
07 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Abstraction refinement for the analysis of software product lines

Publisher:

Published version:

DOI:10.1007/978-3-319-61467-0_1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1648641 since 2017-10-03T10:38:55Z

This is the author's version of the contribution published as:

Damiani F., Hähnle R., Lienhardt M. (2017) Abstraction Refinement for the Analysis of Software Product
Lines. In: Gabmeyer S., Johnsen E. (eds) Tests and Proofs. TAP 2017. Lecture Notes in Computer Science, vol
10375. Springer, Cham

DOI: 10.1007/978‐3‐319‐61467‐0_1

When citing, please refer to the published version.

The final publication is available at

link.springer.com

Abstraction Refinement for the
Analysis of Software Product Lines?

Ferruccio Damiani1, Reiner Hähnle2, and Michael Lienhardt1

1 University of Torino, Torino, Italy
{ferruccio.damiani, michael.lienhardt}@unito.it

2 University of Darmstadt, Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

Abstract. We generalize the principle of counter example-guided data
abstraction refinement (CEGAR) to guided refinement of Software Prod-
uct Lines (SPL) and of analysis tools. We also add a problem decompo-
sition step. The result is a framework for formal SPL analysis via guided
refinement and divide-and-conquer, through sound orchestration of mul-
tiple tools.

1 Introduction

A Software Product Line (SPL) is a set of similar programs, called variants,
with a common code base and well documented variability [23]. An SPL can
be described by a triple consisting of a feature model, an artifact base, and
configuration knowledge. The feature model defines the set of variants in terms
of features: each feature represents an abstract description of functionality and
each variant is identified by a set of features, called a product. The artifact base
provides language dependent reusable code artifacts that are used to build the
variants. Configuration knowledge connects feature model and artifact base by
describing how to derive variants from the code artifacts given the products.

Tool-based analysis of software [12] is becoming more and more feasible and,
therefore, common. This includes functional verification [1], resource analysis [2],
safety verification [15], information flow [36], deadlock detection [30], to name
just a few. It is still a challenge, however, to lift such analyses from the level of
individual variants to whole SPLs. There are lifting approaches that, by making
analyses and tools variability aware (i.e., to operate directly on the code of the
SPL, not on the code of the variants) work for type systems [26, 24] or lightweight
static analyses [17]. For more complex scenarios, such as formal verification, rel-
atively restrictive assumptions must be made [32] (see also [18, 25]). There is no
general theory of lifting software analysis from individual products to SPLs [42].
? This work has been partially supported by: EU Horizon 2020 project Hy-
Var (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it); project FormbaR (formbar.raillab.de), Innova-
tionsallianz TU Darmstadt–Deutsche Bahn Netz AG.

An alternative to making the analyses and the tools variability aware, is to
generate, for a given SPL, a meta variant or variant simulator (see, e.g., [45]).
This is an artifact, expressed in the same language as the variants are written in,
that takes as input any product and simulates the behavior of the corresponding
variant. A meta variant has the advantage that it can be analyzed with stan-
dard tools for the implementation language of its variants. To ensure that this
approach is efficient, variability encoding (i.e., the process of transforming an
SPL into a meta variant) must avoid to duplicate code that is common to differ-
ent variants. Depending on the given SPL, its meta variant can be significantly
more complex than any of the variants, challenging the capabilities of available
tools [43]. Indeed, it has has not yet been demonstrated that variability encoding
provides a scalable approach to family-based analysis of large SPLs.

In this paper we present a novel and systematic approach that permits to
apply software analyses to the meta variant of an SPL. We take our cue from
Counter Example-Guided Abstraction Refinement (CEGAR) [22], a well-known
and highly successful verification strategy to handle programs that are too com-
plex to be verified directly. We generalize the CEGAR principle to guided re-
finement of SPLs and of analysis tools. We also add a problem decomposition
step. The result is a framework for formal SPL analysis via guided refinement
and divide-and-conquer, through sound orchestration of multiple tools.

Paper organization. In Sect. 2 we briefly recall the main approches to implement
SPLs and introduce the running example of the paper. In Sect. 3 we recall the
CEGAR principle and explain our proposal to generalize it to the refinement of
SPLs and of tools. In Sect. 4 we recap the workflow of the running example and
outline how our framework can be instantiated to other scenarios. In Sect. 5 we
discuss related work and in Sect. 6 we conclude.

2 Implementation of Software Product Lines

Currently, there exist three main approaches to implement SPLs [40]: annotative
approaches expressing negative variability (all variants are represented by a sin-
gle artifact); compositional approaches expressing positive variability (features
are associated to artifacts, possibly describing refinements to a base artifact);
and transformational approaches expressing both positive and negative variabil-
ity (feature combinations are associated to artifacts describing changes to a base
artifact to obtain other system variants).

A prominent example of an annotative approach is based on C preprocessor
directives (#define FEATURE and #ifdef FEATURE). Delta-Oriented Program-
ming (DOP, see [13, 38] and [6, Sect. 6.6.1]) is a flexible transformational ap-
proach in which the artifact base consists of a base program (that might be empty
or incomplete) and of a set of deltas, which are containers of modifications to a
program (e.g., for Java programs, a delta can add, remove or modify classes and
interfaces), while configuration knowledge associates to each delta an activation
condition over the features and specifies an application ordering between deltas.

