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Summary 32 

Food safety is a critical public health issue for consumers and the food industry because microbiological contamination 33 

of food causes considerable social and economic burdens on health care. Most foodborne illness comes from animal 34 

production, but as of the mid-1990s in the United States and more recently in the European Union, the contribution of 35 

fresh produce to foodborne illness has rapidly increased. 36 

Recent studies have suggested that sterilisation with nonthermal plasma could be a viable alternative to the traditional 37 

methods for the decontamination of heat-sensitive materials or food because this technique proves capable of 38 

eliminating microorganisms on surfaces without altering the substrate. In the last ten years, researchers have used 39 

nonthermal plasma in a variety of food inoculated with many bacterial species. All of these experiments were conducted 40 

exclusively in a laboratory and, to our knowledge, this technique has not been used in an industrial setting. Thus, the 41 

purpose of this review is to understand whether this technology could be used at the industrial level. The latest 42 

researches using nonthermal plasma on fresh produce were analysed. These evaluations have focused on the Log 43 

reduction of microorganisms and the treatment time. 44 

Keywords 45 

Decontamination, foodborne outbreak, fresh produce, pathogenic microorganism, nonthermal plasma 46 

 47 

Microorganisms and foodborne outbreak 48 

Currently, the global burden of foodborne diseases due to the presence of contaminating and pathogenic 49 

microorganisms in food remains high although in the 1990s some foodborne illnesses declined due to an intensive and 50 

focused effort in checking some parts of the food chain (Purayidathil and Ibrahim, 2012; Braden and Tauxe, 2013; 51 

WHO, 2015). In 2015, the Foodborne Diseases Active Surveillance Network (FoodNet) identified 20,107 confirmed 52 

cases of infections, 4,531 hospitalisations and 77 deaths caused by nine pathogens transmitted through food at 10 sites, 53 

which encompassed 15% of the U.S. population. The incidence of confirmed cases per 100,000 were reported for 54 

Salmonella (15
.
89), Campylobacter (12

.
97), Shigella (5

.
53), Cryptosporidium (3

.
31), Shiga Toxin-Producing E. coli 55 

(STEC) non-O157 (1
.
64), STEC O157 (0

.
95), Vibrio (0

.
39), Yersinia (0

.
29), Listeria (0

.
24) and Cyclospora (0

.
13). 56 

Compared with the incidence rate in 2012–2014, the incidence of confirmed infections in 2015 was significantly higher 57 

for STEC non-O157 (40% increase) and Cryptosporidium (59% increase) (Huang et al., 2016). The 2014 overall 58 

incidence for the nine pathogens was significantly lower compared with the 1996–1998 data (-29%) with further 59 

reductions in 2006–2008 (-3%) and 2011–2013 (-8%) (CDC 2014). The incidence of infections and the number of 60 

hospitalisations were the highest for Salmonella; the percent of hospitalisation and deaths were the highest for Listeria.  61 
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The range of infections and the food sources that transmits them have changed as new pathogens have emerged or are 62 

better detected, the high-risk population has increased, the previous syndromes of unknown cause have been linked to 63 

foodborne infection, and the nature and sources of the food we eat has changed (Braden and Tauxe, 2013). Most 64 

foodborne illnesses come from animal production, but as of the mid-1990s in the US and more recently in the EU, the 65 

contribution of fresh produce to foodborne illness has rapidly increased (Nguyen-the et al. 2016). Many studies are 66 

reporting foodborne outbreaks due to fresh produce in the United State, the European Union, and in Australia over the 67 

last twenty years (Callejon et al. 2015; Nuesch-Inderbinen and Stephan 2016; Yeni et al. 2016). Food of non-animal 68 

origin comprise a wide range of fruit, vegetables, salads, seeds, nuts, cereals, herbs, spices, fungi, and algae. Food of 69 

non-animal origin are commonly consumed in a variety of forms: (i) ready-to-eat (RTE) foods in which the constituents 70 

are raw or minimally processed (e.g., fresh-cut and prepackaged) and (ii) foods that are processed with heat or other 71 

inactivation treatments. Food of non-animal origin are a major component of almost all meals. Mixed-ingredient RTE 72 

salads are considered healthy and convenient and are popular with consumers. 73 

From 2004 to 2012, the United States and European Union have reported a total of 377 and 198 fresh produce-74 

associated outbreaks, respectively. This high number of outbreaks linked to fresh produce may be due to improved 75 

surveillance, but it might also be related to changes in consumer food preferences, food production and distribution 76 

practices, as well as the emergence of new foodborne pathogens (Harris et al. 2003; Sivapalasingam et al. 2004, 77 

Callejon et al. 2015). In the United States, the absolute number of outbreaks due to fresh produce ranges from 23 to 60 78 

per year and does not show a clear trend during this period. In fact, there were substantial increases in 2006 (57 79 

outbreaks), 2008 (51 outbreaks), and 2011 (60 outbreaks) (CDC 2014). In the European Union, the number of outbreaks 80 

fluctuate between 10 and 42, underlining increases in 2006 (29 outbreaks), 2009 (34 outbreaks) and 2010 (44 81 

outbreaks). In the EU, sprouted fenugreek seeds (a fresh produce) were involved in the major food outbreak in 2011, 82 

which resulted in 3000 cases of bloody diarrhoea, 852 cases of haemolytic-uremic syndrome (HUS) and 53 deaths. 83 

A broad spectrum of microorganisms and food vehicles are involved in fresh produce-associated outbreaks. Norovirus 84 

was the main pathogen responsible (59% of foodborne illnesses in the US and 53% of foodborne illnesses in the EU) 85 

followed by Salmonella (18% of foodborne illnesses in the US and 20% of foodborne illnesses in the EU). Specifically, 86 

in the US, Norovirus outbreaks were strongly correlated with the consumption of salads; in the EU, this pathogen was 87 

mainly linked to berries (raspberries). Salmonella was the most common bacterial pathogen responsible for fresh 88 

produce outbreaks, accounting for nearly half of the outbreaks due to bacteria (53% in the US and 50% in the EU). 89 

Salmonella outbreaks was the microorganism involved in the majority of sprout-associated outbreaks (14 in the US and 90 

11 in the EU). Regarding other microorganisms, E. coli and Campylobacter outbreaks were more prevalent in the US 91 

than in the EU. Regarding food vehicle, E. coli was associated with the consumption of various fresh vegetables, fruits 92 
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and sprouts, whereas Campylobacter jejuni was involved in fresh produce outbreaks linked to the consumption of salad, 93 

lettuce, tomatoes and melons (Callejon et al. 2015). 94 

Surveys of fresh produce have revealed contamination with pathogenic bacteria in commodities such as tomatoes, 95 

lettuce, salad greens, sprouting seeds, unpasteurized fruit juice, cantaloupe and nuts (EFSA 2013). At the same time, 96 

evaluation of prevalence and trends of bacterial contamination in fresh fruits and vegetables initiated in Europe. In 97 

Sweden, a survey on prepackaged ready-to-eat (RTE) mixed ingredient salad showed that 9% of the 141 samples were 98 

contaminated with Listeria monocytogenes. The results of this study indicate that pathogenic bacteria can be present in 99 

RTE salads in Sweden (Soderqvist et al. 2016). This public health concern should be addressed by improving the 100 

hygiene of the raw ingredients, the production environment and the cold temperature from the manufacturer to the 101 

consumer. There is a great need to address possible decontamination treatments for fresh fruit and vegetables from 102 

production systems that would otherwise lack adequate safety. However, such treatments raise issues of acceptability by 103 

consumers and the high costs incurred. The final use of fruits and vegetables in the food distribution chain, e.g., eaten 104 

raw versus heat treated, could also be adapted with regard to the microbiological risks that they could pose. 105 

