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We prove that if (un)n≥0 is a Lucas sequence satisfying some mild hypotheses, then the
number of positive integers n not exceeding x and such that n divides un is less than

x1−(1/2+o(1)) log log log x/ log log x,

as x → ∞. This both generalizes a result of Luca and Tron about the positive integers
n dividing the n-th Fibonacci number, and improves a previous upper bound due to

Alba González, Luca, Pomerance, and Shparlinski.
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1. Introduction

Let (un)n≥0 be a Lucas sequence, that is, a sequence of integers such that u0 = 0,

u1 = 1, and un = aun−1 + bun−2 for any n ≥ 2, where a and b are two relatively

prime integers.

In the early ’90s, André-Jeannin [2] and Somer [8] initiated a systematic study

of the positive integers n such that un is divisible by n. For this purpose, we will see

that there is no loss of generality in assuming that (un)n≥0 is nondegenerate, i.e.,

b 6= 0 and the ratio α/β of the two roots α, β ∈ C of the characteristic polynomial

f(X) := X2−aX−b is not a root of unity; and that the discriminant of f(X) is not

equal to 1. Under those assumptions, the set A := {n ≥ 1 : n | un} is infinite, so it

is interesting to study the distribution of its elements among the positive integers.

Put A(x) := A ∩ [1, x] and A(x) := #A(x), for each x ≥ 1.

Alba González, Luca, Pomerance, and Shparlinski [1] proved the following upper

and lower bounds for A(x).

Theorem 1.1. It holds

exp(C(log log x)2) ≤ A(x) ≤ x

exp((1 + o(1))
√

log x log log x)
,

1



September 21, 2016 10:20 WSPC/INSTRUCTION FILE temp

2 Carlo Sanna

as x→∞, where C > 0 is a constant depending on a and b.

Luca and Tron [4] showed that if (un)n≥0 is the sequence of Fibonacci numbers,

then the upper bound of Theorem 1.1 can be improved considerably. Indeed, they

claimed that their methods should apply equally well to other Lucas sequences.

In this paper, using the ideas of Luca and Tron together with some results of the

author concerning the p-adic valuation of Lucas sequences, we prove the following

upper bound.

Theorem 1.2. It holds

logA(x) ≤ log x−
(

1

2
+ o(1)

)
log x log log log x

log log x
,

as x→∞, where the o(1) depends on a and b.

Notation

For any prime number p, we write νp(·) for the usual p-adic valuation over the

integers. Moreover, for integers v and n, we write pv || n to mean that νp(n) = v.

2. Preliminaries

First of all, we have to justify our claim that in order to study A there is no loss

of generality in assuming that (un)n≥0 is nondegenerate and that the discriminant

∆ := a2 + 4b of the characteristic polynomial f(X) satisfies ∆ 6= 1.

On the one hand, if (un)n≥0 is a degenerate Lucas sequence, then it is known

[6, pp. 5–6] that (a, b) ∈ {(±2,−1), (±1,−1), (0,±1), (±1, 0)} and in each of such

cases (un)n≥0 is either definitely periodic with values in {0,−1,+1}, or equal to

(n)n≥0, or equal to ((−1)n−1n)n≥0, so determining A is trivial. On the other hand,

if ∆ = 1 then by [8, Theorem 8(iii)] it follows that A = {1}, another trivial case.

Now we recall that for each positive integer m relatively prime with b,

τ(m) := min{n ≥ 1 : m | un}

is well-defined and called the rank of apparition of m in (un)n≥0. The following

lemmas state some of the most important properties of the rank of apparition (see,

e.g., [5]).

Lemma 2.1. For each integer m ≥ 1, we have m | un for some positive integer n

if and only if gcd(m, b) = 1 and τ(m) | n.

Lemma 2.2. Let m,n ≥ 1 be integers such that gcd(b,mn) = 1, then:

(1) If m | n then τ(m) | τ(n).

(2) τ(lcm(m,n)) = lcm(τ(m), τ(n)).

(3) τ(m) = lcm{τ(pv) : pv || m}, where p runs over all the prime factors of m.
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Lemma 2.3. Let p be a prime number not dividing b. Then τ(p) | p− (−1)p−1
(

∆
p

)
,

where
( ·
p

)
is the Legendre symbol. In particular, τ(p) = p if and only if p | τ(p) if

and only if p | ∆.

Note that, assuming (un)n≥0 nondegenerate, we have un 6= 0 for all positive

integers n, hence νp(un) is finite for any prime number p.