2

Bank

Single
Account

(SA) Multiple
Account

(MA) Logging

Fig. 1. Visual representation of the feature model of the Bank Account SPL example

data Operation = Withdraw(Int) | Deposit(Int);
class Client() implements IClient { }
class Account() implements IAccount {
Int amount;
Int getAmount() { return this.amount; }
}

class Bank() implements IBank {
List<IClient> clients;
Unit applyOperation(Operation op) { ... }

Bool newOperation(Operation op) {
Bool check_needed = case op {
Withdraw(i) => i > 10000 ;
_ => False ;
};
Bool apply_accepted = case check_needed {
True => this.checkAccounts();
_ => True;

};
if(apply_accepted)
this.applyOperation(op);

return apply_accepted;
}}

Fig. 2. Base Program

DOP supports the automatic generation of variants based on a selection of
features: once a user selects a product, the corresponding variant is derived by
applying the deltas with a satisfied activation condition to the base program
according to the application ordering. DOP can be seen as a generalization of
Feature-Oriented Programming (FOP) (see [11] and [6, Sect. 6.1]), a composi-
tional approach to SPL implementation, where deltas correspond one-to-one to
features and do not contain remove operations [39].

Our running example is a simple product line modeling a bank with different
features, depicted in Fig. 1. The feature Single Account (or SA) associates one
account with each client of the bank, while feature Multiple Account (or MA)
allows a client to maintain several accounts. Finally, the feature Logging adds
logging capabilities to the banking operations. Features SA and MA are alternative
(i.e., exactly one of them must be selected), while feature Logging is optional.
The code base of our example, presented in Figs. 2–5, is written in the modeling
language ABS [35], which realizes DOP.

Fig. 2 contains the base program that implements the core functionalities
of our example. The data type Operation describes the possible banking op-
erations, Withdraw and Deposit, respectively for withdrawing or depositing a
specified amount. The Client class is empty, as its content depends on whether
feature SA or MA is selected, while the Account class, that implements an account,
simply stores the balance of the account.

The Bank has a list of clients and declares three methods: applyOperation
performs a banking operation in the bank, without any check; newOperation
is a wrapper around applyOperation that executes some checks in case the

3

delta dSA {
modifies class Client {
adds IAccount account;
adds IAccount getAccount() { return this.account; }
}
modifies class Bank {
adds Bool checkAccounts() {
List<IClient> tmp = this.clients;
Int total_amount = 0;
while(!isEmpty(tmp)) {
total_amount = total_amount + head(tmp).getAccount().getAmount();
tmp = tail(tmp);
}
return total_amount > 1000000;

}}}

Fig. 3. Delta for the SA feature

delta dMA {
modifies class Client {
adds List<IAccount> accounts;
adds List<IAccount> getAccounts() { return this.accounts; }
}
modifies class Bank {
adds Bool checkAccounts() {
List<IClient> tmp1 = this.clients;
Int total_amount = 0;
while(!isEmpty(tmp1)) {
List<Account> tmp2 = head(tmp1).getAccounts();
while(!isEmpty(tmp2)) {
total_amount = total_amount + head(tmp2).getAmount();
tmp2 = tail(tmp2);
}
tmp1 = tail(tmp1);
}
return total_amount > 1000000;

}}}

Fig. 4. Delta for the MA feature

operation is a withdrawal of a large amount of money; finally, checkAccounts
performs the checks and is not part of the base program, as its implementation
entirely depends on the selected features.

Fig. 3 presents the delta dSA implementing the SA feature. Here, the class
Client is defined, and simply contains an account (with a getter method). The
method checkAccounts of the class Bank is also implemented, and simply iter-
ates over all the accounts of the bank, to ensure that its overall balance is big
enough to allow the requested withdrawal.

Fig. 4 presents the delta dMA implementing the MA feature. Here, the class
Client contains a list of accounts. The implementation of the checkAccounts
method still iterates over all the accounts of the bank to check that its overall
balance is large enough, but to do so, it now contains an inner loop that iterates
over all the accounts of a client.

4

delta dLog {
modifies class Bank {
modifies Bool newOperation(Operation op) {
print("Managing the new operation \"" + op + "\"");
Bool result = original(op);
if(result) print("\tOperation successful");
else print("\tOperation Failed")
return result;

}}}

Fig. 5. Delta for the Logging feature

Fig. 5 contains the delta dLog that implements the feature Logging. This
delta redefines the method newOperation of the class Bank, surrounding the
original implementation (modeled with the keyword original in place of the
method call) with two calls to print. These calls simply register which operation
was requested and whether it was performed.

Finally, the configuration knowledge required to describe the Bank Account
SPL is straightforward and we omit the corresponding ABS declaration—it sim-
ply specifies that each delta is activated exactly by the feature that it realizes
(since for each product applying the activated deltas in any order yields the same
variant, no application ordering needs to be specified).

3 Counter Product-guided Refinement

3.1 Counter Example-guided Abstraction Refinement (CEGAR)

Assume we want to establish that a property P holds for any run of a program
m with an analysis tool t, denoted by m `t P. For example, m could be an ABS
program, P a safety property saying that certain bad states are unreachable, and
t might be a model checker: it can happen that m `t P cannot be established
because t times out or runs out of memory.

To render verification feasible, the CEGAR verification strategy (illustrated
in Fig. 6) executes t not with m, but with an abstraction of m, written A(m):
for example, all datatypes are initially abstracted to booleans which greatly
reduces the number of reachable states. Note that the chosen abstraction must
be sound in the sense that A(m) preserves all possible behaviors of m. Now we
can assume that the—simplified—problem A(m) `t P terminates. If A(m) `t P
holds, then alsom `t P holds (because the abstraction is sound) and we are done.
If A(m) `t P doesn’t hold, then we extract a counter example, i.e., an input c
of m such that A(m)(c) violates P. If m(c) violates P as well, then the counter
example exhibits a real bug of m and we are done (i.e., we can try to fix the
bug and restart the process). If m(c) does not violate P, then we use c to refine
A to a more precise abstraction A′ so that A′(m)(c) does not violate P, and we

5

A(m) `t P ?

verified

true

A(m)(c) violates P
for an input c

false

found a bug

m(c) violates P

refine A using c

P holds for m(c)

Fig. 6. Work flow of CEGAR

re-enter the CEGAR loop with the refined abstraction.3 A concrete example of
a CEGAR-style refinement is presented below in Sect.3.3.

