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CHAPTER 1

APPROXIMATING DISTRIBUTIONS AND
TRANSIENT PROBABILITIES BY
MATRIX EXPONENTIAL
DISTRIBUTIONS AND FUNCTIONS

András Horváth1, Marco Paolieri2, Enrico Vicario2

1 Department of Computer Science - University of Turin - Italy
horvath@di.unito.it

2 Department of Information Engineering - University of Florence - Italy
marco.paolieri@unifi.it, enrico.vicario@unifi.it

Abstract. A typical problem in modeling distributed systems is to fit measured data
by an analytically tractable distribution. To this end phase type and matrix expo-
nential distributions are often used not only because of their analytical tractability
but also because they are easy to use as building blocks of more complex models.
In this chapter we first give a brief introduction to these distributions and then pro-
vide a simple procedure to construct matrix exponential distributions based on the
theory of Bernstein polynomials (BP). Namely, by a change of variable we derive
from BP a family of functions, called in the sequel Bernstein expolynomials (BEs),
which corresponds to a subset of the family of matrix exponential distributions. Fur-
thermore, we show that BEs can be used to capture the transient probabilities of
continuous time Markov chains (CTMC). They can provide closed-form approxima-
tions which are useful in the analysis of models where the process subordinated to
a possibly non-Markovian period is described by a CTMC. The application of BEs
for approximating both distributions and transient probabilities will be illustrated
through several numerical examples.



Keywords: phase tpye distributions, matrix exponential disitrbutions, Bernstein
polynomial distribution

1.1 Introduction

In stochastic modeling of distributed systems it is often necessary to approximate a
random duration (which can be described by measured data) by selecting appropri-
ately a member of a family of distributions. The choice of the family of the distri-
bution usually must fulfill the following two conditions. First, the distributions must
be composable, i.e., it must be possible to use the distributions as building blocks of
a more complex model. Second, the distributions and the models composed of them
must be tractable, i.e., they must lead to models whose analysis is feasible.

A well-known and widely-used family of distributions that provides the above two
characteristics is the family of phase type (PH) distributions [28] that are defined as
the distribution of time to absorption in a CTMC. Another family enjoying the two
characteristics is that of the matrix exponential (ME) distributions. The ME family
[26] is a proper superset of the class of PH distributions, it has the same algebraic
form as PH distributions but does not have a simple probabilistic interpretation. It
has been shown recently in [5] and [12] that many methods developed for models
with PH distributions can be adopted to models with ME distributions.

Having chosen the family of distributions an appropriate member of the family
must be chosen by applying a fitting procedure. Most of the existing techniques fall
into two categories: those that are based on the maximum likelihood (ML) principle
and those that aim to match moments. A third and much less explored possibility is
to use a family of functions to fit the probability density function of the distribution
we aim to approximate. This approach was used in [16] applying Jacobi polynomials
and the main idea was to map the interval [-1,1], on which the Jacobi polynomials
form an orthogonal class, to the interval [0,∞] by an appropriate change of variable.
The resulting distributions are in the class of ME distributions.

In this work we show that also Bernstein polynomials (BP) can be used to con-
struct ME distributions. These polynomials have a number of favorable properties
but they are not feasible for distribution fitting in their standard form. We will show
that by a change of variable it is possible to derive from them a family of functions
which maintains the favorable features of BPs and provides the missing ones. We
will refer to this family of functions as Bernstein expolynomials (BEs).

We can use BEs also to approximate transient probabilities of CTMCs which
provides a useful ingredient for a recently proposed technique for the analysis of non-
Markovian processes. This technique, called the method of stochastic state classes,
is based on grouping into classes those states of the stochastic process that share
a common future [13]. An extension of this approach has been proposed in [23]
which takes advantage of subordinated Markovian periods and requires a closed-
form description of the transient probabilities of the subordinated CTMCs.

The chapter is organised as follows. Section 1.2 provides a brief introduction to
PH and ME distributions. In Section 1.3 we give a description of BPs and introduce



BEs. In Section 1.4 and Section 1.5 we illustrate the application of BEs to distribu-
tion fitting and to approximation of transient probabilities of CTMCs, respectively.
Conclusions are drawn in Section 1.6.

