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Abstract

During our digital social life, we share terabytes of information that can potentially reveal
private facts and personality traits to unexpected strangers. Despite the research efforts
aiming at providing efficient solutions for the anonymization of huge databases (including
networked data), in online social networks the most powerful privacy protection “weapons”
are the users themselves. However, most users are not aware of the risks derived by the in-
discriminate disclosure of their personal data. Moreover, even when social networking plat-
forms allow their participants to control the privacy level of every published item, adopting
a correct privacy policy is often an annoying and frustrating task and many users prefer
to adopt simple but extreme strategies such as “visible-to-all” (exposing themselves to the
highest risk), or “hidden-to-all” (wasting the positive social and economic potential of so-
cial networking websites). In this paper we propose a theoretical framework to i) measure
the privacy risk of the users and alert them whenever their privacy is compromised and ii)
help the users customize semi-automatically their privacy settings by limiting the number
of manual operations. By investigating the relationship between the privacy measure and
privacy preferences of real Facebook users, we show the effectiveness of our framework.

Keywords: privacy measures, online social networks, active learning

1. Introduction

Social networks are one of the main traffic sources in the Internet. At the end of 2014,
they attracted more than 31% of the worldwide Internet traffic towards the Web. Facebook,
the most famous social networking platform, drives alone 25% of the whole traffic. As a
comparison, Google search engine represents just over 37% of the global traffic. More than
two billions people are estimated to be registered in at least one of the most popular social
media platforms (Facebook hits the goal of one billion users in 2012). Overall, the number
of active “social” accounts are more than two billions. In view of these numbers, the risks
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due to a more and more global and unaware diffusion of our sensitive and less sensitive
personal data cannot be overlooked. If, on the one hand, many users are informed about
the risks linked to the disclosure of personal facts (private life events, sexual preferences,
diseases, political ideas, and so on), on the other hand the awareness of being exposed
to privacy breaches each time we disclose facts that are apparently less sensitive is still
insufficiently widespread. A GPS tag far from home or pictures taken during a journey,
may alert potential thieves who may clean out the apartment. The disclosure of family
relationships may expose our own or other family members’ privacy to the risks of stalking,
slander and cyberbullying. Moreover, the research project myPersonality (Kosinski et al.,
2013), carried out at the University of Cambridge, has shown that, by leveraging Facebook
user’s activity (such as ”Likes” to posts or fan pages) it is possible to “guess” some very
private traits of the user’s personality. According to another study, it is even possible to infer
some user characteristics from the attributes of users who are part of the same communities
(Mislove et al., 2010). As a consequence, privacy has become a primary concern among
social network analysts and Web/data scientists. Also, in recent years, many companies are
realizing the necessity to consider privacy at every stage of their business. In practice, they
have been turning to the principle of Privacy by Design (Cavoukian, 2012) by integrating
privacy requirements into their business model.

Despite the huge research efforts aiming at providing efficient solutions to the anonymiza-
tion of huge databases (including networked data) (Zou et al., 2009; Xue et al., 2012; Zhou
& Pei, 2011; Backstrom et al., 2011), in online social networks the most powerful privacy
protection is in the hands of the users: they, and only they, decide what to publish and to
whom. Even though social networking sites (such as Facebook), notify their users about
the risks of disclosing private information, most people are not aware of the dangers due
to the indiscriminate disclosure of their personal data. Moreover, despite the fact that all
social media provide some advanced tools for controlling the privacy settings of the user’s
profile, such tools are not user-friendly and they are barely utilized, in practice. According
to Facebook former CTO Bret Taylor, most people have modified their privacy settings, but
in 2012, still “13 million users [in the United States] said they had never set, or didn’t know
about, Facebook’s privacy tools”. Often the choices of many users are limited to two: i)
make their own profile completely public, being exposed to all the above mentioned risks,
ii) make their own profile completely private, preventing all opportunities offered by the
social network sites. Some studies try to foster risk perception and awareness by “mea-
suring” users’ profile privacy according to their privacy settings (Liu & Terzi, 2010; Wang
et al., 2014). These metrics usually require a separation-based policy configuration: in other
terms, the users decide “how distant” a published item may spread in the network. Typical
separation-based privacy policies for profile item/post visibility include: visible to no one,
visible to friends, visible to friends of friends, public. However, this policy fails when the
number of user friends becomes large. According to a well-known anthropological theory,
in fact, the maximum number of people with whom one can maintain stable social (and cy-
bersocial) relationships (known as Dunbar’s number) is around 150 (Dunbar, 2016; Roberts
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et al., 2009), but the average number of user friends in Facebook is more than double1.
This means that many social links are weak (offline and online interactions with them are
sporadic), and a user who sets the privacy level of an item to “visible to friends” probably
is not willing to make that item visible to all her friends. Other studies try to make the
customization process of the privacy settings less frustrating (Fang & LeFevre, 2010). How-
ever, a consensus on how to identify a trade-off between privacy protection and exploitation
of social network potentials is still far from being achieved.

With the final goal of enhancing users’ privacy awareness in online social networks, in
this paper we propose a theoretical framework to i) measure the privacy risk of the users and
alert them whenever their privacy is compromised and ii) help the exposed users customize
semi-automatically their privacy level by limiting the number of manual operations thanks
to an active learning approach. Moreover, instead of using a separation-based policy for
computing the privacy risk, in this paper we adopt a circle-based formulation of the privacy
score proposed by Liu & Terzi (2010). We assume that a user may set the visibility of each
action and profile item separately for each other user in her friend list. For instance, a user u
may decide to allow the access to all photo albums to friends f1 and f2, but not to friend f3.
In our score, the sensitivity and visibility of profile item i published by user u are computed
according to the set of u’s friends that are allowed to access the information provided by i.
We show experimentally that our circle-based definition of privacy score better capture the
real privacy leakage risk. Moreover, by investigating the relationship between the privacy
measure and the privacy preferences of real Facebook users, we show that our framework may
effectively support a safer and more fruitful experience in social networking sites. Differently
from other research works addressing the same problem, our framework takes into account
both users’ preferences and the real sensitive information leakage risk in deciding how much
visibility should be given to each profile item.

Our contribution can be resumed as follows:

• we define a formal framework for privacy self-assessment in online social networks
based on both sensitivity and visibility of user profile items;

• we use a new privacy score leveraging more accurate circle-based policies;

• we present a semi-supervised machine learning approach to support the configuration
of the visibility level of user profile items;

• we report the results of several experiments on original data obtained from real Face-
book users.

The remainder of the paper is organized as follows: we briefly review the related literature
in Section 2; the overview and the theoretical details of our framework are presented in
Section 3; Section 4 provides the report of our experimental validation; finally, we draw
some conclusions, discuss some limitations and propose some future research directions in
Section 5.