3.2 Counter Example-guided Product Line Refinement (CEGPLR)

In the context of Software Product Lines, another kind of refinement can be
considered: CEGAR looks at one program at a time and performs refinement
on that program’s data abstraction, however, Software Product Lines add the
dimension of having to analyze different program variants at the same time. We
observe that the meta variant of an SPL is compatible with the CEGAR approach
in the following sense: A meta variant of an SPL by definition encompasses the
behavior of each of its variants. Hence, a meta variant constitutes a behavioral
abstraction of each variant or set of variants of a given SPL. Consequently, a
meta variant might be refined to the behavior embodied in any subset of its
variants.

For instance, the SPL presented in Sect. 2 defines four different variants iden-
tified by the four following products: {Bank, SA}, {Bank, SA, Logging}, {Bank, MA}
and {Bank, MA, Logging}. In this context, one can apply a CEGAR-like iteration
to the SPL: first one runs an analysis tool t on an abstraction that comprises all
variants. If t succeeds then, as with CEGAR, we are done. Otherwise, a counter
example consisting of an input c and a subset of the variants exhibiting the error
for c can be extracted. This triggers a decomposition step that consists of split-
ting the input SPL into two parts: one that has c as a possible counter example,
and one that has not. Both parts can then be analyzed independently, as they
don’t exhibit the same behavior. If the part where c is no counter example has
no other counter example, then that part of the SPL is verified.

3 This abstract description of CEGAR leaves many issues open: how to make sure that
the refinement loop terminates? How to select a counter example? How to compute
the refinement? On each of these questions a considerable literature exists, but this
is not the focus of this paper.

6

data Product = Product(Bool fBank, fBool SA, Bool fMA, Bool fLogging);
def Bool isValid(Product p) = fBank(p) && (fSA(p) || fMA(p)) && !(fSA(p) && fMA(p));
def Bool dLogging(Product p) = fLogging(p);
...

Bool newOperation(Operation op) {
Bool result = False;
if(dLogging(p)) {
print("Managing the new operation \"" + op + "\"");
result = this.newOperationCore(op);
if(result) print("\tOperation successful");
else print("\tOperation Failed");
} else {
result = this.newOperationCore(op);
}
return result;
}

Bool newOperationCore(Operation op) { ... }

Fig. 7. Excerpt of meta variant for the Bank SPL

To illustrate this approach to Product Line Refinement with a concrete ex-
ample, let us consider the Bank SPL presented in Sect. 2, simply called L from
now: assume we want to ensure the property P stating that the execution time
of the newOperation() method is at most linear in the number of accounts in
the bank. The analysis tool we consider is SACO [2], which is a state-of-art cost
analysis tool that abstracts every non-boolean datatype by its size.

For the abstraction of the variants of an SPL, we use its meta variant, i.e.,
a program that contains each behavior in each variant of L (cf. Sect. 1). There
are different techniques to obtain it, and here we use the 150% test model of [29,
31] which is an instance of a sound variability encoding [45]. An excerpt of our
meta variant is depicted in Fig. 7. The first two lines encode product selection
and what a valid product is. The third line relates the code delta dLog to the
feature Logging. This has to be completed for the remaining features and is not
necessarily one-to-one like here. The meta variant selection mechanism can be
seen in the method newOperation(). When the logging delta is requested, then
the main if condition executes the code from Fig. 5, otherwise the core product
version of the method is executed (that version is stored in a new method with
a new name, to disambiguate the calls).

Running SACO on our meta variant yields an interesting result: it validates
the property P when the feature MA is not selected, but fails to prove it when
MA is selected. An analysis of the obtained counter example shows that during
its abstraction step, SACO replaced lists by integers corresponding to their size,
thus ignoring essential information about the accounts when the feature MA is
activated, as these are stored inside a list of lists. In the following decomposi-
tion step the meta variant is split in two parts. The first of these contains all
variants that do not have the behavior required by feature MA. We write this
as L[{SA}, {SA, Logging}] and call it a partial meta variant. SACO guarantees
that its two variants validate P. The second partial meta variant, where MA is

7

activated (written L[{MA}, {MA, Logging}]), does not have this guarantee. Of it
we know that to prove P, we must not abstract away the list of lists structure.

The general form of a partial meta variant is L[F1, . . . ,Fn] where L is the
SPL from which the meta variant is generated and F1, . . . ,Fn are the products
of L available in this meta variant.

A(L[F]) `t P ?

verified

true

(partial) meta variant A(L[F]) violates
P for input c on the products F ′ ⊆ F

false

found bug in all products F ′

L[F ′](c) violates P

decompose L[F] into
L[F ′] and L[F \ F ′]

P holds for L[F ′](c)

Fig. 8. Work flow of CEGPLR

We can now define (illustrated in Fig. 8) a CEGAR-like loop for refining and
decomposing a Software Product Line. The loop is started with the (full) meta
variant of the input SPL, i.e. initially F = F1, . . . ,Fn are all the products of
the SPL. Note that we work with an abstraction A(L[F]) of the meta variant,
implying that standard CEGAR and SPL refinement can be interleaved.