Sanna [7] proved the following formulas for the p-adic valuation of nondegenerate

Lucas sequences.

Theorem 2.4. If p is a prime number such that p - b, then

νp(un) =



νp(n) + νp(up)− 1 if p | ∆, p | n,
0 if p | ∆, p - n,
νp(n) + νp(upτ(p))− 1 if p - ∆, τ(p) | n, p | n,
νp(uτ(p)) if p - ∆, τ(p) | n, p - n,
0 if p - ∆, τ(p) - n,

for each positive integer n. Moreover, if p ≥ 3 then

νp(un) =


νp(n) + νp(up)− 1 if p | ∆ and p | n,
0 if p | ∆ and p - n,
νp(n) + νp(uτ(p)) if p - ∆ and τ(p) | n,
0 if p - ∆ and τ(p) - n,

for each positive integer n.

Now we prove some formulas for the rank of apparition of the power of a prime

number.

Lemma 2.5. Let p be a prime number such that p - b, and let v be a positive

integer. Then

τ(pv) =


τ(p) if v ≤ νp(uτ(p)),

pmax{1, v−νp(upτ(p))+1} τ(p) if v > νp(uτ(p)) and p = 2 - ∆,

pv−νp(uτ(p)) τ(p) otherwise.

Proof. Since pv | uτ(pv), clearly p | uτ(pv), so it follows from Lemma 2.1 that

τ(p) | τ(pv). We write τ(pv) = mτ(p), for some positive integer m. Suppose that

there exists a prime number q 6= p such that q | m. Then, from Theorem 2.4 it

follows easily that νp(uτ(pv)/q) = νp(uτ(pv)), and thus pv | uτ(pv)/q, absurd. Hence

m = pr, for some nonnegative integer r, and τ(pv) = prτ(p). Precisely, r is the

least nonnegative integer such that νp(uprτ(p)) ≥ v. If v ≤ νp(uτ(p)), then obviously

r = 0 and τ(pv) = τ(p). Suppose v > νp(uτ(p)), so that, clearly, r ≥ 1.

On the one hand, if p = 2 and ∆ is odd, then thanks to Lemma 2.3 we have

p - τ(p), and from Theorem 2.4 it follows that

νp(upsτ(p)) = νp(p
sτ(p)) + νp(upτ(p))− 1 = s+ νp(upτ(p))− 1,
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for each positive integer s, hence r = max{1, v − νp(upτ(p)) + 1}.
On the other hand, if p | ∆ or p ≥ 3, then using Lemma 2.3 and Theorem 2.4

one can easily check that νp(upsτ(p)) = s + νp(uτ(p)), for each positive integer s,

hence r = v − νp(uτ(p)).

We state a last lemma regarding the p-adic valuation of Lucas sequence [7,

Lemma 3.2].

Lemma 2.6. If p is a prime number such that p - b, then

νp(upτ(p)) ≥ νp(uτ(p)) + 1,

with equality if p ≥ 5, or if p = 3 and 3 - ∆.

3. Proof of Theorem 1.2

For each positive integer k, put Ak := {n ∈ A : n = k · τ(n)}. Clearly, (Ak)k≥1 is

a partition of A. In this section, we shall give a description of the elements of each

nonempty Ak in terms of k and a function γ(k). This will be the key ingredient in

the proof of Theorem 1.2. For each integer i ≥ 0, we write τ i for the i-th iteration

of the rank of apparition, with the usual convention that τ0 is the identity function.

Note that since τ(m) is defined only for the positive integers m relatively prime

with b, we have that τ i+1(m) is defined if and only if m, τ(m), . . . , τ i(m) are all

relatively prime with b.

Lemma 3.1. Suppose that k is a positive integer such that Ak 6= ∅. Then

γ(k) := k · lcm{τ i(k) : i ≥ 1}

is well-defined. Moreover, γ(k) | n for each n ∈ Ak.

Proof. In order to prove that γ(k) is well-defined, we need to show two things.