1http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
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2. Related work

With the unrestrained success of online social networks, there has been increasing re-
search interests about privacy protection methods for individuals that participate in them.
Most research efforts are devoted to the identification and formalization of privacy breaches
and to the anonymization of networked data. The goal is to modify data so that the proba-
bility of identifying an individual within the network is minimized. This objective is achieved
by either anonymizing only the network structure or anonymizing both network structure
and user attributes (Zheleva & Getoor, 2011).

Some of the most relevant contributions tackle the problem of graph anonymization
by applying edge modification (Zou et al., 2009; Liu & Terzi, 2008; Zhou & Pei, 2011),
randomization (Ying & Wu, 2011; Vuokko & Terzi, 2010), generalization (Hay et al., 2008;
Cormode et al., 2009) or differentially private mechanisms (Hay et al., 2009; Task & Clifton,
2012). Among the approaches that anonymize also the user attributes, Zhou & Pei (2011)
adopt a greedy edge modification and label generalization algorithm, Zheleva & Getoor
(2008) anonymize nodes attribute first and then tries to preserve the network structure,
Campan & Truta (2009) optimize an utility function using the attribute and structural
information simultaneously.

All these works focus on how to share social networks owned by companies or organiza-
tions masking the identities or the sensitive connections of the individuals involved. However,
less attention has been given to the privacy risk of users caused by their information-sharing
activities (e.g., posts, likes, shares). In fact, since disclosing information on the web is a
voluntary activity, a common opinion is that users should care about their privacy and con-
trol it during their interaction with other social network users. Although multiple complex
factors are involved in user privacy protection on social media (Litt, 2013), privacy controls
for online social networking sites are not fully socially aware (Misra & Such, 2016) and are
barely utilized in practice. This statement is confirmed by a study of Liu et al. (2011) which
shows that 36% of Facebook content is shared with the default privacy settings and exposed
to more users than expected.

Thus, another branch of research has focused on investigating measures, strategies and
tools to enhance the users’ privacy awareness and help them act more safely during their
day-to-day social network activity. Liu & Terzi (2010) propose a framework to compute a
privacy score measuring the users’ potential risk caused by their participation in the network.
This score takes into account the sensitivity and the visibility of the disclosed information
and leverages the item response theory as theoretical basis for the mathematical formulation
of the score. Instead, Motahari et al. (2010) propose an information-theoretic estimation
of the user anonymity level to help predict the identity inference risks according to both
external knowledge and the correlation between user attributes. Cetto et al. (2014) present
an online game, called Friend Inspector, that allows Facebook users to check their knowl-
edge of the visibility of their shared personal items and provides recommendations on how
to improve privacy settings. Instead, Fang & LeFevre (2010) propose a social networking
privacy wizard to help users customize their privacy settings. Similarly, Wang et al. (2015)
present an interactive visualization tool that helps users configure the privacy according to

4



their own personality traits derived from their social media data. Squicciarini et al. (2015)
propose a framework which determines the best available privacy policy for user-uploaded
images on content-sharing sites according to the user’s available history on the site. Becker
& Chen (2009) present a tool to detect unintended information loss in online social net-
works by quantifying the privacy risk attributed to friend relationships in Facebook. The
authors show that a majority of users’ personal attributes can be inferred from social circles.
Talukder et al. (2010) present a privacy protection tool that measures the inference proba-
bility of sensitive attributes from friendship links. In addition, they suggest self-sanitization
actions to regulate the amount of leakage. Squicciarini et al. (2014) propose an ontology-
based privacy protection mechanism supporting semi-automated generation of access rules
for users’ profile information. Instead, Such & Rovatsos (2016) and Such & Criado (2016)
suggest a computational mechanism that is able to negotiate conflicting privacy preferences
of multiple users on any individual item and merge them into a single policy. Other ap-
proaches to privacy control in social networks investigate the problem of the risk perception.
Akcora et al. (2012a,b), for instance, propose to provide users with a measure of how much
it might be risky to have interactions with them, in terms of disclosure of private informa-
tion. They use an active learning approach to estimate user risk from few required user
interactions. Finally, the impact of user privacy policies on information diffusion processes
has been studied as well (Bioglio & Pensa, 2017).

The positioning of our work is in this second branch of research, but differently from
the above mentioned papers, our proposal considers all aspects usually involved in social
network privacy issues. In fact, we take into account the real and perceived sensitiveness of
profile items, the preferences of social network users regarding the disclosure level of their
activity and the position of the user within the network. In addition, to support our claims,
we performed a social experiment involving real Facebook users.

3. Keeping privacy under control

In this section we introduce our theoretical framework aiming at supporting the users
participating in a social network in finding a balanced tradeoff between privacy protection
and visibility of the profile. We assume that the social networking platform provides all
required configuration tools to set the privacy of users’ actions and profile items properly.
In particular, our desired property is that a user may set the visibility of each action and
profile item separately for each other user in her or his friend list. For instance, a user
A may decide to allow the access to all photo albums to friends B and C, but not to
friend D. Most social networking platforms (such as Facebook or Google+), provide an
adequate flexibility in configuring privacy of profile items and user’s actions. They offer
some advanced facilities, such as the possibility of grouping friends into special lists or
social circles. However, using them correctly is often an annoying and frustrating task and
many users prefer to adopt simple but extreme strategies such as “visible-to-all” (exposing
themselves to the highest risk), or “hidden-to-all” (wasting the positive social and economic
potential of social networking websites).

Furthermore, privacy is not just a matter of users’ preferences; it also relies on the context
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in which an individual is immersed: the attitude of her or his friends towards privacy (some
users likes or share friends’ posts more often than the others, thus contributing to the rapid
spread of information), the position within the network (very central users are more exposed
than marginal users), her or his own attitude on disclosing very private facts, and so on.

The framework we propose in this paper takes into account both aspects: i) thanks to
a semi-supervised learning approach that builds a model leveraging few user’s preferences,
it allows to extend privacy settings to all users’ friends according to this model; ii) thanks
to a score that quantify the privacy leakage of each user considering both individual and
contextual parameters, it provides a constant feedback on the privacy protection level of
each user. Moreover, our privacy score fits the real user expectations about the visibility of
profile items. Before entering the technical details of framework, we briefly introduce some
basic mathematical notation required to formalize the problem.

3.1. Preliminaries and notation

Here we introduce the mathematical notation we will adopt in the rest of our paper. We
consider a set of n users U = {u1, . . . , un} corresponding to the individuals participating
in a social network. Each user is characterized by a set of m properties or profile items
P = {p1, . . . , pm}, corresponding, for instance, to personal information such as gender, age,
political views, religion, workplace, birthplace and so on. Hence, each user ui is described
by a vector pi =< pi1, . . . , pim >.

Users are part of a social network. Without loss of generality, we assume that the link
between two users is always reciprocal (if there is a link from uj to uj then there is also a
link from uj to ui). Hence, the social network here is represented as an undirected graph
G(V,E), where V is a set of n vertices {v1, . . . , vn} such that each vertex vi ∈ V is the
counterpart of user ui ∈ U and E is a set of edges E = {(vi, vk)}. Given a pair of users
(ui, uk) ∈ U , (vi, vk) ∈ E iif users ui and uk are connected (e.g., by a friendship link).

