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Phase Type and Matrix Exponential
Distributions in Stochastic Modeling

Andras Horvath, Marco Scarpa and Miklos Telek

Abstract Since their introduction, properties of Phase Type (PH) distributions have1

been analyzed and many interesting theoretical results found. Thanks to these results,2

PH distributions have been profitably used in many modeling contexts where non-3

exponentially distributed behavior is present. Matrix Exponential (ME) distributions4

are distributions whose matrix representation is structurally similar to that of PH5

distributions but represent a larger class. For this reason, ME distributions can be6

usefully employed in modeling contexts in place of PH distributions using the same7

computational techniques and similar algorithms, giving rise to new opportunities8

the fact, they are able to represent different dynamics, e.g., faster dynamics, or the9

same dynamics but at lower computational cost. In this work, we deal with the10

characteristics of PH and ME distributions, and their use in stochastic analysis of11

complex systems. Moreover, the techniques used in the analysis to take advantage12

of them are revised.13

1 Introduction14

Stochastic modeling has been used for performance analysis and optimization of15

computer systems for more than five decades [19]. The main analysis method behind16

this effort was the continuous time Markov chains (CTMC) description of the sys-17
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2 A. Horvath et al.

tem behavior and the CTMC-based analysis of the performance measures of inter-18

est. With the evolution of computing devices, model description languages (e.g.,19

queueing systems, Petri nets, process algebras), and model analysis techniques (a20

wide range of software tools with efficient analysis algorithm using adequate data21

representation and memory management) the analysis of more and more complex22

systems has become possible. One of main modeling limitations of the CTMC-based23

approach is the limitation on the distribution of the random time durations, which24

is restricted to be exponentially distributed. Unfortunately, in a wide range of prac-25

tical applications, the empirical distribution of field data differs significantly from26

the exponential distribution. The effort to relax this restriction of the CTMC-based27

modeling on exponentially distributed durations resulted in the development of many28

alternative stochastic modeling methodologies (semi-Markov and Markov regener-29

ative processes [11], analysis with the use of continuous system parameters [8]), yet30

all of the alternative modeling methodologies suffer from infeasible computational31

complexity very quickly when the complexity of the systems considered increases32

beyond basic examples.33

It remains a significant research challenge to relax the modeling restriction of the34

exponentially distributed duration time and still evaluate complex model behaviors.35

To this end, one of the most promising approaches is the extension of CTMC-based36

analysis to non-exponentially distributed durations. Initial steps in this direction date37

back to the activity of A.K. Erlang in the first decades of the twentieth century as38

reported in [10]. These initial trials were referred to as the method of phases, which39

influenced later terminology. M.F. Neuts characterized a set of distributions which40

can be incorporated into CTMC-based analysis by introducing the set of phase type41

(PH) distributions [16].42

The extension of CTMC-based analysis (where the durations are exponentially43

distributed) with PH distributed durations requires the generation of a large CTMC,44

referred to as extended Markov chain (EMC), which combines the system behavior45

with the description of the PH distributions. In this chapter, we summarize the basics46

of EMC-based stochastic analysis and provide some application examples. Finally,47

we note that in this work we restrict our attention to continuous time stochastic48

models, but that the same approach applies for discrete time stochastic models as49

well.50

1.1 Structure of the Chapter51

The next two sections, Sects. 2 and 3, summarize the basic information on PH and52

ME distributions, respectively. The following two sections, Sects. 4 and 5, discuss the53

analysis procedure for complex stochastic systems with PH and ME distributed dura-54

tions, respectively. The tools available to support EMC-based analysis of stochastic55

systems is presented in Sect. 6. Numerical examples demonstrate the modeling and56

analysis capabilities of the approach are discussed in Sect. 7 and the main findings57

and conclusions are given in Sect. 8.58
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 3

2 PH Distributions and Their Basic Properties59

2.1 Assumed Knowledge60

Transient behavior of a finite state Markov chain with generator Q and initial dis-61

tribution π, specifically, the transient probability vector p(t), satisfies the ordinary62

differential equation63

d

dt
p(t) = p(t)Q, with initial condition p(0) = π,64

whose solution is a matrix exponential function65

p(t) = πeQt , (1)66

where the matrix exponential term is defined as67

eQt =
∞∑

i=0

t i

i !Qi .68

The properties of generator Q and initial distribution π are as follows. The elements of69

π are probabilities, i.e., nonnegative numbers not greater than one. The off-diagonal70

elements of Q are transition intensities, i.e., nonnegative numbers. The diagonal71

elements of Q are such that each row sum is zero, i.e., the diagonal elements are72

non-positive. The elements of π sum to one, that is
∑

iπi = π1 = 1. Each row of a73

generator matrix sums to zero, that is
∑

j Qi j = 0, or equivalently, in vector form,74

we can write Q1 = 0, where 1 is a column vector of ones and 0 is a column vector75

of zeros. Hereafter, the sizes of vector 1 and 0 are defined by the context such that76

the dimensions in the vector expressions are compatible.77

The stationary distribution of an irreducible finite state Markov chain with gen-78

erator Q, p � limt→∞ p(t), can be computed as the unique solution of the linear79

system of equations80

pQ = 0, p1 = 1. (2)81

In this chapter, we focus on the computation of the initial distribution and the82

generator matrix of the EMC and do not discuss the efficient solution methods for83

solving (1) and (2).84

2.2 Phase Type Distributions85

PH distributions are defined by the behavior of a Markov chain, which is often86

referred to as the background Markov chain behind a PH.87
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4 A. Horvath et al.