Like before, if we manage to verify the property, then we are done. If not, then
the counter example does not only consist of a concrete input c, but also of a set
of products F ′ exhibiting this counter example. Like in CEGAR one checks now
whether the counter example is real: we test it against the partial meta variant
L[F ′]. If L[F ′](c) violates P, we found a bug. Otherwise, we attempt to refine
the current meta variant L[F] into L[F \ F′

] , i.e., we assume that the selected
features were critical for the counter example to manifest itself, and, therefore
exclude them.4 If we manage to verify at some point A(L[F \F ′]) `t P for some
F ′ ⊆ F, then we have refined the original verification problem to L[F ′]. We call
this process counter example-guided product line refinement (CEGPLR).

In fact, CEGPLR goes beyond CEGAR, because it provides not only a prob-
lem refinement, but also a problem decomposition (into L[F

′
] and L[F \ F′

]).
Therefore, it is a combined abstraction refinement and divide-and-conquer ap-
proach.

4 This is a coarse-grained refinement step. Alternatively, one could branch into |F ′|
many refinements of the form L[F ′′] with F ′′ ⊆ F ′.

8

A(L[F]) `t P ?

verified

true

A(L[F]) violates P
for an input c

false

found a bug

L[F](c) violates P

analyze failed proof
choose suitable refined tool t′

P holds for L[F](c)

Fig. 9. Work flow of CEGTR

3.3 Tool Refinement

Existing CEGAR-like approaches work with a single verification or analysis tool,
for example, a model checker or symbolic execution, but this constitutes no
principal limitation. In fact, there is growing evidence that huge efficiency gains
can be obtained from systematic combination of different analysis tools [5, 14, 20].
One can even hypothesize that only the systematic combination of different tools
and methods will make it feasible to attack complex problems [12]. Hence, in
addition to abstraction and product line refinement, we suggest tool refinement.
This term is justified, as long as the refined tool analyzes at least as many
behaviors as the old one.

In Fig. 9 we present yet another variant of the CEGAR loop (Fig. 6), this time
based on tool refinement. The difference lies in the analysis of the failed proof.
Instead of looking for ways to refine the abstraction A or the partial meta variant
L[F], we now look for a verification tool t′ that refines the analysis performed
by t in a manner such that A(L[F]) `t′ P (or a refinement thereof) becomes
provable. Obviously, this is in general a step that requires deliberation by an
expert, in contrast to CEGAR, where abstractions are computed automatically.
Nevertheless, it is beneficial: (i) one obtains guidance in choosing an appropriate
tool, (ii) behavioral refinement of the tools preserves overall soundness, and
(iii) the input and instrumentation of tool t′ can be obtained from A and L[F].
The third point is, in principle, automatable.

We illustrate tool refinement with our running example. In the previous sec-
tion, SACO failed to analyze the partial meta variant L[{MA}, {MA, Logging}]:
SACO abstracted away lists into integers, and was unable to find a bound for
the nested loop in dMA (Fig. 4). SACO can, in principle, deal with nested loops,
but it has limited support for reference types (like lists) which are abstracted
by their size. For this reason, the tool doesn’t know enough about the structure
of type List<IAccount> to perform the analysis. The tool also cannot express
separation conditions (e.g., that the Account objects in a list are unaliased).

9

The abstraction of SACO cannot be further refined and we did the product
line refinement already, so the only possibility now is to refine the tool. In the
paper [3] a formal link between resource analysis tools and formal verification
tools is described. This makes it possible to use a formal verification tool such
as KeY [1] to reason about resource properties. Of course, KeY is an interactive
tool and might require input from a verification expert. But thanks to product
line refinement, we managed to reduce the problem already. In addition, all the
invariants derived by SACO are automatically imported into KeY, such that
only the additional annotations to prove the correctness of the meta variant
L[{MA}, {MA, Logging}] need to be supplied. A further reason to use the KeY
tool in the experiment is that it can be instrumented with user-defined data
type abstractions [46].

We first attempt to prove A(L[{MA}, {MA, Logging}]) `KeY P, where A is
the abstraction embodied in SACO. As A still abstracts the inner Account lists
away, this fails in KeY as well, but now we can again enter the CEGAR loop
and refine the abstraction, based on the analysis above: we now model lists pre-
cisely, but we can still abstract completely away from Account. With this new
abstraction, denoted A′, the statement A′(L[{MA}, {MA, Logging}]) `KeY P was
successfully proven. Note that A′ simplifies the verification problem consider-
ably compared to the normal KeY verification workflow, because, in contrast to
CEGAR, KeY is usually started with no abstraction at all.5 The integration of
KeY into a CEGAR framework allows KeY to profit from a previously computed
abstraction.

3.4 Other Abstractions

Behavioral Abstraction. CEGAR is based on datatype refinement, but with SPL
and tool refinement we introduced behavioral refinement already. Therefore, it
is natural to look at further possibilities for the behavioral abstraction of a given
program. For example, if we are interested in deadlocks (i.e., we are out to prove
deadlock-freedom), it might be useful to abstract a program away to merely its
call and synchronization points and completely ignore datatypes.6 Even more
drastic abstractions, e.g., occurring in type-based analyses [30], abstract com-
pletely away from object creation. This fits perfectly well into our framework.
We simply extend the meaning of A to include behavioral abstractions as well.

Property Abstraction. It is also possible to abstract or refine the property to be
proven. Please note that both directions can be useful. If we have proven P, by
abstraction soundness, we have also proven A(P). In this case, it might be worth
trying to prove a stronger property. An example of a situation, where this is
useful is given in Sect. 4.3 under Formal Verification.

