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Abstract

Despite many years of research, correct and reliable segmentation of touching char-
acters is still an hard task to solve. In the recent years, many methods and algorithms
have been proposed; nevertheless the problem is still open. In this paper, we propose a
novel method based on fuzzy logic that combines three different techniques to segment
touching characters. These techniques have already been used in other studies but
they have never been used all together. We propose a 3–input/1–output fuzzy infer-
ence system with fuzzy rules that are specifically optimized to segment touching Latin
characters. The method is applicable to both printed and handwritten characters. We
discuss the performances of our method by comparing it with state of the art. Results
show that our method provide a better accuracy to segment characters even with noisy
touching characters.

Keywords: characters segmentation, fuzzy logic, OCR, touching characters

1 Introduction

Automatic recognition of printed and handwritten characters remains a challenging problem
in pattern recognition. The large majority of the existing Optical Character Recognition
(OCR) software are based on two techniques: characters segmentation and pattern recog-
nition. Characters segmentation techniques are used, within the OCR process, to recognize
atomic blocks (e.g., a word, a character, a mathematical symbol).

When adjacent characters are connected, the segmentation of a text into single charac-
ters becomes complex (Roy et al., 2008), (Bansal and Sinha, 2002). A proper identification
of connections among characters is crucial for subsequent characters recognition, since a
wrong segmentation decreases the accuracy of pattern recognition algorithms (Zhao et al.,
2003). In fact, many researches have demonstrated how small errors in characters segmen-
tation affect the overall performance of the OCR system more than the degradation of the
starting image (Grafmuller and Beyerer, 2013), (Jung et al., 1999). Thus, segmentation of
touching characters is fundamental for OCR systems that aim to achieve good accuracy
(Casey and Lecolinet, 1996).

Given the relevance of this task, several methods for performing optimal segmentation
of touching characters have been developed in the last years. Common techniques for
characters segmentation exploit vertical projections, pitch estimation or character size,
contour analysis, or segmentation–recognition coupled techniques (Lu and Shridhar, 1996),
(Lu, 1995). However, the state of the art does not provide a comprehensive answer to
the problem. As a consequence, at the moment, there is no standard approach for the
segmentation of touching characters.
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The main contributions of this work can be summarized as follows: we propose a
fuzzy approach for fast and reliable segmentation of touching characters (considering also
noise); we provide two novel datasets of touching characters (latin printed and handwritten
characters) to overcome the lack of good and standardized datasets for fair evaluation of
approaches in this research area.

The paper is organized as follows. Section 2 is dedicated to related works with a focus
on characters segmentation and fuzzy logic. In Section 3, we present the fuzzy strategy
developed for performing segmentation of touching characters. In section 4, we present
the numerical results that show the effectiveness of the proposed method. Specifically,
in Section 4.1, we describe the datasets used for simulations, while Sections 4.2 and 4.3
are devoted to test the method on datasets of Latin printed and handwritten characters,
respectively. Finally, in Section 5 we draw conclusion and present future works.

2 Related work and background

2.1 Characters segmentation

Algorithms for performing characters extraction and segmentation usually need a prepro-
cessing step, called binarization, where the input HSV image is firstly converted to grayscale
and then binarized through a dedicated thresholding process. The result is a matrix whose
entries are conventionally set to 1 for foreground pixels (black) and 0 for background pixels
(white). Clearly, the thresholding process has a noticeable impact on the quality of the bi-
nary outcome. In our experiments we rely on the classical thresholding method introduced
by Otsu in (Otsu, 1979).

Typically, researchers have designed strategies and functions to score each column (or,
indifferently, row or diagonal) of the binarized matrix by leveraging on features that char-
acterize the beginning and the ending of characters. Finally, cut positions are chosen on
the basis of these scores (usually, the highest ranked columns). Common used functions
are the ratio of the second difference of the vertical projection (e.g., (Kahan, 1987)) and
the “peak–to–valley” function (e.g., (Lu, 1993)). Other functions are, e.g., based on the
number of black pixels, the number of white pixels counted from the top of the column
to the first black pixel, the crossing count (i.e., the number of black to white transitions),
the number of identical black (white) pixels with left (right) column, the width to height
ratio for the remaining left (right) pattern after cutting (e.g., (Bayer and Krebel, 1993)).
Yet another different approach can be found in (Garain and Chaudhuri, 2002b), where the
authors used the inverse crossing count, measure of blob thickness and degree of “middle-
ness” for defining a function that identifies when a column is a good candidate for being
cut.

In (Bansal and Sinha, 2002), the authors revised the work presented in (Casey and
Lecolinet, 1996), stating that strategies for characters segmentation can be classified into
three categories:

1. classical approach based on typical features of characters;

2. recognition-based segmentation;

3. holistic approaches.