Let X (t) be a Markov chain with n transient and one absorbing states, meaning88

that the absorbing state is reachable (by a series of state transitions) from all transient89

states, but when the Markov chain moves to the absorbing state it remains there for-90

ever. Let π be the initial distribution of the Markov chain, that is πi = P (X (0) = i).91

Without loss of generality, we number the states of the Markov chain such that state92

1, . . . , n are transient states and state n + 1 is the absorbing state. The generator93

matrix of such a Markov chain has the following structure94

Q =
[

A a
0 0

]
,95

where A is a square matrix of size n and a is a column vector of size n. Since the96

rows of the generator matrix sum to zero, the elements of a can be computed from97

A, that is a = −A1. Similarly, the first n elements of the initial vector π, denoted by98

α, completely defines the initial vector, since the (n + 1)st element of π is 1 − α1.99

We note that α defines the initial probabilities of the transient states. With the help100

of this Markov chain, we are ready to define PH distributions.101

Definition 1 The time to reach the absorbing state of a Markov chain with a finite102

number of transient and an absorbing state103

T = min{t : X (t) = n + 1, t ≥ 0},104

is phase type distributed.105

Throughout this document, we assume that the Markov chain starts from one of106

the transient states and consequently α1 = 1, i.e., there is no probability mass at107

zero and T has a continuous distribution on R
+. Since the time to reach the absorbing108

state is a transient measure of the Markov chain, we can evaluate the distribution of109

random variable T , based on the transient analysis of the Markov chain with initial110

distribution π and and generator matrix Q111

FT (t) = P (T < t) = P (X (t) = n + 1) = πeQt en+1,112

where en+1 is the (n + 1)st unit vector (the column vector with zero elements except113

in position n + 1 which is one).114

This straight forward description of the distribution of T is not widely used due115

to the redundancy of matrix Q and vector π. Indeed, matrix A and the initial vector116

associated with the transient states, α, define all information about the distribution117

of T and the analytical description based on α and A is much simpler to use in more118

complex stochastic models. To obtain the distribution based on α and A, we carry119

on the block structure of matrix Q in the computation.120
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 5

FT (t) = P (T < t) = P (X (t) = n + 1) = 1 −
n∑

i=1

P (X (t) = n + 1)121

= 1 − [α, 0]eQt

[
1
0

]
= 1 − [α, 0]

∞∑

i=0

t i

i !
[

A a
0 0

]i [ 1
0

]
122

= 1 − [α, 0]
∞∑

i=0

t i

i !
[

Ai •
0 0

] [
1
0

]
= 1 − α

∞∑

i=0

t i

i ! Ai 1 = 1 − αeAt 1,123

124

where • indicates irrelevant matrix block whose elements are multiplied by zero.125

The PDF of T can be obtained from the derivative of its CDF.126

fT (t) = d

dt
FT (t) = d

dt

(
1 − α

∞∑

i=0

t i

i ! Ai 1

)
= −α

∞∑

i=0

d

dt

t i

i ! Ai 1127

= −α

∞∑

i=1

t i−1

(i − 1)! Ai−1 A1 = −αeAt A1 = αeAt a,128

129

where we used a = −A1 in the last step.130

Before computing the remaining properties of PH distributions we need to classify131

the eigenvalues of A. The i, j element of matrix eAt contains the probability that132

starting from transient state i the Markov chain is in transient state j at time t . If133

states 1, . . . , n are transient states then as t tends to infinity eAt tends to zero, which134

means that the eigenvalues of A have negative real part and, as a consequence, A is135

non-singular.136

The Laplace transform of T , E
(
e−sT
)
, can be computed as137

f ∗
T (s) = E

(
e−sT
) =

∞∫

t=0

e−st fT (t) dt =
∞∫

t=0

e−stαeAt a dt138

= α

∞∫

t=0

e(−sI+A)t dt a = α(sI − A)−1a,139

140

where we note that the integral surely converges for R(s) ≥ 0 because in this case141

the eigenvalues of −sI + A also possess a negative real part.142

To compute the kth moment of T , E
(
T k
)
, we need the following integral relation143

[
t keAt
]∞

0 =
∞∫

t=0

ktk−1eAt dt +
∞∫

t=0

t keAt Adt,144

145

whose left-hand side is zero because the eigenvalues of A possess a negative real146

part. Multiplying both side with (−A)−1 we get147

333760_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:27/2/2016 Pages: 24 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6 A. Horvath et al.

∞∫

t=0

t keAt dt = k

∞∫

t=0

t k−1eAt dt (−A)−1.148

149

Using this relation, the kth moment of T is150

E
(
T k
) =

∞∫

t=0

t k fT (t)dt = α

∞∫

t=0

t keAt dt (−A)1 = kα

∞∫

t=0

t k−1eAt dt1151

= k(k − 1)α

∞∫

t=0

t k−2eAt dt (−A)−11 = · · · = k!α(−A)−k1.152

153

These four properties of PH distributions (CDF, PDF, Laplace transform, and154

moments) have several interesting consequences and some of which we summarize155

below.156

• Matrix (−A)−1 has an important stochastic meaning. Let Ti j be the time spent157

in transient state j before moving to the absorbing state when the Markov chain158

starts from state i . For E
(
Ti j
)
, we have159

E
(
Ti j
) = δi j

−Ai i
+
∑

k,k �=i

Aik

−Ai i
E
(
Tk j
)
,160

where δi j is the Kronecker delta symbol. The first term of the left-hand side is the161

time spent in state j while the Markov chain is in the initial state, and the second162

term is the time spent in state j during later visits to j . Multiplying both sides by163

−Ai i and adding E
(
Ti j
)

Ai i gives164

0 = δi j +
∑

k

Aik E
(
Tk j
)
,165

whose matrix form is166

0 = I + AT −→ T = (−A)−1,167

where T is the matrix composed of the elements E
(
Ti j
)
. Consequently, the (i j)168

element of (−A)−1 is E
(
Ti j
)
, which is a nonnegative number.169

• f ∗
T (s) is a rational function of s whose numerator is at most order n − 1 and170

denominator is at most order n. This is because171

f ∗
T (s) = α(sI − A)−1a =

∑

i

∑

j

αi (sI − A)−1
i j a j172

=
∑

i

∑

j

αi

[
det j i (sI − A)

det(sI − A)

