

This is the author's manuscript

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

The quotient set of k-generalised Fibonacci numbers is dense in Q_p

since 2017-08-22T18:50:16Z
"Open Access". Works made available erms and conditions of said license. Use ublisher) if not exempted from copyright

(Article begins on next page)

THE QUOTIENT SET OF k-GENERALIZED FIBONACCI NUMBERS IS DENSE IN \mathbb{Q}_p

CARLO SANNA

Abstract

The quotient set of $A \subseteq \mathbb{N}$ is defined as $R(A) := \{a/b : a, b \in A, b \neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca proved that the quotient set of Fibonacci numbers is dense in the p-adic numbers \mathbb{Q}_p , for all prime numbers p. For any integer $k \geq 2$, let $(F_n^{(k)})_{n \geq -(k-2)}$ be the sequence of k-generalized Fibonacci numbers, defined by the initial values $0, 0, \dots, 0, 1$ (k terms) and such that each term afterwards is the sum of the k preceding terms. We use p-adic analysis to generalize Garcia and Luca's result, by proving that the quotient set of k-generalized Fibonacci numbers is dense in \mathbb{Q}_p , for any integer $k \geq 2$ and any prime number p.

2010 *Mathematics subject classification:* primary 11B39; secondary 11B37, 11B05. *Keywords and phrases:* Fibonacci numbers, *k*-generalized Fibonacci numbers, *p*-adic numbers, density.

1. Introduction

Given a set of nonnegative integers A, the quotient set of A is defined as

$$R(A) := \{a/b : a, b \in A, b \neq 0\}.$$

The question of when R(A) is dense in \mathbb{R}^+ is a classical topic and has been studied by many researchers. Strauch and Tóth [15] proved that if A has lower asymptotic density at least equal to 1/2 then R(A) is dense in \mathbb{R}^+ (see also [1]). Bukor, Šalát, and Tóth [3] showed that if $A \cup B$ is a partition of \mathbb{N} then at least one of R(A) or R(B) is dense in \mathbb{R}^+ . Moreover, the density of $R(\mathbb{P})$ in \mathbb{R}^+ , where \mathbb{P} is the set of prime numbers, is a well-known consequence of the Prime Number Theorem [10].

On the other hand, the analog question of when R(A) is dense in the p-adic numbers \mathbb{Q}_p , for some prime number p, has been studied only recently [7, 8]. Let $(F_n)_{n\geq 0}$ be the sequence of Fibonacci numbers, defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for all integers n > 1. Using algebraic number theory in the field $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [8] proved the following result.

THEOREM 1.1. For any prime p, the quotient set of Fibonacci numbers is dense in \mathbb{Q}_p .

One of the many generalizations of the Fibonacci numbers is the sequence of *k*-generalized Fibonacci numbers $(F_n^{(k)})_{n \ge -(k-2)}$, also called Fibonacci *k*-step sequence,

2 C. Sanna

Fibonacci k-sequence, or k-bonacci sequence. For any integer $k \ge 2$, the sequence $(F_n^{(k)})_{n \ge -(k-2)}$ is defined by

$$F_{-(k-2)}^{(k)} = \cdots = F_0^{(k)} = 0, \ F_1^{(k)} = 1,$$

and

$$F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)},$$

for all integers n > 1.

Usually, the study of the arithmetic properties of the k-generalized Fibonacci numbers is more difficult than that of Fibonacci numbers. Indeed, for $k \ge 3$ the sequence of k-generalized Fibonacci numbers lacks several nice properties of the sequence of Fibonacci numbers, like: being a strong divisibility sequence [13, p. 9], having a Primitive Divisor Theorem [17], and having a simple formula for its p-adic valuation [11, 14].

We give the following generalization of Theorem 1.1.

THEOREM 1.2. For any integer $k \ge 2$ and any prime number p, the quotient set of the k-generalized Fibonacci numbers is dense in \mathbb{Q}_p .

