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Abstract 

With the goal of preventing abdominal infections after implanting prostheses for hernia repair, polypropylene 

prostheses were coated with a silver nanoclusters-silica composite (Ag/SiO2) layer, by means of a sputtering process, to 

confer antibacterial properties. 

The Ag/SiO2 coating was deposited, with good uniformity and adhesion, either onto hernia prostheses (CMC) made of 

two polypropylene layers (macroporous light mesh and thin transparent film), or onto the mesh layer alone. The coating 

was optimized to achieve a good balance between antibacterial activity and biocompatibility. Antibacterial activity, 

fibroblast growth on CMC/mesh layer alone, in the presence/absence of Ag/SiO2, collagen, and some cytokines 

involved in inflammation and healing processes, were determined. 

Preliminary experiments showed that when both layers of CMC were entirely coated, antibacterial properties were 

achieved while losing prosthesis biocompatibility. Coating the entire CMC was a complex process, thus for subsequent 

experiments the mesh layer alone was coated, being the antibacterial properties unaffected by this choice and the mesh 

the part of CMC exposed to possible infection. With a duty cycle of 1 second over 24 on an Ag target, for 15 minutes 

deposition time, antibacterial activity, evaluated through the quantitative Colony–Forming Units test, was positive; 

fibroblasts colonized the coated mesh layer and produced collagen. Cell viability analysis showed that most cells were 

viable at all experimental times. Moreover, IL-1β and IL-6 decreased, and TGF-β2 increased, in fibroblasts seeded on 

mesh layer coated with Ag/SiO2 versus that without Ag/SiO2. 

Ag/SiO2-coated mesh layers allowed fibroblast growth and activity, without inducing cell death via apoptosis or 

necrosis and, at the same time, provided antibacterial activity. 
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1. Introduction 

Tissue healing is a complex process involving different cells that produce biological factors and extracellular matrix, 

and provide mechanical tissue stability [1]. Fibroblasts play a role in tissue repair, and are the primary cell type 

responsible for collagen synthesis [2]. They contribute to the formation of granulation tissue, and produce modulators of 

wound healing such as TGF-β [3]. Wound healing can be promoted using biomaterials prepared in the form of a 3D 

scaffold, which enables appropriate cells to proliferate [4]. Scaffolds are implanted to facilitate healing when defect 

size, location, tissue type, or genetic abnormalities hinder or prevent fully-autologous regeneration and the return to 

normal capabilities. Hernia is a case in point. It is characterized by damaged anatomical fascia, and is frequently a 

secondary complication of abdominal surgery. Exogenous prostheses are used to replace compromised fascia: they can 

be permanent or reabsorbable, and are made of synthetic polymer meshes or biological tissues. Biological tissues are 

used in large hernias, when substantial sections of abdominal wall must be reconstructed, while synthetic meshes are 

preferred for smaller hernias thanks to their malleability and reduced cost [5]. 

As in wound healing, the implantation of foreign materials induces inflammation and recruits fibroblasts and 

macrophages, which secrete pro-inflammatory and fibrogenic cytokines [6,7]. Inflammation after mesh positioning is a 

normal phase in wound healing, as also is the foreign body reaction. It has been shown that all meshes cause initial 

acute inflammation in proximity to the implant, [8] and that this is associated with early mesh integration. [9,10] 

Moreover, the degree of inflammation closely correlates with connective tissue formation [8,11]. Recently, meshes have 

been coated with human fibroblasts (HFBs) or stem cells (MSCs) to improve wound healing, and it has been found that 

coated meshes, whether synthetic or biological, can be successfully used in vitro. MSC coating suppresses mesh-

induced IL-1β, IL-6 and VEGF production by macrophages, while HFB coating suppresses IL-1β increasing IL-6 and 

VEGF [12]. 

Synthetic mesh has become the standard for most abdominal wall repairs, leading to a considerable reduction in 

recurrence rates, and in post-operative side effects including, seroma, hematoma and wound breakdown [13-15]. 

However, the risk of an infection developing around the prosthesis remains a challenge, and the introduction of a 

prosthesis with antibacterial activity would offer an extremely promising solution in this connection, since it might 

prevent infection from occurring during implantation or the post-operative period. 

