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Self-adaptation to Device Distribution in the Internet of Things
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A key problem when coordinating the behaviour of spatially-situated networks, like those typically found
in the Internet of Things (IoT), is adaptation to changes impacting network topology, density, and hetero-
geneity. Computational goals for such systems, however, are often dependent on geometric properties of the
continuous environment in which the devices are situated, rather than the particulars of how devices hap-
pen to be distributed through it. In this paper, we identify a new property of distributed algorithms, eventual
consistency, which guarantees that computation converges to a final state that approximates a predictable
limit, based on the continuous environment, as the density and speed of devices increases. We then identify
a large class of programs that are eventually consistent, building on prior results on the field calculus com-
putational model [Beal et al. 2015; Viroli et al. 2015a] which identify a class of self-stabilizing programs.
Finally, we confirm through simulation of IoT application scenarios that eventually consistent programs
from this class can provide resilient behavior where programs that are only converging fail badly.

CCS Concepts: •Theory of computation→ Distributed algorithms; •Computing methodologies→
Distributed computing methodologies;

Additional Key Words and Phrases: Field calculus, self-organisation, self-stabilization, spatial computing,
large-scale coordination
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1. INTRODUCTION
The advent of the Internet of Things (IoT) is bringing us a dramatic increase of density
of computational devices deployed in our cities, living and working environments. This
kind of network, which we refer to as a (spatially-)situated network, poses novel en-
gineering challenges, particularly in the area of distributed coordination: interactions
encompass a large-scale system, and often need to be opportunistic, context-dependent,
and based on physical proximity, which implies they must be adaptive and resilient to
nearly continual faults and changes in the network. Such networks are also highly het-
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erogeneous in distribution, due to the underlying heterogeneity in human activity and
environmental structure that drives the deployment of network devices. For example,
a city center is likely to host a high density of cars, traffic sensors, and smart signage,
while a country road has very few by comparison. Likewise, an office plaza may host
many devices by day, few at night, and massive numbers during sporting events or
festivals.

Developing applications for such environments can be extremely difficult, as con-
ventional development methods require that a programmer simultaneously address
networking protocols, coordination mechanisms, and the application itself. This tends
to lead to fragile applications, particularly due to the difficulty of adequate testing
for resilience. Prior work formally addressing resilience mostly considered the notion
of self-stabilization [Dolev 2000], and its application to programming situated net-
works [Viroli and Damiani 2014; Viroli et al. 2015a; Damiani and Viroli 2015], guar-
anteeing that a program eventually reaches a correct final state independent of initial
state, and hence of transient changes. However, this notion does not address the sen-
sitivity of the final state to details of how devices are distributed in space and time.

In this paper we thus introduce a new property, eventual consistency, which guar-
antees that a computation executed by an IoT network not only eventually converges,
but also that its values are a good approximation of executing the computation on the
continuous environment in which the network is situated, thereby effectively giving
a notion of “independence” of computation from the underlying network details. We
additionally identify sufficient conditions for eventual consistency, by considering the
framework of aggregate programming [Beal et al. 2015], which factors distributed sys-
tems development into several layers: field calculus gives a universal computational
model that maps between aggregate-level computations and local interactions between
individual devices to implement those computations [Damiani et al. 2016; Damiani
et al. 2015], systems of composable “building block” operators implemented with field
calculus constructs provide resilience and scalability guarantees [Beal and Viroli 2014;
Viroli et al. 2015a], and domain-general and domain-specific APIs built using building
block operators provide a programatic interface for construction of complex networked
services and applications [Beal and Viroli 2014; Viroli et al. 2015a]. We thus follow this
framework to provide eventual consistency for spatially-situated networks by means
a specific set of building blocks, whose arbitrary composition is proved to ensure even-
tual consistency of any application built with those building blocks.

Following a brief review of related work in Section 2, we provide a formal model
of continuum computation and use this to define eventual consistency in Section 3.
Section 4 identifies a subset of the field calculus that provides eventual consistency.
Finally, Section 5 demonstrates the breadth of this sub-language and empirically con-
firms the value of eventual consistency in simulation of IoT application scenarios, and
Section 6 summarizes the contributions of this paper and discusses future work. Note
that this paper is an extended version of [Beal et al. 2016]: in this extended version
we provide an in-depth discussion on eventual consistency, generalization to a much
larger class of eventually consistent programs (including wide sets of functional oper-
ators), and a full proof of the eventual consistency of GPI-calculus, plus an extended
empirical evaluation addressing networks with heterogeneous density as well as net-
works whose density changes over time.