For any given vertex vi ∈ V we define the neighborhood N (vi) as the set of vertices vk
directly connected to vertex vi, i.e., N (vi) = {vk ∈ V | (vi, vk) ∈ E}. Conversationally
speaking, N (vi) is the set of friends (also known as friend-list) of user ui, hence we use
N (vi) or N (ui) interchangeably. Given a user ui and its friend-list N (ui), we also define
the ego network centred on user ui as the graph Gi(Vi, Ei), where Vi = N (vi) ∪ {vi} and
Ei = {(vk, vl) ∈ E | vk, vl ∈ Vi}.

Finally, for any user ui we introduce a privacy policy matrix M i ∈ {0, 1}|N (ui)|×m defined
as follows: for any element mi

kj of M i, m
i
kj = 1 iif profile item pj ∈ P is visible to user

uk ∈ N (ui) (0 otherwise, i.e., iif user uk is not allowed to access profile item pj).
It is worth noting that our framework can be easily extended to the case of directed social

networks (such as Twitter): in this case, the privacy policies are defined only on inbound
links.

3.2. General framework

Let us now introduce the technical details of our framework that allows the users to
actively control their own privacy leakage. The framework consists of two distinct core parts:
i) a score φp(ui) that measures the privacy leakage of each user ui and ii) a set of models

6



{µp(ui)} of privacy preferences, one for each user ui. In a nutshell, the framework is based
on a routine (see Algorithm 1) that: i) computes the privacy policy matrix M i according
to the privacy preference model µp(ui) of each user ui; ii) computes the privacy score φp(ui)
of all users; iii) notify each user ui whose privacy score φp(ui) exceeds a given threshold τ .
Even if there hasn’t been any change in the privacy policies, the routine should be executed
periodically, since other types of changes may have occurred in the social network (e.g.,
creation or removal of vertices/links in G, voluntary changes in the privacy policy by any
user, and so on).

Algorithm 1: GenericPrivacyCheckRoutine({µp(ui)}, τ): {µp(ui)} is the set of mod-
els of users’ preferences and τ is a privacy leakage threshold

forall ui ∈ U do

use the preference model µp(ui) to compute the policy matrix M i;
end

forall ui ∈ U do

compute the privacy score φp(ui);
if φp(ui) > τ then

notify user ui;
end

end

In the following, we will provide more details on the key aspects of Algorithm 1: how
to compute the privacy score φp(ui) and the preference model µp(ui). Before entering the
computational details, we describe here the desired intuitive properties of φp(ui) and µp(ui).

• Desired properties of φp(ui): The privacy score should satisfy the following proper-
ties: i) the higher the sensitivity of the disclosed information, the higher the value of
the score; ii) the higher the visibility of the disclosed information within the network,
the higher the value of the score.

• Desired properties of µp(ui): The model describing users’ privacy preferences should
meet the following intuitive requirements: i) since deciding the access level of any
profile item for any individual friend is a long and frustrating task, µp(ui) should
minimize the user’s intervention; ii) despite this, the model should be as accurate as
possible in predicting those privacy preferences not explicitly set by the users; iii) the
model should by easily updatable when the user sets more privacy preferences or add
new friends.

3.3. Privacy score

In our framework, the privacy score is inspired by the naive privacy score defined by Liu
& Terzi (2010). It measures the user’s potential risk caused by his or her participation in
the network. A n×m response matrix R is associated to the set of n users U and the set of
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m profile properties P2. Each element rij of R contains a privacy level that determines the
willingness of user ui to disclose information associated with property pj . In the binomial case
rij ∈ {0, 1}: rij = 1 (resp. rij = 0) means that user ui has made the information associated
with profile item pj publicly available (resp. private). Here we adopt the multinomial case,
where entries in R take any non-negative integer values in {0, 1, . . . , ℓ}, where rij = h (with
h ∈ {0, 1, . . . , ℓ}) means that user ui discloses information related to item pj to users that
are at most h links away in the social network G (e.g., if rij = 0 user ui wants to keep pj
private, if rij = 1 user ui is willing to make pj available to all friends, if rij = 2 user ui is
willing to make pj available to the friends of her or his friends, and so on). For this reason,
we call this policy separation-based. However, in this work, we use a circle-based definition
of privacy score, first introduced by Pensa & di Blasi (2016). A different meaning for the
entries rij of R is adopted: in our framework rij is directly proportional to the number of
friends to whom ui is willing to disclose the information of profile property pj . Hence, we
can compute R according to the circle-based privacy policies defined by matrices M i’s using
this formula:

rij =







ℓ ·
1

|N (ui)|

|N (ui)|
∑

k=1

mi
kj







 (1)

where N (ui) is the set of friends of user ui, m
i
kj denotes the visibility of user ui’s profile item

pj for friend uk, and ⌊ · ⌋ is the floor function. As a consequence, rij = ℓ iif ∀uk ∈ N (ui),
mi

kj = 1. Our definition is conceptually different from the original one, since the latter does
not take into account the possibility of disclosing personal items to just a part of friends.

In the following, we use RS when we refer to the response matrix computed with the
original separation-based policy approach defined by Liu & Terzi (2010). We use RC when
we refer to our circle-based definition of response matrix.

Using the response matrix, it is possible to compute the two main components of the
privacy score: the sensitivity βj of a profile item pj, and the visibility Vij of a profile item
pj due to ui. The sensitivity of a profile item pj depends on the item itself (attribute
“sexual preferences” is usually considered more sensitive than “age”). The visibility, instead,
captures to what extent information about profile item pj of user ui spreads in the network.
Liu & Terzi (2010) use a mathematical model based on item response theory (a well known
theory in psychometrics) to compute sensitivity and visibility. However, we adopt the naive
but still effective formulation that, additionally, is more efficient from the computational
point of view.

In this framework, for h = {1, . . . , ℓ− 1} sensitivity is computed as follows:

βjh =
1

2

(

n−
∑n

i=1 1(rij≥h)

n
+

n−
∑n

i=1 1(rij≥h+1)

n

)

(2)

where 1A is the indicator function that returns 1 when condition A is true (0 otherwise).

2In this work, we refer to P as a fixed set of profile properties or user actions. It is out of the scope of
this paper to consider posted items individually. We address this point in the conclusions (see Section 5).
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Table 1: Example of input dataset for the classification task

Friend ID Age Gender Hometown Community No. of friends Cwork Cphotos Cpolitics

102030 ”21-30” Male Montreal C10 ”501-700” allow allow deny
203040 ”31-40” Female New York C5 ”201-300” allow deny deny
304050 ”15-19” Female Vancouver C7 ”101-200” allow deny deny
405060 ”41-50” Female Seattle C5 ”701-1000” allow deny deny
506070 ”51-60” Male Montreal C10 ”501-700” allow allow deny
607080 ”21-30” Female Montreal C10 ”301-500” ? ? ?
708090 ”41-50” Male New York C5 ”301-500” ? ? ?