Silver is well known for its antibacterial activity, and for its reduced development of resistance, making it of interest as 

an antibacterial agent to fight both infection and antibiotic resistance. By exploiting a combination of silver’s 

antibacterial action and silica’s chemical, mechanical, and thermal stability, an innovative SiO2-Ag coating suitable for 

various applications was developed [16-20]. The specific goal of this study was to optimize this coating for application 
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to synthetic hernia prostheses, in order to give them antibacterial properties. The coating was optimized to achieve a 

balance among antibacterial action, biocompatibility, and transparency of the final mesh. 

 

2. Materials and Methods 

2.1 Preparation and characterization of prostheses 

The prostheses comprised two layers of polypropylene: a light macroporous mesh, and a thin transparent film (CMC, 

Clear Mesh Composite, DIPROMED srl S.Mauro Torinese –Turin, Italy). The mesh layer, facing the parietal side on 

implantation, is macroporous (88% of porosity, mean pore area 1.8 mm2, 45 g/m2); it is made of polypropylene 

monofilament, 120 µm in diameter, to optimize tissue growth. The film layer, facing the visceral side, consists of non-

porous, smooth, transparent polypropylene (Type IV, thickness 70 µm,) to prevent the formation of adhesions on the 

intestinal side (Figure 1). In designing the device, the mesh was selected of a weave possessing lightness, softness, good 

stability, and porosity [21]. The polypropylene film was selected for its transparency, enabling blood vessels, nerves, 

and underlying tissues to be viewed while placing the prosthesis. 

The whole CMC, or the mesh layer alone, were sputtered with a layer of Ag nanoclusters-silica. They were coated using 

a Radio Frequency (RF) magnetron, and co–sputtering SiO2 and Ag, in order to confer antibacterial properties [16]. 

Sputtering is one of the methods of Physical Vapor Deposition (PDV); PVD techniques are used to create thin films 

(from a few nanometers to some microns) upon many different surfaces. The use of thin films has extended into 

numerous fields, including mechanics, electronics, chemistry, and biomedical applications, exploiting the very 

interesting properties of a coating when its thickness is reduced to the nanometer scale. Sputtering consists of extracting 

atoms from a bulk material (the target) using argon ions, obtained by creating a plasma inside a deposition chamber. 

Very low pressure is created in the deposition chamber (10-5 Pa), after which pure argon gas is introduced, maintaining 

a dynamic pressure of around 10-2 ÷ 10-1 Pa. A very intense electrical field, applied through the gas, leads the plasma 

switching–on and consequently the Ar+ ions formations. The ions, accelerated by the electrical field, collide with the 

surface of the target(s), and can thus extract atoms or clusters of atoms. The extracted material, flying freely around the 

deposition chamber, reaches the substrate (the item to be coated) and begins to form the thin film. By controlling the 

deposition parameters (plasma power, atmosphere, pressure, etc.) it is possible to tailor the morphology and properties 

of the film. In the case of non-conductive targets (e.g. silica) Radio Frequency (RF) sputtering is used. 

The Ag/SiO2 composite coating tested here had previously been applied onto various substrates for different 

applications (polymers for aerospace applications, mobile telephones, ocular prostheses, glass, textiles, etc.) [16-20] and 

has been characterized in terms of morphology, composition, and adhesion. In this study, specific attention was paid to 

balancing the antimicrobial and biocompatible properties of the resulting coating for biomedical applications. 
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The coating was obtained by co-sputtering 99.99% pure SiO2 and 99.99% pure Ag targets. The RF power applied to the 

silica was 200 W, and 1 W to the Ag target. To tailor the Ag/SiO2 ratio and avoid Ag excess, the power applied to the 

Ag was periodically switched on and off throughout the deposition time. The duty cycle is described in Table 1. Due to 

the more rapid deposition of Ag compared to silica, the plasma over the Ag target was pulsed, as was said above, to 

avoid the need for excessive reduction of the power applied to the plasma. By controlling the duty cycle, the Ag/SiO2 

ratio in the film can be tailored. 

When the entire CMC was coated, the antimicrobial effect was strong, but the device was not biocompatible. In 

successive experiments, therefore, the mesh layer alone was coated; this is the part of the device that particularly 

requires antibacterial properties; sputtering parameters were varied, as reported in Table 1. 