]
a j =

∑
i

∑
j αi a j det j i (sI − A)

det(sI − A)
.173

174

333760_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:27/2/2016 Pages: 24 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Phase Type and Matrix Exponential Distributions in Stochastic Modeling 7

det j i (M) denotes the determinant of the matrix obtained by removing row j and175

column i of matrix M. The denominator of the last expression is an order n176

polynomial of s, while the numerator is the sum of order n − 1 polynomials,177

which is at most an order n − 1 polynomial of s.178

• This rational Laplace transform representation indicates that a PH distribution179

with n transient state can be represented by 2n − 1 independent parameters. A180

polynomial of order n is defined by n + 1 coefficients, and a rational function of181

order n − 1 numerator, and order n denominator is defined by 2n + 1 parameters.182

Normalizing the denominator such that the coefficient of sn is 1 and considering183

that
∫

t fT (t)dt = lims→0 f ∗
T (s) = 1 adds two constraints for the coefficients, from184

which the number of independent parameters is 2n − 1.185

• The PDF of a PH distribution is the sum of exponential functions. Let A = B−1�B186

be the Jordan decomposition1 of A and let u = αB−1 and v = Ba. Then,187

fT (t) = αeAt a = αB−1e�t Ba = ue�tv .188
189

At this point, we distinguish two cases.190

– The eigenvalues of A are different and � is a diagonal matrix. In this case, fT (t)191

is a sum of exponential functions because192

fT (t) = ue�tv =
∑

i

uivi e
λi t =

∑

i

ci e
λi t ,193

194

where ci = uivi is a constant coefficient of the exponential function.195

Here the eigenvalues (λi ) as well as the associated coefficients (ci ) can be real196

or complex conjugate pairs. For a complex conjugate pair of eigenvalues, we197

have198

ci e
λi t + c̄i e

λ̄i t = 2|ci |eR(λi )t cos(I(λi )t − ϕi ),199

where ci = |ci |eıϕi , R(λi ) and I(λi ) are the real and the imaginary part of λi200

and ı is the imaginary unit.201

– There are eigenvalues of A with higher multiplicity and � contains real Jordan202

blocks. The matrix exponent of a Jordan block is203

exp

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .

λ

⎞

⎟⎟⎟⎠ t

⎤

⎥⎥⎥⎦ =

⎛

⎜⎜⎜⎝

eλt teλt 1
2! t

2eλt 1
3! t

3eλt

eλt teλt 1
2! t

2eλt

. . .
. . .

eλt

⎞

⎟⎟⎟⎠ .204

1The case of different Jordan blocks with identical eigenvalue is not considered here, because it
cannot occur in non-redundant PH representations.
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8 A. Horvath et al.

Consequently, the density function takes the form205

fT (t) =
#λ∑

i=1

#λi∑

j=1

ci j t
j−1eλi t ,206

207

where #λ is the number of different eigenvalues and #λi is the multiplicity of λi .208

Similar to the previous case, the eigenvalues (λi ) as well as the associated coef-209

ficients (ci, j ) can be real or complex conjugate pairs. For a complex conjugate210

pair of eigenvalues, we have211

ci, j t
j−1eλi t + c̄i, j t

j−1eλ̄i t = 2|ci, j |t j−1eR(λi )t cos(I(λi )t − ϕi, j ),212

where ci, j = |ci, j |eıϕi, j .213

As a result of all of these cases, the density function of a PH distribution possesses214

the form215

fT (t) =
#λR∑

i=1

#λR
i∑

j=1

ci j t
j−1eλR

i t +
#λC∑

i=1

#λC
i∑

j=1

2|ci, j |t j−1eR(λC
i )t cos(I(λC

i )t − ϕi, j )

(3)

216

217

where #λR is the number of different real eigenvalues and #λC is the number of218

different complex conjugate eigenvalue pairs.219

• In general, infinitely many Markov chains can represent the same PH distribution.220

– The following similarity transformation generates representations with identical221

size.222

Let T be a non-singular matrix with unit row sums (T1 = 1). The vector–matrix223

pairs (α, A) and (αT, T−1 AT) are two different vector–matrix representations224

of the same PH distribution, since225

FT (t) = 1 − αTeT−1 ATt 1 = 1 − αTT−1eAt T1 = 1 − αeAt 1.226
227

– Representations with different sizes can be obtained as follows.228

Let matrix V of size m × n be such that V1 = 1.229

The vector–matrix pairs (α, A) of size n and (γ, G) of size m are two different230

vector–matrix representations of the same PH distribution if AV = VG and231

αV = γ because232

FT (t) = 1 − γeGt 1 = 1 − αVeGt 1 = 1 − αeAt V1 = 1 − αeAt 1233
234

in this case.235
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 9

3 Matrix Exponential Distributions and Their Basic236

Properties237

In the definition of PH distributions, vector α is a probability vector with nonnegative238

elements and matrix A is a generator matrix with negative diagonal and nonnegative239

off-diagonal elements. Relaxing these sign constraints for the vector and matrix240

elements and maintaining the matrix exponential distribution (and density) function241

results in the set of matrix exponential (ME) distributions.242

Definition 2 Random variable T with distribution function243

FT (t) = 1 − αeAt 1,244
245

where α is a finite real vector and A is a finite real matrix, is matrix exponentially246

distributed.247

The size of α and A plays the same role as the number of transient states in case248

of PH distributions. By definition, the set of PH distributions with a given size is a249

subset of the set of PH distributions with the same size.250

ME distributions share the following basic properties with PH distributions: matrix251

exponential distribution function, matrix exponential density function, moments,252

rational Laplace transform, the same set of functions as in (3), and non-unique rep-253

resentation. The main difference between the matrix exponential and the PH classes254

comes from the fact that the sign constraints on the elements of generator matrixes255

restrict the eigenvalue structure of such matrixes, while such restrictions do not apply256

in case of ME distributions. For example, the eigenvalues of an order three PH distri-257

bution with dominant eigenvalue θ satisfy R(λi ) ≤ θ and |I(λi )| ≤ (θ−R(λi )/
√

3,258

while the eigenvalues of an order three ME distribution with dominant eigenvalue259