It seems likely that Theorem 1.2 could be extended to other linear recurrences over the integers. However, in our proof we use some specific features of the k-generalized Fibonacci numbers sequence. Therefore, we leave the following open question to the interested readers:

Question 1.3. Let $(S_n)_{n\geq 0}$ be a linear recurrence of order $k\geq 2$ satisfying

$$S_n = a_1 S_{n-1} + a_2 S_{n-2} + \dots + a_k S_{n-k},$$

for all integers $n \ge k$, where $a_1, \ldots, a_k, S_0, \ldots, S_{k-1} \in \mathbb{Z}$, with $a_k \ne 0$. For which prime numbers p is the quotient set of $(S_n)_{n\ge 0}$ dense in \mathbb{Q}_p ?

Clearly, without loss of generality, one can suppose that $\gcd(S_0,\ldots,S_{k-1})=1$. Also, it seems reasonable assuming that $(S_n)_{n\geq 0}$ is nondegenerate, which in turn implies that $(S_n)_{n\geq 0}$ is definitely nonzero [5, §2.1]. Finally, a necessary condition for $(S_n)_{n\geq 0}$ to be dense in \mathbb{Q}_p is that $(\nu_p(S_n))_{n\geq 0,S_n\neq 0}$ is unbounded. This is certainly the case if $S_0=0$ and $p\nmid a_k$ (since $p\nmid a_k$ implies that $(S_n)_{n\geq 0}$ is periodic modulo p^h , for any positive integer h [5, §3.1]), so this could be an useful additional hypothesis.

2. Proof of Theorem 1.2

From now on, fix an integer $k \ge 2$ and a prime number p. In light of Theorem 1.1, we can suppose $k \ge 3$. Let

$$f_k(X) = X^k - X^{k-1} - \dots - X - 1$$

be the characteristic polynomial of the k-generalized Fibonacci numbers sequence.

It is known [16, Corollary 3.4] that f_k is separable. Let K be the splitting field of f_k over \mathbb{Q}_p and let $\alpha_1, \ldots, \alpha_k \in K$ be the k distinct roots of f_k . We have [4, Theorem 1]

$$F_n^{(k)} = \sum_{i=1}^k c_i \alpha_i^n, \tag{2.1}$$

for all integers $n \ge 0$, where

$$c_i := \frac{\alpha_i - 1}{(k+1)\alpha_i^2 - 2k\alpha_i},\tag{2.2}$$

for i = 1, ..., k.

Now we shall interpolate a subsequence of $(F_n^{(k)})_{n\geq 0}$ by an analytic function over \mathbb{Z}_p . This is a classical method in the study of linear recurrences, which goes back at least to the proof of the Skolem–Mahler–Lech theorem [5, Theorem 2.1].

We refer the reader to [9, Ch. 4–6] for the *p*-adic analysis used hereafter. Let O_K be the valuation ring of K; e and f be the ramification index and the inertial degree of K over \mathbb{Q}_p , respectively; and π be an uniformizer of K.

Since $f_k(0) = -1$, we have that each α_i (i = 1, ..., k) is an unit of O_K , so that $|\alpha_i|_p = 1$. Hence, in particular, $\alpha_i \not\equiv 0 \mod \pi$. Thus, since $O_K/\pi O_K$ is a finite field of p^f elements, we obtain that $\alpha_i^{p^f-1} \equiv 1 \mod \pi$. Now pick any positive integer s such that $p^s \ge e + 1$. Since $|\pi|_p = p^{-1/e}$, we have $\pi^{p^s} \equiv 0 \mod p\pi$, and, in turn, it follows that $\alpha_i^t \equiv 1 \mod p\pi$, where $t := p^s(p^f - 1)$. At this point,

$$|\alpha_i^t - 1|_p \le |p\pi|_p = p^{-1-1/e} < p^{-1/(p-1)},$$
 (2.3)

for i = 1, ..., k.

Now let \log_p and \exp_p denote the *p*-adic logarithm and the *p*-adic exponential functions, respectively. Thanks to (2.3) we have that

$$\alpha_i^t = \exp_p(\log_p(\alpha_i^t)),$$

for i = 1, ..., k, which together with (2.1) implies that $F_{nt}^{(k)} = G(n)$ for all integer $n \ge 0$, where

$$G(z) := \sum_{i=1}^{k} c_i \exp_p(z \log_p(\alpha_i^t)),$$

is an analytic function over \mathbb{Z}_p .