When h = 0 or h = ℓ, the sensitivity values are respectively

βj0 =
n−

∑n

i=1 1(rij≥1)

n
(3)

and

βjℓ =
n−

∑n

i=1 1(rij≥ℓ)

n
(4)

The meaning of Equations 2, 3 and 4 is the following: the more users adopt at least
privacy level h for privacy item pj , the less sensitive pj is w.r.t. level h. Moreover, for
intermediate values of h (h = {1, . . . , ℓ− 1}), the sensitivity values takes into account both
level h and h+ 1. This guarantees that βj0 < βj1 < . . . < βjℓ (Liu & Terzi, 2010).

The visibility, for h = {0, . . . , ℓ} is computed as follows:

Vijh = Pr(rij = h) · h (5)

where Pr(rij = h) is the probability that rij is equal to h. By assuming independence
between profile properties and users, this probability can be computed as follows:

Pr(rij = h) =

∑n

i=1 1(rij=h)

n
·

∑m

j=1 1(rij=h)

m
(6)

Intuitively, visibility Vijh is higher when the sensitivity of profile items is low and when users
have the tendency to disclose lots of their profile items (Liu & Terzi, 2010). An alternative
formulation of Vijh is given by the following formula:

Vijh = Pr(rij = h) · f i
j(h) (7)

where f i
j(h) is the fraction of users in the network G that know the value of profile item pj

for user ui, given that rij = h. It depends on the position of user ui within the network and
can be computed by exploiting any information propagation models (Kempe et al., 2003).

The normalized privacy score φp(ui, pj) for any user ui and profile property pj is computed
as follows:

φp(ui, pj) =
φp(ui, pj)

max
uk∈U

φp(uk, pj)
(8)
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where

φp(ui, pj) =
ℓ

∑

h=0

βjh · Vijh (9)

and max
uk∈U

φp(uk, pj) is the maximum value of Equation 9 among all users. Normalization is

not strictly required, but it unifies the scale of the privacy scores and make the choice of a
suitable threshold easier.

Finally, the overall privacy score φp(ui) for any user ui is given by

φp(ui) =

m
∑

j=1

φp(ui, pj). (10)

From Equation 8, 9 and 10 it is clear that users that have the tendency to disclose sensitive
profile properties to a wide public are more prone to privacy leakage. Intuitively, φp(ui) = 0
means that, in each element of the summation, either βjh = 0 (the profile item pj is not
sensitive at all), or Vijh = 0 (the profile item pj is kept private). On the contrary, the
privacy score is maximum when a user discloses to all her or his friends (Vijh = 1) all
sensitive information (βjh = 1).

In this paper, we use φS
p when we refer to the score computed using the original separation-

based response matrix RS; we use φC
p when we refer to the privacy score leveraging our

circle-based definition of response matrix RC .
Notice that our definition of privacy score requires the availability of visibility preferences

for all user friends. It is worth noting that most social media platforms allow the users
to define friends groups or circles and set privacy preferences for groups/circles instead
of requiring them to set preferences for every individual friends. However, in the next
section, we will see that our framework is designed to minimize the user’s intervention while
computing the circle-based privacy policy matrices M i.

3.4. User preference model

The second key part of our framework is the user preferences model µp(ui). The clas-
sification model should be as accurate as possible in predicting those privacy preferences
not explicitly set by the users. Moreover, the model should be easily updatable when the
user sets more privacy preferences or adds new users. Our choice is to use a Naive Bayes
classifier (Mitchell, 1997), since it has the desirable properties we enumerated in Section 3.2.
In fact, Naive Bayes classifiers are simple and converge quickly even with few training data.
Moreover, they can be easily embedded in an active learning framework using, for instance,
uncertainty sampling (Dagan & Engelson, 1995) thus minimizing the intervention of the user
in the model training phase.

Our privacy preference model for any given user ui ∈ U and any given profile item
pj ∈ P is then a classification problem in which we have a set of |N (ui)| instances D =
{d1, . . . , d|N (ui)|} corresponding to all friends of ui. Each instance dk is characterized by a set
of p attributes {A1, . . . , Ap} with discrete values and m class variables
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{C1, . . . , Cm} that take values in the domain {allow, deny}: Cj = allow (resp. Cj = deny)
means that friend uk is allowed (resp. is not allowed) to access the information of profile
item pj of user ui. The values of attributes {A1, . . . , Ap} are partly derived from the profile
vector pk =< pk1, . . . , pkm > of users uk, partly from the ego network Gi(Vi, Ei) of user ui

(see Section 3.1). For instance, they may contain information such as the workplace and
home-town of uk, or the communities in Gi uk belong to. Table 1 is an example of possible
small dataset for a generic user consisting of five training instances and two test instances
with three profile-based attributes, two network-based attributes and three class variables.

The Naive Bayes classification task can be regarded as estimating the class posterior
probabilities given a test example dk, i.e., Pr(Cj = allow|dk) and Pr(Cj = deny|dk). The
class with the highest probability is assigned to the example dk. Given a test example dk,
the observed attribute values are given by the vector dk = {ak1, . . . , . . . , a

k
p}, where aks is a

possible value of As, s = 1, . . . , p. The prediction is the class c (c ∈ {allow, deny}) such
that Pr(Cj = c|A1 = ak1, . . . , Ap = akp) is maximal. By Bayes’ theorem, the above quantity
can be expressed as

Pr(Cj = c|A1 = ak1, . . . , Ap = akp) =

=
Pr(A1 = ak1, . . . , Ap = akp|Cj = c)Pr(Cj = c)

Pr(A1 = ak1, . . . , Ap = akp)
=

=
Pr(A1 = ak1, . . . , Ap = akp|Cj = c)Pr(Cj = c)

∑

cx

Pr(A1 = ak1, . . . , Ap = akp|Cj = cx)Pr(Cj = cx)
(11)

where, Pr(Cj = c) is the class prior probability of c, which can be estimated from the
training data. If we assume that conditional independence holds, i.e., all attributes are
conditionally independent given the class Cj = c, then

Pr(A1 = ak1, . . . , Ap = akp|Cj = c) =

=

p
∏

s=1

Pr(As = aks |Cj = c) (12)

and, finally

Pr(Cj = c|A1 = ak1, . . . , Ap = akp) =

=
Pr(Cj = c)

∏p

s=1 Pr(As = aks |Cj = c)
∑

cx

Pr(Cj = cx)
∏p

s=1 Pr(As = aks |Cj = cx)
(13)

Thus, given a test instance dk, its most probable class is given by:

c = arg max
cx

{

Pr(Cj = cx)

p
∏

s=1

Pr(As = aks |Cj = cx)

}

(14)
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where the prior probabilities Pr(Cj = cx) and the conditional probabilities Pr(As = aks |Cj =
cx) are estimated from the training data.