θ satisfy R(λi ) ≤ θ only. This flexibility of the eigenvalues has significant con-260

sequence on the flexibility of the set of order three PH and ME distributions. For261

example, the minimal squared coefficient of variation among the order three PH and262

ME distributions are 1/3 and 0.200902, respectively.263

The main difficulty encountered when working with ME distributions is that a264

general vector–matrix pair does not always define a nonnegative density function,265

while a vector–matrix pair with the sign constraints of PH distributions does. Efficient266

numerical methods have been proposed recently to check the nonnegativity of a267

matrix exponential function defined by a general vector–matrix pair, but general268

symbolic conditions are still missing.269

4 Analysis of Models with PH Distributed Durations270

If all durations (service times, interarrival times, repair times, etc.) in a system are271

distributed according to PH distributions, then its overall behavior can be captured272

by a continuous time Markov chain, referred to as extended Markov chain (EMC).273
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10 A. Horvath et al.

In this section, we show how to derive the infinitesimal generator of this EMC using274

Kronecker operations. The methodology here described has been originally presented275

in the case of Discrete PHs in [17] and more recently in the case of Continuous PHs276

in [13]277

To this end we first introduce the notation used to describe the model. By S, we278

denote the set of states and by N = |S| the number of states. The states themselves279

are denoted by s1, s2, ..., sN . The set of activities is denoted by A and the set of those280

that are active in state si is denoted by Ai . The activities are denoted by a1, a2, ..., aM281

with M = |A|. When activity ai is completed in state s j then the system moves from282

state s j to state n( j, i), i.e., n is the function that provides the next state. We assume283

that the next state is a deterministic function of the current state and the activity that284

completes. We further assume that there does not exist a triple, k, i, j, for which285

sk ∈ S, ai ∈ A, a j ∈ A and n(k, i) = n(k, j). These two assumptions, which make286

the formulas simpler, are easy to relax in practice. There can be activities that end287

when the system moves from state si to state s j even if they do not complete and are288

active both in si and in s j . These activities are collected in the set e(i, j). The PH289

distribution that is associated with activity ai is characterized by the initial vector290

αi and matrix Ai . As before, we use the notation ai = −Ai 1 to refer to the vector291

containing the intensities that lead to completion of activity ai . The number of phases292

of the PH distribution associated with activity ai is denoted by ni .293

Example 1 PH/PH/1/K queue with server break-downs. As an example, we consider,294

using the above-described notation, a queue in which the server is subject to failure295

only if the queue is not empty. The set of states is S = {s1, s2, ..., s2K+1} where s1296

represents the empty queue, s2i with 1 ≤ i ≤ K represents the state with i clients297

in the queue and the server up, and s2i+1 with 1 ≤ i ≤ K represents the state with298

i clients and the server down. There are four activities in the system: a1 represents299

the arrival activity, a2 the service activity, a3 the failure activity,2 and a4 the repair300

activity. The vectors and matrices that describe the associated PH distributions are301

α1,α2,α3,α4 and A1, A2, A3, A4. In this example, we assume that the arrival302

activity is active if the system is not full and it is inactive if the system is full.303

The service and the failure activities are active if the queue is not empty and the304

server is up. The repair activity is active if the queue is not empty and the server is305

down. Accordingly, we have A1 = {a1}, A2i = {a1, a2, a3} for 1 ≤ i ≤ K − 1,306

A2i+1 = {a1, a4} for 1 ≤ i ≤ K − 1, A2K = {a2, a3}, and A2K+1 = {a4}. The next307

state function is as follows: for arrivals we have n(1, 1) = s2 and n(i, 1) = si+2 with308

2 ≤ i ≤ 2K − 1; for services n(2, 2) = s1 and n(2i, 2) = s2i−2 with 2 ≤ i ≤ K ;309

for failures n(2i, 3) = s2i+1 with 1 ≤ i ≤ K ; for repairs n(2i + 1, 4) = s2i with310

1 ≤ i ≤ K . We assume that the failure activity ends every time when a service311

activity completes, i.e., failure is connected to single jobs and not to the aging of the312

server. Other activities end only when they complete or when such a state is reached313

in which they are not active. Accordingly, e(2i, 2i − 2) = {a3} for 2 ≤ i ≤ K .314

2Failure is more like an event than an activity but, in order to keep the discussion clearer, we refer
to it as failure activity.
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 11

Based on the description of the ingredients of the model, it is possible to derive315

blocks of the initial probability vector and the blocks of the infinitesimal generator316

of the corresponding CTMC. Let us start with the infinitesimal generator, which we317

denote by Q, composed of N × N blocks. The block of Q that is situated in the i th318

row of blocks and in the j th column of blocks is denoted by Qi j . A block in the319

diagonal, Qi i describes the parallel execution of the activities that are active in si .320

The parallel execution of CTMCs can be captured by the Kronecker-sum operator321

(⊕), and thus we have322

Qi i =
⊕

j :s j ∈Ai

A j .323

An off-diagonal block, Qi j , is not a zero matrix only if there exists an activity324

whose completion moves the system from state si to state s j . Let us assume that the325

completion of activity ak moves the system from state si to state s j , i.e., n(i, k) = s j .326

The corresponding block, Qi j , must327

• reflect the fact that activity ak completes and restarts if ak is active in s j ,328

• reflect the fact that activity ak completes and does not restart if ak is not active329

in s j ,330

• end activities that are active in si but not in s j ,331

• start those activities that are not active in si but are active in s j ,332

• end and restart those activities that are active both in si and in s j but are in e(i, j),333