2. RELATED WORK
A wide range of aggregate programming methods have been developed for engineer-
ing networks of devices physically-situated in space. A thorough review may be found
in [Beal et al. 2013], which identifies four main approaches to aggregate program-
ming. First, a number of “bottom-up” methods implement computational fields using
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only the local view, including the Hood sensor network abstraction [Whitehouse et al.
2004], Butera’s “paintable computing” hardware model [Butera 2002], TOTA [Mamei
and Zambonelli 2009], the chemical models in [Viroli et al. 2015b], and Meld [Ashley-
Rollman et al. 2007].

Complementary to these bottom-up methods are three families of “top-down” ap-
proaches, which specify tasks for aggregates and then rely on compilers or similar
software to translate from aggregate specifications into a set of individual local ac-
tions that can implement the desired aggregate behavior. All of these tend to demon-
strate significant resilience to changes in the distribution and density of devices. One
of these families of approaches focuses on the creation of geometric and topological
patterns, such as the geometric patterns of Origami Shape Language [Nagpal 2001],
topological networks of Growing Point Language [Coore 1999], Yamins’ universal pat-
terns [Yamins 2007], or the self-healing geometries in [Clement and Nagpal 2003]
and [Kondacs 2003].

A largely disjoint family of approaches focus instead on summarizing and stream-
ing information over regions of space and time. Early examples of this approach are
TinyDB [Madden et al. 2002] and Cougar [Yao and Gehrke 2002], which enable query-
ing a sensor network by expressing a high-level declarative query that is then automat-
ically compiled into a set of low-level sensor activities of data collection and aggrega-
tion; these have been followed by other methods offering more complex functionalities
(e.g., [Newton and Welsh 2004; Curino et al. 2005]).

Generalizing on both of these classes are a collection of general purpose space-time
computing models. These include explicitly spatial parallel computing models, most
notably StarLisp [Lasser et al. 1988] and systolic computing (e.g., [Engstrom and Cap-
pello 1989; Raimbault and Lavenier 1993]), which use parallel shifting of data on a
structured network. The MGS language [Giavitto et al. 2002; Giavitto et al. 2005]
takes a notable and different approach, evolving the shape of the manifolds on which
it executes. General purpose space-time computing models, and most particularly field
calculus [Damiani et al. 2016; Damiani et al. 2015] have been the basis for a lay-
ered approach to building distributed adaptive systems as presented in our previous
work [Beal et al. 2015; Viroli et al. 2015a].

More generally, identifying robust (e.g., self-adapting or self-stabilizing) algorithms
for distributed systems is a long investigated problem [Dolev 2000], which is part of
the general challenge of devising sound techniques for engineering self-organising ap-
plications. Several techniques can be used, spanning game theory (e.g., [Yen et al.
2016]), SMT-based automatic synthesis (e.g., [Faghih and Bonakdarpour 2015]), and
order statistics (e.g., [Faghih and Bonakdarpour 2015]).

Collective adaptive behaviour involving groups of computational entities spread in
an (physical or virtual) environment has also been the subject of deep study in the
multi-agent systems literature, where a huge variety of techniques and approaches are
used: coordination artifacts of various form [Omicini et al. 2008], protocols [Kalia and
Singh 2015]), social/organisational norms [Artikis et al. 2009], commitments [Mallya
and Singh 2007], swarm intelligence [Parunak et al. 2005], and teamwork [Lesser et al.
2004; Taylor et al. 2011]). The work in [Viroli et al. 2015c] defines a notion of aggregate
plan as a space-time structure of “actions”: since it is based on aggregate programming,
it is the approach where the results of this paper are most readily applicable.

In this paper we are concerned in finding large sufficient conditions for resiliency,
expressed in terms of a whole language of resilient programs that can be construc-
tively used to build systems. To the best of our knowledge, however, the only works
aiming at a proof of resilience for an entire class of computational field algorithms are
[Damiani and Viroli 2015] and [Viroli et al. 2015a], which address self-stabilization. In
particular, these works consider deterministic self-stabilization, in which the system
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Symbol Definition
x Closure of a set; sequence of a token

M A Riemannian space-time manifold
m A point (“event”) in a manifold M
c Bound on the speed of information propagation

T+(m) Time-like future: events reachable from m slower than c
d Computational device: a time-like curve in a manifold M
SM A space-like cross-section of a manifold M
D Discrete subset of a manifold, e.g., events in execution of an

algorithm on physical devices.