 106 

Plasma Chemistry and Reactive Species 107 

The term ‘‘plasma’’ refers to a partially or completely ionized gas consisting of photons, ions, free electrons and atoms 108 

in their fundamental or excited states having a net neutral charge. The free electric charges (electrons and ions) make 109 

plasma electrically conductive, internally interactive, and strongly responsive to electromagnetic fields.  110 

Electrons and photons are usually designated as ‘‘light’’ species in contrast to the rest of the constituents designated as 111 

‘‘heavy’’ species. The chemical effects occurring in an electrical discharge are the consequence of energy injection into 112 

a gas stream by way of electron-impact processes under the influence of an electric field. Collisions of energetic 113 

electrons with neutral species produce ionizations, fragmentations of molecules, and electronic, vibrational, and 114 

rotational excitations of the neutral gas. Plasma chemistry can be divided into two parts: 1) a volume chemistry, which 115 

addresses the formation and loss reactions of species in the discharge volume, and 2) a surface chemistry, implying 116 

adsorption and desorption of molecules at the substrate surface or etching (Fridman 2008). 117 

The elementary processes in nonthermal plasma (NTP) volume can be broadly divided into a primary process and a 118 

secondary process based on the timescale of streamer propagation. Figure 1a summarizes the typical timescale of the 119 

elementary processes in NTP. The primary process (typical timescale of approximately 10
-8

 s) includes ionization, 120 

excitation, dissociation, light emission, and charge transfer. The efficiency of the primary process highly depends on the 121 

energization methods and their parameters, such as the pulse, direct current (DC) + pulse, alternating current (AC), AC 122 

+ pulse or DC, voltage rise-time, and frequency.The products of primary processes (electrons, radicals, ions, and 123 
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excited molecules) go to subsequent chemical reactions in the secondary process. Some additional radical species and 124 

reactive molecules are also formed by radical-neutral recombination in the secondary process. The timescale of the 125 

secondary process is very fast (approximately 10
-3

 s), so the residence time of the gas in the NTP reactor has modest or 126 

no influence on the overall results. The total efficiency ƞT of the NTP process will be the product of the efficiencies of 127 

the primary process (ƞPrimary) and of the chemical reactions in the secondary process (ƞSecondary) (i.e.),ƞT = ƞPrimary 
.
 128 

ƞSecondary (Kim 2004). 129 

 130 

Plasma-Surface Interaction 131 

Many fundamental processes take place at the plasma-substrate interface. The plasma can deliver kinetic energy 132 

through ions accelerated in the sheaths and by vibrationally-excited molecules, potential energy through charged ions 133 

and metastable states, chemical energy through plasma-produced reactive atoms, radicals and electromagnetic energy 134 

from the decay of electronically excited species. The interactions with the surface are complex and regulated by specific 135 

rate constants (K). The relation between the kinetics of surface processes and the kinetics of processes taking place 136 

within the plasma near the surface can be seen in Figure 1b. The atom and molecule entering the plasma are converted 137 

into activated species with kinetic rate constant Ka, following a specific reaction channel. The activated species arrive 138 

at the surface and may be adsorb there  139 

A + (s) � A(s) (Kb). 140 

After adsorption, they may make a chemical reaction with the surface  141 

A(s) + B(s) � AB(s) + (s) (Kc), which then desorbs  142 

AB(s) � AB + (s) (Ke), or which may spread onto the same surface (Kd). 143 

Alternatively, the reactive atoms may desorb without undergoing any reaction  144 

A(s) � A + (s) (Ki) 145 

or may undergo associative desorption with a reactive atom already on the surface  146 

A(s) + B(s) � AB + (s) (Kj). 147 

Reactive species may couple in the plasma to form larger nuclei of materials and dust particles (Kg). 148 

Finally, the product resulting from the recombination between desorbed species in the plasma may return to the surface 149 

(Kh) (D’Angelo 2010).. Note that e represents an electron, (s) an open surface site, A(s) a specie A bound to the 150 

surface, B(s) a specie B bound on the surface. 151 

 152 

How plasma acts on the microorganisms  153 
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The cytoplasmic membrane is the barrier between the inner compartment of the cell and the external environment, and 154 

it is the main, and a very crucial target for most of the techniques of decontamination (chemical and/or physical), 155 

targeting the membrane structure or specific functions. Comprehension of the kinetics of cell inactivation by 156 

experimental investigation is the most important step to obtain a consistent temporal measure of microbial destruction.  157 

One kinetic measurement parameter is known as Decimal value (D). This parameter has been used widely by studying 158 

sterilization by plasma. The D value is the time required to reduce an original concentration of microorganisms by 90%. 159 

The first complete analysis of literature on low pressure cold plasma (LPCP) sterilization was shown by Moisan et al. 160 

(2001) regarding the role of UV photons and reactive species on the survival curve of microorganisms. In the classical 161 

sterilization process, such plots show a single straight line, while plasma sterilization shows a survival diagram with two 162 

or three different linear segments. The analysis of the three single steps in the survival curve suggested many basic 163 

mechanisms: (i) direct destruction by UV irradiation of the genetic material of the microorganism; (ii) erosion of the 164 

microorganism, atom by atom, through intrinsic photodesorption by UV irradiation to form volatile compounds 165 

combining atoms intrinsic to the microorganisms; and (iii) erosion of the microorganism, atom by atom, through 166 

etching. The etching results from the adsorption of reactive species from the plasma (glow or afterglow) on the 167 

microorganism with which they subsequently undergo a chemical reaction to form volatile compounds. In certain cases, 168 

the etching mechanism is enhanced by UV photons acting synergistically with the reactive species (Laroussi et al. 169 

2005). Laroussi et al. (2002) studied the germicidal effect of atmospheric pressure cold plasma. Depending on the type 170 

of microorganism, the type of medium in which the microorganisms are seeded, the method of exposure (direct or 171 

remote exposure) and the experimental work on the germicidal effects of cold atmospheric pressure plasma have shown 172 

survivor curves with different shapes, revealing that bacteria inactivation by non-equilibrium high pressure plasmas is a 173 

composite process. If UV is present in a dominant manner, the survivor curves often exhibit a first rapid step (small D 174 

value) followed by a second slower step. When the presence of UV is not dominant, such as in the case of an air 175 

plasma, single-slope survivor curves were mostly observed. However, in many cases, multi-slope curves have also been 176 

reported. 177 

Montie et al. (2000) proposed three mechanisms of cell destruction in the case of high-pressure cold plasmas assuming 178 

the presence of oxygen and moisture in the gas mixture: 1) the susceptibility of unsaturated fatty acids to attacks by 179 

hydroxyl radicals caused lipid peroxidation as confirmed by Dolezova and Lukes (2015); 2) the susceptibility of amino 180 

acids to oxidation caused protein; and 3) the formation of base adducts, which are generated through reactions with 181 

oxygen radicals that caused DNA oxidation.  182 

Mendis et al. (2000) suggested that the membrane rupture of gram-negative bacteria is caused by charge accumulation 183 

on the outer surface of the membrane; gram-positive bacteria do not undergo visible morphological changes (Laroussi 184 
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et al. 2002, 2005). However, different types of bacteria show a drastic reduction in cell viability. The diffusion of 185 

plasma-generated reactive species through the cell membrane induces the promotion of some reactions with the inner 186 

biomaterials: these reactions lead to cell death or non-viable cells (Lackmann and Bandow 2014). Recently, Guo et al. 187 