• and maintain the phase of those that are active both in si and in s j and are not in334

e(i, j).335

The joint treatment of the above cases can be carried out by the Kronecker-product336

operator and thus we have337

Qi j =
⊗

l:1≤l≤M

Rl338

with339

Rl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak if l = k and k /∈ A j

akαk if l = k and k ∈ A j

1nl if l �= k and k ∈ Ai and k /∈ A j

αl if l �= k and k /∈ Ai and k ∈ A j

1nl αl if l �= k and k ∈ Ai and k ∈ A j and k ∈ e(i, j)
Inl if l �= k and k ∈ Ai and k ∈ A j and k /∈ e(i, j)
1 otherwise

340

where the subscripts to 1 and I indicate their size.341

The initial probability vector of the CTMC, π, is a row vector composed of N342

blocks which must reflect the initial probabilities of the states of the system and the343

initial probabilities of the PH distributions of the active activities. Denoting by πi344

the initial probability of state si , the i th block of the initial probability vector, πi , is345

given as346
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12 A. Horvath et al.

πi =
⊗

j :s j ∈Ai

α j .347

Example 2 For the previous example, the diagonal blocks, which must reflect the348

ongoing activities, are the following:349

Q1,1 = A1, Q2i,2i = A1

⊕
A2

⊕
A3, Q2i+1,2i+1 = A1

⊕
A4,350

Q2K ,2K = A2

⊕
A3, Q2K+1,2K+1 = A4 with 1 ≤ i ≤ K − 1351

352

Arrival in state s1 takes the system to state s2. The corresponding block must complete353

and restart the arrival activity and must restart both the service and the failure activity:354

Q12 = a1α1

⊗
α2

⊗
α3 (4)355

356

Arrival in state s2i (server up) takes the system to state s2i+2. If the system does357

not become full then the corresponding block must complete and restart the arrival358

activity and must maintain the phase of both the service and the failure activity. If359

the system becomes full, the arrival activity is not restarted. Accordingly, we have360

Q2i,2i+2 = a1α1

⊗
In2

⊗
In3 with 1 ≤ i ≤ K − 2361

Q2K−2,2K = a1

⊗
In2

⊗
In3362

363

An arrival in state s2i+1 (server down) takes the system to state s2i+3. If the system364

does not become full then the corresponding block must complete and restart the365

arrival activity and must maintain the phase of the repair activity. If the system366

becomes full, the arrival activity is not restarted. Accordingly, we have367

Q2i+1,2i+3 = a1α1

⊗
In4 with 1 ≤ i ≤ K − 2368

Q2K−1,2K+1 = a1

⊗
In4369

370

Service completion can take place in three different situations. If the system becomes371

empty then the phase of the arrival activity is maintained, the service activity is372

completed and the failure activity is put to an end. If the system neither becomes373

empty nor was full then the phase of the arrival activity is maintained, the service374

activity is completed and restarted, and the failure activity ends and restarts. Finally, if375

the queue was full then the arrival activity is restarted, the service activity is completed376

and restarted, and the failure activity is put to an end and restarted. Accordingly, we377

have378

Q2,1 = In1

⊗
a2

⊗
1n3379
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 13

Q2i,2i−1 = In1

⊗
a2α2

⊗
1n3α3 with 1 < i < K380

Q2K ,2K−2 = α1

⊗
a2α2

⊗
1n3α3 (5)381

382

The failure activity can be completed in two different situations. If the system is not383

full, then the phase of the arrival activity is maintained. If the system is full then384

the arrival activity is not active. In both cases, the service activity ends, the failure385

activity is completed and the repair activity is initialized.386

Q2i,2i+1 = In1

⊗
1n2

⊗
a3

⊗
α4 with 1 ≤ i < K387

Q2K ,2K+1 = 1n2

⊗
a3

⊗
α4388

389

Similarly to the failure activity, also the repair activity can be completed in two390

different situations because the arrival activity can be active or inactive. In both391

cases, the service activity and the failure activity must be initialized and the repair392

activity completes.393

Q2i+1,2i = In1

⊗
α2

⊗
α3

⊗
a4 with 1 ≤ i < K394

Q2K+1,2K = α2

⊗
α3

⊗
a4395

396

5 Analysis of Stochastic Systems with ME Distributed397

Durations398

The most important observation to take from this section is that all steps of the method399

of EMCs (as explained in the previous section) remain directly applicable in case400

of ME distributed durations (where the (αi , Ai ) vector–matrix pairs describe ME401

distributions). In that case, the only difference is that the signs of the vector and matrix402

elements are not restricted to be nonnegative in case of the vector elements and off-403

diagonal matrix elements and to be negative in case of the diagonal matrix elements.404

Consequently, the model description does not allow a probabilistic interpretation via405

Markov chains.406

This general conclusion was obtained through serious research efforts. Following407

the results in [12], it was suspected that in a stochastic model ME distributions could408

be used in place of PH distributions and several results would carry over, but it was409

not easy to prove these conjectured results in the general setting because probabilistic410

arguments associated with PH distributions no longer hold. In [1], it was shown that411

matrix geometric methods can be applied for quasi-birth–death processes (QBDs)412

with rational arrival processes (RAPs) [3], which can be viewed as an extension of413

ME distributions to arrival processes. To prove that the matrix geometric relations414

hold, the authors of [1] use an interpretation of RAPs proposed in [3]. However,415

the models considered are limited to QBDs. For the model class of SPNs with ME416
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14 A. Horvath et al.