V Set of all possible data values
f Field: a function f : M → V assigning values to all points in

the manifold M .
FV Space of all fields with range contained in V
e “Evaluation environment” input field
C Computation: a higher-order function mapping fields to fields:

C : FV → FV

Fig. 1. Key symbols used in the definition of eventual consistency.

eventually reaches a stable state completely determined by the environment (network
topology and sensor values), whenever the environment does not change for sufficient
amount of time. As argued in [Fernandez-Marquez et al. 2013], there is expected to be a
whole catalogue of self-organization patterns susceptible to similar approaches. These
prior works have a large range of expressiveness, but are unable to tie the properties
they investigate to a continuous environment or to consider similarity between net-
works with different topologies, more challenging properties that eventual consistency
addresses.

As a starting point for addressing eventual consistency, then, a model for computa-
tion in space is needed. There are a number of continuum computation models that
might be considered, including hybrid automata [Henzinger 1996] and continuous
spatial automata [MacLennan 1990]. In this paper, we follow the direction proposed
in [Abelson et al. 1999] and, more particularly, its realization in [Beal 2005; 2010],
in which computation is seen as a field mapping a continuous region of space-time
(namely, a manifold) to data values. This approach, we shall see in detail later, fits nat-
urally with the field calculus, as well as with the notion of computation self-adapting
to device distribution changes.

3. EVENTUAL CONSISTENCY
Self-stabilization is a well-established theoretical property of distributed algo-
rithms [Dolev 2000]: under the standard definition, a system self-stabilizes if it is
guaranteed to converge from any arbitrary initial state to some state with a defined set
of “correct” properties (for technicalities of the particular definition of self-stabilization
referred to by this paper, see [Viroli et al. 2015a]). We now introduce a new and closely
related property, eventual consistency, that ties state to the space in which the net-
work is situated: intuitively, a system is eventually consistent if the state it converges
to is set by the continuous environment rather that the particulars of how devices are
distributed through that environment. This model fits IoT scenarios well, since many
computations are more concerned with the environment in which devices are deployed
rather than the particulars of individual devices, and can hence be naturally described
in geometric terms, e.g., distances, regions, information flow.
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Fig. 2. An IoT example in a street environment; the walkable spaces of the street form a manifold.

We will develop the concept of eventual consistency incrementally. First, we review
how situated networks can be viewed as an approximation of a continuous environ-
ment, which then forms a basis for both discrete and continuous models of space-time
computation. We then use these concepts to define eventual consistency and examine
how this definition implies resilience to perturbation in the density and arrangement
of devices in a situated network. For additional assistance to the reader, Figure 1 pro-
vides a table of key symbols.

3.1. Networks as Approximations of a Continuum
Many physically situated networks perform computations that can be naturally de-
scribed in terms of the physical space through which the devices comprising the net-
work are distributed. In this case, as observed in [Beal 2005] and [Beal 2010], a net-
work can be viewed as a discrete approximation of the continuous physical space and
programmed accordingly.

Under the continuous model developed in those papers, computation takes place on
a Riemannian manifold M with both space and time dimensions. A manifold is a space
that is locally Euclidean, but may have more complex structure over a longer range
(e.g., the shape of a city’s streets or a building’s interior). Riemannian manifolds also
support familiar geometric constructs like angles, lengths, curvature, integrals and
derivatives. This allows communication and mobility constraints to be embedded in
the manifold’s geometry, measuring distance through the manifold rather than using
absolute (e.g., latitude/longitude) coordinates. For example, the walkable spaces of a
street (e.g., Figure 2) form a Riemannian manifold in which the shortest distance be-
tween locations goes along sidewalks, roads, and plazas, rather than through the walls
of buildings.

Communication in a continuous space may be modeled as a bound c on the speed
at which information can propagate. A standard set of concepts and terminology from
relativistic physics (e.g., [Taylor and Wheeler 1992]) may then be borrowed to describe
the space-time relations of a manifold. To wit, a point m ∈ M is termed an “event,”
denoting its interest as both a spatial and temporal location, and the manifold may be
partitioned with respect to m in space and time (see Figure 3):

— events that information can go to or from at exactly c are simultaneous with m;
— the set of events that can be reached from m moving slower than c, denoted T+(m),

the time-like future of m, while events whose information reaches m moving slower
than c are its time-like history T−(m);

— all other events, which cannot share information because it would need to move faster
than c, have space-like separation from m and no natural order.
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Fig. 3. Example of continuous space-time relations between six devices distributed along a street: wireless
access points and meters are stationary, while the car moves steadily and the phone stops and starts twice.

Finally, we also define a spatial section SM , a distributed snapshot of state without
a global notion of time: formally, a spatial section is any set SM in which no event is in
any other’s time-like future or history, namely, such that T+(SM )∪T−(SM ) =M −SM .