1.2 Phase type and matrix exponential distributions

A continuous time random variable is said to have an order n Phase type distribution
if it corresponds to the time to absorption of a CTMC with n transient states and a
single absorbing state. Accordingly, a PH distribution is determined by the initial
probabilities and the transition intensities of its absorbing CTMC. Figure 1.1 gives
an example for the graphical representation of an order 3 PH distribution where the
initial probabilities are written in the states and the transition intensities on the arcs.
The initial probabilities and the infinitesimal generator of the CTMC depicted in
Figure 1.1 are

α = |0.5 0.2 0.3 0|, Q =

∣∣∣∣∣∣∣∣∣∣
−0.7 0.2 0.5 0

1.2 −2.95 1.5 0.25

2 1 −3.5 0.5

0 0 0 0

∣∣∣∣∣∣∣∣∣∣
Since the entries of α have to sum to one and the sum of the entries of each row in Q
must be equal to 0, the above representation is redundant. A non-redundant represen-
tation can be achieved by considering only the transient states. This representation
for the above example is

β = |0.5 0.2 0.3|, T =

∣∣∣∣∣∣∣
−0.7 0.2 0.5

1.2 −2.95 1.5

2 1 −3.5

∣∣∣∣∣∣∣ (1.1)

The cumulative distribution function of a PH random variable, X , represented by
a vector-matrix pair (β, T ) can be written as

F (x) = P{X ≤ x} = 1− βeTx1I (1.2)
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Figure 1.1 Graphical representation of an order 3 PH distributions



where 1I is a vector of ones. The rationale behind the above formula is that βeTx1I is
the probability that the Markov chain, started according to β and evolving according
to T , is in one of the transient states at time x. The probability density function (pdf)
is achieved by taking the derivative of F (x) which leads to

f(x) = βeTx(−T )1I (1.3)

By eigenvalue decomposition of the infinitesimal generator, the pdf and the cdf of
a PH distribution can be written without taking the exponential of a matrix. The
resulting form in general is

f(x) =

r∑
i=1

pi(x)e
γi (1.4)

where r is the number of the distinct eigenvalues of T , γi is the ith eigenvalue and
pi(x) is a polynomial in x whose degree equals to the multiplicity of the ith eigen-
value minus one. There can be conjugate pairs of complex eigenvalues and their
effect in the pdf is the presence of a term of type

pi(x)e
Re(γi) cos(ωx+ φ)

For example, the pdf of the PH distribution represented graphically in Figure 1.1
is

0.0189382 e−4.5455x + 0.0803571 e−2.5x + 0.100705 e−0.104499x

and we depicted it in Figure 1.2.
The Laplace transform of the pdf of a PH distribution is

f∗(s) = E
[
e−sX

]
= β(sI − T )−1(−T )1I (1.5)

where I is the identity matrix. From the above Laplace transform it is straightforward
to obtain the moments and we have

mi = E
[
Xi
]
= i!β(−T )−i1I (1.6)
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Figure 1.2 Pdf of the PH distribution represented in Figure 1.1



Some well-known and widespread used distributions are in the PH class. These
include the exponential distribution with representation

β = |1|, T = | − λ|

the hyper-exponential distributions whose representation is

β = |p1, p2, ..., pn|, T =

∣∣∣∣∣∣∣∣∣∣
−λ1

−λ2
. . .

−λn

∣∣∣∣∣∣∣∣∣∣
and the order n Erlang distribution with representation

β = |1, 0, ..., 0|, T =

∣∣∣∣∣∣∣∣∣∣
−λ λ

−λ λ

. . .

−λ

∣∣∣∣∣∣∣∣∣∣
Matrix exponential (ME) distributions, such as PH distributions, are represented

by a vector-matrix pair and have the same algebraic properties as PH distributions,
i.e., equations (1.2-1.6) hold for ME distributions as well. The difference is that in
case of ME distributions, the vector-matrix pair does not necessarily have the simple
stochastic interpretation owned by PH distributions. Accordingly, the ME family is
a proper superset of the PH family.