2015 postulated an explanation to justify the role of UV radiation in different plasma conditions. When UV radiation 188 

played a major role in the inactivation process, the gases were Ar or a N2/O2 mixture in combination with microwave-189 

driven discharge. In this context, the ionization energy of Ar is higher than N2 and O2, making N2 and O2 ions (i.e., N2
+
, 190 

N
+
, O2

+
, and O

+
). In these conditions, the amount of positive nitrogen ions and negative oxygen ions was similar, and 191 

NO was generated with more respect to the electric discharge directly in the air. A similar mechanism happens with the 192 

excited state of NO. UV radiation in this experimental condition plays a main role in bacterial inactivation because their 193 

doses in the 200–300 nm wavelength range is higher than other experimental conditions.  194 

 195 

Chemical reactions of plasma on microbial cell 196 

As described, the effect of plasma treatment on microbial cells is mainly due to the plasma ions and cell interactions. 197 

Commonly used oxygen and nitrogen gas plasmas are excellent sources of reactive oxygen-based and nitrogen-based 198 

reactive species (O, O2, O3, OH, NO, and NO2) because they have a direct oxidative effect on the outer surface of 199 

microbial cells. Atomic oxygen can potentially be a very effective sterilizing agent, with a chemical rate constant for 200 

oxidation at room temperature of approximately 10
6
 times that of molecular oxygen (Misra et al. 2011). 201 

The lipid bilayer of microbial cells is more susceptible to atomic oxygen as the reactivity of atomic oxygen is much 202 

higher than that of molecular oxygen, which can degrade lipids, proteins and DNA of cells. The damage of the double 203 

bonds in the lipid bilayer causes impaired transportation of molecules in and out of the cell. The bombardment of 204 

reactive oxygen species (ROS) on the surface of bacterial cells also disrupts the membrane lipids. During plasma use, 205 

microorganisms are exposed to an intense bombardment by the radicals, which most likely provoke surface lesions that 206 

the living cell cannot repair sufficiently, a process termed “etching”. Plasma etching is based on the interaction of 207 

relative energetic ions and activated species with the molecules of the substrate. The accumulation of charges imparts 208 

an electrostatic force at the outer surface of cell membranes and can cause cell wall rupture called 209 

electropermeabilization, which is the same principle occurring in pulsed electric fields. During plasma treatment, where 210 

plasma initiates, catalyses, or helps sustain a complex biological response, compromised membrane structures (e.g., 211 

peroxidation) or changes in the membrane-bound proteins and/or enzymes leads to complex cell responses and may 212 

affect many cells, as the affected cell then signals others. 213 

The reactive species in plasma have been widely associated with direct oxidative effects on the outer surface of 214 

microbial cells. The presence of water increases the effect of plasma: the highest efficiency in sanitization was observed 215 
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in moist organisms in comparison to dry organisms. One potential application of plasma in decontamination is based on 216 

the damage the deoxyribonucleic acid (DNA) in the chromosomes by plasma reactive species. Radiobiology studies 217 

conducted by Wiseman and Halliwell (1996) showed that the formation of ROS (hydroxyl radicals, hydrogen peroxide, 218 

and superoxide anion) near DNA stimulates a strong biocidal effect. The use of plasma results in malondialdehyde 219 

(MDA) formation in microbial cells, which is responsible for DNA adduct formation, leading to cell damage. In 220 

particular, reactive species interact with water, leading to the formation of OH
-
 ions, which are most reactive and 221 

harmful to the cells. These radicals that formed in the hydration layer around DNA are responsible for 90% of DNA 222 

damage. Hydroxyl radicals can then react with organics in its proximity leading to subsequent oxidation and 223 

consequently, to DNA destruction as well as destruction of cellular membranes and other cell components. Several 224 

active species can react with cells, but reactive oxygen species such as oxygen radicals (especially single state oxygen) 225 

can produce significant effects on cells by reacting with various macromolecules (Thirumdas et al. 2015).  226 

 227 

Plasma obtained at atmospheric pressure 228 

Non-equilibrium atmospheric pressure discharges can operate in a wide range of temperatures and pressures and are 229 

often called partial discharges (PD). PDs are gas discharges that are restricted electrical discharges. These discharges 230 

can occur in the presence of a solid or liquid dielectric and frequently show a non-stationary character (a transition 231 

between different plasma modes). The plasma is described by generative technology with the following main PDs: 232 

dielectric-barrier discharges (DBD), corona discharges (CD), microwave discharges (MW) and atmospheric pressure 233 

plasma jet (APPJ). 234 

Siemens invented the DBD for the generation of ozone in 1857. Thereafter, it was established that the discharge takes 235 

place in a number of individual filamentary breakdown channels in a plane-parallel gap with insulated electrodes. It was 236 

shown that the plasma parameters of the micro-discharges (breakdown channels) can be controlled and modulated, and 237 

therefore, the DBD process can be optimised for applications of interest. DBD installations have various electrode 238 

configurations and are characterized by the presence of one or more solid dielectric layers (glass, quartz, and ceramic) 239 

placed between the metal electrodes. The gap between the electrodes with the dielectric can range from 100 mm to 240 

many centimetres. In atmospheric pressure environments, under 10 kV AC conditions, a few mm distance between the 241 

electrodes is common. Multiple set-ups of the electrode systems are also common, and joint and non-joint electrode 242 

configurations are possible (Denes and Manolache 2004). The dielectric layer plays an important role for (i) limiting the 243 

discharge current and avoiding the arc transition (it enables to work with a continuous/pulsed mode) and (ii) distributing 244 

random streamers on the electrode surface and ensuring a homogeneous treatment (Tendero et al 2006). 245 
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The second type of PDs is CD. Corona discharges are often called negative, positive, bipolar, AC, DC, or high 246 

frequency (HF), depending on the polarity of the stressed electrodes, whether one or both positive and negative ions are 247 

implicated in the current conduction, and on the nature of the driving field. Corona discharges are exclusive in 248 

comparison to other plasmas due to the presence of a large low field drift region positioned between the ionization zone 249 

and the passive (low field) electrode. Ions and electrons penetrating the above mentioned drift space will undergo 250 

neutralization, excitation and recombination reactions including both electrons and neutral and charged molecular and 251 

atomic species. Nevertheless, because of the multiple inelastic collision processes in the atmospheric pressure 252 

environment, the charged active species running off from the ionization zone (electrons and ions) will have energies 253 

lower than the ionization energies, and as a consequence, neutral chemistry (free radical chemistry) will typify the drift 254 

region (Denes and Manolache 2004). 255 

Microwave discharges (MW) are produced by electromagnetic waves with frequencies above hundreds of MHz. The 256 

discharge usually burns in a box, where the waves are in resonance. Because of the necessity for a microwave-257 

generating apparatus and the need for protection, this type of plasma, in general, seems to be of minor interest in 258 

biotechnology, but it was often used in the basic research of NTP interactions with biomaterials. However, MW belongs 259 

to one of the few NTP plasma sources already certified for medical use (Scholtz et al. 2015). 260 

The last type of PDs is the atmospheric pressure plasma jet (APPJ) that can operate with radio frequency (RF) power or 261 

microwave power. The ionized gas from the plasma jet flows out through a nozzle and is directed on a substrate situated 262 

a few millimetres to a few centimetres downstream. This APPJ source configuration has been used for many 263 

applications such as the surface treatment of different materials and biomedical applications and for example, the 264 

induction of apoptosis in cancer cells. An apparatus with characteristics similar to APPJ is the APP torch system, but 265 

the plasma is generated between the tip of the centre of the electrode and the ground electrode near the exit of the torch. 266 