Hence, our preference model is given by µp(ui) = (Ψp,Ψc), where Ψp is the set of all
prior probabilities Pr(Cj = cx) and Ψc is the set of all conditional probabilities Pr(As =
aks |Cj = cx) computed on the set of training instances from D, i.e., on a set of users from
N (ui) for which ui has given an allow/deny label explicitly. Now, the key question is: how
to predict all Cj’s accurately without requesting too much labeling work to ui?

To solve this problem, we adopt an active learning approach named uncertainty sampling

(Lewis & Gale, 1994) based on the maximum entropy principle (Dagan & Engelson, 1995).
In an active learning settings the learning algorithm is able to interactively ask the user
for the desired/correct labels of unlabeled data instances. A way to reduce the amount of
labeling queries to the users is to sample only those data instances whose predicted class is
the most uncertain. Different measures of uncertainty have been proposed in the literature,
e.g., least confidence (Culotta & McCallum, 2005), smallest margin (Scheffer et al., 2001)
and maximum entropy (Dagan & Engelson, 1995), but for binary classification tasks they
are equivalent. Hence, we decided to adopt the maximum entropy principle. According to
this principle, the most uncertain data instance du is given by:

du = arg max
dk

{

−
∑

cx

Pr(Cj = cx|dk) logPr(Cj = cx|dk)

}

(15)

Since probabilities Pr(Cj = cx|dk) are exactly those computed by the Naive Bayes classifier
to take its decision, this principle can be easily adapted to our preference model.

Once all friends’ labels are predicted, each entry of the policy matrix M i can be updated
as follows:

∀uk ∈ N (ui), mi
kj =

{

1, if Cj = allow for uk

0, if Cj = deny for uk.
(16)

3.5. Privacy check routine

According to the choices that we detailed in the previous sections, we can now provide a
more detailed instance of Algorithm 1. The final routine for privacy control is described by
Algorithm 2. The first step is the construction of the dataset required by the Naive Bayes
classifier, followed by the initialization of the privacy policy matrices M i. This initialization
step can be performed in several ways: randomly, following a common criterium, using Naive
Bayes on a first seed of labeled friends. Then, using matrices M i, the routine computes the
response matrix RC and the initial privacy scores φp(ui).

The core part of the routine checks whether the privacy score of any user ui exceeds a
given threshold τ . If it is the case, the routine notifies user ui. Once notified, user ui has the
possibility to enhance her privacy settings by both redefining their friends groups/circles
or by trying to update her privacy settings with the active learning procedure described
by Algorithm 3. This procedure selects the K most uncertain friends and asks ui for their
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Algorithm 2: PrivacyCheckRoutine(P , {µp(ui)}, G, τ): P is the users’ profile ma-
trix, {µp(ui)} is the set of models of users’ preferences, G is the social graph and τ is
a privacy leakage threshold.

forall ui ∈ U do

forall uk ∈ N (ui) do

build dk = {ak1, . . . , . . . , a
k
p} from pk =< pk1, . . . , pkm > and Gi(Vi, Ei);

end

compute the preference model µp(ui) and the privacy policy matrix M i using (14)
and (16);

end

forall ui ∈ U do

forall pj ∈ P do

compute rij using (1);
end

compute the privacy score φp(ui) using (10);
if φp(ui) > τ then

notify user ui;
end

end

Algorithm 3: UpdatePreferences(ui, µp(ui), K): ui is the user, µp(ui) is the model
of user ui’s preferences and K is a positive integer.

ask user ui for the labels of the K most uncertain friends according to (15);
update the preference model µp(ui) and the privacy policy matrix M i using (14) and
(16);

labels. Afterwards, it launches the Naive Bayes classifier and reassign the new {allow, deny}
labels to all unlabeled friends. Matrix M i is then updated accordingly.

3.5.1. Relabeling based on privacy score

So far, we have only considered users’ relabeling as a result of the uncertain predictions
based on the users’ preference model. However, one may force the framework to be more
protective w.r.t. users’ privacy settings by leveraging the privacy score itself. Our assump-
tion is that, if a user has an unsafe behavior w.r.t. his/her own privacy settings, then she/he
is more prone to share posts and facts published by his/her friends. For this reason, when
predicting the deny/allow labels for the unlabeled friends of a user ui, we add a further
control step in which we automatically set to deny all privacy settings related to profile
properties pj and friends uk such as

φp(uk, pj) > τφ (17)
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where φp(uk, pj) is the privacy score of friend uk w.r.t. pj and τφ is a user defined threshold.
Of course, this control is performed only on predicted labels, i.e., those privacy settings for
which the users have not expressed their preferences yet. In the remainder of the paper, we
will refer to this particular setting as strict framework.

3.5.2. Theoretical complexity

We now analyze the theoretical computational complexity of our algorithm. Let n be
the number of total users in the social network, f the average number of users’ friends, p the
number of attributes of the dataset D and m the number of profile items. The initialization
step requires O(n · f · p) operations for building the dataset D, and O(n · m) operation
for computing the response matrix RC . Obtaining the privacy score for all users requires
O(n ·m ·ℓ) operations for computing the sensitivity values βjh (ℓ being the number of privacy
levels in RC), the same cost for computing the visibility values Vijh and for computing the
final value of the score. Under the reasonable assumptions that m << f and ℓ << p, the
overall complexity for computing all the privacy scores is then O(n · f · p).

In the worst case (when all privacy scores are above the threshold) the core part of the
routine needs to train a Naive Bayes classifier for all users and profile items (Algorithm 3).
Since training a Naive Bayes classifier requires O(f · p) operations, the complexity of this
part is O(n ·m · f · p).

As a conclusion, the combination of Algorithm 2 and Algorithm 3 is linear in all terms.
However, in standard applications, we can assume that f << n (the number of users in
a social network is much greater than the average number of users’ friends). Also, it is
straightforward to suppose that ℓ << m ∼ p << f . Following these reasonable assumptions,
n prevails on all other terms and the overall complexity of a single execution of our routine is
O(n). Moreover, most operations (i.e., training the classifiers, computing individual privacy
scores, selecting of the most uncertain friends) can be executed concurrently. A single
check/update operation on all users is then highly scalable and the overhead for a system
implementing our framework is reasonably low.

4. Experimental results

In this section we report and discuss the results of an online experiment that we conducted
on real Facebook users. The main objectives of our online experiment were:

• to build an original and large enough dataset centered on privacy-related issues in
social network data;

• to gather a significant number of correct privacy labels for a small set of relevant and
differently sensitive items/user actions;

• to make people concern about their privacy in social networks.

As regards this specific work, the data we gathered should allow us to draw scientifically
justified conclusions about:
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• the relationship between the separation-based privacy policies and our circle-based
policy definition;

• relationship between the separation-based privacy score φS
p defined by Liu & Terzi

(2010) and our circle-based score φC
p ;

• the relationship between users’ attitude towards privacy self-protection in Facebook
and the value of the privacy score;

• the trend of the privacy score value as a function of the amount of labeled friends;

• the impact of the threshold on the number of notified users;

• the reliability of the privacy score;

• the adoption of the additional criterion based on friends’ privacy scores;

• the scalability of the application w.r.t. the number of users and CPU’s.