For both PH and ME distributions, the vector-matrix representation is not unique.
Different representations can be obtained by similarity transforms. I.e., given a
representation (β, T ) and a matrix S such that S1I = 1I, the vector-matrix pair
(βS−1, STS−1) provides the same distribution as (β, T ). For example, applying
the similarity transform given by

S =

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0.2 0.8

∣∣∣∣∣∣∣
to the PH distribution given in (1.1), we obtain

βS−1 = |0.5 0.125 0.375|, STS−1 =

∣∣∣∣∣∣∣
−0.7 0.075 0.625

1.2 −3.325 1.875

1.84 0.835 −3.125

∣∣∣∣∣∣∣



which is still a Markovian representation, i.e., the above vector-matrix pair is clearly
in the PH family. By applying

S =

∣∣∣∣∣∣∣
0.5 0.5 0

0 1 0

0 0.5 0.5

∣∣∣∣∣∣∣
in the similarity transform, we obtain a third representation

βS−1 = |1 − 0.6 0.6|, STS−1 =

∣∣∣∣∣∣∣
0.5 −2.625 2.

2.4 −5.65 3.

3.2 −1.575 −2.

∣∣∣∣∣∣∣ (1.7)

which is not a Markovian representation anymore (it has a negative value in the
vector and negative off-diagonal entries in the matrix). Thus one might think that the
vector-matrix pair given in (1.7) does not represent a PH distribution. This is not true
however because there exists a Markovian vector-matrix pair that produces the very
same distribution. The problem of searching for an equivalent Markovian pair given
a non-Markovian one was studied in [34].

For almost all order n ME distribution there exists an equivalent order m PH
distribution with n ≤ m < ∞ [4]. Exceptions are those ME distributions whose
pdf is zero infinitely many times. An example for this case is given by the following
vector-matrix pair [11]

β = |1.04865,−0.0340166,−0.0146293|, T =

∣∣∣∣∣∣∣
−1 0 0

0 −1 −20
0 20 −1

∣∣∣∣∣∣∣
whose corresponding pdf is

1.04865 e−x cos(20x+ 2) + 1.04865 e−x

and it is depicted in Figure 1.3. Such pdf can be realized with a PH distribution
only with an infinite number of phases. Another feature in which ME distributions
outperform PH distributions is the capacity of having low variability. The lowest
coefficient of variation of an order n PH distribution is 1/n exhibited by the order
n Erlang distribution [3]. No such simple result is known for the ME class but it is
known that the minimal coefficient of an order n (n > 2) ME is lower than that of
an order n PH distribution.

The class of PH distributions and, consequently, the ME class are dense in the
field of positive valued distributions. This implies that any positive valued distribu-
tion can be approximated by them with any accuracy. This fact does not provide
however directly a practical method to fit distributions by PH or ME distributions.
Several authors proposed fitting methods and most of these fall into two categories:
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Figure 1.3 ME pdf touching the x-axis infinitely many times

maximum likelihood (ML) based estimation of the parameters and moment matching
techniques.

One of the first works on ML estimation considered acyclic PH distributions is [7]
(i.e., PH distributions whose underlying Markov chain is acyclic) while an approach
for the whole family, based on the expectation-maximization method, is proposed in
[30]. Since these early papers, many new methods and improvements have been sug-
gested for the whole PH family and for its sub-classes (see, e.g., [35, 29]). Much less
research tackled ML based fitting of ME distributions because of the lack of a practi-
cal stochastic interpretation. One such method, based on semi-infinite programming,
is described however in Chapter 9 of [18] where the computational complexity of the
problem is discussed and an algorithm is devised.

For what concerns moment matching methods the following results are avail-
able. For low order (≤ 3) PH and ME distributions moment bounds and moment
matching formulas are either known in an explicit manner or there exist iterative
numerical methods to check if given moments are possible to capture [33, 24, 20].
For higher order there exist matching algorithms, but these often result in improper
density functions and the validity check is a non-trivial problem [18, 25]. In [8] a
simple method is provided that constructs a minimal order acyclic PH distribution
given three moments. Characterization of moments of PH and ME distributions is
discussed in [10]. Moreover, tool support is available for the construction of PH and
ME distributions. Specifically, ML based fitting is implemented in PhFit [22] and a
set of moment matching functions is provided in BuTools [1].