In this model, a device d is represented with a one-dimensional time-like curve in
the manifold, analogous to the physics notion of a world-line. Devices thus can have
a history in time, but only exist at one point in space at any given time. The mathe-
matical analysis in this paper makes the simplifying assumptions that the manifold
is finite in diameter and devices do not move, which better fits the general framework
of self-stabilization and convergence (in practice the results we provide typically also
apply well to devices moving much more slowly than c).

Figure 3 depicts an IoT computing example of these concepts in terms of several
devices distributed in one dimension along a city street. Each device is represented
by a time-like trajectory indicating its position over time: the access points and park-
ing meters are stationary (vertical lines) while the car moves steadily and the phone
stops and starts twice. The event marked by the phone on its trajectory (m1) is in the
time-like future of the marked event on the orange meter’s history (m2), meaning it
can be affected by the meter’s state at that time. However, it is space-like separated
from the marked event on the car’s history (m3), meaning it only has access to older
information about the car. Finally, the blue line marks one of many possible spatial
section “snapshots” (SM ) that can separate all of space-time into a “strict future” and
“strict past.”

3.2. Computations Across Space and Time
Standard event-based models of distributed computation (e.g., [Lynch 1996]) cannot be
applied to continuous spaces, as any manifold contains an uncountably infinite number
of events, and thus the events of the computation cannot be placed in a countable se-
quence. Instead, computation on manifolds may be defined in terms of fields, per [Beal
2010; Beal et al. 2014; Beal et al. 2013]:
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>"20"

(a) Continuous

>"20">"20"

(b) Discrete (c) ε-approximation

Fig. 4. On the situated network in a street environment in Figure 2: a continuous computation of a temper-
ature threshold (b) is approximated by the discrete network of devices (c), producing the ε-approximation
shown in (d).

Definition 1 (Continuous Computational Field) A field is a function f : M → V
that maps every event m in a Riemannian manifold M to some data value in V, where
V is the set of all possible data values.

Discrete computational fields (e.g., actions taken by real devices in the execution of a
distributed algorithm) may be defined likewise, except that the domain is limited to
a discrete subset of events D ⊂ M . Note that defining discrete execution as a mani-
fold subspace (rather than an abstract graph) preserves the geometric relationship of
network to environment.

For example, consider a situated network in a street environment such as is shown
in Figure 2. Two examples of continuous computational fields are shown in Figure 4(a):
the top a real-valued field of temperatures (shading blue to red from lowest to highest),
the bottom a Boolean-valued field indicating where the temperature is greater than
20°C (green for true, orange for false). Figure 4(b) shows examples of discrete fields:
these fields also show temperature and comparison (using the same color scheme), but
contain only the values located at individual devices in the network, rather than across
the whole region of space.

A space-time computation C is a higher-order function mapping an input field to a
corresponding field of values:

Definition 2 (Space-Time Computation) Let FV be the set of fields with range V, a
computation C is a function C : FV → FV, where the domain of the output field is always
identical to the domain of the input field.

In other words, a computation takes an evaluation environment field, whose domain
defines the scope over which the computation executes and whose values are all of
the environmental state that can affect its outcome (e.g., sensor readings). At every
point of space and time in the execution scope, some output value is produced. For
example, Figure 4(a) and 4(b) show examples of continuous and discrete computation,
in which the field of temperatures is passed through a function that compares to 20°C
to compute a Boolean field that indicates the locations of higher temperatures.

Such space-time computations can be specified by functional composition of a basis
set of operators:

Definition 3 (Space-Time Program) A space-time operator is a function o : FV ×
FkV → FV taking an evaluation environment and zero or more additional fields as inputs
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and producing a field as output. A space-time program is any functional composition
of operator instances to form a computation, such that the domains and ranges of the
output are well-defined for all possible values of the inputs.

This is much like the definition of a computation, except that the domains of the fields
may differ. Note also that this includes recursive composition, e.g., via lambda calcu-
lus, so programs are potentially universal, per [Beal et al. 2014]. Some further notes on
technicalities: first, any well-defined composition of operators is itself an operator; sec-
ond, complete programs have no inputs except the environment. Note, however, that
any composition of operators that requires inputs (e.g., function definitions) may be
transformed into an equivalent program with no inputs, in which these values are in-
stead supplied by the environment and a special “no value” value is adjoined for events
in the domain of the environment but not the input.

For example, the space-time computation depicted in Figure 4 can be defined as a
composition of three operators: one returning the field of environment temperatures,
another returning a constant-valued field of 20, and a third comparing its two inputs
point-wise to find at which events the value of the first input is greater than the value
of the second.

Note that for clarity in describing programs, we will abuse terminology; in the con-
text of a program, a “field” is not actually the mathematical object itself, but the input
or output of an operator instance, which takes on a field value when evaluated in the
context of an environment.

