account the bacteriological
history is of fundamental importance because, for example, patients can be infectious also in
the absence of symptoms, or because they run the risk of su↵ering from a relapse also after
the disappearance of the symptoms. However, unlike the clinical history, the bacteriological
one often is not completely observable. In this case the physician can only make reasonable
assumptions about it. For instance, at the time of diagnosis the physician can determine
(observing, e.g., a pulmonary infiltrate) that Bill su↵ered from pneumonia from the appearance
of the symptoms, occurred on March 17th, until the disappearance of the symptoms on April
2nd. These times represent the clinical history of the disease. Considering the incubation
period of pneumonia and its remission period, the physician can also reasonably assume that
the contagion started from 1 to 20 days before the symptom appearance and that Bill’s body
will completely eliminate the pneumonia pathogen in a time that may vary from the symptom
disappearance to four weeks later.

1NF relational model and algebra for valid-time temporal indeterminacy 3

and 3. In another group of patients, drug B caused severe nausea from day 1 to
day 4 after the treatment and possibly on days 5 and 62.

Since temporal indeterminacy is pervasive in many application domains, many ap-
proaches have been devised to cope with it, e.g., within the Artificial Intelligence
field (Vila, 1994; Allen, 1991; Emerson, 1990). However, in the area of relational
databases, the number of approaches coping with temporal indeterminacy is more
restricted (see the survey in (Jensen and Snodgrass, 2008)) and current approaches
have several limitations, as widely discussed in Section 5 of this paper. In partic-
ular, to the best of our knowledge, our approach is the first one providing both a
1NF temporal relational model and an algebra to query it satisfying all the TDB
desiderata discussed in Section 2.2.

We aim at overcoming the limitations of current literature, extending the re-
lational approach to cope with temporal indeterminacy. We follow a methodology
that is commonly used in the area of TDBs: we propose (i) a new data model
to model temporally indeterminate relational data, and (ii) a new relational al-
gebra to query it. However, our goal is not simply to devise an ad-hoc solution
to the treatment of temporal indeterminacy, but also to propose a theoretically
sound framework which is implementable on top of current technologies (in par-
ticular, on top of TSQL2 “consensus” approach) and interoperable with current
frameworks (specifically, TSQL2 and standard non-temporal relational DBMSs),
to grant that previous data can be maintained in the new framework. In order to
guarantee the achievement of such objectives, we prove that our data model is a
consistent extension of TSQL2 one (which, in turn, is a consistent extension of
SQL), and our algebra is reducible to the standard relational one.

It is worth noticing that, although this paper uses examples of temporal in-
determinacy derived from the medical field, the approach we propose is general
and domain-independent. Indeed, this contribution is in the line of research that
we have been following for several years, aiming at extending temporal relational
databases to cope with new temporal phenomena, such as the telic/atelic dis-
tinction (Terenziani et al, 2007; Terenziani and Snodgrass, 2004), periodically re-
peated data (Terenziani, 2003; Stantic et al, 2012), proposal vetting (Anselma
et al, 2013a), instantaneous events (Terenziani, 2013) and (semantics of) temporal
indeterminacy (Anselma et al, 2013c), proposing general (domain-independent)
and theoretically grounded solutions.

In order to cope with temporal indeterminacy, we first extend the data model,
and then propose a new relational algebra to query it. It is worth stressing that, for
the sake of generality, in our approach we have chosen to define our query language
operating at the algebraic level. Indeed, SQL-like query languages are based on
an underlying relational algebra. The definition of a new temporal SQL-like query
language coping with temporal indeterminacy based on the temporal relational
algebra we are going to define is not di�cult, and will be one of the tasks of our
future work.

Notably, the treatment of complex temporal phenomena in the relational model
involves a major departure from traditional relational database techniques, and a

2 In Example 2, a homogeneous group of patients is given a chemotherapeutic drug A and
they exhibit severe (debilitating) nausea. In order to demonstrate the improvements that the
drug A brings to the quality of life of patients, the analyst considers the presence of the nausea
side e↵ect also in a comparable group of patients treated with a di↵erent drug, drug B.

4 Luca Anselma et al.

switch towards Artificial Intelligence (henceforth AI) techniques. The reason is
that (relational) database techniques are geared towards the treatment of explicit
data. On the other hand, when time is involved, a wide degree of implicit knowledge
is usually involved. The treatment of implicit knowledge is outside the scope of
traditional relational methodologies, while it is central for typical AI techniques.
This is also the case of temporal indeterminacy. For instance, consider Example
1 above: at the level of granularity of days, it indeed implicitly represents the
disjunctive data:
Bill was infected by pneumonia either starting on February 26th and ending on
April 2nd, or starting on February 27th and ending on April 2nd, or . . . , or

starting on February 26th and ending on April 3rd, . . . , or starting on March
17th and ending on April 30th.
(the disjunction would involve 580 terms). In this paper, we propose a compact
(and implicit) representation of such disjunctive data, and this e↵ort involves the
adoption of AI symbolic manipulation techniques (see, e.g., the definition of union,
intersection and di↵erence operators on the valid times of tuples in Section 4 and
the algorithms for computing the di↵erence on the valid times in Appendix B).

Notably, our group has a tradition in the application of AI techniques to
cope with complex temporal phenomena in relational databases (Terenziani, 2012;
Anselma et al, 2013a,b; Terenziani, 2003; Terenziani and Snodgrass, 2004; Teren-
ziani, 2013).

1.1 Organization of the paper

While the introduction just mentions the relational model and algebra and their
extension to cope with valid-time indeterminacy, Section 2 is a brief introduction
to such issues, to provide readers who are not familiar with such topics with the
necessary background (of course, this section can be ignored by experts in the
relational approach and its temporal extensions). Sections 3 and 4 constitute the
core of our paper. Section 3 introduces our temporal data model, which extends
TSQL2 “consensus” one to deal with temporal indeterminacy, and analyzes its
properties. In Section 4 we define a temporal relational algebra to query our new
data model and we study its properties. Section 5 discusses related works and
Section 6 contains conclusions. The formal proofs of the properties in Sections 3
and 4 are reported in Appendix A and an algorithm for computing the di↵erence
between indeterminate valid times is in Appendix B. Finally, in Appendix C, we
present a motivating comparison between our approach and an existing one.

2 Preliminaries

2.1 The relational temporal model

In many real-world domains, time has a pervasive nature and it may be represented
as a particular kind of information. However, since the early 1980s, it is clear that
the treatment of time in the relational model cannot be simply reduced to the
addition of two time attributes (i.e., start time and end time) to the usual relational
schema. This solution could su�ce if only data representation is considered.

1NF relational model and algebra for valid-time temporal indeterminacy 5

Relational databases also involve querying data and, considering querying, time
behaves di↵erently from the other attributes. In fact, over twenty years of research
in temporal relational databases have clarified that the treatment of time in the
relational approach involves the solution of di�cult problems, and the adoption of
advanced dedicated techniques (Snodgrass, 1999). In this spirit, many extensions
to the standard relational model were devised (Özsoyoglu and Snodgrass, 1995;
Jensen and Snodgrass, 2008; McKenzie and Snodgrass, 1991; Tansel et al, 1993;
Jensen and Snodgrass, 1999), and more than 2000 papers on TDBs were published
over two decades (Wu et al, 1997).

In the following, we use TSQL2 as a basis to introduce some of the basic
issues relevant to the approach we propose in this paper. TSQL2 (Snodgrass,
1995) is probably the most known temporal database approach. It has been de-
fined as a consensus of many researchers all over the world. Recently, several
commercial tools have implemented (at least in part) the TSQL2 approach, and
its SQL/Temporal evolution (see http://www.cs.arizona.edu/˜rts/sql3.
html).

TSQL2 deals with both valid time and transaction time. For the sake of brevity,
in the following we focus on valid time only3. In TSQL2 tuples are associated
with valid time. For valid time, a limited precision is assumed and the chronon
is the basic time unit. The time domain is totally ordered and isomorphic to the
subsets of the domain of natural numbers. The domain of valid times DV T is
given as a set DV T = {t1, . . . , tk} of chronons. The schema of a valid-time relation
R = (A1, . . . , An|V Ts, V Te) consists of an arbitrary number of non-timestamp
attributes A1, . . . , An encoding some fact, and of two timestamp attributes V Ts

and V Te with domain DV T . Thus, a tuple x = (a1, . . . , an|ts, te) in a valid-time
relation r(R) on the schema R (henceforth called a (TSQL2) temporal tuple)
consists of a number of attribute values associated with two chronons ts, te 2 DV T .
The intended meaning of a temporal TSQL2 tuple is that the recorded fact is true
in the modeled reality during each valid-time chronon c, ts  c  te.

For instance, Example 3 (in the following) can be represented into the TSQL2
formalism because, at the granularity of days, the presence of symptoms may be
considered temporally determinate. Its tabular representation is shown in Table
1.

Example 3 Bill manifested high fever from April 10th (included) until April 15th

(excluded).

Notation and terminology. Given a tuple x defined on the schema
R = (A1, . . . , An|V Ts, V Te), we denote with A the set of attributes {A1, . . . , An}.
Then x[A] denotes the values in x of the attributes in A. x[V Ts] and x[V Te] denote
the starting and ending time respectively, and x[V T] denotes the pair of starting

3 In many TDB approaches two independent time dimensions have been identified, namely
transaction time and valid time. Valid time represents the time when the fact described by a
tuple holds in the modeled world. Transaction time represents the time when a tuple is present
in the database. Temporal indeterminacy may only concern valid time, since transaction time
(i.e., the database insertion/deletion time) is always known in an exact way. As a consequence,
in this paper, we just focus on valid time. Extensions to cope also with transaction time are
easy since transaction time can be coped with as in the other TDB approaches, e.g., as in
TSQL2.

Luca Anselma
TSQL2 è closed/open?

6 Luca Anselma et al.

Table 1 Relation SYMPTOMS DET (TSQL2 representation of Example 3).

Patient Symptom VTs VTe

Bill High Fever Apr 10th Apr 14th

and ending time. As in TSQL2, we call A1, . . . , An explicit attributes, and V Ts

and V Te implicit attributes. We call value-equivalent two or more tuples having
the same values for the explicit attributes.