In the last years, several researchers have addressed the challenges behind the three
above mentioned categories. For instance, Kurniawan et al. (Kurniawan et al., 2011)
identify touching positions in Latin handwritten characters by means of self organizing
feature maps and a region–based approach. In (Liang et al., 2002), the authors deal also
with segmentation of Latin handwritten texts. A different approach involving thinning
algorithms can be found in (Lu et al., 1999). Further approaches rely on contour analysis
of the connected components (Kim et al., 2000). Lacerda and Mello (Lacerda and Mello,
2013) developed an algorithm for the segmentation of connected handwritten digits by using
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self–organizing maps. Roy et al. (Roy et al., 2012) addressed the problem of segmenting
touching characters with different orientations. In (Saba et al., 2010) and (Wei et al.,
2005), authors developed approaches by leveraging on genetic algorithms. Louloudis et
al. (Louloudis et al., 2009) performed text lines and words segmentation of handwritten
documents by applying the Hough transform. Authors in (Manmatha and Rothfeder,
2005) addressed the problem of automatically segmenting words in historical handwritten
documents. The water reservoir algorithm has been exploited in (Kumar et al., 2014) and
(Pal et al., 2003). In (Stamatopoulos et al., 2009) and (Bansal and Sinha, 2002), methods
derived by combining different segmentation techniques have been presented. Further works
in this research field can be found in (He et al., 2015), (Caballero et al., 2012), (Frinken
et al., 2011), (Sedighi and Vafadust, 2011), (Camastra et al., 2006) and (Alhajj and Elnagar,
2005). Works, such as (Garain and Chaudhuri, 2005) and (Nomura et al., 2003), also
deal with the segmentation of characters and symbols within mathematical expressions.
Furthermore, authors in (Olszewska, 2015) present a method based on active contours
to automatically extract characters. Specifically, after the binarization of the image, the
algorithm delineates the boundaries of the characters by working on active contours. Other
researchers have proposed approaches that rely on geometrical features: it is for instance
the case of (Olszewska, 2012), (Olszewska and McCulskey, 2011), (Qu and Zheng, 2011),
(Song and Wang, 2009), and (Lin and Huang, 2007).

The work presented in this paper contains some important novelties with respect to
this prior art: we propose to combine features usually exploited one at a time by means
of an original fuzzy logic approach. The reason to investigate fuzzy logic derives from the
lack of an objective standard categorization of the features that identify cutting positions
within touching characters. Thus, in this context, fuzzy logic can be very useful to capture
and to code expert–based knowledge.

2.2 Fuzzy logic

Fuzzy logic was introduced by Zadeh (Zadeh, 1965) and differs from classical logic since a
truth degree (usually a real number between 0 and 1) can be assigned to a proposition, in
opposition to classical logic where a proposition can only be true or false. Similarly, given a
collection of objects X, a fuzzy set F is defined as a set of ordered couples F = {(x, µ(x)) :
x ∈ X}, where µ : X → [0, 1] is called the membership function of the fuzzy set F . In other
words, the membership function assigns a value of belonging to F for each element in X.
Thus, an element belongs to a fuzzy set with a certain membership degree, in opposition
to classical sets, where elements belongs or not to the set.

Fuzzy logic has already been exploited to perform characters segmentation (Zimmer-
mann, 1996). For instance, Garain and Chaudhuri in (Garain and Chaudhuri, 2002b) used
fuzzy multifactorial analysis to combine some of the features described in the previous
section. In (Naz et al., 2010), a survey on image segmentation techniques that use fuzzy
clustering is presented. A non–linear fuzzy approach can be found in (Sarkar et al., 2008).
In (Nachar et al., 2015), authors used edge corners and fuzzy logic to develop segmentation
techniques with the aim of recognizing odd-shaped and unconventional characters; this
technique has been exploited to break down Captcha codes. In particular, they propose
a fuzzy logic–based scheme to match characters against known patterns using their edge
corners. Thus, authors constructed a dataset of images used as building blocks to form the
warped image. The warped image is fed to the recognition algorithm attempting to cor-
rectly recognize the characters. Hence, they mainly use fuzzy logic as a clustering technique
where the features for the clustering process are the edge corners. Further approaches in
this area can be found in (Tobias and Seara, 2002) and (Fonseca and Jorge, 2000).

In this paper, we develop an original fuzzy algorithm that differs from the state of the
art in several aspects. Firstly, we combine, by means of a fuzzy strategy, features that have
never been exploited together in previous works. Secondly, we develop an original strategy
based on an inference system composed by 3–input/1–output with fuzzy rules specifically
optimized for the purpose of separating touching characters in the case of Latin printed
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Figure 1: Statechart diagram of the overall proposed approach.

and handwritten characters. The strength of our fuzzy strategy relies on the possibility
to adjust its parameters in such a way that they can fit the features of the dataset. In
other words, the parameters of the method are extracted a priori considering the different
characters in the dataset. Thus, we do not use fuzzy logic for developing a clustering
technique as in many of the works discussed previously.

3 The fuzzy strategy

In this section, without loss of generality, we present a fuzzy strategy meant to be applied
column–wise to binary images, similar considerations hold when dealing with row–wise or
diagonal–wise image cutting. We aim at identifying the touching position in the input
image, i.e., the column of the image matrix where the two characters touch each other,
to ensure the best performances for the subsequent recognition phase on the two resulting
sub–matrices.

The proposed strategy to segment touching characters defines a function based on fea-
tures that characterize a touching position. Then, such a function is evaluated for each
column of the matrix and the cut position is chosen. The cut position (or cutting col-
umn) is the number of the column of the matrix chosen for dividing the pattern into two
sub–patterns (i.e., two sub–matrices of the starting matrix representing the whole pattern).