The main reason to apply PH and ME distributions in stochastic modeling is that
these distributions can be easily used as building blocks of more complex models.
This fact is well-known for what concerns PH distributions because it is straightfor-
ward that if we are given a system in which all sojourn times are according to PH
distributions and the next state distribution is Markovian then the overall system be-
havior can be described by a Markov chain. Starting from [15], the construction of
the Markov chain, often referred to as the expanded Markov chain, was proposed in
the literature for several modeling formalisms, such as stochastic Petri nets (SPN),
stochastic process algebras or stochastic automata networks [2, 17, 31]. The down-



side of dealing with the expanded chain is that if the model has many states and/or
it describes many activities performed in parallel, then the expanded chain can have
a huge number of states. To alleviate this problem several authors proposed tech-
niques for the compact representation of the expanded chain. Such techniques are
either based on Kronecker-algebra (among the first works see, e.g., [32]) or, more
recently, on decision diagrams techniques (e.g., [14]).

The necessary theoretical background to use ME distributions as building blocks
was developed instead only recently. In this case the overall model is not a Markov
chain, but the transient system behavior can still be described by a set of ordinary
differential equations. In the context of SPN this was shown for a subclass of ME
distributions in [12] while in [11] the result was extended to the whole family. In the
context of quasi-birth-and-death processes the possibility of using ME distributions
was investigated in [6].

1.3 Bernstein polynomials and expolynomials

The degree-n Bernstein polynomial [27] approximating a function f on [a, b] is de-
fined as

Bn(x) =

n∑
i=0

f

(
a+

i

n
(b− a)

)(
n

i

)
(x− a)i(b− x)n−i

(b− a)n
(1.8)

Bernstein polynomials exhibit a series of favorable properties which motivates its
use in distribution approximation:

Globality: the approximant is global in the sense that a single polynomial is
used to approximate the whole interval [a, b].

Positivity: since all the polynomials (x − a)i(b − x)n−i, i = 0, 1, . . . , n, are
positive in the interval [a, b] and we assume that also the function f is positive
(in our case f is a pdf), the polynomial in (1.8) is positive on [a, b].

Simplicity of derivation: a BP is determined in a straightforward manner by the
samples of the approximated function without any optimisation process.

Convergence of the approximation: if the approximated function is continuous
then the degree-n BP converges uniformly to it as n is increased. Moreover, the
approximation error can be bounded by a Lipschitz inequality [27].

Conversely, the following requirements are not guaranteed by BPs but can be accom-
modated by a suitable adaptation.

Divergence of the approximant: a BP is either a constant function or it diverges
to plus or minus infinity. For this reason it cannot be used to approximate infinite
support distributions and it is not feasible for the approximation of transient
probabilities of CTMCs if the required interval overlaps with the steady state
regime.



Unit-measure: BP approximation does not guarantee that the approximant pre-
serves the integral of the approximated function. This is clearly a problem when
fitting distributions because the approximant is expected to have unit-measure.

The last problem can be managed simply by normalising the approximant. The prob-
lem of divergence can be solved instead by applying the change of variable x→ e−x

to (1.8) resulting in the following sum of exponentials with negative exponents

En(x) =

n∑
i=0

f

(
− log

(
e−a − i

n

(
e−a − e−b

)))
×(

n

i

)
(e−a − e−x)i(e−x − e−b)n−i

(e−a − e−b)n
(1.9)

which converges as x tends to infinity. The functions defined in (1.9), which we call
Bernstein expolynomials, maintain the favourable properties of BPs. It is easy to see
that a function in the form of (1.9) belongs to the ME family whose general form is
given in (1.4).

Both BPs and BEs catch exactly the approximated function at the limits of the
considered interval, [a, b]. The important difference between BPs and BEs is that the
latter can be used to approximate a function on the interval [0,∞]. Applying (1.9)
with b = ∞ the limiting value of the BE will catch exactly the limiting value of the
approximated function.

Another difference between the two approximations is the way they sample the
approximated function. BPs result in an equidistant sampling of the considered inter-
val, i.e., the value of the approximated function is taken at the values a+ i

n (b−a), i =
0, 1, . . . , n. In order to consider the sampling applied by the expolynomial approx-
imation, let us assume a = 0, b = ∞. In this case the approximated function is
sampled at the values − log(i/n), i = n, n − 1, . . . , 0. This implies that more sam-
ples are taken from the beginning of the considered interval. This effect can be
mitigated by approximating a scaled version of the function, namely f(x/c), and
bringing back then the approximant to the original scale. Without going into details,
we illustrate this effect in two figures. In Fig. 1.4 we depict for different values of
c, assuming that n = 10 and the interval to be approximated is [0,10], the positions
where the value of the approximated function, f(x) itself, is taken. The larger c,
the closer the sampling points are to a (for except the last sampling point which is
always at b). Instead, as c tends to 0 the sampling tends to be equidistant. In Fig. 1.5
the effect of c for n = 10, a = 0, b =∞ is shown.