3.3. Relating Continuous and Discrete Computing
We can now consider what it means for the results of a situated network computation
to be determined by its continuous environment. Our basic approach will be to define
the “ideal” outcome of a space-time program as its results when applied to a continu-
ous environment, then compare this with the results for a discrete network of devices
situated in that same environment.

Note that we consider only causal computations, i.e., those whose results only de-
pend on information from the past and present. This is not a significant restriction
since acausal computations, while well-defined, cannot generally be implemented be-
cause they use information from the future, and so are not generally of interest when
considering real-world systems. To be precise: a computation C is causal when for any
two fields f and f ′ with the same domain M , it is the case that for every m ∈ M , if f
and f ′ are equal on the closure of their time-like history T−(m), then the outputs C(f)
and C(f ′) are also equal at m. See [Beal 2010] for more information on the subject of
causal computations.

We can compare a continuous field to a corresponding discrete field by mapping the
domain of the continuous field to the values of the nearest points in the discrete field:

Definition 4 (ε-approximation) Let Dε ⊂ M be a discrete set such that every event
m ∈M is within distance ε of some event in Dε. The ε-approximation of field f : Dε → V
is a field mapping every point in M to the value of f at the nearest point in Dε (choosing
arbitrarily for equidistant points).

An example is shown in Figure 4(c), which illustrates an ε-approximation of the
fields of the discrete computation in Figure 4(b) on the manifold of the environment
illustrated in Figure 2. Notice that this is a coarse approximation of the continuous
computation in Figure 4(a). For this example, it is readily apparent that the more
devices there are, the more the ε-approximation would look like the ideal continuous
computation. This is the notion of field approximation:
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Definition 5 (Field Approximation) A field f :M → V is approximated by a count-
able sequence of εi-approximations fi over manifolds Mi, as εi → 0, if both the following
hold:

lim
i→∞

|(M ∪Mi)− (M ∩Mi)| = 0

lim
i→∞

∫
M∩Mi

µV(f, fi) = 0

where µV is a metric function over V.

In other words, a sequence of increasingly fine discrete sets approximates a continuous
field if both the manifolds and the values assigned over them by the fields tend toward
identical. The reason to use a sequence of potentially different manifolds Mi is because
program branches can create subspaces dynamically, and these necessarily depend on
the details of approximation.

Two important technical notes about field approximation: first, note that the inte-
gral in the second function is a Lebesgue integral (see e.g., [Kestelman 1960]), since
the more familiar Riemann integral is not well-suited for use on manifolds and is ill-
defined on many discontinuous fields; for those unfamiliar with Lebesgue integrals,
however, the intuitions of Riemann integration should generally serve. Note also that
any metric function may be used for µV, since the properties of metric functions guar-
antee that the limit of the function can only go to zero when field values become in-
finitesimally close or identical almost everywhere.

With this definition in hand, we can define a consistent program as one where field
approximation of inputs implies field approximation of outputs:

Definition 6 (Consistent Program) Let P be a space-time program, e be an evalu-
ation environment with domain M , and ei a countable sequence of εi-approximations
that approximate field e. Program P is consistent if P(ei) approximates P(e) for every ei
and e.

For most programs involving communication, however, consistency cannot be guar-
anteed without further specification of the communication model. This is because in
many communication models, even minor shifts in device position can lead to informa-
tion moving at significantly different speeds. Regardless of the specifics of communi-
cation, however, a program that converges to a steady state may be consistent after it
converges:

Definition 7 (Eventually Consistent Program) Consider a causal program P eval-
uated on domain M . Program P is eventually consistent if, for any evaluation environ-
ment e with a spatial section SM such that the values of e do not change at any device
in the time-like future T+(SM ), there is always some spatial section S′M such that P is
consistent on the time-like future T+(S′M ).

In other words: if the inputs ever converge, then the outputs eventually converge as
well, and are consistent thereafter. For example, the temperature program in Figure 4
is both consistent and eventually consistent. A “gossip” algorithm that uses its output
to compute whether any location had seen a high temperature, however, would only
be eventually consistent, since the speed that gossip can propagate information can be
affected by the particulars of discretization.

The value of eventual consistency is that it implies certain types of resilience. First,
eventual consistency implies that a computation is not particularly sensitive to precise

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 00, Publication date: 20XX.



00:10 J. Beal et al.

locations of devices, since the values must converge for all ei sequences. Second, results
can only improve (asymptotically) as the number of devices in the network increases.
Third, combining location insensitivity and improvement with density, eventually con-
sistent computations should also typically be quite tolerant of network heterogeneity.
Furthermore, when a computation is not eventually consistent, the manner in which
it is not consistent is likely to reveal system vulnerabilities that need to be considered
even when a situated network is not expected to be particularly dense or fast changing.