Notice that TSQL2 has a First Normal Form (1NF) representation of tem-
poral data. A relation is in 1NF if it has the property that none of its domains has
elements which are themselves sets (Codd, 1971). The 1NF grants that the values
of each attribute can be stored in a fixed and predefined amount of space. The
main issue, however, is not the definition of the relational representation, but the
definition of the query language. Both an extension of SQL and of Codd’s algebra
have been proposed (in the following, we just focus on the temporal algebra). Alge-
braic operators have been defined on the temporal model as a temporal extension
of Codd’s operators. However, in TSQL2, the representation formalism has been
designed in such a way that it was possible to define a temporal algebra satisfy-
ing several fundamental properties. In particular, two of them are of paramount
importance.

The first property is closure. Informally, a data model is closed under an
operator if the result of the application of the operator to the elements of the
model is still an element belonging to the model. In the context of determinate
temporal databases, closure entails that algebraic operators work on determinate
temporal relations and provide as output determinate temporal relations as well.
Supporting such a property involves defining, for each algebraic operator, how the
(start and end of the) valid time of the output tuples is obtained, on the basis of
the valid time of the input tuples.

A much easier solution could have been to provide users with some operator
to remove time (e.g., an operator selecting all and only the tuples holding at a
given time point), and then to provide them with standard non-temporal Codd’s
operators. However, such a solution could not have granted the closure property
(in fact, the output is not a temporal relation, but a non-temporal one), and it is
strictly less expressive than the temporal algebra. For instance, Queries 1 and 2
in the following cannot be properly answered using such a simplified approach.

Let us consider, for instance, the situation described by Examples 1 and 3. Bill
su↵ered from high fever after the disappearance of the pneumonia symptoms and
fever is a symptom of many infections, including pneumonia. Thus, the physician
might wonder whether the fever could have been caused by a pneumonia relapse
and (s)he asks to the system Query 1.

Query 1 Might Bill have had high fever not during the pneumonia infection? If
so, when?

Considering Example 2, to demonstrate the improvements that the drug A
brings to the quality of life of patients with respect to drug B, the analyst can
express Query 2.

Query 2 When (i.e., in which days) did nausea occur in patients treated with
drug B and not in patients treated with drug A?

1NF relational model and algebra for valid-time temporal indeterminacy 7

A second fundamental property which must be supported by any temporal
relational approach is reducibility. Such a property is essential in order to grant
that, when time is disregarded, TSQL2 algebraic operators behave like standard
SQL ones. This property grants “continuity” for users, facilitating a cost-e↵ective
migration to a temporal model:

“Reducibility aims to protect the investment in programmer training and
to ensure continued e�cient, cost-e↵ective application development upon
migration to a temporal model” (Jensen and Snodgrass, 2008).

As a remarkable side-e↵ect, reducibility also grants for the fact that TSQL2 can be
implemented as an additional layer on top of the SQL model and, indeed, several
prototypical implementations have been already devised following such a strategy.

Additionally, in TSQL2, as well as in most temporal models, a temporal rela-
tion is modeled as a set of temporal tuples, each one consisting of a “conventional”
non-temporal component paired with a temporal component, modeling its valid
and/or transaction time. Thus, a “conventional” non-temporal relation can be
seen as a degenerate temporal one, in which the temporal component is empty,
and reducibility grants that query operators behave in the “conventional” way on
them, thus making interoperability with non-temporal approaches feasible.

To achieve both closure and reducibility, as in most approaches in the TDB
literature (see, e.g., the survey in (McKenzie and Snodgrass, 1991)), in TSQL2
temporal algebraic operators behave like standard non-temporal ones on the ex-
plicit attributes, and involve the application of set operators on the implicit at-
tributes. More precisely, temporal relational di↵erence performs di↵erence on the
temporal attributes of value-equivalent tuples and temporal natural join performs
the intersection of temporal attributes. This definition can be also motivated by
the sequenced semantics (Dunn et al, 2002): the results of algebraic operations
should be valid independently at each point of time. For instance in TSQL2, given
two relations r and s with schema (A1, . . . , An|V Ts, V Te), the temporal di↵erence
between r and s is defined as follows:

r �V s = {z\9x 2 r(z[A] = x[A] ^ 9t 2 coverV (chr(x[V T])�
{chr(y[V T]) \ y 2 s ^ y[A] = x[A]}) ^ z[V Ts] = min(t) ^ z[V Te] = max(t))}

In the TSQL2 definition of di↵erence, each tuple x in the minuend is compared with
all its value-equivalent tuples y in the subtrahend (· · · \ y 2 s ^ y[A] = x[A]). The
representations into sets of chronons of their valid times are obtained through the
chr function, then a set di↵erence is performed between the set representing x and
those derived from all the tuples y (chr(x[V T])� {chr(y[V T]) \ . . . }). Finally, the
coverV function partitions the resulting set in such a way that each element of the
partition is convex (i.e., it contains all the chronons included between its minimum
and maximum ones), and for each element of the partition a tuple value-equivalent
to x and with V Ts and V Te corresponding to the minimum and maximum chronons
of the partition element is included in the result.

For example, assuming to represent data about Bill’s pneumonia in a TSQL2
relation named DISEASES DET 4 with schema (Patient,Disease|V Ts, V Te),

4 In the relation DISEASES DET we consider determinate time only. Thus, the valid
time of the tuple regarding Bill’s pneumonia will be referred only to the clinical history of the
disease.

8 Luca Anselma et al.

data regarding Example 1 can be expressed with the tuple
(Bill, Pneumonia|Mar17th, Apr1st) and Query 1 can be expressed in TSQL2 al-
gebra as follows:

Query 1 (TSQL2 algebra).

⇡V
Patient(�

V
Patient=Bill^

Symptom=HighFever
(SYMPTOMS DET))

�V

⇡V
Patient(�

V
Patient=Bill^

Disease=Pneumonia
(DISEASES DET))

The first selection operation selects tuples concerning Bill’s high fever and the
second finds out tuples concerning Bill’s pneumonia infection. Projection is applied
to both results to retain only the Patient attribute. Finally, the temporal di↵erence
can be applied, determining when Bill had high fever but not pneumonia (i.e., on
days 10th, 11th, 12th, 13th and 14th of April). Notice that, since TSQL2 data
model is closed under the relational algebraic operators, the time of the results of
the above operations is retained.

2.2 Implications on our approach

In this paper, following the above discussion and in line with the mainstream of
the research in relational TDB, we aim at:

1. devising a 1NF relational data (representation) model and
2. defining a relational algebraic query language operating on it
3. for which the property of closure holds
4. and the property of reducibility holds.

It is worth noticing that our approach is clearly di↵erent from existent AI ap-
proaches (see, e.g., the surveys (Vila, 1994; Allen, 1991; Emerson, 1990)), since
it aims at very di↵erent objectives. In particular, di↵erently from AI approaches,
our goal is to provide a relational model and to extend Codd’s relational algebra
operators to cope with temporal indeterminacy. This entails some issues, including
representing data in 1NF and devising an algebra that grants closure and reducibil-
ity. In addition, our approach is di↵erent also from other existing ones in the field
of TDBs, since many of them focus on the model and they do not provide a closed
algebra to query it (e.g., (Snodgrass, 1995; Das and Musen, 1994)), or they do not
provide a model suitable for the implementation on a relational database (e.g., the
semantic, abstract, not in 1NF representations in (Anselma et al, 2013c)).

3 Relational Data Model to deal with temporal indeterminacy

We adopt a temporal ontology commonly used in several TDBs (Snodgrass, 1995;
Jensen and Snodgrass, 1996, 2008), and, specifically, in TSQL2: time is discrete,
linearly ordered and isomorphic to the integers.

1NF relational model and algebra for valid-time temporal indeterminacy 9

Definition 1 (Chronon) The chronon is the basic time unit. The chronon do-
main TC , also called timeline, is the totally ordered set of chronons {. . . , ci, . . . , cj , . . . },
with ci < cj as i < j.

We propose a representation for temporally indeterminate valid times where
one can specify a (possibly empty) time interval in which the fact certainly holds,
and a time interval in which it may hold.

Definition 2 (Indeterminate Temporal Element (ITE)) An ITE is a pair of
time intervals5 h[ds, de), [is, ie)i. ds, de, is and ie are chronons such that is  ds 
de  ie and is < ie. Thus, notice that [ds, de) may be empty (when ds = de), while
[is, ie) cannot (in fact is < ie). Moreover, [ds, de) must be contained in [is, ie).

Intuitively, the interval [ds, de) (henceforth determinate time interval) repre-
sents the times in which a fact certainly holds; the interval [is, ie) (henceforth
indeterminate time interval) represents the times when the represented fact may
hold. Since all the times in which a fact certainly holds are also times when it
possibly holds, in our representation the indeterminate time interval of an ITE
always contains the determinate time interval of that ITE.

Since each interval can be represented by a pair of temporal attributes corre-
sponding to its endpoints (consider, e.g., (Snodgrass, 1995)), temporal indetermi-
nacy is represented by a quadruple of temporal attributes over TC .

Considering a granularity of days, the ITE corresponding to Example 1 is
h[Mar 17th, Apr 2nd), [Feb 26th, Apr 30th)i and the ITEs corresponding to Exam-
ple 2 are h[1, 2), [1, 4)i for drug A and h[1, 5), [1, 7)i for drug B.

Definition 3 (Temporally indeterminate tuples and relations) Given a
schema (A1, . . . , An) where each Ai represents a non-temporal attribute on the
domain Domi, a (valid-time) indeterminate relation r is an instance of the schema
(A1, . . . , An|Ds, De, Is, Ie) over the domain Dom1 ⇥ · · · ⇥ Domn ⇥ TC ⇥ TC ⇥
TC ⇥ TC . Each tuple x = (v1, . . . , vn|ds, de, is, ie) 2 r is termed a (valid-time)
temporally indeterminate tuple. The temporal component (ds, de, is, ie) of tuple
x represents the ITE h[ds, de), [is, ie)i corresponding to the fact that the tuple x
certainly holds in the interval [ds, de) and possibly holds in the interval [is, ie).

Tables 2 and 3 represent Examples 1 and 2, assuming in both cases the gran-
ularity of days.

Table 2 Relation DISEASESTI representing Example 1.