Vice versa, if we do not manage to prove P, a possible strategy is to prove
a weaker property A(P). For example, in Sect. 3.3 we proved with KeY a linear
5 In the standard workflow of KeY abstractions are computed on demand and are
mainly used for loop invariant generation and state merging.

6 Another way to view this is to abstract all data to a single value.

10

bound for L[{MA}, {MA, Logging}]. However, this requires a suitable modifica-
tion of the loop invariant. If we weaken P to prove just termination with no
concrete bound, then it is sufficient to provide termination witnesses for both
loops which are completely straightforward: length(clients)-length(tmp1)
and length(accounts)-length(tmp2), respectively.

4 Abstraction Refinement for Software Product Lines

4.1 An Abstraction Layer in the Analysis of SPLs

In the previous section we proposed two new CEGAR-like loops in the context
of static analysis of SPLs: CEGPLR (Fig. 8) realizes SPL refinement and de-
composition, based on the observation that the meta variant of a product line
constitutes a behavioral abstraction of each partial meta variant and, in par-
ticular, of each single product variant; CEGTR (Fig. 9) realizes refinement of
the underlying analysis tool with a tool that can distinguish more behavior. In
addition, it can also be useful to abstract or refine the properties to be proven
and to work with behavioral abstractions (not mere data abstractions) of the
system under verification.

The central role that is played by abstraction and refinement, both data-level
and behavioral, both of the target system and the target property, suggests to
maintain an explicit configuration and abstraction layer when analyzing SPLs
to achieve a clean and flexible separation between the problem space and the
solution space, see Fig. 10. To work out the details and to formalize such an
abstraction layer is the topic of future work.

Problem Space: Feature Model
feature description language

Configuration and Abstraction Layer
configuration knowledge implementation/property abstraction tool instrumentation

Solution Space: Implementation
annotative / compositional / transformational

Fig. 10. SPL implementation with explicit abstraction layer

4.2 Workflow in Abstraction Refinement for SPL

It is worth to recap the workflow of our example in Sects. 3.2 & 3.3: from a
failed attempt to prove a linear worst-case runtime bound with the tool SACO
we decomposed via SPL refinement the problem into two partial meta variants
and showed the desired property for all products in one of them (Sect. 3.2). No
further abstraction refinement in SACO is possible, so the only option (except to

11

weaken the targeted property) was to refine the tool. The verification tool KeY
offers more precision than SACO. It was instrumented with the data abstraction
of SACO and the invariants computed by it. After a standard CEGAR step,
KeY managed to prove the desired property (Sect. 3.3).

It is worth to note that (i) after the first refinement step, the exhaustion
of other options drove the choice to perform tool refinement and (ii) that the
output of the analysis in the first step provided the instrumentation of the next
tool in the chain. This suggests that our framework is suitable to orchestrate the
combination of static analysis and verification tools that work at different levels
of precision.

For our example, only one refinement loop of each kind was necessary, but this
is not true in general. For example, with a larger product line, after refinement
abstraction in KeY, probably another round of product line refinement makes
sense. It would be premature to speculate about concrete meta refinement loops
while a robust implementation of our framework is lacking, so we refrain from it.
Having said that, it seems a good idea to always attempt to refine and decompose
the product line as much as possible.

4.3 More Usage Scenarios

In the previous section we illustrated our framework with a usage scenario about
resource analysis. In fact, our approach is applicable to a wide range of analy-
ses and we want it to be understood as a general framework for the sound and
systematic combination and orchestration of software analysis tools. To substan-
tiate this claim, we instantiate our framework with three more scenarios. In each
case we assume that we have an SPL over ABS programs specified with DOP
following [21]. While this is not necessary in general, it makes it possible in what
follows to provide concrete examples of analysis methods and tools.

Feature Interference. With feature interference we mean feature interaction
within an SPL that has undesired effects. It is a practically important and in-
tensely studied problem [34]. Denote with f f ′ that features f and f ′ from a
given valid product F interfere with each other, for example, they both have
write access to the same memory location. To analyze a given SPL for feature
interference, one may start with an obvious, but coarse abstraction: Assume that
for any method m required to implement f ∈ F and m′ required for f ′ ∈ F, such
that both m and m′ share a critical resource r, it is the case that m can never
be executed in parallel to m′ (where both m = m′ and f = f ′ is possible). This
is a typically sufficient criterion to exclude feature interference.

As a first verification tool we choose a may-happen-in-parallel (MHP) anal-
ysis: the predicate MHP(m,m′) holds for a given ABS program if it contains
methods m, m′ that can possibly be executed in parallel. An efficient over-
approximation of MHP is available for ABS [4]. Now we enter the product line
refinement loop of Fig. 8, where P is the absence of feature interference, t is
MHP, and A the not-in-parallel abstraction of the meta variant L[F]. As most
features tend not to interact, we can assume that the CEGPLR loop refines and

12

decomposes the problem into a much smaller partial meta variant L[F ′], where
absence of feature interference was proven for L[F \ F′

].
An analysis of the failed proof for L[F ′] now might show that certain methods

m, m′ actually do interfere, but not in a safety-critical manner. This is not
provable with MHP, but one may use deductive verification with KeY instead. To
this end, one refines P so as to express that for any m, m′ such that MHP(m,m′)
holds, their common resources r satisfy a safety invariant. It is possible to encode
this property in a program logic with the help of self composition [27] and use
KeY to prove it. However, one might abstract away from most datatypes in that
proof, because they are likely to be irrelevant for feature interaction. Hence, we
would instrument KeY to implement a CEGAR loop over symbolic execution
with abstraction [16, 46].