Prior to deposition, prostheses were cleaned in distilled water at room temperature in an ultrasonic bath. After coating, 

they were handled under a chemical hood and enclosed in sterile packets, but not further sterilized before 

microbiological and biological characterization. Deposition parameters that remained unchanged throughout all 

experiments are listed in Table 2. Morphological-compositional analysis of the coatings was by Field Emission 

Scanning Electron Microscopy, equipped with Energy Dispersion Spectrometry (FESEM-EDS, Merlin Gemini Zeiss). 

The chemical and physical characteristics of the antibacterial layer are described in greater detail elsewhere [16–20]. 

2.2 Microbiological and biological characterization  

2.2.1 Microbiological characterization. The antibacterial effect was evaluated using the agar diffusion test [22] 

(inhibition halo evaluation) in accordance with the National Committee for Clinical Laboratory Standards (NCCLS) 

[23] and employing Staphylococcus aureus strain (ATCC 29213, Rockville, MD, USA). For the inhibition halo test, a 

0.5 Mc Farland suspension (containing approximately 1–2x108 colonies forming unit (CFU)/ml) was prepared, 

inoculating S. aureus colonies into physiological solution, and checking the turbidity by measuring the Mc Farland 

index by means of an optical instrument (Phoenix Spec BD McFarland). A portion of this suspension was then spread 

onto Mueller Hinton agar plates. The CMC or the mesh layer was then placed in contact with the agar and incubated for 

24 hours at 35 °C. The antibacterial activity was evaluated by observing the size of the inhibition halo, i.e. the zone in 

which bacteria did not proliferate around the CMC after incubation. 

To verify the capacity of the mesh, coated under 24-1 conditions, to inhibit bacterial adhesion, the quantitative CFU test 

was employed. Briefly, mesh layer, positioned in a multiwell plate, was covered with 1 ml of bacterial broth containing 

approximately 5x105 CFU. After overnight incubation at 35 °C, the mesh layer was gently washed in physiological 

solution, and bacteria were detached using a vortex in physiological solution. An aliquot of this solution was serially 

diluted and spread onto a blood agar plate, which was incubated for 24 hours at 35 °C to allow bacterial growth for 
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subsequent CFU counting. Both tests were performed in triplicate, and all products used for the analyses were 

purchased from BD-Becton Dickinson, Franklin Lakes, NJ, USA. 

2.2.2 Biological characterization. Human fibroblast BJ cells (ATCC, Rockville, MD, USA), obtained from newborn 

human foreskin, were cultured (33,000/cm2) in DMEM medium (high glucose) supplemented with 2 mM glutamine, 

1% antibiotic/antimycotic solution, 1% non-essential amino acids, and 10% FBS. Fibroblasts were seeded on 

polystyrene plastic multiwells, into which the CMC (2.5 cm x 2.5 cm), coated or not, was anchored using biologically-

inert sterile stickers; alternatively, non-anchored mesh layers (coated or not) of equal size, were placed in the wells. The 

fibroblasts seeded on CMC or on mesh layers corresponded to 125,000 total cells. CMC covered the base of the well? 

completely, thus cells grew only on the CMC. When the mesh was placed in the well, the cells grew on the 

polypropylene mesh and within its pores. In this case, at the different experimental times, the mesh was removed from 

the plastic well and put into a new well, where the mesh was treated with trypsin/EDTA to detach the cells growing on 

the mesh alone. After removing culture medium, CMC colonized by BJ cells were observed under a light-reverted 

microscope. 

Cells were detached from CMC, or from mesh, using trypsin/EDTA (0.25/0.03%). Cell growth was determined by 

counting cells in a Burker chamber under a light microscope (Leitz, Wetzlar, HM-LUX, GERMANY); viability was 

evaluated as lactate dehydrogenase release in the culture medium, and DNA content on fixed cells by cytofluorimetric 

analysis [24]. 