This strategy has been developed as a module enabling the subsequent development of a
complete and automatic OCR to be applied within challenging and tricky input documents.
Purpose of this OCR will be to assist visually impaired and blind students in dealing with
scientific subjects. When dealing with mathematical texts, touching characters represent
a considerable challenge for any OCR. Our approach, depicted by the block diagram in
Figure 1, aims at minimizing the recognition error in an input image, such as a page of
scientific papers or books. After the phase of pre–processing of the input image (needed
for the binarization of the image and might comprise de–noising and/or de–warping as
well), the image is scanned by rows. For each row, an elementary analysis is conducted for
identifying patterns (e.g., segmenting single characters) that will be subsequently recognized
by means of machine learning engines (e.g., artificial neural networks). For each pattern,
the machine learning engine produces a guess on its content as well as a confidence index.
When this index fails below a reliability threshold, the guess is discarded and the pattern
is saved for further analysis. Among the possible reasons for the recognition failure, this
present work deals with the case when the pattern is not atomic and has to be non–trivially
segmented to expose its constituting characters.

Classical functions for similar tasks are the function g (i.e., the peak–to–valley function)
and the function h, which are defined as

g(i) =
V (li)− 2V (i) + V (ri)

V (i) + 1
,
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h(i) =
V (i− 1)− 2V (i) + V (i+ 1)

V (i)
,

where V (i) denotes the vertical projection function for the i–th column, li and ri are the
peak positions on the left side and right side of i, respectively. The column with the highest
value of g (or h) is identified as the cutting column. A further feature, that can suggest if
the i–th column can be a cut position, is the distance f(i) between i and the center of the
pattern. Indeed, generally, cutting columns are located near to the center of the pattern.
Clearly, this feature should be only considered as an indication of the neighborhood where
the cutting column is probably located. In the following, we combine functions f , g, and h
by means of a fuzzy strategy that balances these functions.

Let us introduce the notion of a “fuzzy degree” by qualifying a column i to be a cut
position: in short, ρ = ρ(i) ∈ [0, 1]. In our model, the lower the value of ρ, the more likely
is that we have located a good cutting position. The strategy can be detailed by means of
the fuzzification of the functions f , g, h.

Given a pattern in a binarized image, let P be the matrix of pixels of the binarized
image, where m and n are the number of row and the number of column of P , respectively,
and where c is the central column of P . In the following, when we refer to a column i of
P , we refer to the i–th column of P , i.e., we are considering the vector of length m whose
elements are the entries of the i–th column or we are only considering its position. This
will be clear from the context.

The central column c is evaluated by means of c = n+1
2 . When n is odd, c coincides

with the central column of P ; when n is even, we consider as the central column the mean
between n

2 –th column and n
2 + 1. In this way, for each column i of P , we define its distance

from the center of the pattern as f(i) = |c− i|. In our fuzzy strategy, we take into account
the normalized distance between each column i and the central column c, i.e., we consider
f̄(i) = f(i)

c .
Similarly, for each column i of P , instead of using the functions g and h, we consider

the normalized functions

g̃(i) =
g(i)−minj∈C g(j)

maxj∈C g(j)−minj∈C g(j)
,

h̃(i) =
h(i)−minj∈C h(j)

maxj∈C h(j)−minj∈C h(j)
,

where C = {1, 2, ..., n} is the set of the columns of P , and then we use the functions

ḡ = 1− g̃, h̄ = 1− h̃

so that low values of ḡ and h̄ identify touching positions. Note that functions g̃ and h̃
are well–defined since we consider non-trivial matrices P where at least two columns are
different.

Functions f̄ , ḡ, h̄ are fuzzified by defining convenient fuzzy sets and related membership
functions describing when the values of f̄ , ḡ, h̄ can be considered low enough or not. In par-
ticular, for each function, three categories (i.e., three fuzzy sets) named “Low”, “Medium”
and “High” are defined to describe, in a fuzzy way, whether a value of these functions
should be considered low, medium or high. The shapes of the membership functions are
constrained to be trapezoidal or triangular. These two shapes are the most typical and
spread for membership functions as reported in (Da Costa Lobato et al., 2015), (Yasojima
et al., 2013), (Noronha et al., 2013) and (D’Errico and Murru, 2012). Indeed, they are
identified by a small number of parameters and are easy to modify, which is helpful for a
subsequent phase of optimization. Interested readers are invited to read (Wu, 2012) for
further details about the choice of the shapes of membership functions. Then, a fuzzy
degree ρ is evaluated combining the functions f̄ , ḡ, h̄ by means of proper fuzzy rules; fuzzy
sets, membership functions and fuzzy rules are detailed in Sections 4.2 and 4.3.
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(a) (b) (c)

Figure 2: Samples of, respectively, two (a), three (b), and four (c) handwritten cursive
touching character patterns.

For what concerns the inference engine, we rely to the Mamdani model (Mamdani
and Assilian, 1975), with if–then rules, minimax set–operations, sum for composition of
activated rules, and defuzzification based on the centroid method. We chose the Mam-
dani model as it is suitable to capture and code expert–based knowledge; accordingly the
system’s performance is tuned by means of expert–based choices, heuristic criteria and
non–linear optimization methods.