For contrast, here is the a definition of self-stabilization, as adapted from [Viroli
et al. 2015a] into this model:

Definition 8 (Self-Stabilizing Program) Consider a causal program P evaluated on
domain M . Program P is self-stabilizing if there is a function R : FV → FV from fields on
spatial sections to fields on spatial sections, such that for any evaluation environment
e with a spatial section SM where the values of e do not change at any device in the
time-like future T+(SM ), there is always some spatial section S′M such that P is equal
to R(e|SM ) on every spatial section in the time-like future T+(S′M )—where e|SM means
the field e with its domain restricted to SM .

In other words: if the inputs ever converge, then the outputs eventually converge to
values fixed by the final set of input values. This is different from eventual consistency
in two ways: first, self-stabilization is “memoryless,” considering only the final set of
input values, and second, self-stabilization implies nothing about consistency across
network structures.

In particular, note that eventual consistency does not necessarily imply self-
stabilization, as the value to which an eventually consistent system converges is still
allowed to depend on the history of values in its environment. The example just given
of a gossip algorithm that computes whether any location has ever seen a high tem-
perature is one such program that is eventually consistent but not self-stabilizing.
The approach that we present in the next section for obtaining eventual consistency,
however, will ensure self-stabilization as well.

4. EVENTUALLY CONSISTENT LANGUAGE
Having established eventual consistency as a desirable property, we now provide a
methodology for the construction of systems with this property, by identifying an ex-
pressive system of programming constructs, such that any program comprised solely of
such constructs is guaranteed to be eventually consistent. Following a brief review of
field calculus (the basis of our approach), we analyze how field calculus programs that
are not eventually consistent can have behavior that is extremely sensitive to small
changes in the arrangement of devices in space. Using this analysis, we then identify
a highly expressive restriction of the self-stabilizing sub-language of field calculus that
contains only eventually consistent programs, called GPI-calculus.

4.1. Field Calculus
Field calculus [Damiani et al. 2016; Damiani et al. 2015] is a minimal universal lan-
guage, in which every expression specifies a space-time program, as defined in Sec-
tion 3.2. That is, a field calculus program takes a field specifying the evaluation envi-
ronment as input and outputs a field of results. Importantly, field calculus is univer-
sal (meaning it can express any physically realizable computation), small enough to
be tractable to analyze formally, and can be applied to both continuous and discrete
fields [Beal et al. 2014], which means that it is a good framework for investigating
eventual consistency.
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e ::= x
∣∣ l ∣∣ (b e1 . . . en)

∣∣ (f e1 . . . en) ;; expression∣∣ (if e e e) ;; restriction∣∣ (rep x w e)
∣∣ (nbr e) ;; space-time ops

w ::= x
∣∣ l ;; variable or value

F ::= (def f(x1 . . . xn) e) ;; function
P ::= F1 . . . Fn e ;; program

(a) Syntax of Field Calculus

e ::= x
∣∣ l

∣∣ (b e1 . . . en)
∣∣ (f e1 . . . en) ;; expression∣∣ (if e e e) ;; restriction∣∣ (GPI e e e e) ;; space-time op

F ::= (def f(x1 . . . xn) e) ;; function
P ::= F1 . . . Fn e ;; program

Restricted values for l and b:
l ::= B | R | B ;; Literals
b ::= cf

∣∣ df
∣∣ s

∣∣ d
∣∣ sense ;; local operators

(b) Restriction to GPI-calculus sub-language

Fig. 5. Field calculus [Damiani et al. 2016] is a minimal computational calculus that does not ensure even-
tual consistency. GPI-calculus is a restriction to a sub-language of eventually consistent (and self-stabilizing)
programs.

Field calculus programs are specified using the syntax in Figure 5(a): each program
is either a literal l, defining a field that maps to the same data value everywhere (e.g.,
3 is a field whose value at every point is 3), or a composition of the following constructs:

— Built-in operators: A built-in operator (b e1 . . . en) determines the value of its output
field at event m only from the values of the environment e and input fields e1, e2, . . .
at m. The built-in operators can range over any such functions, including addition,
comparison, sensors, actuators, etc.

— Function definition and call: New functions can be defined Lisp-style with ex-
pressions of the form (def f(x1 . . . xn) e) and called with expressions of the form
(f e1 . . . en).

— Time evolution: Program state is initialized and changed over time by a “repeat”
construct (rep x w e), initializing x to a value w (supplied either by a variable or by a
literal) and updating (non-synchronously) by computing e against its prior value.