To evaluate the production of type I collagen by fibroblasts colonizing CMC or mesh layers, monoclonal anti-collagen 

1A1 antibody and the ABC Staining System (Santa Cruz Biotechnology, INC, GERMANY) were used. Briefly, cells 

were fixed directly in the well with methanol at -20 °C for 5 min and washed with PBS. To block nonspecific binding 

sites, cells were incubated with 10% blocking serum at room temperature for 20 min. After washing with PBS, cells 

were incubated with primary antibody for 30 min at room temperature, followed by incubation with biotin-conjugated 

secondary antibody for 30 min at room temperature. Subsequently, cells were incubated with avidin biotin enzyme 

reagent for 30 min, washed with deionized water, and incubated with 3 drops of peroxidase substrate for 10 min. 

Collagen was observed under a light-reverted microscope (Nikon Eclipse TS100). 

In BJ cells seeded on the mesh layer, the expression of IL-1β, IL-6, TGF-β2, type I and type III collagen was examined 

using Real-time polymerase chain reaction (PCR) [25]. Total RNA was extracted from the BJ cells grown on mesh 

layers, coated or not, using the NucleoSpin RNA II Kit (Macherey-Nagel GmbH & Co. KG, Düren, GERMANY). 

Real-time PCR was performed with single-stranded cDNA prepared from total RNA (1 µg) using a High-Capacity 

cDNA Archive kit (Applied Bio Systems, Foster City, CA, USA). The forward (FW) and reverse (RV) primers shown 

in Table 3 were designed using Beacon Designer® software (Bio-Rad, Hercules, CA, USA). Twenty-five microliters of 
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a PCR mixture containing cDNA template equivalent 40 ng of total RNA, 5 pmoles each of forward and reverse 

primers, and 2× IQ SYBR Green SuperMix (Bio-Rad, Hercules, CA, USA) were amplified using an iCycler PCR 

instrument (Bio-Rad, Hercules, CA, USA) with an initial melt at 95°C for 10 min, followed by 35-40 cycles at 95°C for 

40 s, annealing temperature for each primer set for 40 s, and 72°C for 40 s. A final extension of 7 min at 72°C was 

applied. Each sample was tested in duplicate, and threshold cycle (Ct) values were averaged from each reaction. The 

change in BJ cells grown on coated mesh layer was defined as the relative expression compared to that of BJ cells 

grown on non-coated mesh layer, calculated as 2-∆∆Ct, where ∆Ct = (Ct sample – Ct GAPDH) and ∆∆Ct = (∆Ct mesh 

sputtered - ∆Ct mesh not coated). 

IL-1β, IL-6 and TGF-β2 were also evaluated in culture medium using commercial ELISA kits (Bender MedSystems 

GmbH, Vienna, AUSTRIA, Biosource Europe S.A., Nivelles, BELGIUM, Abcam, Cambridge, UK). 

Statistical analysis: All data are expressed as means ± S.D. Differences between group means were assessed by 

analysis of variance followed by a post-hoc Newman-Keuls test or by Student t test. 

 

3. Results 

3.1 Prosthesis preparation and characterization  

The CMCs were sputtered with coatings containing different amounts of Ag, to achieve an optimal balance between 

antibacterial properties and biocompatibility, while also maintaining film transparency. Different sputtering conditions 

were tested (Table 1) and the SiO2/Ag ratio consequently ranged between 32% and 45%. Figure 2 shows, as an 

example, the FESEM-EDS analysis of coating obtained with 6-2 sputtering conditions (secondary and backscattering 

electron images). The images show spherical silver nanoclusters closely embedded in the silica matrix during the 

sputtering process. EDS analysis confirmed the presence of both silver and silica on the surface. 

3.2 Microbiological and biological characterization 

Sputtered in the 6-2/15 min conditions, CMC produced a thin, irregular inhibition halo; bacteria did not proliferate 

beneath the CMC, indicating the antibacterial effect  was good (Figure 1sa, supplementary material). Sputtered in the 6–

2/80 min conditions, the antibacterial activity of the CMC was very high: the specimen created an inhibition halo of 

about 2 – 3 mm (Figure 3), which was irregular in shape, since the specimen did not adhere fully to the agar. 

Unfortunately, the cells seeded on the CMC sputtered in the 6–2/80 min conditions were all detached after 7 days of 

experimental time (Figure 2s in supplementary material). Moreover, the appearance of the coated CMC had altered, 

becoming brown with poor transparency, and the film was damaged. 