When the functions in (1.9) are applied to fit the probability density function (pdf)
of a distribution, the interval of the approximation must be set to [0,∞]. This guar-
antees that the limiting value of the approximant is 0 which is a necessary condition
for a pdf. It is easy to check that the approximating pdf is in the class of ME distri-
butions.
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Figure 1.4 Sampling points for different scale factors if n = 10 and the interval to fit is
[0,10].
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Figure 1.5 Sampling points for different scale factors if n = 10 and the interval to fit is
[0,∞] (also the value of the function at infinity is used).

1.4 Application of BEs to distribution fitting

In this section we illustrate the application of BE to distribution fitting through a
benchmark defined in [9] for the assessment of acyclic PH distributions. The bench-
mark is composed of 9 functions that assume relevance in reliability analysis and
quantitative evaluation problems. The 9 distributions are the following (in parenthe-
sis we give the abbreviation with which we refer to them in the rest of the paper).

Weibull: f(x) = β
η

(
x
η

)β−1
e−(

t
η )
β

{
η = 1, β = 1.5 (W1)
η = 1, β = 0.5 (W2)

Lognormal: f(x) = 1
xσ
√
2π
e−

(ln x−µ)2

2σ2


µ = 1, σ = 1.8 (L1)
µ = 1, σ = 0.8 (L2)
µ = 1, σ = 0.2 (L3)

Uniform on [0, 1], (U1)

Uniform on [1, 2], (U2)

Shifted Exponential: f(x) = 1
2e
−x + 1

2e
−(x−1) · I(x ≥ 1), (SE)

Matrix Exponential: f(x) =
(
1 + 1

(2π)2

)
(1− cos(2πx))e−x, (ME)

We will consider the following measures, used also in [9], to evaluate the goodness
of fit achieved by the BE approximations.



W1 W2 L1 L2 L3 U1 U2 SE ME

c1(F ) 0.903 2 13.7 3.74 2.77 0.5 1.5 1.5 1.045

c2(F ) 0.376 20 4629 12.6 0.313 0.083̇ 0.083̇ 1.25 0.953

c3(F ) 0.246 592 4.29× 107 164 0.108 0 0 2 1.99

Table 1.1 Mean, variance and third central moment of the distributions of the benchmark.

visual appearance of density plots,

relative error of the mean: ê1 = |c1(F̂ )− c1(F )|/c1(F ),

relative error of the variance: ê2 = |c2(F̂ )− c2(F )|/c2(F ),

relative error of the third central moment: ê3 = |c3(F̂ )− c3(F )|/c3(F ),

where c1(F ) and c1(F̂ ) denote the mean of the original distribution and the mean of
the approximant, respectively, and ci(F ) and ci(F̂ ) are the ith central moment of the
original distribution and that of the approximant. Table 1.1 provides c1(F ), c2(F )
and c3(F ) for all the distributions of the benchmark.

Figures 1.6-1.10 depict the pdf of the distributions and the pdf of the approxi-
mations for various degrees of the BE. For all the experiments we have chosen such
scaling that the number of samples that fall before the median of the distribution is the
same as the number of samples that fall after the median. Moreover, as the mean is of
crucial importance in almost all modeling situations, we modified the approximants
in such a way that its mean is equal to the mean of the original distribution. This can
be done easily by scaling the approximant by an appropriate constant. Consequently,
for all approximants ê1 = 0. By visual inspection the following considerations can
be made.

The approximant is not good for those distributions whose tail is heavier then ex-
ponential (distribution W2 and L1). These two distributions are hard to approximate
by general purpose PH fitting methods and can be handled only by methods that pay
special attention to the tail [19, 21]. In case of distribution L1 we obtain an approxi-
mant that is particularly far from the original function. This is due to the adjustment
of the mean. Without the adjustment, the mean of the BE approximant is far from the
mean of L1 but visually it looks better than the one depicted in Figure 1.7. Adjusting
the mean makes the visual impression worse.