Let r > 0 be the radius of convergence of the Taylor series of G(z) at z = 0, and let $\ell \ge 0$ be an integer. On the one hand, the radius of convergence of the Taylor series of $G(p^{\ell}z)$ at z = 0 is $p^{\ell}r$. On the other hand,

$$G(p^{\ell}z) = \sum_{i=1}^k c_i \exp_p(p^{\ell}z \log_p(\alpha_i^t)) = \sum_{i=1}^k c_i \exp_p(z \log_p(\alpha_i^{p^{\ell}t})).$$

Therefore, taking s sufficiently large, we can assume r > 1.

4 C. Sanna

In particular, we have

$$G(z) = \sum_{i=0}^{\infty} \frac{G^{(j)}(0)}{j!} z^{j},$$
(2.4)

for all $z \in \mathbb{Z}_p$.

Now we shall prove that $G'(0) \neq 0$. For the sake of contradiction, assume that

$$G'(0) = \sum_{i=1}^{k} c_i \log_p(\alpha_i^t) = 0.$$

Since $f_k(0) = -1$ and t is even, we have $\alpha_1^t \cdots \alpha_k^t = 1$, so that

$$\log_p(\alpha_k^t) = -\log_p(\alpha_1^t) - \dots - \log_p(\alpha_{k-1}^t),$$

and consequently

$$\sum_{i=1}^{k-1} (c_i - c_k) \log_p(\alpha_i^t) = 0.$$
 (2.5)

We need the following lemma [6, Lemma 1], which is a special case of a general result of Mignotte [12] on Pisot numbers.

Lemma 2.1. The roots $\alpha_1, \ldots, \alpha_{k-1}$ are multiplicatively independent, that is, $\alpha_1^{e_1} \cdots \alpha_{k-1}^{e_{k-1}} = 1$ for some integers e_1, \ldots, e_{k-1} if and only if $e_1 = \cdots = e_{k-1} = 0$.

Thanks to Lemma 2.1, we know that $\alpha_1^t, \ldots, \alpha_{k-1}^t$ are multiplicatively independent. Hence, $\log_p(\alpha_1^t), \ldots, \log_p(\alpha_{k-1}^t)$ are linearly independent over \mathbb{Z} . Then by [2, Theorem 1] we get that $\log_p(\alpha_1^t), \ldots, \log_p(\alpha_{k-1}^t)$ are linearly independent over the algebraic numbers, hence (2.5) implies

$$c_1 = c_2 = \dots = c_k. \tag{2.6}$$

At this point, from (2.2) and (2.6), it follows that $\alpha_1, \ldots, \alpha_k$ are all roots of the polynomial

$$c_1(k+1)X^2 - (2c_1k+1)X + 1,$$

but that is clearly impossible, since $k \ge 3$. Hence, we have proved that $G'(0) \ne 0$.

Taking z=1 in (2.4), we find that $\nu_p(G^{(j)}(0)/j!) \to +\infty$, as $j \to +\infty$. In particular, there exists an integer $\ell \geq 0$ such that $\nu_p(G^{(j)}(0)/j!) \geq -\ell$, for all integers $j \geq 0$. As a consequence of this, and since $G(0) = F_0^{(k)} = 0$, taking $z = mp^h$ in (2.4) we get that

$$G(mp^h) = G'(0)mp^h + O(p^{2h-\ell}),$$

for all integers $m, h \ge 0$. Therefore, for $h > h_0 := \ell + \nu_p(G'(0))$, we have

$$\frac{G(mp^h)}{G(p^h)} - m = \frac{G'(0)mp^h + O(p^{2h-\ell})}{G'(0)p^h + O(p^{2h-\ell})} - m = \frac{O(p^{h-\ell})}{G'(0) + O(p^{h-\ell})} = O(p^{h-h_0}),$$

that is,

$$\lim_{h \to +\infty} \left| \frac{G(mp^h)}{G(p^h)} - m \right|_p = 0.$$

In conclusion, we have proved that

$$\lim_{v \to +\infty} \left| \frac{F_{mp^{v}(p^{f}-1)}^{(k)}}{F_{p^{v}(p^{f}-1)}^{(k)}} - m \right|_{p} = 0,$$

for all integers $m \ge 0$. In other words, the closure (with respect to the *p*-adic topology) of the quotient set of *k*-generalized Fibonacci numbers contains the nonnegative integers \mathbb{N} .