With deposition parameters 12–1, BJ cells colonized coated CMC and were alive throughout the experimental period. 

Figure 4 shows the number of cells grown on coated or non-coated CMC, counted in a Burker chamber, after detaching 
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them with trypsin from CMC. The cell numbers evaluated at 7 and 21 days of cell culture were compared to the number 

of cells seeded on the well (at time 0). In the absence of Ag/SiO2, cell numbers increased by 2.41 and 4.4 times at 7 and 

21 days, respectively, over those seeded at time 0. In the presence of Ag/SiO2(12–1), cell numbers increased by 1.6 and 

2.4 times at 7 and 21 days, respectively, over those seeded at time 0. Moreover, the number of cells grown on CMC in 

the presence of Ag/SiO2 was smaller than that of cells grown in the absence of Ag/SiO2. 

Differences in cell growth were also evidenced by analysis under light microscope (Figure 5). The figure shows that BJ 

cells colonized both components of CMC (mesh and film layers) and that their number increased during the 

experimental period, although cell growth was reduced in the presence of Ag/SiO2. The size of cells, in the presence of 

Ag/SiO2, was larger than that of cells without Ag/SiO2. The analysis of cell viability, evaluated as LDH release (Table 

4) and DNA content (data not reported), showed that the majority of cells were viable at all experimental times. 

However, using 12-1 sputtering conditions, the antibacterial activity was not present and bacteria proliferated on the 

CMC surface (Figure 1sb in supplementary material). 

To determine the activity of fibroblasts grown on CMC, type I collagen was evaluated (Figure 6) evidencing collagen 

deposition and no appreciable difference between activity in the presence or absence of Ag/SiO2 (12-1). 

Since preliminary experiments, in which the CMC was entirely coated, failed to detect an Ag concentration conferring 

antibacterial properties while maintaining prosthesis biocompatibility, it was decided thereafter to sputter the mesh layer 

alone. This was partly due to the difficulty of finding deposition parameters suitable for the film. It appears likely that 

the different additives in the film and in mesh layers mean that only the mesh layer can withstand the sputtering 

deposition parameters 12-1; film sputtered with the same parameters used for the mesh showed widespread superficial 

damage. It is in any case true that the mesh layer is the only part of this device that effectively requires antibacterial 

properties, whereas it is important for the film to have the lowest possible adhesion to the viscera. Further, the Ag 

coating is brownish in color, its intensity depending on the concentration and coating thickness. Since, as was said, 

transparency is important for the film layer, it is favorable to sputter the mesh layer and not the film. 

Using a duty cycle of 1 second over 24 (24–1) on the Ag target, for a total 15 minutes of deposition time (24–1/15), the 

mesh layer showed antibacterial activity. The count of CFU adhering to the CMC surface demonstrated a reduction in 

bacterial colony number of two orders of magnitude for sputtered mesh compared to non-sputtered controls (Figure 7). 

Figure 8 shows the number of BJ cells on the mesh layers at 14, 21 and 28 days, in the presence or absence of Ag/SiO2. 

In the absence of Ag/SiO2, cells colonized the mesh layers, and had increased by 1.36, 2.05, and 3.04 times, at 14, 21, 

and 28 days, respectively, compared with cells seeded at time 0. In the presence of the same concentration of Ag/SiO2, 

the cell number was lower than that of cells grown in the absence of Ag/SiO2: cells did not increase at 14 days, but 
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increased 1.81, and 2.29 times, at 21, and 28 days, respectively. The analysis of cell viability evaluated as LDH release 

(Table 4) and DNA content (data not reported) showed that the majority of cells were viable at all experimental times. 

To determine the activity of fibroblasts seeded on sputtered or non-sputtered mesh layers, collagen production was 

evaluated by real time PCR and immunohistochemistry (Figures 9 and 10). Evaluation of mRNA content evidenced 

that, in the presence of Ag/SiO2, cells expressed more collagen than in its absence; immunohistochemistry analysis 

showed no appreciable difference in the presence or absence of Ag/SiO2. 