— Neighborhood values: At each event, expression (nbr e) constructs a sub-field map-
ping neighboring devices to their most recent value of e. These sub-fields can then be
manipulated and summarized with built-in operators. For example, (min-hood (nbr
e)) maps each device to the minimum value of e amongst its neighbors (excluding
itself), and to infinity if there are no neighbors.

— Domain restriction: (if e0 e1 e2) computes expressions in subspaces, preventing in-
terference between the two sub-computations: e1 is computed where Boolean e0 is
true, e2 where it is false.

A field calculus program is then a set of function definitions followed by an expression
to be evaluated. Thus the example in Section 3.3 of an eventually consistent “gossip”
algorithm that computes whether any location has ever experienced a high tempera-
ture, can be implemented:

(def gossip-ever (value)
(rep ever
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Fig. 6. Finding a bisector is fragile because it is sensitive to device positions. For example, the set of bisect-
ing locations (green line) for two cars (blue stars) might or might not actually include any devices.

false
(or ever (or value (any-hood (nbr ever))))))

(gossip-ever (> (temperature) 20))

Here, the gossip process is defined using def, with a combination of time evolution
and neighborhood value constructs. The program remembers if there has ever been a
high value with the Boolean field ever. This switches to true at an event in two cases,
joined with built-in or: either the input field value is true or else information arrives
that some neighbor has switched to true: (nbr ever) collects values from neighbors
and any-hood returns true if its input has a true value for any neighbor and false if all
neighbors hold false or if there are no neighbors.

Because field calculus is universal, it can express any program, including non-
resilient programs. A sub-language was identified in [Viroli et al. 2015a], however,
where self-stabilization can be guaranteed by using nbr and rep constructs only in
three patterns, which may be thought of roughly as spreading, folding, and bounded
monotonic change, and which cover a large number of self-stabilizing algorithms.
The consistent calculus we identify below further restricts this self-stabilizing sub-
language.

4.2. From Consistency Failures to Fragility
Even if a function is self-stabilizing, it may not be eventually consistent. Let us then
examine how consistency failures emerge in field calculus. Three modes of consistency
failure arise directly from constructs that, while useful, can also be readily used to
create programs that can never converge to a well-defined behavior. First, recursion
can create consistency failures, since there are many ways to arrange a recursion that
grows in depth with density and thus does not converge. Second, interactions between
neighboring devices can lead to consistency problems due to implicit dependence on the
distribution of devices: for example, a measurement that counts hops will not converge
if increasing density of devices leads to paths consisting of more small hops. State
constructs can also create programs that implicitly rely on the time between events,
but the self-stabilizing sublanguage in [Viroli et al. 2015a] prevents this by means of
the restricted patterns it allows for use of state constructs. Following a similar strat-
egy to ensure eventual consistency, we will thus prohibit recursion and restrict use of
neighbor and state constructs to a pattern that can be guaranteed safe.

More subtlely, many computations converge but are extremely sensitive to individ-
ual devices. A good example is one of the most widely used self-stabilizing distributed
algorithms, finding the distance to a source region:
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(def distance-to (source)
(rep d

infinity
(mux source 0

(min-hood (+ (nbr d) (nbr-range))))))

This finds distance by incremental application of the triangle inequality, using built-in
functions +, for pointwise addition, and mux, which multiplexes between its second and
third inputs, returning the second where the first is true and the third elsewhere.

Although distance-to always converges to an approximable output, programs in-
corporating it may not be eventually consistent because the value of the output may
be greatly affected by individual points in the source field. Consider, for example, a
source field where only one point is true: an ε-approximation containing that point has
only finite values, while one without that point has infinity everywhere. Thus, it is
possible to construct sequences that do not converge, because they alternate between
including and not including the critical point.

Although this example may seem extreme, it is easy to accidentally create such crit-
ical dependencies. For example, a simple bisecting boundary computation:

(def bisector (point-1 point-2)
(= (distance-to point-1) (distance-to point-2)))

creates a field that is false except at an infinitely thin boundary of true values (Fig-
ure 6). Fed to a program sensitive to such sets, such as distance-to, this can result in
arbitrarily unpredictable behavior from a distributed algorithm.

This is not a special case related to distance-to, but a deeper conflict for situated
distributed algorithms, between the discrete values commonly used in algorithms (e.g.,
Booleans, branches, state machines) and the continuous space-time environment in
which devices are embedded. In particular, any non-trivial field with a discrete range
cannot be continuous, meaning that it either is itself not approximable or else contains
some measure-zero boundary region that, if handled badly, can generate unpredictable
behavior (as in the bisector example). To handle such problems without giving up ei-
ther useful discrete constructs or the connection to continuous environments, we must
develop some means of dealing with the problems posed by boundaries.