4 Experimental validation of the proposed strategy

We faced the problem of the lack of good and standardized datasets for testing our al-
gorithm: a comprehensive dataset specific on touching characters is still missing. This
consideration is shared with many researchers (e.g., (Kurniawan et al., 2011), (Lee and
Verma, 2002)). For this reason, the testing, the analysis and the comparison of methods
and approaches for character segmentation is troublesome and, in some cases, unfeasible.
Actually there exist few datasets, but they are either unfitted for our purposes or not ac-
cessible anymore (such as the one discussed in (Roy et al., 2012)). This need forced us to
build two novel datasets, which have been designed to be as general as possible to foster
further research works; in particular, we created two different datasets of Latin characters,
one containing handwritten characters, the other containing machine printed ones. These
two datasets are available free of charge on a GitHub repository1.

Due to the different characteristics of the two datasets, in the remaining parts of the
Section we also present the process undertaken to tune and select two different set of best
parameters for running our method on the two datasets.

4.1 Synthesis of the datasets

The first dataset, denoted hereby as “dataset A”, contains images of handwritten cursive
characters that we have built by relying on samples from a standard dataset, as done in
(Kurniawan et al., 2011). In particular, we started from CCC dataset (Camastra et al.,
2006). CCC dataset contains 57,293 samples of cursive characters that were manually
extracted from images coming from different input sources; it includes both upper and lower
case letters. Each sample is stored as a binary matrix and each matrix is stored together
with the information about the size of the matrix itself and the character that it represents.
Starting from the whole dataset, we developed a MATLAB script to randomly extract 1,000
samples by taking care of maintaining an uniform distribution for all the chosen characters.
These samples were later combined and merged together to form patterns of two, three, and
four touching characters; each pattern is accompanied by a textual descriptor indicating

1https://github.com/guybrush90/OCR
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Figure 3: A pattern of two touching characters discarded for the significant difference in
heights (shown in negative to remark it has been discarded).

(a) (b)

Figure 4: Patterns of two touching characters discarded because found respectively unre-
alistic (a) or trivial (b) (shown in negative to remark they have been discarded).

the index of the proper cut column (or columns, in the case of patterns with more than
two touching characters). One sample of each category of patterns is shown in Figure 2.
For instance, the descriptor of the sample represented in Figure 2(a) states that the cut
column to properly separate the “e” character from the “h” one is the 52nd.

This merging process was unsupervised and produced also “improper” outcomes, i.e.,
patterns of touching characters which are not to be expected in a real life scenario. For
this reason, prior to the publication of the dataset A, we manually checked all the patterns,
discarding some of them as follows.

Firstly, we discarded all the samples presenting a significant difference in the heights
of their characters, since we found these patterns unrealistic to happen in real life and
inadequate to evaluate the performances of any characters segmentation technique. An
example is depicted in Figure 3, where the height of the “L” character is three times the
height of the “M” character.

Secondly, we discarded also combinations that seemed impossible to happen in the real
world. Words where two contiguous characters do not touch at all (i.e., where characters are
well separated) have been discarded as well. Unrealistic patterns were identified taking into
account grammatical and writing rules: as a matter of example, the pattern in Figure 4(a)
was discarded since a capital consonant “L” is followed by another consonant “d” (this
second character being also higher despite being lowercase). Patterns without touching
characters were identified simply by means of a visual inspection, as in the case of the
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(a) (b) (c)

Figure 5: Samples of, respectively, two (a), three (b), and four (c) machine printed touching
character patterns.

pattern in Figure 4(b).
At the end, we kept 153 combinations: 139 combinations represent two touching char-

acters and the other are equally divided into three and four touching characters. The
disproportion is due to the fact that touching characters occur mostly between two char-
acters (Wei et al., 2005). Moreover, note that the quantity of combinations of touching
characters contained in our dataset is compliant to other similar datasets that have been
generated by using the CCC dataset (e.g., in (Kurniawan et al., 2011) a dataset of 123
touching characters is used). It is of relevance here to stress the fact that we did not have
access to the dataset described in (Kurniawan et al., 2011) while the CCC dataset does not
fit completely our purposes because it does not contain touching characters.

The second dataset, denoted hereby as “dataset B”, contains images of printed char-
acters and we have built it relying on a second MATLAB script. We have identified a list
of six font types (namely Cambria, Candara, Georgia, Lucida Sans Regular, Times New
Roman and Verdana Bold) and three sizes (namely 10, 20 and 25). A MATLAB script
combines into images the lower characters from the alphabet to form two, three, and four
touching characters. Each image is accompanied by a textual descriptor, which indicates
the characters represented within it. One sample of each category of patterns is shown in
Figure 5. For instance, the descriptor of the sample represented in Figure 5(a) states that
the images represent the string “ax”. Also in this case, we preferred to revise manually
the dataset to remove missing, or unrealistic, touching characters. At the end, we kept the
most promising 189 combinations (where 168 are composed by two touching characters),
in order to define a challenging dataset to test our approach.

4.2 Tests on Latin printed characters

In this subsection we discuss the results of our segmentation method focusing on dataset
B. In particular, we define the fuzzy sets and membership functions that fuzzify functions
f̄ , ḡ, h̄ and ρ with respect to the dataset.