The main aim of using Ag was to induce an antibacterial effect. However, its ability to modulate inflammatory and 

repair processes was also tested. Figure 11 shows that the IL–1β and IL–6 mRNA decreased in BJ cells seeded on 

coated mesh layers in comparison with cells seeded on non-coated mesh, at all experiment times. By contrast, the 

expression of TGF–β2, involved in tissue regeneration, increased at all experiment times. Changes in the expression of 

cytokines were confirmed by the evaluation of their release in the culture medium (Figure 12). 

 

4. Discussion 

Previous in vitro studies by the same research group demonstrated the biocompatibility of CMC. It has been shown to 

be colonized by human fibroblasts BJ [21] and keratinocytes NCTC 2544 [26] and to stimulate the expression of 

specific activity markers and of factors regulating cell proliferation. Prostheses for hernia repair should also possess 

antibacterial properties in order to prevent infection after surgery. 

Antimicrobial drugs are increasingly ineffective since bacteria develop antibiotic resistance, for example, through the 

expression of enzymes, which block antibacterial drugs in different ways. Moreover, antibacterial drugs can select 

resistant bacterial strains [27]. 

The recent development of nanotechnology may help solve infection problems [28]. Among metal nanoparticles, Ag 

and its compounds have always been the most interesting and promising candidates, because of their antibacterial 

properties [29-34]. Various methods can be used for Ag coating: plasma spray, ion beam assisted deposition, magnetron 

sputtering, micro-arc oxidation, and the sol-gel process [35]. In this research, Radio Frequency (RF) magnetron co–

sputtering of SiO2 and Ag was used. Several different Ag/SiO2 ratios and duty cycles were tested (Table 1) to determine 

the quantity of Ag able to confer antibacterial activity to prostheses without affecting their biocompatibility. Sputtering 

both layers of the CMC created a number of problems: the amount of Ag that maintained cell growth and activity did 

not confer antibacterial properties (Sputtering condition 12–1/15). By contrast, concentrations that determined 

antibacterial activity (sputtering conditions 6–2/15 and 6–2/80) caused cell death. In particular, in the latter condition, at 

14 days no cells were present on the coated CMC, whereas the number of cells growing on the non-coated CMC was 

larger than that at 7 days. Moreover, in these conditions, the macroscopic appearance of the CMC was affected, since 
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the film lost its transparency and was damaged. For these reasons, and because this part of the device is that most 

exposed to bacterial colonization, only the mesh layer was sputtered thereafter. The film side is manufactured so as to 

be extremely smooth, avoiding tissue adhesion and adherence, and this property can be maintained if it is left untreated. 

After a careful optimization of the process parameters, the sputtering condition 24–1/15 was found to be the most 

promising one in terms of conferring antibacterial activity, as evidenced by the CFU count. In future research, the test 

will be repeated using the more efficient sonication method to detach bacteria from the CMC surface, to confirm the 

data presented here. Under sputtering condition 24–1/15, BJ cells were able to grow, although to a lesser extent than in 

the absence of Ag/SiO2. This was probably due to the fact that the Ag released in the early days inhibited cell growth. 

For longer incubation times, the same percentage of cell growth was observed both in presence and the absence of 

Ag/SiO2. Moreover, the majority of fibroblasts were viable and maintained their ability to produce collagen. 

As regards the effect of Ag/SiO2 on inflammation, IL-1β and IL–6 expression was lower in the presence of Ag/SiO2. 

Conversely, TGF–β2, which favors fibroblast proliferation and activity, increased. An acute inflammatory process is 

essential in the early phases of tissue healing [7–11]; this acute inflammation then decreases, and is followed by the 

production of granulation tissue, specific tissue regeneration, and prosthesis integration. These events are consequent on 

a decrease in inflammatory cytokines, and an increase in factors inducing cell growth, such as TGF–β2. The results of 

this research agree with those of previous research evidencing that cytokines, IL–6, IL–1β and TNF–α, levels increased 

in the culture medium of BJ cells grown on prostheses at the early experimental time, and decreased at subsequent time-

points [21]. 

 

5. Conclusions 

In this study, polypropylene prostheses for hernia repair were coated with silver nanoclusters-silica composite 

(Ag/SiO2) layer by means of a sputtering technique, to impart antibacterial properties. 

The sputtering process parameters were tailored to balance antibacterial activity and biocompatibility of the prosthesis. 