distributed firing times, the applicability of the EMC-like analysis was proved in [2]417

and refined for the special case when the ME distribution has no PH representation418

in [4].419

6 Analysis tools420

Based on the common representation of the EMC through the Kronecker algebra,421

smart algorithms have been developed recently to optimize memory usage. These422

algorithms build the EMC in a completely symbolic way, both at the process state423

space level and at the expanded state space level, as deeply explained in [13] that we424

use as reference.425

The algorithm presented in [13] is based on two high level steps:426

1. to generate the reachability graph of the model (which collects the system states427

in a graph according to their reachability from an initial set of states) using a428

symbolic technique;429

2. to enrich the symbolically stored reachability graph with all the necessary infor-430

mation to evaluate Kronecker expressions representing the expanded state space.431

Step 1 is performed using symbolic technique based on complex data structures like432

Multi-Valued Decision Diagram (MDD) [18] to encode the model state space; step433

2 adds information related to each event memory policy to the encoded state space.434

In manner it is possible to use on the fly expressions introduced in Sects. 4 and 5 to435

compute various probability measures of the model.436

6.1 Symbolic Generation of Reachability Graph437

Both traditional performance or dependability evaluation techniques and more recent438

model checking-based approaches are grounded in the knowledge of the set of states439

that the system considered can reach starting from a particular initial state (or in440

general from a set of initial states). Symbolic techniques [5] focus on generating441

a compact representation of huge state spaces by exploiting a model’s structure442

and regularity. A model has a structure when it is composed of K sub-models, for443

some K ∈ N. In this case, a global system state can be represented as a K -tuple444

(q1, . . . , q K ), where qk is the local state of sub-model k (having some finite size nk).445

The use of (MDDs) for the encoding of model state spaces was introduced by446

Miner and Ciardo in [14]. MDDs are rooted, directed, acyclic graphs associated with447

a finite ordered set of integer variables. When used to encode a state space, an MDD448

has the following structure:449
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 15

• nodes are organized into K + 1 levels, where K is the number of sub-models;450

• level K contains only a single non-terminal node, the root, whereas levels K − 1451

through 1 contain one or more non-terminal nodes;452

• a non-terminal node at level k has nk arcs pointing to nodes at level k − 1;453

A state s = (q1, . . . , q K ) belongs to S if and only if a path exists from the root node454

to the terminal node 1 such that, at each node, the arc corresponding to the local455

state qk is followed. In [6], and then in [7], Ciardo et al. proposed the Saturation456

algorithm for the generation of reachability graphs using MDDs. Such an iteration457

strategy improves both memory and execution time efficiency.458

An efficient encoding of the reachability graph is built in the form of a set of459

Kronecker matrices We,k with e ∈ A and k = 1, . . . , K , where A is the set collecting460

all the system events or activities. We,k[ik, jk] = 1 if state jk of sub-model k is461

reachable from state ik due to event e. According to such a definition, the next462

state function of the model can be encoded as the incidence matrix given by the463

boolean sum of Kronecker products
∑

e∈A
⊗

K≥k≥1 We,k . As a consequence, the464

matrix representation R of the reachability graph of the model can be obtained by465

filtering the rows and columns of such a matrix corresponding to the reachable global466

states encoded in the MDD and replacing each non-null element with the labels of467

the events that cause the corresponding state transition.468

Saturation Unbound is a very effective way to represent the model state space469

and the related reachability graph of a model. In any case, the methodology we are470

dealing with is not strictly dependent on any particular algorithm to efficiently store471

the reachability graph. We refer to the Saturation Unbound algorithm simply because472

its efficiency is well known [7].473

6.2 Annotating the Reachability Graph474

The use of Saturation together with the Kronecker representation presented in previ-475

ous sections enable solution of the derived stochastic process. However, knowledge476

of the reachability graph of the untimed system as produced by Saturation is not477

sufficient to manage the infinitesimal generator matrix Q on the fly according to the478

symbolic representation. Considering that the information about the enabled events479

for all the system states is contained in the high level description of the model and it480

can be evaluated on the fly when needed with a negligible overhead, the only addi-481

tional information needed is knowledge about the sets of active but not enabled events482

in each state s (T (s)
a ). Using Saturation for the evaluation of the reachability graph483

requires an additional analysis step for the computation of such an information and484

use of a different data structure for storage. Multi Terminal Multi-Valued Decision485

Diagram (MTMDD) [15] is used for this purpose.486

The main differences with respect to MDDs are that: (1) more than two terminal487

nodes are present in an MTMDD and (2) such nodes can be labeled with arbitrary488

integer values, rather than just 0 and 1. An MTMDD can efficiently store both the489
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16 A. Horvath et al.

system state space S and the sets T (s)
a of active but not enabled events for all s ∈ S;490

this is necessary, in our approach, to correctly evaluate non-null blocks of Q matrix.491

In fact, while an MDD is only able to encode a state space, an MTMDD is also492

able to associate an integer to each state. Thus, the encoding of sets T (s)
a can be493

done associating to each possible set of events an integer code that unambiguously494

represents it. Let us associate to each event an unique index n such that 1 ≤ n ≤ ‖A‖.495

Then the integer value associated to one of the possible sets T (s)
a is computed starting496

from the indices associated with the system events that belong to it in the following497

way:498

bM · 2A + · · · + bn · 2n + · · · b1 · 21 + 1 =∑M
i=1 bi 2i + 1499

where500

bi =
{

1, if event ei ∈ T (s)
a

0, otherwise
501

In this manner all the necessary information to apply the Kronecker-based expres-502

sions on the fly are provided; the only remaining need is a method to evaluate the set503

T (s)
a given a referring state s.504

In [13], the following theorem has been proved.505

Theorem 1 Given a model M, a state s0 ∈ S and an event e ∈ A with an age506

memory policy associated, then e ∈ T (s0)
a iff e /∈ T (s0)

e and one of the following507

statements holds:508

1. ∃ s1 ∈ S, ∃ e1 ∈ A, s1 �= s0, e1 �= e | s0 ∈ Ne1(s1) ∧ e ∈ T (s1)
e509

2. ∃ s1 ∈ S, s1 �= s0 | s0 ∈ N (s1) ∧ e ∈ T (s1)
a510

where Ne1 is the next state function associated to event e1.511

Note that function N is the equivalent to the n(·, ·) defined in Sect. 4; function Ne512

instead differs for the restriction to the firing of a specific event e. We use this notation513

because it is less cumbersome in this specific context.514

Theorem 1 gives a way to evaluate if an event e belongs to the set T (s0)
a or not.515