Formal Verification. Deductive verification tools (e.g., KeY [1]) as well as safety
verification tools (e.g., CPAchecker [15]) have impressive, yet complementary
strengths. KeY was used for functional verification of SPL’s using variability
encoding [43], but it quickly becomes very expensive in terms of runtime and
user interaction [19]. This indicates that variability encoding is not a scalable
strategy for formal verification of SPLs.

Instead, one could start formal verification of a property P for an SPL L
with a CEGAR-based safety verification tool [16], where P is abstracted to a
weaker property A(P) that is expressible in it and and the initial program is
of the form Boolean(L[F]) (where Boolean abstracts all data to booleans). A
combination of CEGAR and CEGPLR decomposes and reduces the problem to
a partial meta variant L[F ′] and computes a refinement A′(L[F ′]) from where
no further progress seems possible. Only then one uses a deductive verification
tool such as KeY, instrumented with A′. Once A(P) has been shown for some
A′′(L[F ′]), one can perform property refinement from A(P) to P, followed by
further product line and abstraction refinement loops. This scenario shows that
it can make perfect sense to (i) work with different abstractions for programs
and properties and (ii) not just abstract from a property, but also refine it.

Information Flow. Information flow control is the problem to analyze whether a
program allows an attacker to deduce information about secret values by manip-
ulating its public interface. There is a wide variety of analysis tools and methods
for this problem with complementary strengths: type-based approaches [37] and
lightweight static analyses [33] scale well, even to SPL [17], but yield many false
positives and can only express limited security policies. Deductive approaches
[27, 41] are expensive and often require manual annotation. As a consequence,
information flow is a natural usage scenario for our framework and it can be
developed in a similar manner as the previous scenarios.

5 Related Work

There are a number of verification approaches that decompose or transform a
complex analysis problem such that different tools can be used in combination

13

to solve it. CPAchecker [15] is a flexibly configurable tool framework for fully
automatic verification of safety properties that allows to integrate other tools in
a sound manner. Specifically, Beyer & Lemberger [16] applied CEGAR in the
context of symbolic execution within CPAchecker. However, it is not designed
to express complex functional properties. Ahrendt et al. [20] use the result of a
partial verification attempt of a given program to generate an optimized run-
time assertion checker that only monitors those properties that could not be
proven. Küsters et al. [36] combine static analysis and deductive verification for
information flow proofs: they transform the given program and prove with KeY
preservation of behavior, then use the static analyzer on the simplified program.
This corresponds to manual computation of a suitable program abstraction,
whereas we propagate abstraction refinement. None of these papers is concerned
with the analysis of SPLs.

Clafer [9] is a modeling language that is designed as an extension of Alloy
and has a unified representation of features as well as OO models. It has been
used to model and analyse Software Product Lines [8], however, it is not directly
connected to executable code.

Batory [10] developed a theory of modular composition and decomposition
of software that has been used also in the context of SPLs and that has been
extended to verification proofs. It is also based on refinement, but requires a
theoretical framework that makes it not straightforward to apply to existing
languages and tools. To the best of our knowledge, it does not contain a CEGAR-
like strategy. Proof composition [44] relies on creating partial correctness proofs
for certain features that are then combined into proofs for a desired product.
However, this approach becomes problematic when properties of feature imple-
mentations depend on each other.

The 150% model technique [29, 31] originates from model-based testing and
was then also employed in software analysis, e.g., [7, 43]. All of these approaches
are an instance of variability encoding, as classified and formalized in [45].

Bodden et al. [17] lift static analysis of control flow properties from product
variants to software product lines, essentially by a form of variability encod-
ing into a somewhat more expressive static analysis framework. This approach,
however, does not work for more complex properties.

Independently of our work, Dimovski & Wąsowski [28] recently implemented
what seems to be the first product line refinement approach for LTL model
checking. It follows the same pattern as ours, employing a notion of partial meta
variant containing all nodes and transitions of the included variants. Like in
our approach, the meta variant is a standard product, in their case an LTS, that
allows to use the SPIN model checker. As we do, upon finding a spurious counter
example, they split the meta variant, with the help of Craig interpolation.

6 Conclusion and Future Work

In this paper we drafted an SPL analysis framework based on the principle
to perform as much work as possible with lightweight, efficient, and automatic

14

methods: this means to start analyzing product lines at a high level of abstrac-
tion, possibly with an abstract version of the targeted property. Then we apply
the main lesson behind the CEGAR principle: don’t throw away failed proof
attempts, but carefully analyze the information contained in them to improve
the analysis.

Based on the insight that a meta variant is a behavioral abstraction of each
subset of its variants, we designed a CEGAR-like loop to perform product line
refinement and, made possible through an extensional, feature-based represen-
tation of products, extended it to a divide-and-conquer approach that provides
product line decomposition. Crucially, even when neither CEGAR nor CEGPLR
are successful, this is not the end of the line: one refines the analysis tool and
uses a more precise, but also more heavyweight method, but benefits from the
refinement and decomposition made in the previous steps. Indeed, all four usage
scenarios we discussed—resource analysis, feature interference, formal verifica-
tion, information flow—offer a variety of analysis tools working at differing lev-
els of abstraction. The concept of tool refinement soundly integrates these tools,
where a CEGAR-style refinement analysis guides the selection of the chosen tool
and helps to instrument it.

Overall, our framework implements a version of the subsidiarity principle in
the realm of software analysis: a subtask should be solved at the highest possible
level of abstraction, with the least expensive method.