In the early experiments, the coating was applied to both the macroporous light mesh and the thin transparent film of the 

CMC, Thereafter, it was deposited only on the mesh. The Ag/SiO2 coating appeared uniform both onto hernia 

prosthesis and onto the mesh layer alone. 

When the entire CMC prosthesis was coated with the amount of Ag/SiO2 that could confer excellent antibacterial 

properties, biocompatibility was lost. Conversely, when the mesh layer alone was coated, the prosthesis maintained its 

transparency, showed good antibacterial properties, and biocompatibility: fibroblasts colonized the coated mesh layers 

and produced collagen. Cell viability measurements showed that the majority of cells were viable at all experimental 
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times. Moreover, a decrease of IL–1β and IL–6 and an increase of TGF–β2 were observed in fibroblasts seeded on the 

mesh layer coated with Ag/SiO2 compared with mesh layers without Ag/SiO2. 
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Figure captions 

Fig. 1 

The prosthesis (CMC) comprising two polypropylene layers, one macroporous light mesh and one thin transparent film. 

Fig.2 

FESEM micrographs (a) secondary electrons, (b) backscattering electrons and (c) EDS analysis of prosthesis sputtered 

under 6-2 conditions. 

Fig. 3 

Inhibition halo in the presence of prosthesis sputtered under 6-2 conditions. 

Fig. 4 

Growth of fibroblasts BJ on CMC not sputtered and sputtered with Ag/SiO2. 

Data are means ± S.D. of 4 experiments. Means with different letters are significantly different from one another 

(p<0.05) as determined by analysis of variance followed by the post-hoc Newman-Keuls test. 

CMC, Clear Mesh Composite not sputtered; Ag, CMC sputtered with Ag/SiO2 (12–1/15) 

Fig. 5 

Light-microscope analysis of fibroblasts BJ grown on the CMC not sputtered and sputtered with Ag/SiO2. 

CMC, non-sputtered Clear Mesh Composite; Ag, CMC sputtered with Ag/SiO2 (12–1/15) 

 

Fig. 6 

Immunohistochemistry analysis of type I collagen produced by fibroblasts BJ grown on CMC not sputtered and 

sputtered with Ag/SiO2. CMC, non-sputtered Clear Mesh Composite; Ag, CMC sputtered with Ag/SiO2 (12–1/15) 

 

Fig. 7 

Effect of Ag/SiO2 sputtering (24-1/15) on bacterial colony formation (CFU assay). 

Data are means ± S.D. of 3 experiments. Student t test: p < 0.05. 

Fig. 8 

Growth of fibroblasts BJ on mesh layer not sputtered and sputtered with Ag/SiO2. 

Data are means ± S.D. of 4 experiments. Means with different letters are significantly different from one another 

(p<0.05) as determined by analysis of variance followed by the post-hoc Newman-Keuls test. 

mesh, non-sputtered mesh layer; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15) 

Fig. 9 
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Types I and III collagen mRNA content in fibroblasts BJ grown on the mesh layer not sputtered and sputtered with 

Ag/SiO2. 

Values of mRNA content, evaluated at 14, 21 and 28 days, in fibroblasts grown on meshes coated with Ag/SiO2 (black 

bar) were referred to those of fibroblasts grown in the absence of Ag, taken as 1 (white bar). Data are means of 2 

experiments. 

mesh, non-sputtered mesh layer; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15) 

 

Fig. 10 

Immunohistochemistry analysis of type I collagen produced by fibroblasts BJ grown on the mesh layer not sputtered 

and sputtered with Ag/SiO2. 

mesh, non-sputtered mesh layer; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15) 

 

Fig. 11 

IL-1β, IL-6, and TGF-β2 mRNA content in fibroblasts BJ grown on the mesh layer not sputtered and sputtered with 

Ag/SiO2 

mRNA content was evaluated at 14, 21 and 28 days. Data are means of 2 experiments. Values of fibroblasts grown on 

mesh layer coated with Ag/SiO2 (black bar) were referred to those of fibroblasts grown in the absence of Ag, taken as 1 

(white bar). 

mesh, non-sputtered mesh layer; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15) 

 

Fig. 12 

IL-1β, IL-6 and TGF-β2 protein content in the culture medium of fibroblasts BJ grown on the mesh layer not sputtered 

and sputtered with Ag/SiO2. 