Given the matrix P defined in Section 3, for each column i of P , the cutting degree
ρ(i) is provided by the following inference scheme that takes three inputs f̄(i), ḡ(i) and
h̄(i) evaluated for each column. The column i with the lowest value of ρ is considered
as the cut column. In the following, we define the fuzzy sets and membership functions
that fuzzify functions f̄ , ḡ, h̄ and ρ. As stated previously, we have chosen to define three
fuzzy sets named “Low”, “Medium”, and “High” for each function and trapezoidal and
triangular membership functions for these fuzzy sets. The parameters that define the
membership functions (and characterize the fuzzy sets) have been initially roughly drafted
accordingly to expert–based choices, showing however poor overall outcomes. To boost
overall performances of our fuzzy strategy we decided to apply an optimization technique.
In particular we developed a MATLAB script that optimizes the construction of the mem-
bership functions by means of the Particle Swarm Optimization (PSO) algorithm (Kennedy
and Eberhart, 2012). Similarly, the fuzzy rules (described in the remaining of this section)
have been tuned using firstly heuristic criteria and secondly the PSO algorithm.

Among several strategies, we chose the PSO algorithm due to its simplicity and adapt-
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Figure 6: Membership functions of the fuzzy sets related to f̄ (for dataset B).

ability in the implementation with respect to other non–linear optimization algorithms
(Arora and Gigras, 2013). Moreover, PSO has already been successfully adopted for
dealing with mixed variables, both continuous and discrete ones (Hu et al., 2004), as in
(Chiaradonna et al., 2015), (Chowdhury et al., 2013) and (del Valle et al., 2008).

The result of the procedure described so far are the fuzzy sets and membership functions
used to fuzzify f̄ , ḡ and h̄ functions as follow:

• Fuzzification of f̄ :

– if f̄(i) ≤ 0.35, then distance from the center of the pattern is Low ;

– if 0̄.15 ≤ f(i) ≤ 0.75, then distance from the center of the pattern is Medium;

– if f̄(i) ≥ 0.5, then distance from the center of the pattern is High.

• Fuzzification of ḡ:

– if ḡ(i) ≤ 0.4, then ḡ(i) is Low ;

– if 0.2 ≤ ḡ(i) ≤ 0.5, then ḡ(i) is Medium;

– if ḡ(i) ≥ 0.45, then ḡ(i) is High.

• Fuzzification of h̄:

– if h̄(i) ≤ 0.4, then h̄(i) is Low ;

– if 0̄.1 ≤ h(i) ≤ 0.75, then h̄(i) is Medium;

– if h̄(i) ≥ 0.5, then h̄(i) is High.

Figure 6, 7, and 8 show graphically the membership functions of the fuzzy sets.
Finally, for the fuzzy output ρ we define the following fuzzy sets, whose membership

functions are depicted in Figure 9:

• if ρ(i) ≤ 0.5, then ρ(i) is Low ;

• if 0.4 ≤ ρ(i) ≤ 0.6, then ρ(i) is Medium;

• if ρ(i) ≥ 0.5, then ρ(i) is High.

The inference system combines the three inputs f̄(i), ḡ(i), h̄(i) in order to produce the
fuzzy output ρ(i), for each column i of P relying on the following rules:

1. if f̄(i) is Low and h̄(i) is Low, then ρ(i) is Low;

9



Figure 7: Membership functions of the fuzzy sets related to ḡ (for dataset B).

Figure 8: Membership functions of the fuzzy sets related to h̄ (for dataset B).

Figure 9: Membership functions of the fuzzy sets related to ρ (for dataset B).
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2. if f̄(i) is Low and ḡ(i) is not High and h̄(i) is not Low, then ρ(i) is Low;

3. if f̄(i) is Low and ḡ(i) is High and h̄(i) is Medium, then ρ(i) is Medium;

4. if f̄(i) is Medium and h̄(i) is not High, then ρ(i) is Medium;

5. if f̄(i) is Medium and ḡ(i) is Low and h̄(i) is High, then ρ(i) is Medium;

6. if f̄(i) is High and ḡ(i) is not High and h̄(i) is Low, then ρ(i) is Medium;

7. if f̄(i) is High and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Medium;

8. if f̄(i) is Low and ḡ(i) is High and h̄(i) is High, then ρ(i) is High;

9. if f̄(i) and ḡ(i) and h̄(i) are not Low, then ρ(i) is High;

10. if f̄(i) and ḡ(i) are High, then ρ(i) is High.

The touching characters in dataset B are correctly segmented in the 96.1% of the cases.
For evaluating the correctness of the segmentation, we used a pattern recognition algorithm
constructed by a neural network trained on the characters that compose the dataset B, as
done by other works reviewed in (Zhou et al., 2002).

We consider two touching characters as correctly segmented by our approach only when
the pattern recognition algorithm correctly recognizes both of them, considering only true
positives. Simulations show that the fuzzy combination of the functions f, g, h improves
the correct identification of the cutting column with respect to their separated use.