The section is organized as follows: first, we describe the data and how we gathered
them; then we provide the details of our experimental settings; finally we report the results
and discuss them.

4.1. Dataset

Our online experiments were conducted in two phases. In the first phase we promoted
the web page of the experiment3 where people could voluntarily grant us access to some
data related to their own Facebook profile and friends’ network. We were not able to access
any other information rather than what we asked the permission for, i.e.: email (needed to
contact the users for the second phase of our experiment), public profile, friend list, gender,
age, work, education, hometown, current location and pagelikes. The participants were
perfectly aware about the data we asked for and the purpose of our experiment. In this first
phase, data were gathered through a Facebook application developed in Java JDK 8, using
Version 1.0 of Facebook Graph API. From March to April 2015, we collected the data of 185
volunteers, principally from Europe, Asia and Americas. The social network consisting of all
participants plus their friends is an undirected graph with 75,193 nodes and 1,377,672 edges.
Although the overall social graph has been generated from participants’ ego networks, the
largest connected component consists of 73,050 nodes (97.15% of the overall network) and
1,333,276 edges (96.78% of the overall network). This goal was achieved by allowing the
Facebook application to publish on the participant’s timeline a special post inviting all her
friend to join the experiment. Some statistics (number of nodes and edges, average degree,
average clustering coefficient) about the dataset (as computed by Gephi4) are reported in
Figure 1(c), while Figure 1 present a picture of the network and its degree distribution. All
graphs are considered as undirected.

3http://kdd.di.unito.it/privacyawareness/
4https://gephi.org/
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(a) Facebook network
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Figure 1: Facebook network, its degree distribution and some characteristics

During the second phase, all the remaining participants were contacted for the interac-
tive part of our experiment. First, the participants had to indicate to which level (0=no
one, 1=close friends, 2=friends except acquaintances, 3=all friends, 4=friends of friends,
5=everyone on Facebook) they were willing to allow the access to five personal profile top-
ics. The topics were proposed in form of direct questions (see Table 2) with different levels
of sensitivity. We used the answers to fill the response matrix RS. Then, to each partic-
ipant, we proposed a list of 60 randomly chosen friends and 6 randomly chosen friends of
friends (when available). The participants had to indicate to which people they were willing
to allow the access to the same five topics. For this phase, we developed a Java JDK 8
mobile-friendly web application leveraging Version 2.0 of Facebook Graph API. We used
the answers on friends to fill the response matrix RC . From May 2015 to February 2016,
101 participants out of 185 replied to the first part of the survey, 111 to the second part
and 74 out of 185 participants answered all questions of two surveys. Hence, we consider
the network data provided by all 185 participants and the survey data related to the 74
participants who completed the two parts of the questionnaire. In Figure 2 we report some
statistics describing the 74 participants. All the data have been anonymized to preserve
volunteers’ privacy5. The entries in the two resulting 74 × 5 matrices RS and RC take
values in {0, . . . , 5}.

5The data collection/storage and processing protocols have been approved by the Law Office of our
institution.
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Table 2: The five questions of our online survey

Q1 Which people would you like to tell that
you have just changed job?

Q2 If your relationship status changed,
which friends would you like to tell?

Q3 After a nice holiday, which friends
would you share your photos with?

Q4 With whom would you like to share a
comment on current affairs/politics?

Q5 With whom would you like to share
your mood or something personal that
happened to you?
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Figure 2: Personal data statistics of the individuals that participated in our online experiment

4.2. Separation-based vs. circle-based policies

As a preliminary analysis, we measure how the perception of topic sensitivity changes
when the two policies (separation-based and circle-based) are presented to the participants.
We compare the two response matrix RS and RC in several ways. First, we measure the
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Pearson’s correlation coefficient between the two matrices. Given two series of n values
X = x1 . . . , xn and Y = yi, . . . , yn, the Pearson’s coefficient is computed as:

ρ(X, Y ) =

∑n

i=1 (xi − x) (yi − y)
√

∑n

i=1 (xi − x)2
√

∑n

i=1 (yi − y)2
(18)

where x =
∑n

i=1 xi/n and y =
∑n

i=1 yi/n. It basically captures the correlation between
the two series of values and ranges between −1 (for inversely correlated sets of values) and
+1 (for the maximum positive correlation). In our experiment, n = 74 · 5. We obtain a
moderate positive correlation (ρ(RS,RC) = 0.4632), that indicates a substantial difference
between the two policies. Then, for each question Qj , we measure the average difference
between each entry of the two matrices as

∑

i (r
S
ij − rCij)/n. All the average differences are

positive, i.e., the given separation-based policies are less restrictive than circle-based ones.
In particular, we measure an average difference of 0.54 for Q1, 0.43 for Q2, 0.32 for Q3,
0.35 for Q4 and 0.15 for Q5. Moreover, we measure the overall sensitivity of each topic as
βj =

∑ℓ

h βjh (see Section 3.3) in the two cases. As can be seen in Figure 3(a), all sensitivity
values increase when the circle-based policy is adopted. The improved sensitivity perception
is confirmed when we look at the users’ policies more deeply. In particular, for each question
Qj, we count:

• the number A of participants that, in the separation-based test, have made Qj at least
visible to friends of their friends (rSij ≥ 4), but have denied the access to Qj to some
of the friends of their friends in the circle-based test;

• the number B of users that have granted the access to some of the friends of their
friends in the circle-based test while rSij < 4 in the separation-based test;

• the number C of participants that, in the separation-based test, have made Qj visible
at least to all friends (rSij ≥ 4), but have denied the access to Qj to some of their
friends in the circle-based test rCij < 5;

• the number D of participants that, in the circle-based test, have made Qj visible to
all friends (rCij = 5), but have denied the access to Qj to some of their friends in the
separation-based test rSij < 3.

The results in Table 3 indicate that the major differences are on questions Q3 andQ4, that are
the less sensitive according to Figure 3(a). However, then passing from a separation-based
policy to a circle-based one, many users have reviewed their choices in a more restrictive
way for question Q1 and Q2 as well.

Finally, we also compute the privacy scores φS
p (ui, pj) and φC

p (ui, pj) for each question
Qj and each participant ui. The average score values are given in Figure 3(b). Interestingly,
although the circle-based policy increases the perception of topic sensitivity, the related
privacy scores are sensibly smaller than those computed within the separation-based hy-
pothesis, i.e., the participants have a safer behavior w.r.t. the visibility of the topics. For
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Table 3: Policy differences in visibility

Measure Q1 Q2 Q3 Q4 Q5

A 2 2 4 9 1
B 0 0 4 9 1
C 20 5 19 21 4
D 0 0 4 9 1
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Figure 3: Comparative results (separation-based approach vs. circle-based approach)

the sake of completeness, we perform a correlation analysis between the values of φS
p (ui)

and φC
p (ui) in Figure 3(c). The value of the Pearson’s ρ coefficient (0.4582) shows moderate

positive correlation between the two series of scores.