First, that each iterate τ i(k) is defined. Second, that the set {τ i(k) : i ≥ 1} is finite,

so that it makes sense to take the least common multiple of its elements. Since Ak
is nonempty, pick n ∈ Ak. We shall prove that

γi := k · lcm{τ(k), τ2(k), . . . , τ i(k), τ i+1(n)} | n, (3.1)

for each integer i ≥ 0, showing in the course of the proof that all the iterates of τ

in (3.1) are defined. We proceed by induction on i. For i = 0, the claim is obvious,

since γ0 := k · lcm{τ(n)} = k · τ(n) = n. Suppose that (3.1) holds for i ≥ 0, we will

prove it for i + 1. Since n ∈ A, by Lemma 2.1 we have gcd(n, b) = 1, so that from

(3.1) it follows that τ(k), τ2(k), . . . , τ i(k), τ i+1(n) are all relatively prime with b,

hence τ i+2(n) and γi+1 are well-defined. From Lemma 2.2 and using the induction
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hypothesis, we obtain

γi+1 = k · lcm{τ(k), τ2(k), . . . , τ i+1(k), τ i+2(n)}
= k · τ(lcm{k, τ(k), . . . , τ i(k), τ i+1(n)})
| k · τ(k · lcm{τ(k), . . . , τ i(k), τ i+1(n)})
= k · τ(γi)

| k · τ(n) = n,

since n ∈ Ak, hence the claim is proved. Therefore, each iterate τ i(k) is defined.

Moreover, from (3.1) if follows that τ i(k) ≤ n for each integer i ≥ 1, so that the

set {τ i(k) : i ≥ 1} is finite. Thus we have proved that γ(k) is well-defined. Finally,

since {τ i(k) : i ≥ 1} is finite, for any sufficiently large i we have γ(k) | γi | n. But

n is arbitrary, hence γ(k) | n for each n ∈ Ak.

The next lemma shows that, actually, γ(k) is the least element of Ak.

Lemma 3.2. Suppose that k is a positive integer such that Ak 6= ∅. Then

γ(k) = min(Ak) = gcd(Ak).

Proof. Since from Lemma 3.1 we know that γ(k) | n for any n ∈ Ak, it is sufficient

to prove that γ(k) ∈ Ak, i.e., that γ(k) = k · τ(γ(k)). From Lemma 2.2 we have

γ(k) = k · lcm{τ i(k) : i ≥ 1} = k · τ(lcm{τ i(k) : i ≥ 0})
| k · τ(k · lcm{τ i(k) : i ≥ 1}) = k · τ(γ(k)),

so it remains to prove that k · τ(γ(k)) | γ(k). For the rest of the proof, we reserve

the letters p and q for prime numbers. Using Lemma 2.2, one can easily prove by

induction that τ i(k) = lcm{τ i(pv) : pv || k}, for each integer i ≥ 1. Therefore,

γ(k) = k · lcm{τ i(k) : i ≥ 1} (3.2)

= k · lcm{lcm{τ i(pv) : pv || k} : i ≥ 1}
= k · lcm{τ i(pv) : i ≥ 1, pv || k}.

If for each prime number q we set

mq := νq(lcm{τ i(pv) : i ≥ 1, pv || k}) = max{νq(τ i(pv)) : i ≥ 1, pv || k},

then from (3.2) it follows that

γ(k) = lcm
({ ∏

pv || k

pv+mp
}
∪ {τ i(pv) : i ≥ 1, pv || k}

)
.

Thus Lemma 2.2 yields

τ(γ(k)) = lcm
({
τ
( ∏
pv || k

pv+mp
)}
∪ {τ i+1(pv) : i ≥ 1, pv || k}

)
(3.3)

= lcm
(
{lcm{τ(pv+mp) : pv || k}} ∪ {τ i+1(pv) : i ≥ 1, pv || k}

)
= lcm

(
{τ(pv+mp) : pv || k} ∪ {τ i+1(pv) : i ≥ 1, pv || k}

)
.



September 21, 2016 10:20 WSPC/INSTRUCTION FILE temp

6 Carlo Sanna

At this point, it is sufficient to prove that νq(τ(pv+mp)) ≤ mq for any prime numbers

p and q with pv || k. In fact, this last claim together with (3.3) and (3.2) implies

that

νq(k · τ(γ(k))) ≤ νq(k) +mq = νq(γ(k)),

for each prime number q, i.e., k · τ(γ(k)) | γ(k).

If mq = 0, then the claim is obvious, since νq(τ(pv+mp)) = νq(τ(pv)) ≤ mq, by

the definition of mq. Thus, we assume mq ≥ 1. If q 6= p, then from Lemma 2.5 we get

immediately that νq(τ(pv+mp)) = νq(τ(pv)) ≤ mq, again by the definition of mq.

Hence, we suppose q = p. Since Ak is nonempty, pick n ∈ Ak, so that n = k · τ(n).