Patient Disease Ds De Is Ie
Bill Pneumonia Mar 17th Apr 2nd Feb 26th Apr 30th

5 As in many TDB approaches, for the sake of convenience time intervals [cs, ce) are closed
on the left and open on the right (i.e., their left bound is included and their right bound is
excluded). Notice, however, that our approach is not dependent on such a choice.

10 Luca Anselma et al.

Table 3 Relation SIDE EFFECTSTI representing Example 2.

Drug Side E↵ect Ds De Is Ie
A Severe Nausea 1 2 1 4
B Severe Nausea 1 5 1 7

3.1 Properties of the data model

The data model we propose is a consistent extension of the data model of TSQL2
(which, in turn, is a consistent extension of the standard non-temporal relational
data model (Snodgrass, 1995)). Such a property depends on the fact that ITEs
can represent determinate time (i.e., the time represented in TSQL2) as a special
case6.

Property 1 (Consistent extension (ITEs)) Determinate temporal elements can be
modeled by ITEs of the form h[ds, de), [ds, de)i, i.e., an ITE having the same deter-
minate and indeterminate interval. Determinate temporal relations can be modeled
by temporally indeterminate relations in which each tuple is associated with an
ITE of the form h[ds, de), [ds, de)i.

Table 4, for instance, represents the determinate-time interval of Example 3
(see also the TSQL2 representation in Table 1).

Table 4 Relation SYMPTOMSTI representing Example 3.

Patient Symptom Ds De Is Ie
Bill High Fever Apr 10th Apr 15th Apr 10th Apr 15th

The above property grants that temporally determinate data can be still mod-
eled in our data model (thus granting interoperability with previous data).

4 Relational algebra to deal with temporal indeterminacy

We propose a query language for our data model. For the sake of clarity and gener-
ality, we have chosen to operate at the algebraic level. Codd (1972) designated as
complete any query language that was as expressive as a set of relational algebraic
operators: relational union ([), relational di↵erence (�), selection (�P), projection
(⇡X), and Cartesian product (⇥). We generalize these operators to cover (valid-
time) temporally indeterminate data. We define our relational algebraic operators
as an extension as close as possible to TSQL2 and current TDB models, to grant
interoperability.

For the sake of clarity, we adopt the following concise notation for ITEs.

Notation and terminology. Given a tuple x = (v1, . . . , vn|ds, de, is, ie), hd, ii
represents its temporal component, where d stands for the determinate time in-
terval [ds, de) and i stands for the indeterminate time interval [is, ie).

6 Of course, more e�cient implementations of determinate-time relations (with just two
temporal attributes) can be easily provided.

1NF relational model and algebra for valid-time temporal indeterminacy 11

As in several TDB models, our temporal operators behave as standard non-
temporal operators on the non-temporal attributes (this is important to achieve
the property of reducibility, discussed henceforth), and apply set operators on the
temporal component of tuples (consider, e.g., (Snodgrass, 1995)) in the case of
di↵erence and Cartesian product. In Figure 1 we define the relational operators
of union ([TI), di↵erence (�TI), projection (⇡TI

X), selection (�TI
P) and Carte-

sian product (⇥TI) between temporally indeterminate relations. Relational union
r [TI s reports in output all the tuples belonging to r or to s. Analogously, pro-
jection maintains only the values for the specified attributes X, leaving the rest
of the tuple (including the temporal component) unchanged. Non-temporal selec-
tion applies the selection predicate to the non-temporal component of each tuple.
On the other hand, Cartesian product involves the intersection of the temporal
components (ITEs), and di↵erence involves the di↵erence of temporal components
(ITEs). From a theoretical point of view, such a choice is motivated by the se-
quenced semantics (Dunn et al, 2002): results should be valid independently at
each point of time. Supporting the sequenced semantics is a crucial step to grant
the reducibility property.

In Figure 2 we define the intersection and di↵erence operators between ITEs.
For the intersection, the determinate part of the result is obtained by the inter-
section between the determinate parts of the considered ITEs (d \ d0), while the
indeterminate one is the intersection of the indeterminate parts (i \ i0).

The definition of di↵erence deserves a deeper analysis, since it is, as in many
TDB approaches, the most complex and challenging operator. In the di↵erence,
there are two possible cases. First, a tuple (v|hd, ii) belongs to r, and there are no
tuples in s value-equivalent to (v|hd, ii) (i.e., no tuple in s has the same non-
temporal component v as (v|hd, ii)). In such a case, the tuple (v|hd, ii) is re-
ported in the output. Second, given a tuple (v|hd, ii) belonging to r, there are
some tuples (v|hd1, i1i), . . . , (v|hdk, iki) in s value-equivalent to it. In such a case,
the output must have as valid time those chronons that are in hd, ii but not in
hd1, i1i, . . . , hdk, iki, i.e., the di↵erence between the ITE hd, ii and the set of ITEs
{hd1, i1i, . . . , hdk, iki} must be computed (see Figure 2). As we have already men-

r [TI s = {(v|hd, ii) \ (v|hd, ii) 2 r _ (v|hd, ii) 2 s}

⇡TI
X (r) = {(v|hd, ii) \ 9(v1|hd1, i1i) 2 r ^ v = v1[X] ^ hd, ii = hd1, i1i}

�TI
P (r) = {(v|hd, ii) \ (v|hd, ii) 2 r ^ P (v)}

r ⇥TI s = {(vr · vs|hd, ii) \ 9hdr, iri, hds, isi((vr|hdr, iri) 2 r ^ (vs|hds, isi) 2 s ^ hd, ii = hdr, iri \ITE hds, isi ^ i 6= ;)}

r �TI s = {(v|hd, ii) \ (9hdr, iri((v|hdr, iri) 2 r ^ @hds, isi((v|hds, isi) 2 s ^ hd, ii = hdr, iri)))_
(9hdr, iri((v|hdr, iri) 2 r ^ 9!(v|hd1, i1i), . . . , (v|hdk, iki)((v|hd1, i1i) 2 s, . . . , (v|hdk, iki) 2 s^

hd, ii = hdr, iri �ITE {hd1, i1i, . . . , hdk, iki} ^ i 6= ;)))}

�TI
CERT�

(r) = {(v|hd, ii) \ (v|hd, ii) 2 r ^ �(d)}

�TI
POSS�

(r) = {(v|hd, ii) \ (v|hd, ii) 2 r ^ �(i)}

Fig. 1 Definition of temporally indeterminate relational operators. In (v|hd, ii), v and hd, ii
stand for the non-temporal component of a tuple and its associated ITE, respectively. The
uniqueness quantifier 9! is used to identify the tuples value-equivalent to (v|hdr, iri).

12 Luca Anselma et al.

ITE intersection. hd, ii \ITE hd0, i0i = hd \ d0, i \ i0i
ITE di↵erence. hd, ii �ITE {hd01, i01i, . . . , hd0k, i

0
ki} = cover(chr(d) � (chr(i01) [· · · [

chr(i0k)), chr(i)� (chr(d01) [· · · [chr(d0k))).

chr([cs, ce)) = {c 2 TC \ cs  c < ce}

isConvex(s) () @c 2 TC(min(s)  c  max(s) ^ c /2 s)

maximal(S) = {s \ s ✓ S ^ isConvex(s) ^ @s0 ✓ S(isConvex(s0) ^ s ⇢ s0)}
partition(i, {d1, . . . , dk}) = {hdj , iji\

dj 2 {d1, . . . , dk} ^ dj ✓ ij ^ @dh 2 {d1, . . . , dk}(dh 6= dj ^ dh \ ij 6= ;) ^ i1 [· · · [ik = i^
ii \ i2 = ; ^ · · · ^ ii \ ik = ; ^ · · · ^ ik�1 \ ik = ; ^ isConvex(i1) ^ · · · ^ isConvex(ik)}

cover(D, I) = {h;, [min(i),max(i) + 1)i \ i 2 maximal(I) ^ @c 2 D(c 2 i)}[
{h[min(d0),max(d0) + 1), [min(i0),max(i0) + 1)i\
9i 2 maximal(I)(hd0, i0i 2 partition(i, {d \ d 2 maximal(D) ^ d ✓ i ^ d 6= ;}))}

Fig. 2 Definition of intersection and di↵erence between ITEs.

tioned in Section 2, concerning TSQL2 and determinate time, in general the result
of di↵erence can be expressed in alternative (but snapshot equivalent Snodgrass
(1995)) ways, depending on the covering function (abstractly indicated by “cover”
in TSQL2 definition). This, is, a fortiori, true also in case indeterminate time is
considered. Thus, in this paper, we operate in two steps. First, for the sake of
generality, we propose an abstract definition of di↵erence, generalizing TSQL2
one to cope with indeterminate time. It describes in an abstract and formal way
all possible solutions to temporal di↵erence. To do so, as in TSQL2 definition,
it resorts to the conversion of temporal intervals to\from set of chronons, and is
parametric over a covering function. Additionally, the conditions that the covering
functions must respect are explicitly detailed. As a second step, in Appendix B, we
propose a concrete and e�cient implementation of such a definition. To do so, we
choose a specific covering policy, and we directly operate on time intervals (with
no conversions from\to chronons).

More in detail, the chr function computes the set of chronons belonging to a
temporal interval expressed by its starting and ending chronon. The cover func-
tion computes a set of ITEs from a set D of determinate chronons and a set I of
indeterminate chronons. It uses some auxiliary functions. The isConvex function
is true if and only if the chronons in a set are contiguous. The maximal func-
tion, given a set S of chronons, produces the set of the maximal convex sets s of
chronons. The partition function, given a convex set i of indeterminate chronons
and given a set of convex non-intersecting sets d1, . . . , dk of determinate chronons
such that d1, . . . , dk are contained in i (see the cover function), produces a set
{hi1, d1i, . . . , hik, dki} of pairs hij , dji, where ij and dj are sets of chronons, such
that:

1. {i1, . . . , ik} is a partition of i;
2. each set of chronons ij(1  j  k) is convex;
3. each set of chronons ij contains all chronons in dj , and no other chronon in

dh, h 6= j, dh 2 {d1, . . . , dk}.
It is worth noticing that, in general, there are di↵erent ways of determining the sets
ij above. As a consequence, di↵erent policies can be adopted, and di↵erent imple-

1NF relational model and algebra for valid-time temporal indeterminacy 13

Fig. 3 Di↵erent types of partition policies

mentations can be devised for partitioning, each one providing a di↵erent correct
result. Our approach is independent of the specific partitioning policy, provided
that partitioning satisfies the specifications above. Two di↵erent partitioning poli-
cies are shown in Figure 3. In the figure we represent an indeterminate convex set
of chronons i and two determinate ones d0 and d00. For the sake of simplicity, we
represent convex sets as intervals. Following the definition above, the only parts
of i which are restricted to belong to two di↵erent partitions are i\ d0 and i\ d00,
while the remaining part has no restrictions. For example, in the partitioning pol-
icy in the upper part of the figure all the remaining part of i is added to the first
partition, while the partitioning policy in the lower part of the figure equally splits
such interval between the two partitions. The first policy is the one adopted by
the algorithm of di↵erence in B.