4.2.1. User’s preferences vs. privacy score

To measure the performances of the active learning approach, we generate 74×5 datasets
(one for each pair of users and questions) that we use to train and test the Naive Bayes clas-
sifier. These datasets contain, for each friend uk of a user ui, the following attributes:
gender and age of uk, countryman (true, if uk and ui were born in the same place, fel-

low citizen (true, if uk and ui live in the same place), coworker (true, if uk and ui work
or have worked in the same place), schoolmate (true, if uk and ui are or have studied in
the same school/college/university), and the Jaccard similarity of page likes of ui and uk.
All attribute values are derived from the information extracted by the Facebook profiles,
when available. Additionally, we also consider the list of communities uk is part of. To
this purpose, we execute a community detection algorithm on the so called “ego-minus-ego”
networks (the subgraph induced by the vertex set N (ui) \ {ui}) of all 74 users. We use
DEMON (Coscia et al., 2014), a local-first approach based on a label propagation algorithm
that is able to discover overlapping communities. The algorithm requires two parameters as
input: the minimum accepted size for a community (minCommunitySize) and a parameter
ǫ that determines the minimum overlap two communities should have in order to be merged.
In our experiments, we set minCommunitySize = 3 (to discard very small communities)
and ǫ = 0.5 (to admit an average overlap degree). Finally, each friend has a class variable
that takes values in the set {allow, deny}.

In a first experiment, we study the relationship between the accuracy of the predicted
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user’s privacy settings and the resulting privacy score. By doing so, we are primarily inter-
ested in demonstrating empirically the effectiveness of our framework. Secondly, we aim at
analyzing to what extent the preferences expressed by the users are in line with a careful
and aware behavior w.r.t. their own privacy.

We conduct the experiment as follows. To simulate the active learning framework, for
each user and question, i) we start with just five (randomly chosen) labeled friends with
which we train the Naive Bayes classifier described in Section 3.4; ii) we test the classifier on
the remaining 55 friends and iii) choose the friend whose prediction is the most uncertain,
following the maximum entropy criterion (see Equation 15 in Section 3.4); iv) we assign to
this friend the same label declared by the participant and v) we re-train the classifier on
5+1 instances (friends); vi) finally, we test the new classifier on the remaining 54 instances.
We repeat iteratively the last four steps until there are no test instances left.

At the end of each prediction step, we measure the following performance parameters:

• the Accuracy of the predictions, computed as

Accuracy =
number of correctly predicted labels

number of test friends
;

• the F-Measure of the predictions, computed as

F -Measure = 2 ·
precision · recall

precision + recall

where precision and recall are computed by considering the deny class as the positive
one;

• the privacy score (Equation 10) computed by considering both given and predicted
{allow, deny} labels for all 74 users and applying Equation 16 to calculate matrices
M i and Equation 1 to compute the response matrix RC).

The values of the three parameters are averaged on all 74 users and 30 runs. In each run, the
first five labeled friends are chosen randomly. The initial value of the privacy score (when no
labels are given) is computed by assigning random labels to all 60 friends. All experiments
are performed on a server equipped with 8 Intel Xeon E5-2643 dual core CPU’s, 128GB
RAM, running Linux (kernel release: 4.0.4).

4.2.2. Average results

The results are provided in Figure 4. The values of the three parameters are reported
for each question separately and for all five questions together. As a general observation,
the accuracy of the prediction increases significantly with the number of labeled friends (see
Figures 4(a) and 4(d)). The growth of the F-Measure is less sharp, instead (Figures 4(b)
and 4(e)). We recall that both measures are computed on the test instances only. The
small drop of Accuracy and F-Measure in the last steps can be explained by the fact that
misclassification errors of few test instances (less than 5 samples) are more likely to happen.
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Figure 4: Prediction Accuracy vs. Privacy score: average results

Most importantly, the overall privacy score (Figure 4(f)) starts to decrease when few friends
(5 to 15) are labeled, then it starts to grow almost monotonically. This means that, on
average, the users don’t have a safe behavior w.r.t. their privacy in deciding whether their
friends may access to their information or not. However, our framework may help to provide
more effective privacy settings by demanding a very limited labeling effort to the users.
Interestingly, predictions are more accurate for the two most sensitive questions (Q2 and
Q5). In order to augment the readability of the plots, we do not report the standard
deviations (error-bars) of the measures. However, they are reasonably low for all measures
when the number of labeled friends is under 45. Then, the number of test friends decreases
and the stability of the prediction is slightly affected. As an example, we obtain standard
deviation values between 0.07 and 0.19 for the F-Measure and between 6.5 and 20 for the
Accuracy. Instead, the variability of the privacy score is more pronounced (since it really
depends on each users’ attitude towards privacy).

4.2.3. Threshold assessment

According to our privacy check routine (see Algorithm 2 in Section 3.5) when a user
exceeds a given alarm threshold τ , then she is notified and may possibly adjust her privacy
settings. Hence, deciding a congruent value for threshold τ is not without consequences for
the system. In fact, not only does it implicitly define the desired safety level of the social
network, but it also has an impact on efficiency and usability. If the threshold is too low,
many users are notified frequently and system performances may degrade. Furthermore,
frequent notifications may annoy most users and compromise their experience. For this
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Figure 5: Prediction Accuracy vs. Privacy score: results for three typical users

reasons, we also conduct an experiment to verify how many users could be potentially
notified depending on increasing values of threshold τ (from 0 to 4) and increasing number
of labeled instances (5 to 60). From the results shown in Figure 6, it can be observed that
very low threshold values (τ < 1.0) cause too many alarms and notifications. However,
for intermediate values of the threshold (1 < τ < 2.5), the number of users exceeding it,
in percentage, is below 30%. This experiment also suggests that τ = 2.5 is a reasonable
alert threshold for Algorithm 2 which guarantees a reasonable safety level (we recall that
the maximum value for the privacy score is 5) and a tolerable number of notifications. It is
worth noting that, in our experiments, we do not study the impact of the threshold on users’
decisions concerning their privacy settings. This analysis deserves further investigations, but
since it requires the definition of a non trivial use study, we leave it for future work.

4.2.4. Typical users’ results

Sice the results presented in Section 4.2.2 are on average, we also investigate the be-
haviour of the three performance parameters on three typical users: a wise user (the one
with the lowest non-zero privacy score, computed on the correct labels), a careless user (the
one with the highest privacy score) and a standard user (the one exhibiting the privacy score
closest to the mean). The results reported in Figure 5(c), show clearly that for a wise user
and a careless user, our framework is not useful. However, for a standard user (Figure 5(f)),
the active learning algorithm allows its privacy score to decrease and go below 1, confirming
the reliability of this threshold for this specific dataset. Notice that the overall accuracy and
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Figure 6: Percentage of notified users for increasing values of the alarm threshold and increasing number of
labeled friends

F-Measure of the standard user show that the classifier correctly predicts the allow/deny
classes (See Figures 5(e) and 5(d)). These results also show that with a limited effort (just 20
labeled friends) this user may enhance her privacy protection using settings that follow her
preference model. Instead, for the careless user, the F-Measure is 0 since there are no true
positives (this user has almost always labeled as allow her friends); consequently, precision
and recall are both equal to zero. Notice also that now the values of the privacy score are
stable: the standard deviations are between 0.01 and 0.21 for the wise user, between 0.06
and 0.27 for the careless user and between 0.01 and 0.20 for the standard user.