CEGAR loops are normally part of a single, fully automated tool, but this is
an unnecessary limitation. Our work shows that manual abstraction refinement
for guiding the selection of a new tool makes perfect sense. Another important
lesson that can be drawn is that it is extremely useful to have tools that can
be flexibly instrumented with data abstraction. This is the case already, for
example, for CPAchecker [15] and KeY [1].

The next step is to provide a robust implementation of our framework, in-
cluding a suitable abstraction layer (see Fig. 10) and to conduct larger case
studies.

Acknowledgment.

The authors gratefully acknowledge the help of Antonio Flores Montoya who
ran a number of experiments with SACO for us and helped with their analysis.

References

1. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ulbrich, editors.
Deductive Software Verification—The KeY Book: From Theory to Practice, volume
10001 of LNCS. Springer-Verlag, 2016.

2. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Román-Díez. SACO: static analyzer for con-
current objects. In E. Ábrahám and K. Havelund, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 20th Intl. Conf., Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS, Grenoble, France,
volume 8413 of LNCS, pages 562–567. Springer, 2014.

15

3. E. Albert, R. Bubel, S. Genaim, R. Hähnle, and G. R. Díez. A formal verification
framework for static analysis—as well as its instantiation to the resource analyzer
COSTA and formal verification tool KeY. Software & Systems Modeling, 15(4):987–
1012, 2016.

4. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. May-happen-
in-parallel analysis for actor-based concurrency. ACM Trans. Comput. Log.,
17(2):11:1–11:39, 2016.

5. E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining static analysis and
testing for deadlock detection. In E. Ábrahám and M. Huisman, editors, Integrated
Formal Methods, 12th Intl. Conf. IFM, Reykjavik, Iceland, volume 9681 of LNCS,
pages 409–424. Springer, 2016.

6. S. Apel, D. S. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, 2013.

7. S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of feature
interactions using feature-aware verification. In P. Alexander, C. S. Pasareanu,
and J. G. Hosking, editors, 26th IEEE/ACM Intl. Conf. on Automated Software
Engineering (ASE), Lawrence, KS, USA, pages 372–375. IEEE Computer Society,
2011.

8. K. Bak. Modeling and Analysis of Software Product Line Variability in Clafer.
PhD thesis, University of Waterloo, 2013.

9. K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski. Clafer: unifying
class and feature modeling. Software and System Modeling, 15(3):811–845, 2016.

10. D. S. Batory. A theory of modularity for automated software development. In
R. B. France, S. Ghosh, and G. T. Leavens, editors, Companion Proc. 14th Intl.
Conf. on Modularity, Fort Collins, CO, USA, pages 1–10. ACM, 2015.

11. D. S. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Trans. Software Eng., 30(6), 2004.

12. B. Beckert and R. Hähnle. Reasoning and verification. IEEE Intelligent Systems,
29(1):20–29, Jan.–Feb. 2014.

13. L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking of delta-
oriented software product lines. Acta Informatica, 50(2):77–122, 2013.

14. D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses: exchang-
ing verification results between verifiers. In T. Zimmermann, J. Cleland-Huang,
and Z. Su, editors, Proc. 24th ACM SIGSOFT Intl. Symp. on Foundations of Soft-
ware Engineering, FSE, Seattle, WA, USA, pages 326–337. ACM, 2016.

15. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Veri-
fication, 23rd Intl. Conf. CAV, Snowbird, UT, USA, volume 6806 of LNCS, pages
184–190. Springer, 2011.

16. D. Beyer and T. Lemberger. Symbolic execution with CEGAR. In T. Margaria and
B. Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation, 7th International Symposium (ISoLA), Part I, Corfu, Greece, volume
9952 of LNCS, pages 195–211. Springer, Oct. 2016.

17. E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini. Spllift:
statically analyzing software product lines in minutes instead of years. In H. Boehm
and C. Flanagan, editors,ACM SIGPLAN Conf. on Programming Language Design
and Implementation, PLDI, Seattle, WA, USA, pages 355–364. ACM, 2013.

18. R. Bubel, F. Damiani, R. Hähnle, E. B. Johnsen, O. Owe, I. Schaefer, and I. C.
Yu. Proof repositories for compositional verification of evolving software systems.
In Foundations for Mastering Change (FoMaC) I, volume 9960 of LNCS, pages
130–156. Springer-Verlag, 2016.

16

19. R. Bubel, C. Din, and R. Hähnle. Verification of variable software: an experience
report. In B. Beckert and C. Marché, editors, Pre-Proc. International Conference
on Formal Verification of Object-Oriented Software (FoVeOOS), Paris, France,
2010.

20. J. M. Chimento, W. Ahrendt, G. J. Pace, and G. Schneider. StaRVOOrS: A tool for
combined static and runtime verification of Java. In E. Bartocci and R. Majumdar,
editors, Runtime Verification — 6th Intl. Conf., Vienna, Austria, volume 9333 of
LNCS, pages 297–305. Springer, 2015.

21. D. Clarke, N. Diakov, R. Hähnle, E. B. Johnsen, I. Schafer, J. Schäfer, R. Schlatte,
and P. Y. H. Wong. Modeling Spatial and Temporal Variability with the HATS
Abstract Behavioral Modeling Language. In M. Bernardo and V. Issarny, editors,
Formal Methods for Eternal Networked Software Systems, volume 6659 of LNCS,
pages 417–457. Springer-Verlag, 2011.

22. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Computer
Aided Verification, 12th International Conference, Chicago/IL, USA, volume 1855
of Lecture Notes in Computer Science, pages 154–169. Springer, 2000.

23. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison Wesley Longman, 2001.

24. F. Damiani and M. Lienhardt. On type checking delta-oriented product lines. In
E. Ábrahám and M. Huisman, editors, Integrated Formal Methods: 12th Intl. Conf.,
iFM, Reykjavik, Iceland, volume 9681 of LNCS, pages 47–62. Springer, 2016.

25. F. Damiani, O. Owe, J. Dovland, I. Schaefer, E. B. Johnsen, and I. C. Yu. A
transformational proof system for delta-oriented programming. In SPLC (2), pages
53–60, 2012.

26. F. Damiani and I. Schaefer. Family-based analysis of type safety for delta-oriented
software product lines. In T. Margaria and B. Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Mastering
Change — 5th International Symposium, ISoLA 2012, Heraklion, Crete, Greece,
volume 7609 of Lecture Notes in Computer Science, pages 193–207. Springer, Oct.
2012.

27. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In D. Hutter and M. Ullmann, editors, Proc. 2nd Inter-
national Conference on Security in Pervasive Computing, volume 3450 of LNCS,
pages 193–209. Springer-Verlag, 2005.

28. A. S. Dimovski and A. Wąsowski. Variability-specific abstraction refinement for
family-based model checking. In M. Huisman and J. Rubin, editors, Fundamental
Approaches to Software Engineering: 20th International Conference, FASE 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 406–
423, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

29. C. Dziobek and J. Weiland. Variantenmodellierung und -konfiguration eingebet-
teter automotive Software mit Simulink. In H. Giese, M. Huhn, U. Nickel, and
B. Schätz, editors, Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung einge-
betteter Systeme V, Schloss Dagstuhl, Germany, volume 2009-01 of Informatik-
Bericht, pages 36–45. TU Braunschweig, Institut für Software Systems Engineer-
ing, 2009.

30. E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection in
core abs. Software & Systems Modeling, 15(4):1013–1048, 2016.

17

31. H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Rothhardt, and B. Rumpe.
View-centric modeling of automotive logical architectures. In H. Giese, M. Huhn,
U. Nickel, and B. Schätz, editors, Dagstuhl-Workshop MBEES: Modellbasierte En-
twicklung eingebetteter Systeme IV, Schloss Dagstuhl, Germany, volume 2008-2 of
Informatik-Bericht, pages 3–12. TU Braunschweig, Institut für Software Systems
Engineering, 2008.

32. R. Hähnle and I. Schaefer. A Liskov principle for delta-oriented programming. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change — 5th Interna-
tional Symposium, ISoLA 2012, Heraklion, Crete, Greece, volume 7609 of Lecture
Notes in Computer Science, pages 32–46. Springer, Oct. 2012.

33. C. Hammer, J. Krinke, and G. Snelting. Information flow control for Java based
on path conditions in dependence graphs. In IEEE Intl. Symp. on Secure Software
Engineering (ISSSE), pages 87–96. IEEE, March 2006.

34. M. Jackson and P. Zave. Distributed Feature Composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

35. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: a core
language for abstract behavioral specification. In B. K. Aichernig, F. S. de Boer,
and M. M. Bonsangue, editors, Formal Methods for Components and Objects: 9th
Intl. Symp., FMCO, Graz, Austria. Revised Papers, pages 142–164. Springer, 2012.

36. R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr. A
hybrid approach for proving noninterference of Java programs. In C. Fournet,
M. W. Hicks, and L. Viganò, editors, IEEE 28th Computer Security Foundations
Symp., CSF, Verona, Italy, pages 305–319. IEEE Computer Society, 2015.

37. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

38. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In Proceedings of the 14th international
conference on Software product lines: going beyond, SPLC’10, pages 77–91, Berlin,
Heidelberg, 2010. Springer-Verlag.

39. I. Schaefer and F. Damiani. Pure Delta-oriented Programming. In S. Apel,
D. Batory, K. Czarnecki, F. Heidenreich, C. Kästner, and O. Nierstrasz, edi-
tors, Proc. 2nd International Workshop on Feature-Oriented Software Development
(FOSD’10) Eindhoven, The Netherlands, pages 49–56. ACM Press, 2010.

40. I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck,
A. Pathak, S. Trujillo, and K. Villela. Software diversity: state of the art and
perspectives. International Journal on Software Tools for Technology Transfer,
14(5):477–495, 2012.

41. C. Scheben and S. Greiner. Information flow analysis. In Ahrendt et al. [1],
chapter 13, pages 453–472.

42. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv., 47(1):6:1–
6:45, June 2014.

43. T. Thüm, I. Schaefer, M. Hentschel, and S. Apel. Family-based deductive verifica-
tion of software product lines. In K. Ostermann and W. Binder, editors, Generative
Programming and Component Engineering, GPCE’12, Dresden, Germany, pages
11–20. ACM, 2012.

44. T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof composition for deductive
verification of software product lines. In Proc. Int’l Workshop Variability-intensive

18

Systems Testing, Validation and Verification (VAST), pages 270–277. IEEE Com-
puter Society, 2011.

45. A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, and S. Apel. Variability encod-
ing: From compile-time to load-time variability. J. Log. Algebr. Meth. Program.,
85(1):125–145, 2016.

46. N. Wasser, R. Bubel, and R. Hähnle. Abstract interpretation. In Ahrendt et al.
[1], chapter 6, pages 167–189.

19

	TAP-2017_Damiani-EtAl-COPERTINA.pdf
	TAP-2017-Damiani_EtAl