To support this statement against, for instance, the usage of only the functions g and
h, a numerical example is reported below. Let us consider the touching characters “vu”
(Times New Roman font) depicted in Figure 10. Our fuzzy routine correctly identifies
the cutting column as the column 12 which is assigned the minimum value of ρ among all
the columns of the pattern. Specifically, we obtain ρ(12) = 0.1924. The fuzzy procedure
performance is shown in Figure 11, with application to the column 12. On the other hand,
both g and h separately identify the column 16 as the cutting column.

Furthermore, we can observe that the use of the three features implemented by f , g
and h appears to be sufficient for obtaining optimal results in the segmentation. To fur-
ther support this observation, we add a fourth feature in our approach. For instance, we
can consider the crossing count as a fourth input in our routine. The crossing count is
the number of transitions from white to black pixels, and vice-versa, and it is a common
feature used to identify touching position, since, in general, touching position encounters
a single black run (Garain and Chaudhuri, 2002a). Here, we consider the fuzzy sets and
membership functions for the crossing count function c depicted in Figure 12; they have
been constructed using both the heuristic criteria and optimization methods presented pre-
viously. The addition of the crossing count as fourth input does not affect the performances
of our fuzzy routine: still, the precision of the approach against dataset B does not overpass
the 96.1%.

As explanatory example, we report in Table 1 the values of f̄ , ḡ, h̄, c for each column of
the pattern in Figure 10 (excluding the first and the last column, which cannot be identified
as cutting columns). In the last two columns, we report the values of the fuzzy output:
column ρ1 shows the result when we consider as inputs only f̄ , ḡ, h̄ and column ρ2 shows
the result when we add as fourth input the crossing count c. The reader can observe that
the changes produced by adding the crossing count are not significant in the identification
of the cutting column.

4.3 Tests on Latin handwritten characters

In the following, we perform segmentation of touching characters using dataset A. Similarly
to what described in the previous section, fuzzy sets, membership functions, and fuzzy rules
have been defined accordingly to expert–based choices and further optimized leveraging the
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Figure 10: Touching characters “vu” for font Times New Roman and font size of 20.

Figure 11: Application of the fuzzy inference system to the column 12 of the pattern “vu”
shown in Figure 10.

Figure 12: Membership functions of the fuzzy sets related to crossing count c (for dataset
B)
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Table 1: Values of f̄ , ḡ, h̄, c for the columns of the touching characters “vu” shown in
Figure 10(the first and the last columns are excluded). Values ρ1 and ρ2 are the fuzzy
outputs when we consider as inputs only f̄ , ḡ, h̄ and when we add as fourth input the
crossing count c, respectively.

Column f̄ ḡ h̄ c ρ1 ρ2

2 0.8182 0.4545 0.7778 1 0.7849 0.7694

3 0.7273 0.6818 0.8333 1 0.8123 0.6820

4 0.6364 0.8409 0.9167 1 0.7908 0.7105

5 0.5455 0.8523 0.9111 3 0.8073 0.8073

6 0.4545 0.8333 0.9333 1 0.8102 0.8102

7 0.3636 0.6818 0.8148 1 0.7949 0.7949

8 0.2727 0.6818 0.8889 2 0.8047 0.8047

9 0.1818 0.6818 0.9259 2 0.8169 0.8169

10 0.0909 0.5303 0.8889 1 0.8169 0.8169

11 0 0.2273 0.7778 1 0.1984 0.1984

12 0.0909 0.2273 0.8889 1 0.1924 0.1924

13 0.1818 0.2273 0.1111 1 0.2078 0.2078

14 0.2727 0.9343 0.9722 1 0.8047 0.8047

15 0.3636 0.9205 1 0 0.7949 0.7949

16 0.4545 0 0 1 0.5000 0.5000

17 0.5455 0 0.7778 1 0.6305 0.6305

18 0.6364 0.3788 0.9556 3 0.7302 0.7749

19 0.7273 0.9091 0.9753 0 0.8123 0.6820

20 0.8182 1 0.9877 0 0.8169 0.7132
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Figure 13: Membership functions of the fuzzy sets related to f̄ (for dataset A).

PSO algorithm. Patterns in dataset A are greatly different from dataset B. For instance,
touching positions in dataset B are often near to the center of the pattern. In the case of
dataset A, cutting columns may occur more frequently at high distance from the center.
On the other hand, the peak to valley function seems to have better performances in the
case of dataset A. Taking this into account, the optimization conducted by using the PSO
algorithm has been strategic because it allowed us to highlight properties and connections
among functions f, g, h which are not noticeable at a glance. All these features are reflected
in the following definition of fuzzy sets, membership functions, and fuzzy rules.

The fuzzy sets related to f̄ are defined as follows:

• if f̄(i) ≤ 0.45, then distance from the center of the pattern is Low ;

• if 0̄.25 ≤ f(i) ≤ 0.55, then distance from the center of the pattern is Medium;

• if f̄(i) ≥ 0.5, then distance from the center of the pattern is High.

For the function ḡ, we define the following fuzzy sets:

• if ḡ(i) ≤ 0.2, then ḡ(i) is Low ;

• if 0.15 ≤ ḡ(i) ≤ 0.55, then ḡ(i) is Medium;

• if ḡ(i) ≥ 0.25, then ḡ(i) is High.