4.3. Reliability of the framework

We also study the reliability of the framework by extending the prediction to all partic-
ipants’ friends. Since we do not have the correct labels for friends who do not belong to
the list proposed to the participants, we can only measure the privacy score computed on
the basis of the predicted set of labels. We compare these measures with the privacy score
computed by just considering the labeled friends.

To do that, we first compare the sensitivity values in the two cases (see Figure 7(a)).
All questions are subject to an increase of their sensitivity, but when looking at the average
privacy scores (Figure 7(b)) we note that all scores are higher than those computed when
considering only labeled friends. This means that the visibility of the topics is high. Hence,
we perform a correlation analysis in order to check whether the behavior of scores is coherent
in the two cases and measure the Pearson’s ρ coefficient on the two series of privacy score
values. Given the privacy scores φl(ui) for the labeled case and the privacy scores φp(ui) for
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Figure 7: Privacy scores computed with labeled friends only Vs. privacy scores computed on all friends

the predicted case, the Pearson’s coefficient is computed as:

ρ =

∑n

i=1

(

φl(ui)− φl

) (

φp(ui)− φp

)

√

∑n

i=1

(

φl(ui)− φl

)2
√

∑n

i=1

(

φp(ui)− φp

)2
(19)

where φl =
∑n

i=1 φl(ui)/n and φp =
∑n

i=1 φp(ui)/n are the average privacy scores in the two
cases (n = 74). We obtained a Pearson’s coefficient of ρ = 0.8093 (see Figure 7(c)) denoting
high positive correlation. To assess the significance of this result, we should verify whether
the null hypothesis that ρ is not significantly different from zero can be rejected. This can
be verified with a two-tailed t-test by observing that the quantity t = ρ

√

(n− 2)/(1− ρ2)
is distributed approximately as the Student t-distribution. In our test, t = 11.69, thus
the null hypothesis that ρ is not significantly different from zero is rejected with a p-value
p < 0.00001. These results confirm that: i) the experiments on the limited set of 60 friends
per user are significant enough and that, ii) the framework is reliable even for users with
a realistic number of friends. Notice that the overall number of friends of the participants
spans between 120 and 1558 (with an average of 435).

4.4. Results on the strict framework

To test the strict framework setting presented in Section 3.5.1, a required property is
that a privacy score is associated to all user’s friend. In a realistic scenario, privacy scores
are available for all users in the social network. In our experiments, however, since we asked
to label only 60 of each participants’ friends, it turns out that the size of the maximal
subnetwork of users having the required property is 5. With these numbers it is not possible
to compute reliable privacy scores and preference models. Hence, we identify the user ux who
has the largest number of friends among the participants to our online survey and asked her
to provide privacy settings labels for them (in fact, her initial set of 60 friends not necessarily
include some participants to the survey). Then, we execute the same experimental protocol
described in Section 4.2.1. The only difference is that, when predicting the privacy settings
of user ux, we take into account the rule given by Equation 17 for τφ ∈ [0.5, 1.0] (with 0.1
step), where the threshold of 1.0 corresponds to the standard framework setting. As before,
the results are averaged on 30 runs. The results are reported in Figure 8.
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Figure 8: Results for the strict framework setting

In particular, in Figure 8(a) we observe that, when we introduce the strict settings rule,
the privacy scores are always behind those computed in the standard framework. This
is also confirmed by Figure 8(b) where we plotted the values of the area under the six
curves of Figure 8(a). Furthermore, the figure shows that the overall privacy score increase
monotonically with the value of τφ, i.e., as expected, lower thresholds correspond to safer
settings and viceversa. The overall gain, in terms of privacy, is between 5% (for τφ = 0.9)
and 30% (for τφ = 0.5).

4.5. Scalability analysis

In Section 3.5.2 we claimed that the overall complexity of a single execution of our routine
is linear in the number of users. Here we provide also the empirical evidence of this statement.
We let the number of users vary between 10 and 100 and plot the measured runtime averaged
on 30 executions × 56 prediction steps (from 5 to 60 labeled instances). In a realistic scenario,
this would correspond to an iteration of the while loop of Algorithm 2, when all users are
asked to label new friends and all privacy scores are recomputed. Figure 9(a) confirms
the linearity of the algorithm w.r.t. the number of users. It also shows that an execution
on 100 users requires less than 150 milliseconds. On a network of one million users, the
same algorithm would require about 20 minutes. However, the computational time can
be reduced further, since our algorithm scales well on multiprocessor systems, as shown in
Figure 9(b). To obtain this curve, we have simply implemented the algorithm using the
Callable multithreading interface of Java, and executed it on all 111 users who answered the
second part of our survey. With just 16 cores, our algorithm would take about two minutes
to perform a complete execution on one millions users.

5. Conclusions

With the final goal of supporting users’ privacy awareness in the Web, we have pro-
posed a framework to keep the privacy risks under control in online social networks. Our
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Figure 9: Runtime (in milliseconds) for increasing number of users and CPU cores

framework consists of two main core parts: the computation of a privacy score that can be
monitored to alert all users exposed to privacy breaches; ii) an active learning approach to
help the exposed users customize their privacy settings by limiting the number of manual
operations. We have validated experimentally our framework on an original dataset obtained
through a large scale online survey on real Facebook users. The experiments have shown
the effectiveness, the reliability and the computational efficiency of our approach. We have
also shown that state-of-the-art metrics are based on a distorted perception of sensitivity
of published items. Based on these results, we believe that our framework can be easily
plugged into any domain-specific or general-purpose social networking platforms without
affecting their responsiveness. Furthermore, it may inspire the design of privacy-preserving
social networking components for Privacy by Design compliant software (Cavoukian, 2012).

In this paper we have investigated the problem from a simplified perspective. In fact,
we have considered the problem of sharing a well-defined set of attributes (e.g. work status,
relationship status, holidays picture album). To be able to infer the sensitivity of the
attributes and to be able to model them from the privacy perspective, they need to belong
to classes common in a large part of the population so the behavior of the users with
respect to them can be modeled. As a further refinement of this work, we will address the
inference of such classes (or topics) for posted items by leveraging NLP, sentiment analysis,
topic modeling and text categorization techniques. Moreover, since users, supported by
social media tools, often provide additional information on their posted items (e.g., tags,
geolocation, user IDs from face recognition in images, hashtags), we will investigate a more
complex framework to further define the context of each privacy policy for individual items.
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