The distributions with low coefficient of variation (L1, U1 and U2) requires a high
degree approximation to capture their low variability.

The distributions with sharp changes are in general hard to approximate by PH
distribution and, consequently, low degree BE approximations do not provide good
approximants.

In most of the cases, as it is foreseen by the theory of BP, increasing the degree of
the approximant results in better fit.

Table 1.2 reports error measures obtained applying BE approximation of degree
10, 20 and 100 to each function of the benchmark. For distributions U1 and U3, the
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Figure 1.6 BE approximation of distributions W1 (left) and W2 (right) with degree 10
(dotted), 20 (dot-dashed) and 100 (dashed).
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Figure 1.7 BE approximation of distributions L1 (left) and L2 (right) with degree 10 (dotted),
20 (dot-dashed) and 100 (dashed).
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Figure 1.8 BE approximation of distributions L3 (left) and U1 (right) with degree 10
(dotted), 20 (dot-dashed) and 100 (dashed).
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Figure 1.9 BE approximation of distributions U2 (left) and SE (right) with degree 10
(dotted), 20 (dot-dashed) and 100 (dashed).
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Figure 1.10 BE approximation of distributions ME with degree 10 (dotted), 20 (dot-dashed)
and 100 (dashed).

third central moment, c3(F ), is 0 and for this reason the tables report the third central
moment of the approximants, c3(F̂ ), instead of the relative error.

As already observed, BE approximation suffers heavy tails: in case of distribu-
tions W2 and L1 there are large relative errors of the variance and of the third central
moment and even increasing the degree of the approximation does not decrease the
error.

In case of low coefficient of variation (distributions L3, U1 and U2), low degree
approximations are not able to capture the variance of the original distribution but
increasing the degree improves the fitting. Note that in case of distributions U1 and
U2, the error of the third central moment is low even if the relative error of the
variance is large.

It is interesting to note that visual inspection and numerical error measures can
contradict each other as it happens in case of distribution ME for which the degree
100 approximation seems much better than the degree 10 approximation but the rel-
ative errors of the moments tell the opposite.

Now we give a brief comparison between the Jacobi polynomial based method
presented in [16] and the one proposed in this paper. As already mentioned, the
method of [16] requires the setting of four parameters for which no guidelines are
presented. For distribution U2 the author of [16] provides a good setting of the four
parameters and for this reason we use U2 in the comparison. In Figure 1.11 we
depicted the approximations obtained by the two methods presented in [16]. Method



ê2 ê3

W110 0.3500 1.9312

W120 0.2080 1.0049

W1100 0.0458 0.0936

W210 0.2877 0.9346

W220 0.2606 0.9299

W2100 0.4333 0.9423

L110 0.9554 0.9999

L120 0.9476 0.9999

L1100 0.9382 0.9999

ê2 ê3

L210 0.1522 0.8746

L220 0.1593 0.8740

L2100 0.1423 0.8646

L310 4.4687 4.8666

L320 2.3452 1.1749

L3100 0.4878 0.5199

U110 0.5569 0.0576

U120 0.2906 0.0299

U1100 0.0615 0.0055

ê2 ê3

U210 4.5881 0.1510

U220 2.8260 0.0602

U2100 0.5303 0.0062

SE10 0.3343 0.4270

SE20 0.2164 0.2205

SE100 0.0703 0.0950

ME10 0.0270 0.1490

ME20 0.1926 0.2016

ME100 0.0357 0.1788

Table 1.2 Relative errors of the variance and of the third central moment of BE
approximations of degree 10, 20 and 100.
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Figure 1.11 Approximation of U2 by the methods proposed in [16] with degrees 5 (dotted),
10 (dot-dashed) and 20 (dashed) on the left and with degrees 10 (dotted), 20 (dot-dashed)
and 40 (dashed) on the right (the squaring applied by method B doubles the degree of the
approximation).