The cover function provides in output the union of two sets of ITEs. The first
set corresponds to the indeterminate intervals which do not contain determinate
chronons (thus, the resulting ITEs have an empty determinate component). The
indeterminate components are the maximal convex intervals covering such inde-
terminate chronons. Notice that, since the intervals are represented as closed on
the left and open on the right, we convert the representation from a convex set of
chronons to an interval by means of the functions min, max and increment7. The
second set corresponds to the indeterminate intervals that contain determinate
chronons. Given the maximal convex sets i of chronons in I, each i is partitioned
by means of the partition function in such a way that each element i0 of the par-
tition contains exactly one maximal convex set of determinate chronons (i.e., a
determinate component).

Finally, we can define the di↵erence between an ITE and a set of ITEs. The
determinate chronons of the di↵erence (i.e., the chronons when the fact certainly
holds) are the determinate chronons of the minuend that are not chronons (either
determinate or indeterminate) of the subtrahend. The indeterminate chronons of
the di↵erence (i.e., the chronons when the fact may hold) are the indeterminate
chronons of the minuend except the determinate chronons of the subtrahend.

Indeed, a temporal chronon must be present in the determinate interval of
the di↵erence only if it is determinate in the minuend, and it is not present in
the determinate or indeterminate intervals of the subtrahend. On the other hand,
a chronon must be present in the indeterminate intervals of the di↵erence only
if it is determinate or indeterminate in the minuend, and is not present in the
determinate intervals of the subtrahend. Notice that, if a chronon is determinate or
indeterminate in the minuend, and is indeterminate in the subtrahend, it must be

7 The min and max functions have the obvious meanings. The increment function can be
defined as c+ 1 = c0 2 TC \ c0 > c ^ @c00 2 TC(c < c00 < c0).

Luca Anselma
appendix

14 Luca Anselma et al.

indeterminate in the di↵erence: indeed, since it is only possible in the subtrahend,
it may be the case that it is present as a chronon in the subtrahend, thus it must
be included in the indeterminate interval of the di↵erence.

Our definition above of the temporal extension of Codds operators is equal to
the one adopted by several TDB models (including TSQL2), except for the fact
that we operate on ITEs instead than on determinate time intervals. In partic-
ular, our temporal operators behave as standard nontemporal operators on the
non-temporal attributes. As in TSQL2, only Cartesian product and di↵erence op-
erate on the temporal part of tuples. As a consequence, the complexity of the
other algebraic operators (selection, projection, and union) is the same in our ap-
proach to indeterminate time, in such approaches to determinate time (including
TSQL2), and in the standard nontemporal (i.e., Codds) operators. As in most
TDB approaches (including TSQL2), our Cartesian product and di↵erence oper-
ate on the temporal part of tuples, performing intersection (between the times
of the paired tuples) and di↵erence (between the time of each tuple in the first
relation, and the times of all the tuples in the second relation that are value-
equivalent to it). Thus, there is no di↵erence regarding accesses to the secondary
memory (which is, obviously the most important aspect to be considered) between
our approach to indeterminate time and most approaches (including TSQL2) to
determinate time. The only di↵erence regards the operations, performed in main
memory, on the temporal parts of the tuple. However, the same operations (inter-
section or di↵erence) between the temporal parts (associated with tuples) have to
be performed, both in the determinate and in the indeterminate case. The only
di↵erence regards what the temporal parts (associated with tuples) are. In the de-
terminate case, and considering only valid time, the temporal part is usually a time
interval, represented by a starting and an ending time (consider, e.g., TSQL2). In
our approach to temporal indeterminacy, the temporal part is a pair of time inter-
vals: an ITE consists of an interval identifying certain chronons, and an interval
identifying possible ones. As a trivial consequence, the cost of the intersection
operation on temporal parts (executed in main memory) is, in our approach, the
double of the similar operation in the determinate case. Abstractly speaking, the
same consideration could be made concerning temporal di↵erence. However, in
the case of di↵erence, concrete implementations (including the one we have pro-
posed in Appendix B) exploit the ordering of intervals (induced by the ordering
of their endpoints). In such a context, an ITE h[ds, de), [is, ie)i can be regarded as
an ordered triple of intervals h[is, ds), [ds, de), [de, ie)i. As a consequence, the cost
of di↵erence on temporal parts (executed in main memory) is, in our approach,
the triple of the similar operation in the determinate case. (A detailed complexity
analysis of our implementation of di↵erence between set of ITEs is proposed in
Appendix B). Query 1 (Temporally Indeterminate algebra) uses the same notation
of Query 1 (TSQL2 algebra). However, there is a substantial di↵erence between
the two queries. TSQL2 algebraic operators �V , ⇡V and �V only operate on de-
terminate temporal relations, providing determinate temporal relations in output.
On the other hand, our operators �TI , ⇡TI and �TI operate on indeterminate
temporal relations.

Luca Anselma
Codd’s

Luca Anselma
obviously,

Luca Anselma
Codd’s

Luca Anselma
sets

Luca Anselma
a capo.
raccordare con “As an example, we see Query 1…?

Luca Anselma
rather than, non instead than

Luca Anselma
similar invece di equal?

1NF relational model and algebra for valid-time temporal indeterminacy 15

Query 1 (Temporally Indeterminate algebra).

⇡TI
Patient(�

TI
Patient=Bill^

Symptom=High Fever
(SYMPTOMSTI))

�TI

⇡TI
Patient(�

TI
Patient=Bill^

Disease=Pneumonia
(DISEASESTI))

The result of Query 1 (Temporally Indeterminate algebra) obtained using the ap-
proach described in this paper is shown in Table 5. The table shows that there is
no day in which, certainly, high fever occurred out of pneumonia (this fact is rep-
resented by an empty determinate interval, conventionally expressed by the same
start and end times). On the other hand, it is possible, from April 10th (included)
to April 15th (excluded), that high fever occurred after the end of pneumonia
(this fact, e.g., might signal the possibility of another infection, explaining the
high fever).

Table 5 Result of Query 1 (Temporally Indeterminate algebra) applied to Tables 2 and 4.

Patient Ds De Is Ie
Bill Apr 10th Apr 10th Apr 10th Apr 15th

Also Query 2 can be expressed through the temporally indeterminate algebra,
as:

Query 2 (Temporally Indeterminate algebra).

⇡TI
Side Effect(�

TI
Drug=B ^

Side Effect=SevereNausea

(SIDE EFFECTSTI))

�TI

⇡TI
Side Effect(�

TI
Drug=A^

Side Effect=SevereNausea

(SIDE EFFECTSTI))

Table 6 represents the result of Query 2 expressed with our formalism.

Table 6 Result of Query 2 (Temporally Indeterminate algebra).

Side E↵ect Ds De Is Ie
Severe Nausea 4 5 2 7

It shows that there is certainly a day in which, in all cases, B caused severe
nausea and A did not (day 4). This day represents a certain improvement of the
treatment with A with respect to treatment with B. Then, there are four days
in which, in some cases, B causes nausea and A did not (i.e., days 2, 3, 5, 6).
These days represent a period of possible improvement (remember that our time
intervals are open to the right).

Finally, we introduce temporal selection operators. Since we support indetermi-
nate valid time, one may want to ask for tuples that certainly satisfy the temporal

16 Luca Anselma et al.

selection predicate � (i.e., such that the determinate component of the valid time
satisfies the selection predicate �) or tuples that possibly satisfy it (i.e., such that
the indeterminate component of the valid time satisfies the selection predicate �).
We thus define two temporal selection operators, �TI

CERT�
(r) and �TI

POSS�
(r).

Consider, for example, the following query:

Query 3 In the situation described by Example 2, the analyst may want to con-
sider only the case where the patients su↵ered from nausea for at least two days.

This query can be “pessimistically” expressed considering only certain results
(i.e., only periods in which all the patients su↵ered from severe nausea for at least
two days) as:

Query 3 CERT (Temporally Indeterminate algebra).

�TI
CERTDURATION�2

(�TI
Side Effect=SevereNausea(SIDE EFFECTSTI))

Or “optimistically”, considering also possible results in which some patients could
have su↵ered in a period at least two days long:

Query 3 POSS (Temporally Indeterminate algebra).

�TI
POSSDURATION�2

(�TI
Side Effect=SevereNausea(SIDE EFFECTSTI))

In the first case (Query 3 CERT), the only tuple (B,Severe Nausea|1, 5, 1, 7)
belongs to the result, because its determinate time interval [1, 5) is four days long.
On the other hand, the answer to the same query expressed requiring also possible
results (Query 3 POSS) will contain both the tuples of Table 3.

4.1 Properties of the algebra

We have defined our algebraic operators in a principled way in order to ensure
that several “core” properties hold for it. A first essential property is closure, to
grant that the result of the application of our algebraic operators on the new data
model can still be expressed in our data model (i.e., it is expressive enough to
support our algebraic operators).

Property 2 (Closure under ITE set operators) The representation language of ITEs
is closed under the operations of \ITE and �ITE .

The property above grants that the output of intersection and di↵erence on sets
of ITEs is still a set of ITEs. This implies that the result of our temporal algebraic
operators can still be expressed as a relation in our data model, as stated by the
following property.

Property 3 (Closure under temporally indeterminate algebraic operators) Our data
model is closed under the temporally indeterminate relational algebraic operators.

The consistent extension property grants that, if only temporally determinate data
are used, our algebraic operators behave as TSQL2 ones.