Protein content was evaluated at 14, 21 and 28 days. Data are means of 2 experiments. Values of cytokines evaluated in 

the medium of fibroblasts BJ grown on mesh layer coated with Ag/SiO2 (black bar) were referred to those of fibroblasts 

grown in the absence of Ag, taken as 100 % (white bar). 

mesh, non-sputtered mesh layer; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15) 

 



Table 1. Sputtering conditions and summary of the biological performances of coated samples 

 

Deposition 
Name 

Total 
Deposition 

Time 
(minutes) 

Film 
Thickness 

(nm) 

Total Duty 
Cycle Time 
(seconds) 

Plasma ON 
period 

(seconds) 

Plasma OFF 
period 

(seconds) 

Ag/Si ratio 
%at 

 

Prostheses 
part covered 

Antibacterial 
activity 

Biocompatibility 

6 – 2 / 15 15 50 – 100 6 2 4 0.4 ÷ 0.5 Mesh+film   
6 – 2 / 80 80 300 – 350 6 2 4 0.4 ÷ 0.5 Mesh+film   

12 – 1 / 15 15 50 – 100 12 1 11 < 0.4 Mesh+film   
24 – 1 / 15 15 50 – 100 24 1 23 < 0.4. Mesh only   

 



Table 2. Working gas and vacuum parameters of sputtering process 

 

WORKING GAS/VACUUM PARAMETERS 

Atmosphere: Ar 100 % 

Vacuum Pressure: 70 (0.7) µPa (pbar) 

Deposition Pressure: 7.5 (7.5) dPa (µbar) 

 



TABLE 3 Forward and reverse sequences of real-time PCR primers 

GENE 

Accession number 

SEQUENCE 

FW (Forward) 

RV (Reverse) 

Ta 

No. CYCLES 

Product 
length 

GAPDH 

NM_002046 

FW 5’-GTC GGA GTC AAC GGA TTT GG-3’ 

RV 5’-GGG TGG AAT CAT ATT GGA ACA TG-3’ 

52°C 

35 X 

142 bp 

IL-1β 

AF043335 

FW 5’- GCA CCT TCT TTC CCT TCA TCT TT-3’ 

RV 5’- GCG TGC AGT TCA GTG ATC GTA-3’ 

52°C 

40 X 

105 bp 

IL-6 

M14584 

FW 5’- CCA GTA CCC CCA GGA GAA GAT T-3’ 

RV 5’- GTC AAT TCG TTC TGA AGA GGT GAG T-
3’ 

52°C 

40 X 

78 bp 

TGF-β2 

NM_003238 

FW 5’- GAG TAC TAC GCC AAG GAG GTT TAC A-
3’ 

RV 5’- CGA ACA ATT CTG AAG TAG GGT CTG T-
3’ 

52°C 

40 X 

104 bp 

Collagen type I 

NM_000089 

FW 5’- GAG GAA ACT GTA AGA AAG G-3’ 

RV 5’- GTT CCC ACC GAG ACC-3’ 

58°C 

35 X 

150 bp 

Collagen type III 

NM_000090 

FW 5’- ACT CGC CCT CCT AAT GG- 3’ 

RV 5’- GGC ATG ATT CAC AGA TTC C- 3’ 

59°C 

35 X 

148 bp 

Ta, annealing temperature 

 



Table 4 Lactate dehydrogenase activity in culture medium of fibroblasts BJ grown on CMC or mesh 

layer not sputtered or sputtered with Ag/SiO2  

 7 days 14 days 
CMC 1.54 ± 0.20 2.81 ± 0.55 
CMC + Ag 1.21 ± 0.12 2.40 ± 0.26 
   
Mesh layer 1.60 ± 0.30 3.08 ± 0.54 
Mesh layer + Ag 1.42 ± 0.55 2.84 ± 0.31 
 

Data are espressed as nmoles of NADH consumed/min/ml of medium and are means ± S.D. of 3 

experiments. 

CMC, Clear Mesh Composite not sputtered; Ag, CMC sputtered with Ag/SiO2 (12–1/15); 

mesh, mesh layer not sputtered; Ag, mesh layer sputtered with Ag/SiO2 (24-1/15). 
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