The next easy lemma is enough to conclude.

LEMMA 2.2. Let $A \subseteq \mathbb{N}$. If the closure of R(A) contains \mathbb{N} , then R(A) is dense in \mathbb{Q}_p .

PROOF. Let C be the closure of R(A) as a subspace of \mathbb{Q}_p . Since \mathbb{N} is dense in \mathbb{Z}_p , we have $\mathbb{Z}_p \subseteq C$. Moreover, the inversion $\iota : \mathbb{Z}_p^{\times} \to \mathbb{Q}_p : x \to x^{-1}$ is continuous and, obviously, sends nonzero elements of R(A) to R(A), hence $\iota(\mathbb{Z}_p) \subseteq C$. Finally, $\mathbb{Q}_p = \mathbb{Z}_p \cup \iota(\mathbb{Z}_p)$, thus $C = \mathbb{Q}_p$ and R(A) is dense in \mathbb{Q}_p .

The proof of Theorem 1.2 is complete.

Acknowledgement

The author thanks the anonymous referee for his careful reading of the paper.

References

- B. Brown, M. Dairyko, S. R. Garcia, B. Lutz, and M. Someck. 'Four quotient set gems'. *Amer. Math. Monthly* 121 (7) (2014), 590–599.
- [2] A. Brumer. 'On the units of algebraic number fields'. Mathematika 14 (1967), 121-124.
- [3] J. Bukor, T. Šalát, and J. T. Tóth. 'Remarks on *R*-density of sets of numbers'. *Tatra Mt. Math. Publ.* **11** (1997), 159–165. Number theory (Liptovský Ján, 1995).
- [4] G. P. B. Dresden and Z. Du. 'A simplified Binet formula for k-generalized Fibonacci numbers'. J. Integer Seq. 17 (4) (2014), Article 14.4.7, 9.
- [5] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence sequences, Mathematical Surveys and Monographs, Volume 104 (American Mathematical Society, Providence, RI, 2003).
- [6] C. Fuchs, C. Hutle, F. Luca, and L. Szalay. 'Diophantine triples and k-generalized Fibonacci sequences'. Bull. Malays. Math. Sci. Soc. (2016), 1–17.
- [7] S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, E. Schechter, and A. Starr. 'p-adic quotient sets' https://arxiv.org/abs/1607.07951.
- [8] S. R. Garcia and F. Luca. 'Quotients of Fibonacci numbers'. Amer. Math. Monthly (to appear).
- [9] F. Q. Gouvêa. p-adic numbers. Universitext (Springer-Verlag, Berlin, 1997), 2nd edn. An introduction.
- [10] D. Hobby and D. M. Silberger. 'Quotients of primes'. Amer. Math. Monthly 100 (1) (1993), 50–52.
- [11] T. Lengyel. 'The order of the Fibonacci and Lucas numbers'. Fibonacci Quart. 33 (3) (1995), 234–239.

6 C. Sanna

- [12] M. Mignotte. 'Sur les conjugués des nombres de Pisot'. C. R. Acad. Sci. Paris Sér. I Math. 298 (2) (1984), 21.
- [13] P. Ribenboim. *My numbers, my friends* (Springer-Verlag, New York, 2000). Popular lectures on number theory.
- [14] C. Sanna. 'The p-adic valuation of Lucas sequences'. Fibonacci Quart. 54 (2) (2016), 118–124.
- [15] O. Strauch and J. T. Tóth. 'Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set R(A)'. Acta Arith. 87 (1) (1998), 67–78.
- [16] D. A. Wolfram. 'Solving generalized Fibonacci recurrences'. Fibonacci Quart. 36 (2) (1998), 129–145.
- [17] M. Yabuta. 'A simple proof of Carmichael's theorem on primitive divisors'. *Fibonacci Quart.* **39** (5) (2001), 439–443.

CARLO SANNA, Department of Mathematics, Università degli Studi di Torino, Turin, Italy e-mail: carlo.sanna.dev@gmail.com