1NF relational model and algebra for valid-time temporal indeterminacy 17

Property 4 (Consistent extension (temporally indeterminate relational algebraic
operators)) If only determinate ITEs of the form hd, di are used as valid time
associated with tuples, our relational operators [TI , �TI , �TI

P , ⇡TI
X and ⇥TI are

equivalent to the standard TSQL2 valid-time relational operators [T , �T , �T
P , ⇡T

X

and ⇥T .

Finally, the so-called “reducibility” property is a fundamental one, granting that,
if we prune our approach removing the treatment of time (i.e., if we reduce our
approach to the treatment of non-temporal attributes only), the temporally inde-
terminate relational algebraic operators behave exactly as non-temporal relational
algebraic ones. To reduce a temporally indeterminate relation to a standard non-
temporal relation, we define the timeslice operator.

Definition 4 (Timeslice operator) Let r be a relation defined over the schema
(A1, . . . , An|Ds, De, Is, Ie) and c an arbitrary time value (i.e., a chronon), the
result of the timeslice operator ⇢TI

c (r) is a standard non-temporal relation over
the schema (A1, . . . , An) defined as follows:

⇢TI
c (r) = {(v) \ 9(v|hd, ii) 2 r(c 2 d)}.

Property 5 (Reducibility of temporally indeterminate relational algebra to non-
temporal relational algebra) Temporally indeterminate algebraic operators are re-
ducible to non-temporal algebraic operators, i.e., for each algebraic operator OpTI

in our model, and indicating with Op the corresponding non-temporal relational
operator, for each temporally indeterminate relation r and for an arbitrary time
value t the following holds (the analogous holds for binary operators):

⇢TI
c (OpTI(r)) = Op(⇢TI

c (r)).

5 Related Work

In many applications, the exact temporal location of facts cannot be deter-
mined, so that some form of temporal indeterminacy must be managed. As a
consequence, many approaches to temporal indeterminacy have been devised in
di↵erent research areas. For instance, in the area of AI many di↵erent forms of
temporal indeterminacy have been considered, including qualitative and quanti-
tative constraints between events (see, e.g., the survey (Allen, 1991)). In the area
of Object Oriented TDBs, a recent approach by Combi et al. (Combi et al, 1997)
copes with temporal indeterminacy.

On the other hand, when moving to the area of relational databases, the num-
ber of approaches coping with temporal indeterminacy becomes more restricted. A
survey of relational TDB approaches to temporal indeterminacy has recently been
provided in (Dyreson, 2009). In the earliest TDB work on temporal indeterminacy,
an indeterminate instant was modeled with a set of possible chronons (Snodgrass,
1982). Dutta (1989) introduced a fuzzy set approach. Gadia et al. (1992) proposed
a model to support value and temporal incompleteness.

Interestingly, the relevance of temporal indeterminacy is stressed in the TSQL2
“consensus” book (Snodgrass, 1995), where Chapter 18 is dedicated to such a chal-
lenging topic. However, Chapter 18 presents only a 1NF model and an extension
of SQL, while it does not provide a relational algebra.

18 Luca Anselma et al.

Dyreson and Snodgrass (1998) and Dekhtyar et al. (2001) have proposed proba-
bilistic approaches coping with di↵erent forms of temporal indeterminacy. Dyreson
and Snodgrass (1998) cope with valid-time indeterminacy by associating a period
of indeterminacy with a tuple. A period of indeterminacy is a period between two
indeterminate instants, each one consisting of a range of granules and of a proba-
bility distribution over it. Additionally, they impose the constraint that the ranges
of granules defining the starting and ending points of a period cannot overlap, so
that each tuple has a “necessary” period of existence. It is worth noticing that in
(Dyreson and Snodgrass, 1998) no relational algebra is proposed (and, indeed, it is
easy to show that their “periods of indeterminacy” formalism is not closed under
the relational operator of di↵erence). Dekhtyar et al. introduce temporal proba-
bilistic tuples to cope with data such as “data tuple d is in relation r at some
point of time in the interval [ti, tj] with probability between p and p0 ”. They also
provide algebraic relational operators for their data model. However, they restrict
their attention to facts that are instantaneous, while our approach also considers
facts with duration.

On the other hand, Brusoni et al. (1999) have faced indeterminacy in the
context of dealing with temporal constraints between tuples. In (Brusoni et al,
1999), bounds on di↵erences are used in order to represent temporal constraints
between tuples. The notion of conditional interval is introduced, to cope with the
indeterminacy involved by temporal constraints in the relational context. Also, a
relational algebra has been devised to cope with conditional intervals.

In (Anselma et al, 2013c), we already proposed a semantic model for the tem-
poral indeterminacy in TDBs and a family of achievable representational models.
However, such models are semantic-oriented, abstract and not in 1NF (thus inef-
ficient and not suitable for a direct implementation). On the contrary, the repre-
sentational model presented in this paper is concrete and in 1NF. Moving towards
a 1NF relational model involves new challenging issues, which we faced in our ap-
proach. In particular, we devised a closed algebra for our 1NF model (see Section
4) and a concrete implementation of the algorithms performing the operations (in
Appendix B), which represent a significant step forward in the state of the art.

The approach by Das and Musen (1994) is also relevant, and is useful to further
stress the importance of devising a closed algebra. Das and Musen propose a 1NF
temporal relational model in which a starting and an ending time are associated
with tuples (in a state table) to model their valid times, as well as a new temporal
algebra operating on them. In the final section of their paper, the model is extended
in order to cope with temporal indeterminacy. In such a case, both the starting
and ending times are represented as two intervals of uncertainty (IOU). Thus,
a durative fact is represented as a fact having an IOU as starting time and an
IOU as ending time; the interval between the upper bound of the starting time
and the lower bound of the ending time represents an interval of certainty (IOC;
i.e., an interval of time in which the fact necessarily holds). However, Das and
Musen did not extend their temporal algebra to cope with temporal indeterminacy.
They cope with temporal indeterminacy in the query by first removing temporal
indeterminacy from input data (by taking either the minimum or the maximum
valid-time interval for indeterminate time), and then they apply their temporal
algebra for determinate time to the result. However, this a-priori removal is a severe
limitation: (i) from the theoretical point of view, it means that their extended
formalism coping with indeterminacy is not closed under their algebra (since their

1NF relational model and algebra for valid-time temporal indeterminacy 19

algebraic operators cannot operate on indeterminate time and the output of their
queries cannot be an indeterminate temporal relation); (ii) from the practical point
of view, it reduces the expressiveness of the query language. A concrete example
showing such limitations is discussed in Appendix C.

6 Conclusions

Temporal indeterminacy occurs when the exact temporal location of facts and
properties is not known. This phenomenon is common in many real-world applica-
tion domains. However, despite the popularity and the wide adoption of the rela-
tional model, only few approaches have proposed complete methodologies to cope
with temporal indeterminacy in the relational context, considering both represen-
tation and query language (algebra). In this paper, we propose a comprehensive
methodology overcoming the limitations of current approaches in the literature.
In particular, to achieve such a goal, we widely resort to AI symbolic manipula-
tion techniques (consider, e.g., the algorithms in Appendix B). Our goal is not
just to devise an ad-hoc extension to current relational approaches, but to provide
a general and theoretically grounded methodology, granting the main properties
that are usually requested for (theoretically sound) relational TDB approaches. We
have thus proposed a new relational data model, showing that it is a consistent ex-
tension of the “consensus” temporal model in TSQL2. In order to query temporal
data, we have also proposed a temporal algebra, which is reducible to the standard
(non-temporal) algebra and such that our representation formalism is closed un-
der our algebra. We also considered computational complexity and shown that the
move from determinate to indeterminate time only adds a limited overhead, while
the I/O operations to retrieve/store tuples from/to secondary memory (which is
by far the most important aspect to be considered) are the same in the determinate
and in the indeterminate case. Despite several TDB works have already considered
some issues related to valid-time temporal indeterminacy, our approach is, to the
best of our knowledge, the only 1NF relational one which defines both the model
and the algebra to query it, granting the above general properties.

Despite the fact that the treatment of temporal indeterminacy greatly en-
hances the expressiveness of TDBs, extending their practical applicability to new
application domains, only limited extensions to temporal SQL languages would be
required to cope with it. In particular, (i) the keyword “INDETERMINATE” can
be added in the creation of temporally indeterminate relation; (ii) the insertion of
tuples into such relation should be extended to support the definition of both the
certain and possible time intervals for valid time; (iii) the query language must be
extended to support the possibility of prefixing temporal selection predicates (in
the “WHERE” part of SELECT) with the “CERT” or “POSS” keywords. On the other
hand, the development of a calculus for our approach is a challenging goal, that we
aim to address in our future work. We are also planning to extend our approach
to consider the telic/atelic distinction (Terenziani and Snodgrass, 2004), and to
allow for the introduction of probability distributions, in case they are known.

20 Luca Anselma et al.

Acknowledgments

The authors are very much indebted to R.T. Snodgrass, for many enlightening
suggestions and invaluable support he gave us in the preliminary stages of this
work.

The work described in this paper was partially supported by Compagnia di
San Paolo, in the Ginseng project.