We can write k = pvk′ and n = pvn′, where k′ and n′ are positive integers, with

p - k′. Therefore, since n | uτ(n),

v + νp(n
′) = νp(n) ≤ νp(uτ(n)) = νp(un′/k′). (3.4)

Using Theorem 2.4 and the fact that p - k′, we can compute νp(un′/k′) and from

(3.4) we obtain

v ≤


νp(up)− 1 if p | ∆,
νp(upτ(p))− 1 if p - ∆ and p | n′,
νp(uτ(p)) if p - ∆ and p - n′.

(3.5)

Now from Lemma 2.5 we get that: If v +mp ≤ νp(uτ(p)), then

νp(τ(pv+mp)) = νp(τ(p)) = νp(τ(pv)) ≤ mp;

If v +mp > νp(uτ(p)) and p = 2 - ∆, then

νp(τ(pv+mp)) = max{1, v +mp − νp(upτ(p)) + 1}+ νp(τ(p))

≤ max{1,mp} = mp,

where we have used inequality (3.5), Lemma 2.6, and the fact that p - τ(p), in the

light of p - ∆ and Lemma 2.3.

Otherwise, if v +mp > νp(uτ(p)) and it is not the case that p = 2 - ∆, then

νp(τ(pv+mp)) = v +mp − νp(uτ(p)) + νp(τ(p)).

Consider this last case. If p | ∆ then τ(p) = p, by Lemma 2.3, and from (3.5) we

obtain

νp(τ(pv+mp)) ≤ νp(up)− 1 +mp − νp(up) + νp(p) = mp.

Therefore, assume p - ∆, so again by Lemma 2.3 we have p - τ(p). If p | n′ then by

(3.5), and since in Lemma 2.6 equality holds, we have

νp(τ(pv+mp)) ≤ νp(upτ(p))− 1 +mp − νp(uτ(p)) + νp(τ(p)) = mp.

Finally, if p - n′ then by (3.5) we have

νp(τ(pv+mp)) ≤ νp(uτ(p)) +mp − νp(uτ(p)) + νp(τ(p)) = mp.
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In conclusion, νp(τ(pv+mp)) ≤ mp as claimed and the proof is complete.

Now we are ready to state the characterization of the elements of Ak in terms

of k and γ(k).

Lemma 3.3. Suppose that k and n are positive integers such that n ∈ Ak. Then

n = γ(k)m, where m is some positive integer such that each of its prime factors

divides 6∆k.

Proof. From Lemma 3.1 we already know that γ(k) | n, i.e., n = γ(k)m for some

positive integer m. For the sake of contradiction, suppose that m has a prime factor

p such that p - 6∆k. Actually, we can suppose that p is the greatest among such

prime factors. Since n ∈ Ak, by Lemma 2.2 we have

n = k · τ(n) = k · lcm{τ(qv) : qv || n},

where, henceforth, the variable q is reserved for prime numbers. Thus, since p - k,

we have

νp(n) = max{νp(τ(qv)) : qv || n}. (3.6)

Note that p - ∆ implies νp(τ(p)) = 0, thanks to Lemma 2.3. Now by Lemma 2.5 we

have that: On the one hand, since p 6= 2, it holds

νp(τ(pνp(n))) = max{νp(n)− νp(uτ(p)), 0} < νp(n);

On the other hand, for each prime number q 6= p and each positive integer v, it

holds νp(τ(qv)) = νp(τ(q)). Therefore, we can simplify (3.6) to

νp(n) = max{νp(τ(q)) : q | n, q 6= p}. (3.7)

From Lemma 3.2 we know that γ(k) ∈ Ak, hence setting n = γ(k) in (3.7) we have

νp(γ(k)) = max{νp(τ(q)) : q | γ(k), q 6= p}. (3.8)

Now subtracting (3.8) from (3.7) and using n = γ(k)m, we get

max{νp(τ(q)) : q | γ(k)m, q 6= p} −max{νp(τ(q)) : q | γ(k), q 6= p}
= νp(γ(k)m)− νp(γ(k))

= νp(m) > 0,

hence there exists a prime number q 6= p such that q | m, q - γ(k) and νp(τ(q)) > 0.