In fact, according to the statements proved, it is possible to characterize a state516

s0 with respect to the system event memory policies by exploring its reachability517

graph. Exploration can be performed using classical bread-first search and depth-518

first search algorithms, easily applicable to an explicitly stored reachability graph; it519

is more complicated to apply classical search algorithms when the graph is stored in520

implicit manner as is the case when MTMDD data structures are used.521

In this case, a different approach can be used by resorting to Computational Tree522

Logic (CTL) formulas that have been shown to be very efficient for data structures523

like MDD and MTMDD. The use of CTL formulas to evaluate sets T (s)
a is justified524

by a theorem introduced in [13]. Before recalling this theorem, we need to introduce525

a CTL operator.526

Definition 3 Let s0 ∈ S be a state of a discrete state process with state space S, and527

let p and q be two logical conditions on the states. Let also F(s) ⊆ N (s)∪N −1(s) be528

a reachability relationship between two states in S that defines a desired condition529
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Phase Type and Matrix Exponential Distributions in Stochastic Modeling 17

over the paths. Then s0 satisfies the formula EF [pUq], and we will write s0 �530

EF [pUq], iff ∃ n ≥ 0, ∃ s1 ∈ F(s0), . . . , ∃ sn ∈ F(sn−1) | (sn � q) ∧ (∀m <531

n, sm � p).532

In definition above, we used the path quantifier E with the meaning there exists a533

path and the tense operator U with the meaning until, as usually adopted in CTL534

formulas.535

Given Definition 3, the following theorem holds:536

Theorem 2 An event e ∈ E , with an age memory policy associated, belongs to537

T (s0)
a , with s0 ∈ S, iff s0 � EF [pUq] over a path at least one long, where538

p and q are the statements “e is not enabled” and “e is enabled,” respectively,539

and F(s) = N −1(s) \ N −1
e (s).540

Thanks to Theorem 2, evaluation of the CTL formula EF [pUq] makes possible541

to evaluate whether an event e is active but not enabled in state s0 or not by setting542

condition p as e is not enable and q as e is enabled. This is the last brick to build543

an algorithm able to compute state probabilities of a model, where the event are PH544

or ME distributed; in fact, it is possible to characterize all the active and/or enabled545

events in all the different states and to apply the Kronecker expressions with this546

information to solve the derived EMC.547

7 Examples548

In this section, we present two examples where non-exponentially distributed dura-549

tions are present. In the first example, these durations are approximated by PH dis-550

tributions, while in the second example they are described by ME distributions.551

7.1 Reliability Model of Computer System552

We introduce a reliability model where we use PH distributions as failure times.553

The model is specified according to the Petri net depicted in Fig. 1, where the usual554

graphical notation for the places, transitions, and arcs has been adopted.555

The system under study is a distributed computing system composed of a cluster556

of two computers. Each of them has three main weak points: the motherboard, CPU,557

and disk. Interconnections inside the cluster are provided by a manager in such a558

way that the overall system is seen as a single unit. In the distributed system, the two559

computers work independently, driven by the manager that acts as a load balancer to560

split the work between them. Since the manager represents a single point of failure, a561

second instance is deployed for redundancy in the system; this latter instance operates562

in cold standby when the main computer manager works and it is powered on when563

it fails.564
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18 A. Horvath et al.

Fig. 1 Computer system reliability model

Due to this configuration, the distributed system works when at least one of the two565

computers works and the computer manager properly operates. The main components566

of each computational unit (CPU, motherboard, and disk) may fail rendering the567

unit inoperable. In the Petri net model, faults in the CPU, motherboard, and disk568

are modeled by the timed transitions M B_i , Disk_i , and C PU_i whose firing569

represents the respective faulty event in the i-th Computer; the operating conditions570

of components are represented by a token in the places C PUi_U P , M Bi_U P , and571

Diski_U P . When one of the transitions above fires a token is flushed out of the572

place and a token is put in the place Comp_ f ail. At the same time, all the other573

transitions related to the faulty events in the same unit become disabled because574

the unit is considered down and thus no more faults can occur. Two tokens in the575

place Comp_ f ail means that the two computational units are both broken and the576

overall distributed system is not operational. Similarly, transition Man models the577

fault of a manager unit. Its firing flushes a token out of the place Man_U P and puts578

a token in the place Man_ f ail. Thanks to the redundancy, the first manager unit579

fault is tolerated whereas the system goes down when a second fault occurs. This580

state is represented in the Petri net by two tokens in the place Man_ f ail. In both581

faulty states, all the transitions are disabled and an absorbing state is reached. In582

terms of Petri net objects, the not operational condition is expressed by the following583

statement:584

(#Comp_ f ail = 2) ∨ (#Man_ f ail = 2) , (6)585

where the symbol #P states the number of token in place P .586
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Table 1 Failure time distribution parameters