References

Allen JF (1991) Time and time again: the many ways to represent time. Interna-
tional Journal of Intelligent Systems 6(4):341–355

Anselma L, Bottrighi A, Montani S, Terenziani P (2013a) Extending BCDM
to cope with proposals and evaluations of updates. IEEE Trans Knowl
Data Eng 25(3):556–570, DOI 10.1109/TKDE.2011.170, URL http://doi.
ieeecomputersociety.org/10.1109/TKDE.2011.170

Anselma L, Stantic B, Terenziani P, Sattar A (2013b) Querying now-relative data.
J Intell Inf Syst 41(2):285–311, DOI 10.1007/s10844-013-0245-8, URL http:
//dx.doi.org/10.1007/s10844-013-0245-8

Anselma L, Terenziani P, Snodgrass RT (2013c) Valid-time indeterminacy in
temporal relational databases: Semantics and representations. IEEE Trans
Knowl Data Eng 25(12):2880–2894, DOI 10.1109/TKDE.2012.199, URL http:
//doi.ieeecomputersociety.org/10.1109/TKDE.2012.199

Brusoni V, Console L, Terenziani P, Pernici B (1999) Qualitative and quantita-
tive temporal constraints and relational databases: Theory, architecture, and
applications. IEEE Trans Knowl Data Eng 11(6):948–968

Codd EF (1971) Further normalization of the data base relational model. IBM
Research Report, San Jose, California RJ909

Codd EF (1972) Relational completeness of data base sublanguages. In: R Rustin
(ed): Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987,
San Jose, California

Combi C, Cucchi G, Pinciroli F (1997) Applying object-oriented technologies in
modeling and querying temporally oriented clinical databases dealing with tem-
poral granularity and indeterminacy. IEEE Transactions on Information Tech-
nology in Biomedicine 1(2):100–127

Das AK, Musen MA (1994) A temporal query system for protocol-directed decision
support. Methods Inf Med 33(4):358–370, PMID: 7799812

Dekhtyar A, Ross RB, Subrahmanian VS (2001) Probabilistic temporal databases,
i: algebra. ACM Trans Database Syst 26(1):41–95

Dunn J, Davey S, Descour A, Snodgrass RT (2002) Sequenced subset operators:
Definition and implementation. In: Agrawal R, Dittrich KR (eds) ICDE, IEEE
Computer Society, pp 81–92

Dutta S (1989) Generalized events in temporal databases. In: Data Engineering,
1989. Proceedings. Fifth International Conference on, pp 118–125, DOI 10.1109/
ICDE.1989.47207

Dyreson CE (2009) Temporal indeterminacy. In: Liu L, Özsu MT (eds) Encyclo-
pedia of Database Systems, Springer US, pp 2973–2976

1NF relational model and algebra for valid-time temporal indeterminacy 21

Dyreson CE, Snodgrass RT (1998) Supporting valid-time indeterminacy. ACM
Trans Database Syst 23(1):1–57

Emerson EA (1990) Temporal and modal logic. In: van Leeuwen J (ed) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
The MIT Press, pp 995–1072

Gadia SK, Nair SS, Poon YC (1992) Incomplete information in relational temporal
databases. In: Yuan LY (ed) VLDB, Morgan Kaufmann, pp 395–406

Jensen C, Snodgrass R (2008) Temporal Database Entries for the Springer Ency-
clopedia of Database Systems. TimeCenter Technical Report, Timecenter

Jensen CS, Snodgrass RT (1996) Semantics of time-varying information. Inf Syst
21(4):311–352

Jensen CS, Snodgrass RT (1999) Temporal data management. IEEE Trans Knowl
Data Eng 11(1):36–44

McKenzie LE, Snodgrass RT (1991) Evaluation of relational algebras incorporating
the time dimension in databases. ACM Comput Surv 23(4):501–543

Özsoyoglu G, Snodgrass RT (1995) Temporal and real-time databases: A survey.
IEEE Trans Knowl Data Eng 7(4):513–532

Snodgrass RT (1982) Monitoring distributed systems: A relational approach. PhD
thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA

Snodgrass RT (ed) (1995) The TSQL2 Temporal Query Language. Kluwer
Snodgrass RT (1999) Developing Time-Oriented Database Applications in SQL.

Morgan Kaufmann
Stantic B, Terenziani P, Governatori G, Bottrighi A, Sattar A (2012) An implicit

approach to deal with periodically repeated medical data. Artificial Intelligence
in Medicine 55(3):149–162

Tansel AU, Cli↵ord J, Gadia SK, Jajodia S, Segev A, Snodgrass RT (eds)
(1993) Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings

Terenziani P (2003) Symbolic user-defined periodicity in temporal relational
databases. IEEE Trans Knowl Data Eng 15(2):489–509, DOI 10.1109/TKDE.
2003.1185847, URL http://doi.ieeecomputersociety.org/10.1109/
TKDE.2003.1185847

Terenziani P (2012) Temporal aggregation on user-defined granularities. J Intell Inf
Syst 38(3):785–813, DOI 10.1007/s10844-011-0179-y, URL http://dx.doi.
org/10.1007/s10844-011-0179-y

Terenziani P (2013) Coping with events in temporal relational databases. IEEE
Trans Knowl Data Eng 25(5):1181–1185, DOI 10.1109/TKDE.2011.265, URL
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.265

Terenziani P, Snodgrass R (2004) Reconciling point-based and interval-based se-
mantics in temporal relational databases: a treatment of the telic/atelic distinc-
tion. Knowledge and Data Engineering, IEEE Transactions on 16(5):540–551,
DOI 10.1109/TKDE.2004.1277816

Terenziani P, Snodgrass RT, Bottrighi A, Torchio M, Molino G (2007) Extending
temporal databases to deal with telic/atelic medical data. Artificial Intelligence
in Medicine 39(2):113–126

Vila L (1994) A survey on temporal reasoning in artificial intelligence. AI Commun
7(1):4–28

22

Wu Y, Jajodia S, Wang XS (1997) Temporal database bibliography update. In:
Temporal Databases, Dagstuhl, pp 338–366

Appendices

A Proofs

Remember from text that
Notation. We adopt the following notation: given a tuple t = (v1, . . . , vn|ds, de, is, ie), hd, ii
represents its temporal component, where d stands for the determinate time interval [ds, de),
and i stands for the indeterminate time interval [is, ie).

Proof (Proof of Property 4) We consider the relational operators of Cartesian product and of
di↵erence. The proof for the other operators is easy.
Cartesian Product
In the case of determinate ITEs, the ITE intersection results in

hd, di \ITE hd0, d0i = hd \ d0, d \ d0i

which, for the property of consistent extension on ITEs, is equivalent to the determinate
temporal element

d \ d0

Therefore, the definition of temporally indeterminate Cartesian product

r ⇥TI s = {(vrvs|hd, ii)\
9hdr, iri, hds, isi((vr|hdr, iri) 2 r ^ (vs|hds, isi) 2 s^

hd, ii = hdr, iri \ITE hds, isi ^ i 6= ;)}

is equivalent to the definition of TSQL2 Cartesian product considering valid time only:

r ⇥T s = {(vrvs|t)\
9tr, ts((vr|tr) 2 r ^ (vs|ts) 2 s ^ t = tr \ ts ^ t 6= ;}

Di↵erence
Now we examine the relational di↵erence in our approach, taking in consideration the case
where only determinate time is dealt with. The definition of temporally indeterminate rela-
tional di↵erence, in case we deal with determinate times (represented with a same determinate
and indeterminate interval) can be written as:

r �TI s = {(v|hd, di) \ (9hdr, dri((v|hdr, dri) 2 r^
@hds, dsi((v|hds, dsi) 2 s ^ hd, di = hdr, dri)))_
(9hdr, dri((v|hdr, dri) 2 r ^ 9!(v|hd1, d1i), . . . ,
(v|hdk, dki)((v|hd1, d1i) 2 s, . . . , (v|hdk, dki) 2 s^

hd, di = hdr, dri �ITE {hd1, d1i, . . . , hdk, dki}^
d 6= ;)))}

In the case of determinate ITEs, the ITE di↵erence can be written as:

hd, di�ITE{hd01, d01i, . . . , hd0k, d
0
ki} =

cover(chr(d)� (chr(d01) [· · · [chr(d0k)),

chr(d)� (chr(d01) [· · · [chr(d0k)))

23

The cover function returns the ITEs hd00j , d00j i where each d00j corresponds to the maximal convex

set of chronons in chr(d)� (chr(d01) [· · · [chr(d0k)).
Substituting in the di↵erence, we have:

r �TI s = {(v|hd, di) \ (9hdr, dri((v|hdr, dri) 2 r^
@hds, dsi((v|hds, dsi) 2 s ^ hd, di = hdr, dri)))_
(9hdr, dri((v|hdr, dri) 2 r ^ 9!(v|hd1, d1i), . . . ,
(v|hdk, dki)((v|hd1, d1i) 2 s, . . . , (v|hdk, dki) 2 s^
hd, di = cover(chr(dr)� (chr(d1) [· · · [chr(dk)),

chr(dr)� (chr(d1) [· · · [chr(dk))) ^ d 6= ;)))}.

Now we report the definition of relational di↵erence of TSQL2.

r �B s = {z \ 9x 2 r(z[A] = x[A]^

9t 2 coverB(bi chr(x[TT], x[V T])�
{bi chr(y[TT], y[V T]) \ y 2 s ^ y[A] = x[A]})^
z[TTs] = min 1(t) ^ z[TTe] = max 1(t)^
z[V Ts] = min 2(t) ^ z[V Te] = max 2(t))}

where A, TT , V T represent the non-temporal, transaction-time and valid-time attributes,
respectively, and the subscripts s and e represent the starting and ending chronons of the
interval.

Considering relations with valid time only, the definition may be simplified as:

r �V s = {z \ 9x 2 r(z[A] = x[A] ^ 9t 2 coverV (chr(x[V T])�
{chr(y[V T]) \ y 2 s ^ y[A] = x[A]})^
z[V Ts] = min(t) ^ z[V Te] = max(t))}

Now we prove that �TI and �V are equivalent. In the definition of �TI , we provide for two
cases.

The first disjunct of �TI corresponds to the case where there is no value-equivalent tuple
in s as the tuple (v|hdr, dri) in r; in this case the tuple (v|hdr, dri) is included in the result.
Also �V , since in this case the set {y[V T] \ y 2 s ^ y[A] = x[A]} is empty, includes in the
result the tuples in r with no value-equivalent tuples in s.

The second disjunct of �TI corresponds to the case where a tuple (v|hdr, dri) in r
has the value-equivalent tuples (v|hd1, d1i), . . . , (v|hdk, dki) in s. In the definition of �V ,
the set {y[V T] \ y 2 s ^ y[A] = x[A]} corresponds to the same value-equivalent tuples
(v|hd1, d1i), . . . , (v|hdk, dki) in s. Thus, both �TI and �V perform set di↵erence between
the same sets of chronons. In �TI the cover function returns the minimum and maximum
chronons in the convex sets of the set di↵erence, whereas in �V the coverV function returns
only the convex sets and the minimum and maximum chronons are determined in the definition
of �V . For the consistent extension property on ITEs, an ITE hd, di is equivalent to a deter-
minate temporal element d. It is worth noticing that neither �TI nor �V return tuples with
empty temporal elements because of the clause d 6= ; for �TI and because of the existential
quantification 9t for �V .