The fuzzy sets related to h̄ are defined by

• if h̄(i) ≤ 0.3, then h̄(i) is Low ;

• if 0̄.15 ≤ h(i) ≤ 0.65, then h̄(i) is Medium;

• if h̄(i) ≥ 0.5, then h̄(i) is High;

Figure 13, 14, and 15 show the membership functions of the previous fuzzy sets.
Finally, for the fuzzy output ρ we define the following fuzzy sets, whose membership

functions are depicted in Figure 16:

• if ρ(i) ≤ 0.4, then ρ(i) is Low ;

• if 0.2 ≤ ρ(i) ≤ 0.65, then ρ(i) is Medium;

• if ρ(i) ≥ 0.4, then ρ(i) is High;

14



Figure 14: Membership functions of the fuzzy sets related to ḡ (for dataset A).

Figure 15: Membership functions of the fuzzy sets related to h̄ (for dataset A).

Figure 16: Membership functions of the fuzzy sets related to ρ (for dataset A).
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The inference system relies on the following rules that combine the three inputs f̄(i), ḡ(i), h̄(i)
in order to produce the fuzzy output ρ(i) for each column i of the matrix of pixels:

1. if f̄(i) is not High and ḡ(i) is not High and h̄(i) is Low, then ρ(i) is Low;

2. if f̄(i) is Low and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Low;

3. if f̄(i) is Low and ḡ(i) is High, then ρ(i) is Medium;

4. if ḡ(i) is Medium and h̄(i) is Medium, then ρ(i) is Medium;

5. if f̄(i) is High and ḡ(i) is Low, then ρ(i) is Medium;

6. if f̄(i) is Medium and ḡ(i) is Low and h̄(i) is Medium, then ρ(i) is Medium;

7. if f̄(i) is High and ḡ(i) is Medium and h̄(i) is Low, then ρ(i) is Medium;

8. if f̄(i) is Medium and ḡ(i) is High, then ρ(i) is High;

9. if f̄(i) is High and ḡ(i) is High, then ρ(i) is High;

10. if f̄(i) is High and ḡ(i) is Medium and h̄(i) is High, then ρ(i) is High.

The touching characters in the dataset A are correctly segmented in the 81.1% of the
cases. Since in this dataset we have stored the textual descriptor indicating the index
of the proper cut column, we consider a segmentation as correct only when the routine
locates exactly such a column. The CCC dataset provides a challenging set of characters
for segmentation purposes. The only reference where segmentation of touching characters
obtained from CCC dataset is performed similarly to this section is in (Kurniawan et al.,
2011), where the authors obtained correct segmentation in the 76.2% of the cases. Let
us observe that these results are not directly comparable and are reported just to give
a reference of the goodness of our approach, since our dataset A and the dataset used in
(Kurniawan et al., 2011) are different, even if they both derive from the same CCC dataset.

Then, we compare more in-depth our work with (Kurniawan et al., 2011) replicating a
second experiment reporter in their paper and taking into account also inaccurate segmen-
tation. The authors in (Kurniawan et al., 2011) consider as correct the segmentation when
a cutting column is found in the surroundings the correct position (without giving further
details); they report a success percentage of 91.9%. We replicated such an experiment by
considering proper, even if inaccurate, segmentation when the cut position identified is in a
range of five columns from the exact position. In this case, our success percentage is 88.9%.
As stated in (Lee and Verma, 2002), although research in handwriting recognition has been
an active research area for more than an half-century, the maturity of the segmentation
techniques is still very low. Our proposed approach focused on improving the segmentation
accuracy, achieving comparable results to other works.

Other results that show the behavior of our method are reported below. These results
refer to the segmentation performed on touching characters “eh”, “’rt”, “xm”, and “ao”
depicted in Figure 2(a), 17(a), 17(b), and 17(c), respectively.

For the touching characters “eh”, our fuzzy routine identifies the correct cutting column
as the column 52, whereas function f̄ assumes the lowest value in correspondence of the
column 56, function ḡ in correspondence of columns 34, 35, 36, and 37, and function h̄ in
correspondence of the column 15.

For the touching characters “rt”, our fuzzy routine identifies the correct cutting column
as the column 61, whereas function f̄ , ḡ, and h̄ identify the cutting position in correspon-
dence of the columns 51, 61, and 70, respectively.

For the touching characters “xm”, our fuzzy routine identifies the correct cutting column
as the column 75, whereas function f̄ , ḡ, and h̄ identify the cutting position in correspon-
dence of the columns 79, 72, and 137, respectively.

Finally, for the touching characters “ao”, our fuzzy routine identifies the correct cutting
column as the column 43, whereas function f̄ assumes the lowest value in correspondence
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(a) (b) (c)

Figure 17: Touching characters “rt”, “xm”, and “ao” extracted from dataset A.

(a) (b) (c)

Figure 18: Cutting positions located by ρ (a), ḡ (b), and h̄ (c), better seen in colors.

(a) (b) (c)

Figure 19: Cutting positions located by ρ (a), f̄ (b), and h̄ (c), better seen in colors.

(a) (b)

Figure 20: Cutting positions located by ρ for images shown in Figure 18(a) and in Fig-
ure 19(a) after injection of salt and pepper noise with a density of 0.5 (i.e., 50% ca. of the
pixels are affected), better seen in colors.

of columns 48 and 49, function ḡ in correspondence of the column 38, and function h̄ in
correspondence of the column 43.