If q | ∆, then τ(q) = q by Lemma 2.3, hence q = p, absurd. Thus q - ∆, so that

p | τ(q) | q ± 1,

again by Lemma 2.3. This together with p 6= 2, 3 implies q > p ≥ 5, and in particular

q - 6. Furthermore, if q | k then q | γ(k), absurd. In conclusion, q > p, q | m and

q - 6∆k, but this is absurd by the maximality of p. The proof is complete.
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At this point, the proof of Theorem 1.2 proceeds almost exactly as in the paper

of Luca and Tron, with only a few changes. However, we include it here just for

completeness.

Let x > 0 be sufficiently large and n ∈ A(x). Thanks to Lemma 3.3, we know

that n = γ(k)m, for some positive integers k and m, where every prime factor of m

divides 6∆k. Put for convenience C(x) := xlog log log x/ log log x, and split A(x) into

two disjoint subsets: A1(x), the subset of those n such that k ≤ x/C(x); and A2(x),

the subset of the remaining n such that x/C(x) < k ≤ x.

First, suppose n ∈ A1(x). Let ps be the s-th prime number, and for each x ≥
y ≥ 2 let Ψ(x, y) denotes the number of positive integers not exceeding x whose

largest prime factor is less than or equal to y. Clearly, m has at most s := ω(6∆k)

distinct prime factors. Since k ≤ x and ω(n) ≤ (1+o(1)) log n/ log log n, as n→∞,

(see, e.g, [9, §5.3, Theorem 3]) we get that s ≤ 2 log x/ log log x, for sufficiently

large x, depending on ∆. Therefore, from the Prime Number Theorem it follows

that ps ≤ 5 log x, for x large enough. Thus, the number of positive integers m ≤ x

all of whose prime factors divide 6∆k is at most Ψ(x, ps) ≤ Ψ(x, 5 log x). Putting

y = 5 log x in the classical estimate for Ψ(x, y) due to de Bruijn [9, §5.1, Theorem 2],

after some computations, we obtain that

Ψ(x, 5 log x) ≤ x
6 log 6−5 log 5+o(1)

log log x = C(x)o(1),

as x → ∞. Summarizing, for any fixed k ≤ x/C(x) there are at most C(x)o(1)

values of m.

In conclusion, we have

#A1(x) ≤ C(x)o(1) · x

C(x)
=

x

C(x)1+o(1)
. (3.9)

Now suppose n ∈ A2(x), so that k > x/C(x). By Lemma 3.1, we have γ(k) ≥
kτ(k), thus

x

C(x)
τ(k) < kτ(k) ≤ γ(k) ≤ γ(k)m = n ≤ x,

and hence τ(k) ≤ C(x). For any positive integer τ ≤ C(x), put

Bτ := {h ≥ 1 : τ(h) = τ}

and Bτ (y) := Bτ ∩ [1, y], for any y ≥ 1. Thanks to [3, Theorem 3], we know that

#Bτ (y) ≤ y

C(y)1/2+o(1)
,

as y → ∞, uniformly in τ . Since n = γ(k)m by Lemma 3.1, it follows that n is

a multiple of kτ(k). Clearly, there are at most x/(kτ(k)) multiples of kτ(k) not

exceeding x. Therefore, for any fixed positive integer τ ≤ C(x), the number of
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n ∈ A2(x) such that τ(k) = τ is at most∑
k∈Bτ

x/C(x)<k≤ x

x

τk
=
x

τ

∫ x

x/C(x)

d#Bτ (t)

t

=
x

τ

(
#Bτ (t)

t

∣∣∣∣x
t=x/C(x)

+

∫ x

x/C(x)

#Bτ (t)

t2
dt

)

≤ x

τ

(
#Bτ (x)

x
+

∫ x

x/C(x)

dt

t C(t)1/2+o(1)

)

≤ x

τ

(
1

C(x)1/2+o(1)
+

1

C(x)1/2+o(1)

∫ x

x/C(x)

dt

t

)

=
x(1 + logC(x))

τ C(x)1/2+o(1)
=

x

τ C(x)1/2+o(1)
,

where we used partial summation and the fact that C(t)1/2+o(1) = C(x)1/2+o(1),

as x → ∞, uniformly for t ∈ [x/C(x), x]. Summing over all the positive integers

τ ≤ C(x), we obtain

#A2(x) ≤
∑

τ ≤C(x)

x

τ C(x)1/2+o(1)
=
x(1 + o(1)) logC(x)

C(x)1/2+o(1)
=

x

C(x)1/2+o(1)
. (3.10)

Finally, from (3.9) and (3.10) we get

A(x) ≤ x

C(x)1/2+o(1)
,

as x→∞. The proof of Theorem 1.2 is complete.
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