Proof (Proof of Property 5) For the sake of brevity, we prove the property considering the
Cartesian product operator. The proofs for the other operators are similar. Let r and s be
ITE relations with schemas (A|T) and (B|T) respectively, where A, B and T stand for the
attributes {A1, . . . , Al}, {B1, . . . , Bm} and {Ds, De, Is, Ie} respectively, then

⇢TI
t (r ⇥TI s) = ⇢TI

t (r)⇥ ⇢TI
t (s)

where ⇥TI is the ITE Cartesian product, ⇥ is the standard non-temporal Cartesian product
and ⇢TI

t is the timeslice operator. We show the equivalence by proving the two inclusions
separately, i.e., we prove that the left-hand side of the formula (henceforth lhs) implies the
right-hand side (henceforth rhs) and that the rhs implies the lhs.

24

(x00 2 lhs) x00 2 rhs)
Let x00 2 lhs. Then, by the definition of ⇢TI

t , there exists a tuple x0 2 (r ⇥TI s) such that
x0[A,B] = x00[A,B]
and t 2 x0[D].

By the definition of ⇥TI , there exist tuples
x1 2 r and x2 2 s such that x1[A] = x0[A], x2[B] = x0[B] and x1[T] \ x2[T] = x0[T].

Then, by the definition of ⇢TI
t , there exists a tuple

x0
1 2 ⇢TI

t (r) such that x0
1[A] = x1[A] = x0[A], and there exists a tuple x0

2 2 ⇢TI
t (s) such that

x0
2[B] = x2[B] = x0[B].

Therefore, by the definition of ⇥, there exists x00
12 2 rhs such that x00

12[A] = x0
1[A] and

x00
12[B] = x0

2[B].
By construction, x00

12 = x00.

(x00 2 rhs) x00 2 lhs)
Now assume x00 2 rhs. Then, by definition of ⇥, there exist tuples x0

1 2 ⇢TI
t (r) and

x0
2 2 ⇢TI

t (s) such that
x0
1[A] = x00[A] and x0

2[B] = x00[B].

By the definition of ⇢TI
t , there exists a tuple x1 2 r such that x1[A] = x0

1 and t 2 x0
1[D]

and there exists a tuple x2 2 r such that x2[B] = x0
2 and t 2 x0

2[D].

Then by definition of ⇥TI there must exist a tuple
x0 2 (r ⇥TI s) such that x0[A] = x1[A], x0[B] = x2[B], x0[T] = x1[T] \ x2[T] and t 2 x0[D].

Then, by definition of ⇢TI
t , there exists a tuple

x00
12 2 lhs such that x00

12[A,B] = x0[A,B].
By construction, x00

12 = x00.

B Algorithms

In Section 4 we have proposed a definition of the relational di↵erence between two tempo-
rally indeterminate relations based on an abstract definition of the di↵erence between an ITE
(henceforth minuend) and a set of ITEs (henceforth subtrahends). For the sake of clarity, the
ITE di↵erence in Section 4 was based on a conversion from ITEs to sets of chronons and back.
The definition is very general, covering all the possible alternative solutions (since there are, in
general, multiple equivalent ways of converting the chronons in the result into a set of ITEs).

On the other hand, in this Appendix we propose an actual algorithm to perform ITE
di↵erence. The algorithm is based on the abstract definition of Section 4, but it is more
e�cient, since it directly operates on time intervals instead of sets of chronons. Also, it is
based on a specific partitioning policy. Before detailing the algorithm, we need to introduce
some useful concepts.

The basic problem with temporal relational di↵erence (independently of whether determi-
nate or indeterminate time intervals are adopted) is that interval di↵erence must, in general,
be performed between sets of intervals. Even in the determinate case, the di↵erence between an
interval [s1, e1) and an interval [s2, e2) contained into it (i.e., such that s1 < s2 < e2 < e1) re-
sults in two intervals [s1, s2) and [e1, e2). Thus, even if the operation starts with the di↵erence
between one interval and a set of intervals (one for each one of the value-equivalent tuples),
intermediate computational steps must consider di↵erence between two sets of intervals. In
general, such an operation would require quadratic time. However, such a complexity can be
reduced by exploiting ordering (the ordering between intervals can be trivially defined on the
basis of the temporal ordering of their endpoints). We exploit such an idea also in our case,
in which ITEs are considered (instead of determinate intervals). To do so, we introduce the
notion of (ordered) list of “Typed Intervals”.

A Typed (Temporal) Interval (henceforth TY) represents a convex set of chronons, which
are all “labeled” either as determinate (DET) or as indeterminate (INDET). A TY is com-
pletely described by the triple hstart, end, typei, where start, end 2 TC are the starting and
ending points of the TY (as in the ITE representation, a TY interval [start, end) includes the
starting chronon and excludes the ending one) and type 2 {DET, INDET}. Hereinafter, for
the sake of brevity, we will use the dot notation for TY (e.g., if ty is a TY, ty.start is the
starting point of ty).

25

We use three relations between TYs. In particular, given two TYs ty1 and ty2,

– before(ty1, ty2) stands for ty1.end  ty2.start
– meets(ty1, ty2) stands for ty1.end = ty2.start
– overlaps(ty1, ty2) stands for ty1 \ ty2 6= ;

In the algorithms below, we will also use the notion of List of TYs. A List of TYs is a
collection of TYs such that it is:

– maximal in the sense that ty1, ty2 2 l ^meets(ty1, ty2)
) ty1.type 6= ty2.type;

– without intersections, i.e., ty1, ty2 2 l
) ¬overlaps(ty1 ty2);

– ordered, i.e., in a List of TYs (ty1, . . . , tyi, . . . , tyj , . . . , tyn) i < j
) before(tyi, tyj).

Given l : list of ty, we denote with l.size the number of elements contained in l. l[i] is the i-th
element of the list l (with 1  i  l.size). We also use the notation “insert el into l in position
i”, “append el to l” and “remove from l element in position i” to denote, respectively, insertion,
insertion in the last position and the classical deletion of an element from the list l. In order to
grant maximality, if an element is added to a List of TYs and it meets the subsequent element
or the previous one meets it and their types are equal, they are automatically merged.

In addition, two transform operations are defined: the toTY operation transforms a set of
ITEs into a List of TYs, and the toITE operation transforms a List of TYs into a set of ITEs.
Given the previous notions, we now describe the algorithm for di↵erence between ITEs (see
Algorithm 6). It is basically divided into three phases:

1. Both the minuend and the subtrahends are transformed into Lists of TYs. This
operation is performed by using the toTY function (see Algorithm 1) that, given as input
a set of ITEs set, returns a List of TYs. In the basic case, in which set contains only an
element, called ite, the number of returned elements depends on the structure of ite: in
case its determinate interval [ds, de) is empty, a single INDET TY is returned, otherwise a
list containing a INDET TY representing [is, ds) (if not empty), a DET one representing
[ds, de) and a INDET one representing [de, ie) (if not empty) is returned.

26

Algorithm 1: toTY
Input : set : set of ITE
Output: list of TY

result : list of TY;
if set contains a single element “ite” then

result empty;
if ite.ds � 0 and ite.ds < ite.de then

if ite.is < ite.ds then
append his, ds, INDETi to result;

end
append hds, de, DETi to result;
if ite.ie > ite.de then

append hde, ie, INDETi to result;
end

else
append his, ie, INDETi to result

end

else
set1, set2 : set of ITE;
set1, set2 empty;
add half of the elements in set to set1;
add the other half of set to set2;
list1, list2 : list of TY;
list1 toTY(set1);
list2 toTY(set2);
result merge(list1, list2);

end
return result ;

27

Algorithm 2: merge
Input : list1, list2 : list of TY
Output: list of TY

i, j 1; /* i is the index for list1, j for list2 */
toinsert : TY;
toinsert empty;
while i  list1.size or toinsert 6= empty do

if toinsert = empty then
toinsert = list1[i];
i i+1;

end
while j  list2.size and before(list2[j], toinsert) do

j j+1;
end
if j > list2.size then

append toinsert to list2;
toinsert empty;

else
if ¬overlaps(toinsert, list2[j]) then

add toinsert to list2 in position j;
toinsert empty;

else
union : list of TY;
union unify(list2[j], toinsert);
remove from list2 element in position j;
for k = 1, . . . , union.size-1 do

add union[k] to list2 in position j;
j j+1;

end
toinsert union[union.size];

end

end

end
return list2 ;

28

Algorithm 3: unify
Input : ty1, ty2 : TY
Output: list of TY

result : list of TY;
result empty;
if ty1.type = ty2.type and (meets(ty1, ty2) or meets(ty2, ty1) or overlaps(ty1, ty2))

then
append h min(ty1.start, ty2.start), max(ty1.end, ty2.end), ty1.type)i to result ;
return result ;

end
if ¬overlaps(ty1, ty2) then

if before(ty1, ty2) then
add ty1 to result in position 1;
append ty2 to result;

else
add ty2 to result in position 1;
append ty1 to result;
;

end

else
n : TY;
p : TY;
if ty1.type = DET then

n ty1;
p ty2;

else
n ty2;
p ty1;

end
if p.start < n.start then

append hp.start, n.start, INDETi to result;
end
append n to result;
if p.end > n.end then

append hn.end, p.end, INDETi to result;
end

end
return result ;

29

In the case in which set contains more than one element (e. g., for the subtrahends), set is
partitioned into two subsets, then, for both of them, a List of TYs is obtained separately.
Finally, the two lists are combined by the merge algorithm (see Algorithm 2) that grants
that the list in the result respects the properties previously mentioned (i.e., it is maximal,
without intersections and ordered).

2. Each TY obtained from the minuend (minuend el) is compared with the el-
ements in the subtrahend list in order to remove overlaps. A many-to-many
di↵erence between the List of TYs deriving from minuends and those obtained from sub-
trahends needs to be performed. However, exploiting the ordering of both the lists, they
are visited only once. In particular, if an element of the subtrahend list is in relation of
before with the one actually considered for the minuend, there is no need to compare it
with the following elements of the minuend. On the other hand, if the actual minuend el is
before the i-th element of subtrahend list, there is no need to compare minuend el with the
following elements of subtrahend list. Thus, an iterator is initialized to the first element
of the subtrahend list (in the algorithm it is represented by the variable j) and for each
minuend el, j is increased until a subtrahend list[j] is found, such that subtrahend list[i]
is not before minuend el. There are three cases:

– The end of subtrahend list is reached. If j > subtrahend list.size, minuend el
and next elements of minuend list intersect with no element in the subtrahend. Thus,
they are added to the result.