A does not guarantee positivity and the pdfs given by this method have negative
values. Moreover, an oscillating behaviour can be observed around 0. Method B
provides proper pdfs and gives better approximation than the BE approximant of the
same degree. The drawback however of the Jacobi polynomial based method is that
it requires heavy numerical computations and involves numerical problems. Indeed,
we were not able to compute the Jacobi polynomial based approximant for degrees
higher than 20. Moreover, the computation of the approximant of degree 20 took
about 2 minutes while the construction of the BE approximant is immediate.

1.5 Application of BEs to transient probabilities

In this section we briefly experiment the approximation of transient probabilities
of CTMCs by BEs. This can be useful when a distributed computing system is



composed of many loosely interacting sub-modules and the BE based representation
of the transient probabilities allows to use a compact representation of the behavior
of a building block and thus reduce the state space of the overall model. It is also
useful when the theory of stochastic state classes [13, 23] is used where it is necessary
to have a closed-form approximation of the transient behaviour of the subordinated
CTMCs that are present in the model

We define the CTMC under study by a Petri net which is depicted in Fig. 1.12.
In the net we have three non-exponential transitions, t0, t1 and t2, while the other
transitions are with exponential firing time with parameter 1/2. The exponential
transitions give rise to a CTMC which is subordinated to the activity period of the
non-exponential transitions.

This CTMC describes the interaction of senders and receivers exchanging mes-
sages through a buffer that may fail and be repaired. After each successful receive
action (transition te), a choice is made between transition tf which restarts a new
receive cycle and transition tout by which the receiver leaves. We start the model
with 4 tokens in place pa, 4 tokens in place free and 4 tokens in place pd. With this
initial marking the subordinated CTMC has 1218 states.

In Fig. 1.13-1.18 we have depicted some transient probabilities of the subordi-
nated CTMC and the corresponding approximations for various degrees. We denote
by [exp(tQ)]i,j the probability of being in marking j at time t assuming that the
chain started in marking i. The considered markings are: marking 1 which is the
already described initial marking, marking 2 where the token distribution (not list-
ing empty places) is #pa = 3,#pb = 1,#free = 3,#pd = 4, marking 10 with
#pb = 4,#pd = 4 and marking 1000 with #pa = 3,#pc = 1,#pe = 2,#pf =
2,#failed = 1,#busy = 1. The corresponding transient probabilities cover a wide
range of cases. To illustrate the effect of changing the sampling pattern by scaling,
in Fig. 1.14, 1.16 and 1.17 we give approximations for two different scalings. In par-
ticular, [exp(tQ)]1,1 is approximated well by a degree-1 BE (one exponential term
plus a constant) if the scaling is chosen well. It is worth to observe that BEs are able
to catch the probabilities in the steady state regime as well.

1.6 Conclusions

In this chapter we have provided an introduction of the family of PH and ME distri-
butions. Furthermore, we have proposed the family of Bernstein expolynomials for
the construction of ME distributions. We have tested the approach fitting a bench-
mark of distributions. In a similar manner, Bernstein expolynomials can be used
to approximate the transient probabilities of CTMCs and they can provide compact,
closed-form expressions. The computational cost of the approximation is extremely
low.

The following aspects have not been covered and will be included in a subsequent
research paper. The goodness of the approximations has to be verified both through
statistical measures (like moments) and by plugging them into applications. Bern-
stein polynomial and Bernstein expolynomial can be applied to multivariate func-



Figure 1.12 Petri net whose subordinated CTMC is considered for experimenting BEs
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Figure 1.13 Fitting [exp(tQ)]1,1 without
scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

original
degree 1

Figure 1.14 Fitting [exp(tQ)]1,1 with
convenient scaling



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  5  10  15  20  25

original
degree 5

degree 15
degree 50
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Figure 1.16 Fitting [exp(tQ)]1,2 with a
scaling that concentrates sampling points
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tions as well and this can be necessary when the approximations are applied in the
theory of stochastic state classes. For distributions, Bernstein expolynomial approxi-
mations result in ME distributions with a fixed pole-structure. This restriction can be
mitigated by extending the class of Bernstein expolynomials but the approximations
then might require numerical optimisation.
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35. A. Thümmler, P. Buchholz, and M. Telek. A novel approach for fitting probability dis-
tributions to trace data with the EM algorithm. In Proc. of the International Conference
on Dependable Systems and Networks (DSN), pages 712–721, June 2005.