In Figure 18 and in Figure 19, we show the cutting columns found by ρ, ḡ, and h̄ related
to touching characters “eh” and cutting columns found by ρ, f̄ , h̄ related to touching
characters “rt”, respectively.

For the sake of readability, we do not report values of ρ, f̄ , ḡ, h̄ for each column since
the patterns have usually more than 100 columns.
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Table 2: Overall recognition accuracy performances measured on a noisy version of the
dataset B.

Noise Overall recognition accuracy

No noise 96.1%

Salt and pepper, d = 0.01 86.1%

Salt and pepper, d = 0.05 72.0%

Gaussian, M = 0, V = 0.01 96.1%

Gaussian, M = 0, V = 0.05 79.4%

4.4 Tests on noisy data

To test the performance of our fuzzy routine against more realistic data, we have con-
ducted experiments considering images affected by noise. Relying on the imnoise function
of MATLAB, we were able to emulate errors and artificial patterns of low-quality copy
processes. In particular, we conducted the same experiments presented in Sections 4.2 and
4.3, leaving the fuzzy sets unchanged for all the functions, while we injected noise of both
Gaussian and “salt and pepper” (switching selected pixels from black to white or viceversa)
type in the two datasets. For what concerns Gaussian noise, we considered zero-mean white
noise (M = 0) with a variance of 0.01 (V = 0.01) or 0.05 (V = 0.05); for what concerns
salt and pepper noise we considered a density of 0.01 (d = 0.01) or 0.05 (d = 0.05).

The results of the noisy version of the dataset B are reported in Table 2. The hy-
pothesis of noise that decreases performances would represent a reasonable guess; in fact
experimental data seem to confirm this assumption (although we note that light Gaussian
noise does not affect overall performances at all). However, it is interesting to compare
these outcomes to the ones resulting from the experiments on a noisy version of the dataset
A; these second outcomes are reported in Table 3. In this case, we find that noise does
not affect the performances of our system at all. This demonstrates that our approach is
very resistant to noise and image degradation that may affect real-world images, while the
overall performance degradation shown in Table 2 depends on a decreased confidence on the
pattern recognition system (and on its neural network) due to the noise. Noise resistance
of our approach exploits the quality of the fuzzy logic implemented: its parameters are so
adequate and precisely tuned to the task that they focus only on real features of interest
for determining cutting positions, not being influenced in this from aleatory processes such
as noise.

For a purely demonstrative purpose, we replicated the experiment on the dataset A
considering a salt and pepper noise with a density of 0.5, meaning that roughly 50% of pixels
in every image in the dataset is flipped (from 0 to 1 and vice-versa) as an effect of the noise.
Although this level of noise is way over the one to be expected in a real scenario, still, the
cutting performance remained unchanged. The reader is invited to compare Figure 18(a)
and Figure 19(a) with respectively Figure 20(a) and Figure 20(b) to get an insight of the
amount of noise that our strategy is capable of tolerate without incurring in performance
degradation. Due to the particular combination we follow with the features of interest, our
method is capable of highlighting the strength points of each feature especially when the
others might be disguised and influenced by noise. As an example, in the specific case of
Figure 20(a) and Figure 20(b), the function f̄(i) compensates the degradation effect that
the noise has on the other features and functions (since the distance of the ith column from
the center of the image is robust to noise).
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Table 3: Cutting performances measured on a noisy version of the dataset A (a cut is
considered as correct when it is distant at most by five columns from the exact position).

Noise Cutting accuracy

No noise 88.9%

Salt and pepper, d = 0.01 88.9%

Salt and pepper, d = 0.05 88.9%

Gaussian, M = 0, V = 0.01 88.9%

Gaussian, M = 0, V = 0.05 88.9%

5 Conclusion

This paper presents a novel fuzzy strategy to segment touching characters. The proposed
method combines three state-of-the-art features of touching characters that have been usu-
ally exploited one at a time. Experiments have been conducted on two different datasets
composed by Latin printed and handwritten characters, respectively, and considering also
noise injection. Our fuzzy strategy has specific parameters meant to capture the differences
between our two datasets. Fuzzy sets, membership functions, and fuzzy rules, which charac-
terize the fuzzy inference scheme, have been properly constructed by means of expert–based
choices and heuristic criteria, and then optimized for each dataset by means of the PSO
algorithm. Numerical results are encouraging and show that the proposed method has an
optimal capability of correctly separating touching characters also in a noise scenario; in
addition, it can be adjusted for cover very different varieties of characters (not only for the
classes considered in our experiments).

The three features considered are the distance from the center of the pattern (function
f), the peak-to-valley function (function g) and the ratio of the second difference of the
vertical projection (function h). We would like to point out that these features combined
in our fuzzy routine seem to be sufficient for obtaining optimal results in the segmentation.
In fact, adding further features appear to be useless. For instance, we have verified that
the use of the crossing count as a fourth fuzzy input does not lead to improvements. This
is surely a perspective that should be further investigated and motivated.

Dealing with perspective advances, future works will deal with segmentation of math-
ematical symbols and non–Latin characters, taking also into account the possibility of
segmenting touching characters diagonally, and with the characterization of fuzzy models
different form the Mamdani one (as, e.g., the Sugeno model).
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