A relatively low electron and gas temperature characterizes the APPJs because gas molecules are dissociated between 267 

the electrodes in a glow micro-discharge. In the case of plasma torches, a very high voltage of 10 to 50 kV is generally 268 

applied, and the reactive gas is dissociated in an arc discharge. Consequently, a typical atmospheric pressure plasma 269 

torch is predisposed to have a significantly greater gas temperature and plasma density than that found in APPJs (Kim et 270 

al 2016). 271 

 272 

Nonthermal plasma application on fresh produce 273 

The potential of the nonthermal plasma technology in food decontamination has emerged since the mid-90s when many 274 

studies that evaluated the effectiveness of plasma on pure cultures of many microorganisms started being published 275 

(Surowsky et al. 2015). These studies found that the plasma inactivation capacity depended on many factors such as the 276 
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type of technology used to generate the plasma, the feed gas, the voltage, the treatment time, the direct or indirect 277 

exposure, the species and the concentration of the tested microorganisms and the structural characteristics of the 278 

produce (Li and Farid 2016). It is only in the last ten years that researchers began to apply nonthermal plasma to the 279 

surface of different foods inoculated with many bacterial species. Of the 47 studies we found, 40% used cold plasma on 280 

fresh fruits and vegetables, 21% on dry fruits, nuts and seeds, 19% on protein foods such as meat and cold cuts, 10% on 281 

spices, 6% on liquids and 4% on the eggshells. All of these experiments were performed exclusively in the laboratory 282 

and, to our knowledge, real industrial applications have not yet been made. Indeed, these studies have shown both the 283 

ability of plasma processes to break down the microbial load and some limitations in the efficacy on biofilms, the 284 

capacity of penetration and a lack of knowledge on the nutritional effects (Fernández and Thompson 2012; Niemira 285 

2012; Pinela and Ferreira 2015; Surowsky et al. 2015; Thirumdas et al. 2015). The 34 studies on fresh foods, as defined 286 

previously, are shown in Tables 1–7 since they were the most involved in the foodborne outbreaks that occurred in 287 

Europe and industrialized countries. The studies were divided into seven groups based on the type of microorganism 288 

subjected to the treatment. The authors applied cold plasma on fresh vegetables (56%), dry fruits, nuts and seeds (29%) 289 

and spices (15%). Different plasma processes were used including plasma jet (34%), DBD (20%), MW (14%), low 290 

pressure plasma (12%), CD (3%), and other plasma processes (17%). Furthermore, the gas most widely used was air 291 

(44%), followed by pure Ar (17%), mixtures of He/O2 and Ar/O2 (12%) and pure N2 (9%). 292 

The inoculated microorganisms included Escherichia coli spp., Salmonella spp., Listeria spp., mesophilic bacteria, 293 

fungi, yeast, spores and bacilli and even other microorganisms involved in the decay process. The microorganisms that 294 

were most studied were E. coli spp., fungi, mesophilic bacteria and Salmonella spp. Notably, E. coli spp. and especially 295 

toxin-producing species and Salmonella spp. are often responsible for foodborne outbreaks. As reported above, in 296 

Europe, the main causative agent of these events is Campylobacter jejuni and Campylobacter coli, but in the tables, no 297 

studies are reported that used this microorganism. Campylobacter jejuni was used in one study where it was inoculated 298 

at a concentration of approximately 4 Log on skinless chicken breast and chicken thighs with the skin then subjected to 299 

a direct treatment with air plasma at atmospheric pressure (DBD) for three minutes; this treatment was enough to break 300 

down the microorganism of 2
.
45 Log and 3

.
11 Log, respectively (Dirks et al. 2012). The lack of studies on the plasma 301 

treatment of foods inoculated with Campylobacter spp. could be due to it is a microaerophilic microorganism and the 302 

difficulty in cultivation. To our knowledge, studies assessing the effectiveness of nonthermal plasma on food 303 

contaminated with Norovirus have not been published since Norovirus, which is a primary cause of acute gastroenteritis 304 

in both Europe and the United States, cannot be cultivated. There is only one study in which human faeces 305 

contaminated with Norovirus GII.4 were treated with cold atmospheric pressure plasma for 15 minutes to reach a 306 

reduction of 1
.
60 Log genomic equivalents ml

-1
 (Ahlfeld et al. 2015).  307 
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To verify whether the effectiveness of the plasma treatment depended on the type of microorganism inoculated, the type 308 

of technology, the type of gas, the type of food, and the exposure time, statistical analyses were performed on the data 309 

reported in tables 1–7. The statistical analysis was conducted with the statistical package IBM SPSS Statistics 22.0 310 

using Spearman’s test, ANOVA, Probit regression analysis, and t test. At first, statistical analyses were performed by 311 

considering the data as a whole, and then the data were divided by the type of microorganism treated, the type of plasma 312 

process used, the type of gas for the generation of plasma, the treatment time, and the type of food treated. As shown in 313 

tables 1–7, the data are not homogeneous, such as the data regard the treated microorganism groups and the type of 314 

plasmas that were used. In some cases, the lack of homogeneity in the data prevented statistical analysis or resulted in 315 

no significant differences due to groups containing a low number of data. In order to evaluate the microorganism 316 

abatement due to the different process parameters, Log reduction was used. The mean and standard deviation of the 317 

abatement and the treatment time related to different parameters are shown in table 8. On average, the plasma 318 

treatments are able to reduce the microorganism on fresh produce by 2
.
73 ± 1

.
44 Log, and this highlights their 319 

potentiality in food decontamination. The mean abatement of the seven groups of microorganisms ranges from 3
.
25 ± 320 

1
.
56 Log for Listeria spp. to 1

.
51 ± 1

.
04 Log for bacilli and spores, but there are no statistically significant difference 321 

between the groups. 322 

Regarding the plasma processes that were studied, plasma jet was applied on all microorganisms that were considered 323 

followed by DBD and MW, which were tested on all microorganisms except bacilli/spores and the so called “other” 324 

respectively. The abatements obtained with the different plasma processes range between 3
.
55 ± 1

.
63 Log for those 325 

identified as other treatment and 1
.
23 ± 0

.
64 Log for corona discharge plasma. The ANOVA revealed a statistically 326 

significant difference comparing the mean abatements with the type of plasma used (F = 4
.
996, p <0

.
001), especially 327 

between the DBD and the plasma jet (p <0
.
005) and between the DBD and the MW (p <0

.
05). This highlights the 328 

efficacy of the DBD more than the other two most used treatments, regardless of the type of microorganism or treated 329 

food. Additionally, low pressure plasma and the so called “other processes” reached good microorganism reduction, but 330 

they were not studied on all groups of microorganisms. 331 

Furthermore, the mean abatement obtained in relation to the type of gas used to generate the plasma amounted between 332 

4
.
10 ± 0

.
85 Log reached with SF6 and 1

.
80 ± 1

.
22 Log with Ar. Moreover, the differences between the groups were 333 

statistically significant (F = 4
.
290, p <0

.
001) and in particular, from mixtures Ar/O2 and N2 (p <0

.
05) and between the 334 

mixtures Ar/O2 and Ar (p <0
.
05). This mixture was then proven to be the most effective (3.86 ± 0.94), immediately 335 

followed by air, that is the only gas used for generating plasma applied to all seven groups of microorganisms, and it 336 

reached a mean Log reduction of 3.03 ± 1.58. This is an important result because air is the least expensive gas, and this 337 

characteristic could be critical for the application of plasma treatment on an industrial scale. No correlation was found 338 
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between the abatement and processing time used during the experiments except for bacilli and spores (Rho = 0
.
730, p 339 