Weibull

Transition β f η f E λ

M B_1, M B_2 0.5965 1.20 1.82 0.55

Disk_1, Disk_2 0.5415 1.00 1.71 0.59

C PU_1, C PU_2 0.399 1.46 3.42 0.29

Man 0.5965 1.20 1.82 0.55

As usual in reliability modeling, the time to failure of the components has been587

modeled using Weibull distributions whose cumulative distribution function is588

F(t) = 1 − e(1/η f )
β f

.589

This choice has been also supported by measures done on real systems such as those590

analyzed in [9]. The parameters of the Weibull distributions used for the Petri net591

transitions of Fig. 1 are reported in Table 1.592

Weibull distributions have been introduced in the model through the use of 10-593

phase PH distributions, approximating them by evaluating the formula (6). The results594

obtained are depicted in Fig. 2. To better highlight the usefulness of the modeling595

approach presented here, the Petri net model was solved by imposing exponential596

distributions as transition firing times. In fact, the use of exponential distributions597

is quite common to obtain a more tractable model. The value of the parameters λ598

used in this second run was computed as the reciprocal of the expected value, E , of599

the corresponding Weibull distributions (listed in Table 1). The result obtained are600

also depicted in Fig. 2. As can be easily noted, the use of exponential distributions601

produces optimistic results compared to the use of Weibull distributions, making the602

system appear more reliable than it is in reality.603

Fig. 2 Computer system reliability R(t)
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7.2 Numerical Example with “Oscillating” ME Distribution604

For our second example, we consider the Activity Network depicted in Fig. 3, which605

represents a “mission” composed of five activities and the constraints on the order606

in which the five activities can be carried out. Initially, activities 1 and 2 are active.607

If activity 1 finishes then activities 3 and 4 start and thus there are three activities608

under execution, namely, activities 2, 3, and 4. If activity 3 is the first first among609

these three activities to finish then no new activity starts because in order to start610

activity 5, both activity 2 and 3 must finish. The graph of all the possible states of611

the Activity Network is shown in Fig. 4, where in every node we report the activities612

that are under execution in the node. The label on the edges indicates the activity613

whose completion triggers the edge. The duration of the activities are modeled with614

ME distributions and we denote the vector and matrix that represent the duration of615

activity i by αi and Ai , respectively. Further, we use the notation ai = (−Ai )1 and616

denote by Ii the identity matrix whose dimension is equal to that of Ai .617

Following the approach described in Sect. 4, one can determine the infinitesimal618

generator of the model. Its first seven block-columns are given as (the left side of the619

matrix)620

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1
⊕

A2 a1
⊗

I2
⊗

A3
⊗

A4 0 0 I1
⊗

a2 0 0
0 A2

⊕
A3
⊕

A4 I2
⊗

I3
⊗

a4 0 0 I2
⊗

a3
⊗

I4 a2
⊗

I3
⊗

I4
0 0 A2

⊕
A3 I2

⊗
a3 0 0 0

0 0 0 A2 0 0 0
0 0 0 0 A1 0 a1

⊗
A3
⊗

A4
0 0 0 I2

⊗
a4 0 A2

⊕
A4 0

0 0 0 0 0 0 A3
⊕

A4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

621

and the remaining five block-columns are (the right side of the matrix)622

Fig. 3 An activity network
1

2

3

4

5

Fig. 4 CTMC of the activity
network in Fig. 3 5

1,2

2,3,4 2,4 2 5

2,3 4,5

1 3,4 3 4

1

2

3

4
1

2
2

2

3

3

4

4

3

4
4

5
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0 0 0 0 0
0 0 0 0 0

a2
⊗

I3 0 0 0 0
0 a2

⊗
A5 0 0 0

0 0 0 0 0
0 0 a2

⊗
I4
⊗

A5 0 0
I3
⊗

a4 0 a3
⊗

I4
⊗

A5 0 0
A3 a3

⊗
A5 0 0 0

0 A5 0 0 a5

0 a4
⊗

I5 A4
⊕

A5 I4
⊗

a5 0
0 0 0 A4 a4

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

623

The vector that provides the initial configuration is |A1 ⊗ A2, 0, ..., 0|.624

In order to illustrate a feature of ME distributions that cannot be exhibited by PH625

distributions, we applied an ME distribution with “oscillating” PDF to describe the626

duration of activities 1, 2, 4, and 5. The vector–matrix pair of this ME distribution is627

A1 = A2 = A4 = A5 = |1.04865,−0.0340166,−0.0146293| ,628

629

A1 = A2 = A4 = A5 =
∣∣∣∣∣∣

−1 0 0
0 −1 −20
0 20 −1

∣∣∣∣∣∣
,630

and its PDF is depicted in Fig. 5. The duration of the remaining activity, namely631

activity 3, is distributed according to an Erlang distribution with four phases and632

average execution time equal to 1, i.e.,633

A3 = |1, 0, 0, 0| , A3 = 1

4

∣∣∣∣∣∣∣∣

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

∣∣∣∣∣∣∣∣
.634

B
&

W
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PR
IN

TFig. 5 Oscillating activity
duration pdf
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TFig. 6 Overall
accomplishment time pdf
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The model was then used to characterize the PDF of the time that is needed to635

accomplish the whole mission. The resulting PDF is shown in Fig. 6 and one can636

observe that the oscillating nature of the distribution of the activity durations carries637

over into the overall completion time distribution.638

8 Conclusions639

While the evolution of computing devices and analysis methods resulted in a sharp640

increase in the complexity of computable CTMC models, CTMC-based analysis641

had been restricted to the analysis of stochastic models with exponentially distrib-642

uted duration times. A potential extension of CTMC-based analysis is the inclusion643

of PH distributed duration times, which enlarges the state space, but still has a fea-644

sible computational complexity. We surveyed the basics of PH distributions and the645

analysis approach to generate the EMC.646

A more recent development in this field is the extension of the EMC-based analy-647

sis with ME distributed duration times. With respect to the steps of the analysis648

method, the EMC-based analysis and its extension with ME distributions are identi-649

cal. However, because ME distributions are more flexible than the PH distributions650

(more precisely, the set of PH distributions of a given size is a subset of the set of651

ME distributions of the same size) this extension increases the modeling flexibility652

of the set of models which can be analyzed with a given computational complexity.653

Apart of the steps of the EMC-based analysis method, we discussed the tool sup-654

port available for the automatic execution of the analysis method. Finally, application655

examples demonstrate the abilities of the modeling and analysis methods.656
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