– An element subtrahend list[j] is found, such that minuend el is before sub-
trahend list[j] In this case, the current minuend el can be added to the result as it
is. The algorithm restarts from the next TY of minuend list, keeping the value reached
by the iterator j.

– The last case is that in which subtrahend list[j] overlaps the designed el-
ement minuend el. In such a case, a di↵erence operation is performed between
minuend el and subtrahend list[i]. The result of di↵erence between TYs is a List of
TYs composed by up to three TYs.

Algorithm 4: minus
Input : minuend, subtrahend : TY
Output: list of TY

result : list of TY;
result empty;
if subtrahend.type = DET then

if minuend.start < subtrahend.start then
append hminuend.start, subtrahend.start, minuend.typei to result;

if minuend.end > subtrahend.end then
append hsubtrahend.end, minuend.end, minuend.typei to result;

else
if minuend.type = INDET then

append minuend to result;
else

if minuend.start < subtrahend.start then
append hminuend.start, subtrahend.start, DETi to result;

if overlaps(minuend, subtrahend) then
append hmax(minuend.start, subtrahend.start), min(minuend.end,
subtrahend.end), INDETi to result;

if minuend.end > subtrahend.end then
append hsubtrahend.end, minuend.end, DETi to result;

end

end
return result ;

30

All the elements of this list, except the last, can be inserted in the result, while the
last one (if the list size is at least one) takes the place of minuend el in the algorithm
and it is compared with next elements of the subtrahend list.

3. A set of ITEs representing the result of the di↵erence between TYs is obtained.
This operation is performed by the function toITE (see Algorithm 5), which accomplishes,
for the domain of TYs, the same task of cover function of Figure 2. Given the particular
structures used in this implementation, the partition policy of our algorithm tends to
create ITEs similar to the ones shown in the upper part of Figure 3.

Algorithm 5: toITE
Input : intervals : list of ty
Output: set of ITE

result : set of ITE;
result empty list;
ds, de, is, ie : Chronons;
i 1;
detins : Boolean;
el : TY;
detins false;
while i  intervals.size do

el intervals[i];
ds, is el.start;
ie el.end;
if el.type = DET then

de el.end;
detins true;

else
de ds;

end
i i+1;
while i  intervals.size and meets(el, intervals[i]) and (intervals[i].type =

INDET or ¬detins) do
el intervals[i];
ie el.end;
if el.type = DET then

ds el.start;
de el.end;
detins true;

end
i i+1;

end
add hds, de, is, iei to result;

end
return result

31

Algorithm 6: Di↵erence
Input : minuend : ITE and

subtrahends : set of ITE
Output: set of ITE

minuend list : list of TY;
minuend list toTY(minuend);
subtrahend list : list of TY;
subtrahend list toTY(subtrahends);
result : list of TY;
result empty list;
i, j 1;
minuend el : TY;
minuend el empty;
while i  minuend list.size or minuend el 6= empty do

if minuend el = empty then
minuend el minuend list[i];
i i+1;

end
while j  subtrahend list.size and before(subtrahend list[j], minuend el) do

j j+1;
end
if j > subtrahend list.size or ¬overlaps(minuend el, subtrahend list[j]) then

append minuend el to result;
minuend el empty;

else
di↵erence : list of TY;
di↵erence minus(minuend el, subtrahend list[j]);
for k = 1, . . . , di↵erence.size-1 do

append di↵erence[k] to result;
end
if di↵erence = empty then

minuend el empty;
else

if di↵erence[di↵erence.size].end > subtrahend list[j].end then
minuend el di↵erence[di↵erence.size];
j j+1;

else
append di↵erence[di↵erence.size] to result;
minuend el empty;

end

end

end

end
return toITE(result);

B.1 Discussion on Complexity

Complexity (Di↵erence between two sets of ITEs).
Suppose that n is the number of ITEs that have to be subtracted from one ITE. Di↵erence
operates in three main steps: (1) pre-processing (toTY), (2) di↵erence evaluation, and (3)
post-processing (toITE). The toTY transformation takes in input a set of ITE, and converts
it into an ordered list of TYs henceforth. In general, each ITE may correspond to three TYs.
toTY basically operates like the classical mergesort algorithm, with a complexity which is
O(m log2 m), where m is the number of TYs (i.e., m is at most 3 ⇤ (n+1)). By exploiting the
ordering of the list of TYs, in step 2 di↵erence can be executed by visiting each TY at most
once, i.e., in a time that is O(m). Finally, toITE reconvert TYs into ITEs, also “coalescing”

32

indeterminate TY that meet each other. By exploiting the ordering of TYs in the list, also
such operation is performed by visiting each TY once, i.e., in linear time O(m). Overall, the
complexity is thus dominated by the initial ordering step (step 1), and is O(m log2 m).

As discussed in Section 4, the complexity of our relational operator of di↵erence is the same
as the one of many TDB approaches (in particular, the same I/O operations are performed in
both cases), including TSQL2, except the operation of di↵erence between time intervals. We
now compare such complexity, considering the specific implementation described above.
Complexity (Di↵erence between two sets of ITEs vs. di↵erence between sets of
determinate time intervals).
Let us now consider the complexity in the determinate case, supposing that n is the cardi-
nality of the set of (determinate) time intervals to be subtracted from a given one. For the
sake of e�ciency, also Di↵erence between sets of determinate time intervals can exploit a
pre-processing step to order them. A slight variation of mergesort can be used, so that the
complexity is O(n log2 n). After that, di↵erence can be obtained subtracting one interval at
a time, in time O(n). No post-processing step is needed in the determinate case (since no
conversion is required, and the output of determinate di↵erence is already coalesced). As in
the case of indeterminate time, the complexity of di↵erence is thus dominated by the ordering
step, which, applied to sets of x elements, requires O(x log2 x) time. The main di↵erence is
thus a multiplicative constant, due to the fact that an ITE indeed correspond to an ordered
list of (at most) three intervals.

C Comparison with a non-closed approach

In this appendix, we present a comparison between our approach with the one proposed by
Das and Musen (1994) in the medical field, to exemplified the importance of devising a data
model and algebra with the closure property. As discussed in Section 5, Das and Musen (1994)
proposed a 1NF temporal relational model coping with temporal indeterminacy through the
introduction of two intervals of uncertainty (IOUs), one for the starting time and one for the
ending time. The interval between the upper bound of the starting time and the lower bound
of the ending time represents an interval of certainty (IOC; i.e., an interval of time in which the
fact necessarily holds). Notice that Das and Musen propose an implementation in which (at
most) three tuples are used to model a temporally indeterminate fact. A tuple with Type equal
to “body” represents the time when the fact certainly holds (IOC), while the other two tuples
with Type equal to “start” and “end” represent the time when the fact possibly holds (the
IOU of the starting time and the IOU of the ending time, respectively). Considering Example
2, Das and Musen represent data as shown in Table 7.

Table 7 Relation SIDE EFFECTS DM (Das and Musen representation of Example 2).

Start Time Stop Time Type Drug Side E↵ect
1 1 body A Severe Nausea
2 3 end A Severe Nausea
1 4 body B Severe Nausea
5 6 end B Severe Nausea

However, Das and Musen did not extend their temporal algebra to cope with temporal
indeterminacy.

“To manipulate states, on the other hand, we must choose between the minimum or

maximum span representation of the state. . . . Either of these approaches then results

in a single pair of endpoints for the state-based data. . . ” (Das and Musen, 1994).

In other words, they cope with temporal indeterminacy in the query by first removing temporal
indeterminacy from input data (by taking either the minimum or the maximum valid-time
interval for indeterminate time), and then they apply their temporal algebra for determinate
time to the result. However, this is restrictive: indeed, their extended formalism coping with
indeterminacy is not closed under their algebra, since their algebraic operators cannot operate

Luca Anselma
corresponds

33

on indeterminate time and the output of their queries cannot be an indeterminate temporal
relation (in fact, indeterminacy is removed in the first, necessary, step of their queries). This is
a major limitation. Indeed, Das and Musen themselves noticed that their algebraic operators,
when operating on temporally indeterminate facts, “ . . .may produce anomalous results. . . ”

(Das and Musen, 1994). Indeed, in the following, we show a simple example demonstrating
that Das and Musen’s approach is limited, in that certain queries cannot be properly managed.

Let us consider the situation described by Example 2, and suppose that the user wants to
know when drug B and not drug A caused nausea (i.e., Query 2). Considering the information
in Example 2, the output should be that B and not A caused nausea certainly on day 4, and
possibly on days 2, 3, 5 and 6. Notice, however, that such a result cannot be obtained operating
as proposed by Das and Musen. If the minimum valid time (i.e., the “certain” time IOC) is first
selected, then the di↵erence between the time intervals [1, 4] and [1, 1] should be performed,
obtaining [2, 4] as a result (see Table 8). On the other hand, if the maximum valid time (i.e.,
the “possible” time, IOU) is first selected, then the di↵erence between the time intervals [1, 6]
and [1, 3] should be performed, obtaining [4, 6] as a result (see Table 9). Obviously, none of
them is the desired (correct) result to Query 2.

Table 8 Das and Musen’s answer to Query 2, considering the minimum valid time.

Start Time Stop Time Side E↵ect
2 4 Severe Nausea

Table 9 Das and Musen’s answer to Query 2, considering the maximum valid time.

Start Time Stop Time Side E↵ect
4 6 Severe Nausea

Indeed, although quite simple, the above example demonstrates the necessity of developing
a closed temporal algebra for indeterminate time, i.e., an algebra in which temporal indeter-
minate data (relations) are directly managed (with no need of removing indeterminacy) as
first-class entities, which may be input and output of the queries. Despite the di↵usion of the
relational model, and the relevance of temporally indeterminate data in many real-world con-
texts, so far there is no temporal relational approach providing both a 1NF data representation
formalism and a closed relational algebra operating on it to cope with temporally indetermi-
nate data (see also the discussion in Section 5). Providing such an approach and proving its
reducibility to the standard non-temporal algebra are the results we achieved in the work we
describe on in this paper.