<0
.
05), which are the most resistant microorganisms among those surveyed. The treatment times ranged between 22

.
22 340 

± 7
.
54 min for bacilli and spores and 3

.
45 ± 3

.
77 min for E. coli spp. The ANOVA showed a statistically significant 341 

difference between the treatment times used on different groups of microorganisms (F = 4
.
565, p <0

.
05). Using the post 342 

hoc Tukey’s test, the most significant differences were found between E. coli spp. and mesophilic bacteria (p <0
.
05), E 343 

coli spp. and bacilli and spore (p <0
.
01), Listeria spp. and bacilli and spores (p <0

.
05) and, finally, between fungi and 344 

bacilli/spores (p <0
.
05). Therefore, E. coli spp. appears as the microorganism that requires little time to treat, and this is 345 

definitely an important finding given the problems related to the disease because of toxin producers such as E. coli 346 

O157:H7. The treatment time is also significantly different relative to the type of plasma used (F = 5
.
068, p <0

.
001) and 347 

in particular, between the treatment time with the plasma jet and MW (p <0
.
001) and between MW and “other” 348 

treatments (p <0
.
05). In fact, the latter have proved to be the most rapid followed by those at low pressure, while MW 349 

reached the highest treatment time. Plasma jet was the quickest among the most used treatments in the time to 350 

microorganisms inactivation (4
.
26 ± 6

.
45 min). The mean treatment time of each group of microorganisms changes in 351 

relation to the plasma process that is applied, except for Salmonella spp. mesophilic bacteria and fungi. Plasma jet and 352 

DBD were the quickest in breaking the other group considered. 353 

We did not find statistically significant differences in the Log reduction of E. coli spp., Listeria spp., mesophilic 354 

bacteria, and bacilli/spores on the bases of the plasma process, even if E. coli spp. reached the higher abatement by MW 355 

and DBD, Listeria spp. and mesophilic bacteria by DBD and bacilli/spores by MW. DBD was the most efficient 356 

treatment applied to Salmonella spp. (p < 0
.
01), while low pressure plasma was the better for the treatment of fungi (p < 357 

0
.
05). The air resulted in the most efficient gas in the abatement of Listeria spp. (p < 0

.
05) and bacilli/spores (p < 0

.
05) 358 

while no other differences were found for the other groups of microorganisms.  359 

Plasma treatments achieved a higher mean reduction in microorganisms on fresh vegetables followed by dry fruits, nuts, 360 

and seeds and spices. This higher mean Log reduction on fresh fruit and vegetables could be due to the higher activity 361 

water since the humidity or amount of water plays a fundamental role in the production of reactive species to achieve 362 

fast inactivation of microorganisms (Guo et al. 2015). Moreover, as reported by Surowsky et al. (2015), food structures 363 

can create physical barriers to the plasma penetration, and the surface of spices (e.g., peppercorn) with cracks, grooves, 364 

and pits might cause shadow effects for the emitted UV photons and other reactive species (Hertwig et al. 2015a).  365 

 366 

Conclusion 367 

The application of plasma technology on an industrial scale is possible only if it reaches sufficient levels of 368 

effectiveness, efficiency and economic and environmental sustainability. 369 
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The low pressure processes are very effective, especially against fungi and yeast, but they need a vacuum system, so 370 

they cannot be used on-line. Nonthermal atmospheric plasma proves itself to be a suitable technology for use on fresh 371 

produce to reduce the microbial load that is present and to avoid reaching the minimum infective dose of pathogens. 372 

Considering the treatment time, it may be compatible with an industrial application using the DBD or the plasma jet.   373 

Nonthermal plasma has many benefits including a lower operating temperature, lower water consumption, lower cost, 374 

timely production of the acting agents, and a lack of residues during production when compared to thermal and 375 

chemical treatments (Thirumdas et al. 2015; Ziuzina et al. 2015; Li and Farid 2016). Moreover, this technology could 376 

be used for the degradation of chemical contaminants such as pesticides and mycotoxins as reported by Heo et al. 377 

(2014) and Ouf et al. (2015), respectively. 378 

The nonthermal plasma treatment could be a step in a multi-stage process in which microorganisms, pathogens and 379 

chemical contaminants need to overcome in order to survive in the food environment. The correct combination of 380 

hurdles can ensure microbial safety, stability and quality of foods (Pinela and Ferreira 2015). For example, nonthermal 381 

plasma can be generated by applying electric fields to the gas that is inside packages (Ziuzina et al. 2012). Misra et al. 382 

(2014) studied the effects of cold plasma on packaged strawberries, and they reached a 3 Log reduction of the total plate 383 

count. Additionally, Min et al. (2016) inhibited E. coli O157:H7, Salmonella, L. monocytogenes, and Tulane virus 384 

inoculated on Romaine lettuce treated in package by a DBD process. Therefore, this treatment received increasing 385 

attention from the food industry because it can prevent the recontamination of fresh produce during the packaging step, 386 

and it has the potential to scale up for commercial application (Li and Farid 2016). 387 

The nutritional and organoleptic characteristics of fresh produce treated by plasma technology should be taken into 388 

account because it does not negatively affect the consumer’s buying decision. Some authors studied the impact of 389 

plasma treatment on colour, pH, vitamins, fat and enzymes, but the results were not always uniform. Sometimes the 390 

researchers encountered some colour changes that adversely affected the appearance of the product, while the 391 

inactivation of enzymes such as polyphenol oxidase and peroxidase would be useful since they catalyse the browning 392 

reaction at cut surfaces. Furthermore, there is a lack of evidence regarding organoleptic evaluations of fresh produce 393 

treated by nonthermal plasma (Surowsky et al. 2015). 394 

The aim of food industry is to produce healthy food with high nutritional and organoleptic quality, reducing the 395 

environmental impact, while raising their economic standards with a net profit. This matter must be taken into account 396 

for the evaluation of the economic and environmental sustainability of cold plasma treatments.  397 

Niemira (2012) proposed some interesting considerations about the economic aspects of plasma in food safety and food 398 

processing. These calculations derive from the transposition and the elaboration of the costs of plasma in non-food 399 

commercial applications because the economic data presented in most food processing publications are not well 400 
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detailed. Presuming that plasma technology costs are higher commercially compared to the lab, there is a certain gain in 401 

energy efficiency and other engineering advantages. Each cold plasma technology has specific fixed and recurrent costs, 402 

which are difficult to predict; while other costs (like consumables, energy consumption and feed gas) can be predicted. 403 

The electricity can be scaled from the lab to commercial equipment, reaching values comparable to other industrial 404 

apparatus (up to 90 kW). The feed gases and their purity represent crucial costs: the price range for helium is 7
.
10–9

.
39 405 

€ m
-3

. For oxygen and nitrogen purchased in gas cylinders, the price is about 2
.
25–9

.
22€ m

-3
, but if generated directly in 406 

the plant from the surrounding air the costs were abated to 0
.
02–0

.
15 

.
€ m

-3
. In the past few years, advances were made 407 

in realizing the industrial atmospheric plasma equipment devoted to non-food applications. On the whole, the trend is to 408 

decrease both energy and process gas consumption, leading to situations of 35 kW of energy and 360 l min
-1

 for plasma 409 

jet technology and 100 l min
-1

 for DBD plasma technology, which is less than the consumption calculated in Niemira 410 

(2012) due to the drastically decreased costs when not using feed gases. Despite considerable improvements, it is 411 

possible to consider Niemira’s (2012) conclusions still applicable, especially regarding the grade uncertainty of the 412 

optimal mixture composition for the biocidal activity. The antimicrobial contribution of very expensive gases, such as 413 

helium, has to be verified with accuracy in order to justify the high price and to find the exact applications. 414 

All these observations show that nonthermal plasma technologies could be applied at the industrial scale, especially for 415 

the reduction of food spoilage microorganisms, foodborne pathogens and chemical contaminants. These outcomes 416 

represent a main goal for improving public health and reducing the economic impact of health care associated with 417 

foodborne outbreaks and removing unsold goods after the expiration date.   418 
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Table 1 Studies regarding the treatment of Escherichia coli spp. on fresh produce.  

Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

E. coli NCTC 12900 Cherry tomatoes 3.1 Log CFU sample-1  DBD Air Indirect 60 s  Ziuzina et al. 2014 

  Strawberries 3
.
5 Log CFU sample

-1  
   300 s 

E. coli BL21 and XL10 Iceberg lettuce 3.3 Log CFU sample-1  DBD Air Indirect 300 s Ziuzina et al. 2015 

 E. coli BL21 and XL10 (biofilm 24h, 4°C) Iceberg lettuce 3
.
0 Log CFU sample

-1  
   300 s 

E. coli BL21 and XL10 (biofilm 48h, 4°C) Iceberg lettuce 4.0 Log CFU sample-1     300 s 

E. coli DSM1116 Apples 4
.
6 Log CFU g

-1 
MW Air (20 l min

-1
) Indirect 10 min Baier et al. 2015a 

  Carrots 6
.
5 Log CFU g

-1 
   300 s 

E. coli O157:H7 ATCC 35150 Dried fig 1.3 Log CFU g-1 MW N2 Direct 10 min Lee et al. 2015 

E. coli ATCC 11775 Lettuce 1
.
5 Log CFU g

-1 
Streamer CD Ar  Indirect 10 min Bermúdez-Aguirre et 

al. 2013 

 

 Carrots 0
.
5 Log CFU g

-1 
   10 min 

 Tomatoes 1.7 Log CFU g-1    10 min 

E. coli K12 (DSM 11250) Corn salad 2
.
7 Log CFU cm

-2 
APPJ Ar (20 l min

-1
) Direct 120 s Baier et al. 2013 

E. coli DSM 1116 Corn salad 4.1 Log CFU cm-2 APPJ Ar + 0.1%O2  Semi 

Direct 

60 s Baier et al. 2014 

 Cucumbers 4
.
7 Log CFU cm

-2 
  60 s 

Apples 4
.
7 Log CFU cm

-2 
  60 s 

Tomatoes 3
.
3 Log CFU cm

-2 
  20 s 
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E. coli O104:H4 ST678 Corn salad 3.3 Log CFU cm-2 APPJ Ar + 0.1%O2  Semi 

Direct 

120 s Baier et al. 2015b 

 Corn salad 3
.
4 Log CFU cm

-2 
  60 s 

E. coli O157:H7 (C9490) Almonds 1
.
3 Log CFU ml

-1 
APPJ Air Direct 20 s Niemira 2012 

E. coli O157:H7 (ATCC 35150) Almonds 1
.
1 Log CFU ml

-1 
  Direct 10 s  

E. coli O157:H7 (ATCC 43894) Almonds 1.1 Log CFU ml-1   Direct 10 s  

E. coli type 1 (W00871) Mango pericarps > 3.0 Log CFU cm-2 Double APPJ He + 0.5%O2 Direct 5 s Perni et al. 2008a 

 Honeydew melon 

pericarps 

> 3
.
0 Log CFU cm

-2 
   5 s 

E. coli type 1 (W00871) Mango cut fruit 2
.
5 Log CFU cm

-2 
Double APPJ He + 0

.
5%O2 Direct 30 s Perni et al. 2008b 

 Cantaloupe melon 

cut fruit 

1
.
5 Log CFU cm

-2 
   40 s 

E. coli O157:H7 ATCC 43894 Golden delicious 

apples 

3
.
6 Log CFU ml

-1 
Gliding arc 

plasma 

Air (40 l min
-1

) Indirect 120 s Niemira and Sites 

2008 

 

Table 2 Studies regarding the treatment of Salmonella spp. on fresh produce.  

Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

 S. enterica serovar Typhimurium  ATCC 

14028 

Cherry tomatoes 6.3 Log CFU sample-1  DBD Air Indirect 10 s  Ziuzina et al. 2014 

 

 S. enterica serovar Typhimurium  ATCC  Strawberries 3.8 Log CFU sample-1     300 s 
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14028 

 S. enterica serovar Typhimurium  ATCC 

14028 

Iceberg lettuce 2
.
4 Log CFU sample

-1  
DBD Air Indirect 300 s Ziuzina et al. 2015 

 

 S. enterica serovar Typhimurium  ATCC 

14028 (biofilm 24h, 4°C) 

Iceberg lettuce 4
.
1 Log CFU sample

-1  
   300 s 

 S. enterica serovar Typhimurium  ATCC 

14028 (biofilm 48h, 4°C) 

Iceberg lettuce 5
.
1 Log CFU sample

-1  
   300 s 

S. Typhimurium DT 104 Cabbage 1
.
5 Log CFU g

-1 
MW N2 Direct 10 min Lee et al. 2015 

 Lettuce 1
.
5 Log CFU g

-1 
   10 min 

 S. enterica serovar Typhimurium  4/74 Lettuce 2.7 Log CFU sample-1 APPJ N2 Direct 15 min Fernández et al. 

2013  Strawberries 1
.
8 Log CFU sample

-1 
   15 min 

 Potatoes 0
.
9 Log CFU sample

-1 
   15 min 

S. enterica DSM 17058 Black pepper seeds 2.7 Log CFU g-1 APPJ Ar Direct 15 min Hertwig et al. 2015a 

 Black pepper seeds 4
.
1 Log CFU g

-1 
MW Air Indirect 30 min 

S. Anatum F4317 Almonds 1
.
2 Log CFU ml

-1 
APPJ Air Direct 20 s Niemira 2012 

S. Stanley H0558 Almonds 1
.
1 Log CFU ml

-1 
APPJ Air Direct 20 s 

S. Enteritidis PT30  Almonds 1.1 Log CFU ml-1 APPJ Air Direct 20 s 

S. Typhimurium  (mono colture biofilm) Iceberg lettuce 3
.
74 Log CFU cm

-2 
Cold oxygen 

plasma 

Air Direct 300 s Jahid et al. 2015 
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S. Typhimurium  (mix colture biofilm) Iceberg lettuce 1.74 Log CFU cm-2 Cold oxygen 

plasma 

  300 s 

S. Stanley H0558 Golden Delicious 

apples 

3.7 Log CFU ml-1 Gliding arc 

plasma  

Air (40 l min-1) Indirect 180 s Niemira and Sites 

2008 

S. enterica serovars Enteritidis PT30 Black pepper seeds 5.0 Log CFU g-1  Arc discharge 

plasma 

Air (20 l min-1) + 

Ar (14 l min
-1

) 

Indirect 80 s Sun et al. 2014 

 

 

Table 3 Studies regarding the treatment of Listeria spp. on fresh produce.  

Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

L. monocytogenes NCTC 11994 Cherry tomatoes 6
.
7 Log CFU sample

-1  
DBD Air Indirect 120 s  Ziuzina et al. 2014 

 Strawberries 4
.
2 Log CFU sample

-1  
   120 s  

L. monocytogenes NCTC 11994 Iceberg lettuce 2
.
3 Log CFU sample

-1  
DBD Air Indirect 300 s Ziuzina et al. 2015 

L. monocytogenes NCTC 11994 (biofilm 

24h, 4°C) 

Iceberg lettuce 3
.
8 Log CFU sample

-1  
   300 s 

L. monocytogenes NCTC 11994 (biofilm 

48h, 4°C) 

Iceberg lettuce 4
.
5 Log CFU sample

-1  
   300 s 

L. monocytogenes KCTC 3569 Cabbage 2.1 Log CFU g-1 MW He:O2 (99.8:0.2) Direct 10 min Lee et al. 2015 

 Lettuce 1
.
9 Log CFU g

-1 
   10 min 
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 Dried fig 1.6 Log CFU g-1    10 min 

L. innocua DSM 20649 Tomatoes 4
.
2 Log CFU cm

-2 
APPJ Ar + 0

.
1%O2  Semi 

Direct 

20 s Baier et al. 2014 

L. monocytogenes Scott A Mango cut fruit 2.5 Log CFU cm-2 Double APPJ He + 0.5%O2 Direct 30 s Perni et al. 2008b 

 Cantaloupe melon 

cut fruit 

2
.
0 Log CFU cm

-2 
   40 s 

 

Table 4 Studies regarding the treatment of aerobic mesophilic bacteria on fresh produce.  

Substrate Max. Log reduction Plasma Source Process gas Direct Indirect Max exp. time Reference 

Strawberries 2
.
4 Log CFU g

-1 
DBD Air Indirect  300 s Misra et al. 2014a 

 3
.
7 Log CFU g

-1
   90%N2+10% O2  Indirect  300 s 

 3
.
1 Log CFU g

-1
   65%O2+16%N2+19%CO2  Indirect  300 s 

Melon (fresh cut) 3.4 Log CFU g-1 DBD Air Direct 30 min + 30 min Tappi et al. 2016 

Cherry tomatoes 5
.
0 Log CFU sample

-1  
DBD Air Indirect 300 s Ziuzina et al. 2014 

Strawberries 1.6 Log CFU sample-1     60 s 

Apples 3
.
4 Log CFU g

-1 
MW Air (20 l min

-1
) Indirect 300 s Baier et al. 2015a 

Cucumbers 1
.
5 Log CFU g

-1 
   10 min 

Tomatoes 3.3 Log CFU g-1    300 s 

Carrots 5.2 Log CFU g-1    300 s 

Black pepper seeds 4
.
0 Log CFU g

-1 
MW Air (18 l min

-1
) Indirect 60 min Hertwig et al. 2015c 
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Crushed oregano 1.6 Log CFU g-1    30 min 

Paprika powder 3
.
3 Log CFU g

-1 
   60 min 

Red pepper powder 1
.
0 Log CFU g

-1 
MW N2, N2:O2 (99

.
3:0

.
7), He, He:O2 

(99.8:0.2) 

Direct 20 min Kim et al. 2014 

Black pepper seeds 0
.
7 Log CFU g

-1 
APPJ Ar Direct 15 min Hertwig et al. 2015a 

Black pepper seeds 2
.
0 Log CFU g

-1 
MW Air Indirect 30 min 

Blueberries 0.9 Log CFU g-1 APPJ Air Indirect 90 s Lacombe et al. 2015 

Chickpeas 2
.
0 Log CFU ml

-1
 cm

-2 
Micro-discharge plasma Air Direct 300 s Mitra et al. 2014 

Iceberg lettuce 4
.
1 Log CFU cm

-2 
Cold oxygen plasma Air Direct 300 s Jahid et al. 2015 

Iceberg lettuce 1
.
6 Log CFU cm

-2 
   300 s 

 

Table 5 Studies regarding the treatment of fungi and yeast on fresh produce.  

Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

Yeast/molds Strawberries 3
.
30 Log CFU g-

1
 DBD Air Indirect  300 s Misra et al. 2014a 

Yeast/molds Strawberries 3
.
30 Log CFU g

-1
 DBD 90%N2+10%O2  Indirect  300 s Misra et al. 2014b 

 Strawberries 3
.
40 Log CFU g

-1
  DBD 65%O2+16%N2+19

%CO2 

Indirect  300 s 

Yeast/molds Cherry tomatoes 5
.
0 Log CFU sample

-1 
 DBD Air Indirect 120 s  Ziuzina et al. 2014 
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 Strawberries 1.4 Log CFU sample-1     300 s 

Yeast/molds Black pepper seeds 3
.
1 Log CFU g

-1
 MW Air (18 l min-1) Indirect 300 s Hertwig et al. 2015c 

 Crushed oregano 1.8 Log CFU g-1    90 min 

 Paprika powder No reduction    90 min 

A. flavus ATCC 200026 Red pepper powder 2.5 Log CFU g-1 MW N2 Direct 20 min Kim et al. 2014 

  2
.
0 Log CFU g

-1
  He Direct 20 min 

  0.4 Log CFU g-1  N2:O2 (99.3:0.7) Direct 20 min 

  0
.
3 Log CFU g

-1
  He:O2 (99

.
8:0

.
2) Direct 20 min 

Yeast/molds Blueberries 1.2 Log CFU g-1 APPJ Air Indirect 120 s  Lacombe et al. 2015 

A. niger Date palm fruit 3
.
0 Log CFU cm-

2
 Double APPJ Ar Direct 9 min Ouf et al. 2015 

S. cerevisae (NCYC 2843) Mango pericarps > 3.0 Log CFU cm-2 Double APPJ He + 0,5%O2 Direct 10 s Perni et al. 2008a 

 honeydew melon 

pericarps 

> 3
.
0 Log CFU cm

-2
    30 s 

S. cerevisae (NCYC 2843) Mango cut fruit 2
.
5 Log CFU cm-

2
 Double APPJ He + 0,5%O2 Direct 40 s Perni et al. 2008b 

 Cantaloupe melon cut 

fruit 

1.0 Log CFU cm-2 Double APPJ He + 0,5%O2 Direct 40 s  

A. flavus WU 0211 Brown rice cereal bars 4.2 Log CFU g-1 APPJ Ar Direct 20 min Suhem et al. 2013 

A. parasiticus 631 Hazelnuts 5
.
0 Log CFU g

-1
 LPCP SF6 Direct 300 s Barasan et al. 2008 

 Peanuts 3.3 Log CFU g-1    300 s 

 Pistachios 4
.
0 Log CFU g

-1
    300 s 
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Natural fungi Pistachios 2.0 Log CFU g-1 LPCP Ar + O2 (10:1) Direct 60 s Pignata et al. 2014 

 

Table 6 Studies regarding the treatment of bacilli and spores on fresh produce.  

Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

B.cereus spores ATCC 10876, ATCC 

13061, W-1 

Red pepper powder No reduction MW N2, N2:O2 (99
.
3:0

.
7), 

He, He:O2 (99.8:0.2) 

Direct 20 min Kim et al. 2014 

B. subtilis spores PS 832 Black pepper seeds 0
.
8 Log CFU g

-1
 APPJ Ar Direct 15 min Hertwig et al. 2015a 

B. atrophaeus spores WIS 39 6/3  1.3 Log CFU g-1    15 min 

B. subtilis spores PS 832  2
.
4 Log CFU g

-1 
MW Air Indirect 30 min 

B. atrophaeus spores WIS 39 6/3  2,8 Log CFU g
-1 

   30 min 

Total bacterial spores   0
.
6 Log CFU g

-1 
APPJ Ar Direct 15 min 

Total bacterial spores  1
.
7 Log CFU g

-1 
MW Air Indirect 30 min 

B. subtilis spores PS 832 Black pepper seeds 1
.
0 Log CFU g

-1 
APPJ Ar, A r+ 0

.
2%N2 

and/or 0.13%O2 

Direct 15 min Hertwig et al. 2015b 

Total bacterial spores Black pepper seeds 3
.
0 Log CFU g

-1 
MW Air (18 l min

-1
) Indirect 30 min  Hertwig et al. 2015c 

 

Table 7 Studies regarding the treatment of other bacteria on fresh produce.  
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Microorganism Substrate Max. Log reduction Plasma Source Process gas Direct 

Indirect 

Max exp. 

time 

Reference 

Anaerobic mesophilic lactobacilli Melon (fresh cut) 2
.
0 Log CFU g

-1 
DBD Air Direct 30 min + 30 

min 

Tappi et al. 2016 

Anaerobic mesophilic lactococci Melon (fresh cut) 2
.
5 Log CFU g

-1 
   30 min + 30 

min 

P. agglomerans (VCM) Mango pericarps > 3
.
0 Log CFU cm

-2 
Double APPJ He + 0

.
5%O2 Direct 2

.
5 s Perni et al. 2008a 

G.r liquefaciens (NCIMB 9136)  > 3.0 Log CFU cm-2    2.5 s 

P. agglomerans (VCM) honeydew melon 

pericarps 

> 3
.
0 Log CFU cm

-2 
   2

.
5 s 

G. liquefaciens (NCIMB 9136)  > 3
.
0 Log CFU cm

-2 
   2,5 s 

G. liquefaciens (NCIMB 9136) Mango cut fruit 2.0 Log CFU cm-2 Double APPJ He + 0.5%O2 Direct 10 s Perni et al. 2008b 

 Cantaloupe melon cut 

fruit 

2
.
5 Log CFU cm

-2 
   20 s  

A. hydrophila planktonic Iceberg lettuce 7
.
0 Log CFU ml

-1 
Cold oxygen 

plasma 

Air Direct 15 s Jahid et al. 2014 

A. hydrophila biofilm Iceberg lettuce 3
.
0 Log CFU cm

-2 
   300 s 

Aerobic psychrotrophic bacteria Melon (fresh cut) 1.0 Log CFU g-1 DBD Air Direct 30 min + 30 

min 

Tappi et al. 2016 

 

Table 8 Mean Log reduction and treatment time for different processing parameters. 
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 Microorganisms Log reduction (mean ± SD) 

Process parameter All microorganism  E. coli spp. Salmonella spp.  Listeria spp.  Mesophilic bacteria  Fungi/yeast Bacilli/spores Other  

All processes 2
.
73 ± 1

.
44 2

.
94 ± 1

.
41 2

.
87 ± 1

.
60 3

.
25 ± 1

.
56 2

.
69 ± 1

.
34 2

.
55 ± 1

.
40 1

.
51 ± 1

.
04 2

.
91 ± 1

.
50 

DBD 3
.
49 ± 1

.
33 3

.
38 ± 0

.
40 4

.
34 ± 1

.
46 4

.
30 ± 1

.
59 3

.
20 ± 1

.
16 3

.
28 ± 1

.
27  1

.
83 ± 0

.
76 

Corona discharge 1.23 ± 0.64 1.23 ± 0.64       

Plasma jet 2
.
32 ± 1

.
16 2

.
84 ± 1

.
23 1

.
65 ± 0

.
77 2

.
90 ± 1

.
15 0

.
82 ± 0

.
18 2

.
56 ± 1

.
14 0

.
92 ± 0

.
30 2

.
75 ± 0

.
42 

MW 2.35 ± 1.52 4.13 ± 2.63 2.37 ± 1.50 1.87 ± 0.25 2.81 ± 1.37 1.44 ± 1.21 1.98 ± 1.21  

Low pressure 3
.
58 ± 1

.
25     3

.
58 ± 1

.
25   

Other plasma process 3
.
55 ± 1

.
63  3

.
54 ± 1

.
35  2

.
58 ± 1

.
34   5

.
00 ± 2

.
83 

Air 3
.
03 ± 1

.
58 3

.
19 ± 1

.
62 3

.
20 ± 1

.
69 4

.
30 ± 1

.
59 2

.
84 ± 1

.
31 2

.
25 ± 1

.
66 2

.
47 ± 0

.
57 3

.
10 ± 2

.
30 

N2 1.74 ± 0.64  1.68 ± 0.65   2.50 ± 0.00*   

He 1
.
25 ± 0

.
83     2

.
00 ± 0

.
00*   

Ar 1.80 ± 1.22 1.61 ± 0.92   0.70 ± 0.00* 3.62 ± 0.88 0.90 ± 0.36  

SF6 4
.
10 ± 0

.
85     4

.
10 ± 0

.
85   

He mixture 2
.
32 ± 0

.
77 2

.
50 ± 0

.
71  2

.
02 ± 0

.
33  1

.
96 ± 1

.
24  2

.
75 ± 0

.
42 

N2 mixture 1
.
99 ± 1

.
53    2

.
60 ± 1

.
42 2

.
37 ± 1

.
70 0

.
50 ± 0

.
71  

Ar mixture 3
.
86 ± 0

.
94 3

.
92 ± 0

.
68    2

.
03 ± 0

.
00*   

Fresh vegetables 3
.
08 ± 1

.
37 3

.
25 ± 1

.
29 3

.
02 ± 1

.
59 3

.
42 ± 1

.
54 3

.
02 ± 1

.
34 2

.
73 ± 1

.
17  2

.
91 ± 1

.
50 

Dry fruits, nuts, seeds 2.18 ± 1.42 1.20 ± 0.14 1.14 ± 0.02   3.72 ± 1.12   

Spices 1
.
92 ± 1

.
35  3

.
93 ± 1

.
16  2

.
10 ± 1

.
30 1

.
44 ± 1

.
21 1

.
51 ± 1

.
04  
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 Treatment time (minute) (mean ± SD) 

All processes 9.80 ± 14.07 3.45 ± 3.77 7.66 ± 7.62 4.59 ± 3.90 16.87 ± 20.37 6.91 ± 7.37 22.22 ± 7.54 16.90 ±27.72 

DBD 11
.
83 ± 19

.
66 4

.
20 ± 1

.
79 4

.
03 ± 2

.
16 3

.
80 ± 1

.
64 13

.
50 ± 22

.
84 4

.
40 ± 1

.
34  60

.
00 ± 0

.
00 

Corona discharge 10.00 ± 0.00 10.00 ± 0.00       

Plasma jet 4
.
26 ± 6

.
45 0

.
74 ± 0

.
64 8

.
71 ± 7

.
84 0

.
50 ± 0

.
16 8

.
25 ± 9

.
55 4

.
71 ± 7

.
42 15

.
00 ± 0

.
00 0

.
11 ± 0

.
12 

MW 18.80 ± 14.91 8.33 ± 2.89 16.67 ± 11.55 10.00 ± 0.00 25.00 ± 22.22 12.57 ± 9.34 28.00 ± 4.47  

Low pressure 4
.
00 ± 2

.
00     4

.
00 ± 2

.
00   

Other plasma process 3.66 ± 1.85  3.58 ± 1.77  5.00 ± 0.00   2.62 ± 3.36 

*Data from only one study. 
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Figure captions 

Figure 1 Time evolution of the elementary processes in NTP volume (a) and schematic surface processes (b) (modified 

from Kim et al. 2004 and D’Angelo 2010). 
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