4.3. Restriction of Field Calculus: GPI-calculus
We now further restrict field calculus to a sub-language of eventually consistent pro-
grams, which we call GPI-calculus, whose syntax is shown in Figure 5(b). This sub-
language is also self-stabilizing, as it is also a restriction of the self-stabilizing sub-
language of field calculus presented in [Viroli et al. 2015a]. As we find eliminating ev-
ery problematic program element to be too limiting, this sub-language accepts bound-
ary elements, but dynamically marks them to contain their effects. In particular:

— The possible literal data values are restricted to Booleans B (the prototypical discrete
value space) and real numbers R (the prototypical approximable continuous value
space), plus a unique value B denoting a possibly problematic boundary between
value regions.1

1Note that a wide range of other types of literals, including integers, tuples, and lists, can be generated
from these literals and the built-in operators defined below. Note also that the issues of fragility would not
be solved if we were to replace R with more computationally tractable alternatives like rationals or finite-
precision floating point numbers.
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— Built-in operators are restricted to the classes cf (continuous), df (discrete), s (selec-
tion), d (discretization), and sense (sensing)—all described in detail below.

— if allows B as an additional value for its first input other than Boolean true and
and false; for those points mapping to B, the output also maps to B. Note that this
does not actually change semantics from field calculus, as it can be implemented via
syntactic sugar on two nested field calculus if statements.

— State and communication are only available indirectly through a new operator, GPI
(described below), which is a restriction of the spreading pattern in [Viroli et al.
2015a].

— Recursion in any form is prohibited by the simple expedient of having the body of
function definition Fi in the sequence of function definitions prohibited from refer-
encing any function Fj≥i.

Boundary-Aware Built-In Functions. The built-in operators in GPI-calculus are close rel-
atives of standard mathematical and sensor functions; the only difference is that they
also interact with the boundary value:

— cf is any strictly continuous mathematical function, extended to have output B if any
input is B. Examples include addition, multiplication, logarithm, and sine, as well as
construction of tuples and extraction of tuple values from a fixed index, which can
be used to implement data structures. Some simple functions are excluded, however,
such as division, which is discontinuous when the denominator is zero.

— df is any discrete mathematical function, i.e., any function that takes only integers
or Booleans for inputs and returns integers or Booleans as output, extended to have
output B if any input is B. Examples include integer arithmetic and Boolean logic
operations.

— s is any “selection” function that takes an integer or Boolean as its first argument
and uses its value to select between the values of other inputs, returning B when the
first argument is B. An example of s is the piecewise multiplexer function mux: where
its first input is true, it returns the second input; where it is false, it returns the third
input; where it is B, it returns B.

— d is any single-input “discretization” function that maps non-intersecting open inter-
vals of the real numbers to constant integers or Boolean values (each open interval
may map to a different constant), and maps every value not included in those open
sets to B. An example of d is the sign function, which maps all positive numbers to
true, all negative numbers to false, and zero and B to B (note that this sign function
can be composed with subtraction to create comparators). Another example is round-
ing, with the “halves” (1/2, 3/2, 5/2, etc.) mapping to B, which can turn real numbers
into integers.

— (sense k) returns the kth value in the environment state (assumed to be a tuple or
B), where k is the positive integer literal given as its input, or else B for any point
where the environment state is B.

The GPI Operator. Key to distributed computation in the restricted language is the new
operator GPI, a “gradient-following path integral,” which we define as a field calculus
function similar to operator G in [Viroli et al. 2015a]:

(def GPI (source initial density integrand)
(if (<= density 0)
B // Metric ill-defined if density non-positive
(2nd
(rep distance-integral
(tuple infinity initial) // Initial value
(mux source
(tuple 0 initial)// Source is distance zero, initial value
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(min-hood’ // Minimize lexicographically over non-self nbrs
(+ (nbr distance-integral)
(* (nbr-range) // Scalar multiplication of tuple
(tuple (mean density (nbr density))
(mean integrand (nbr integrand)))))))))))

Here, in addition to the previously discussed built-in operators, we also use tuple,
which creates a k-tuple of its inputs, 2nd, which accesses the second value of a tuple,
and mean, which finds the average of its inputs. We also use a slightly modified version
of the usual field-calculus min-hood operator, designated as min-hood’, which returns
B if the minimal value for the first tuple element is held by more than one device and
those devices are not all members of the same ray centered on the current device. In
other words, if there is more than one shortest path from the source to a device, that
device must be on a boundary in the space (where the integral may be discontinuous)
and is marked accordingly.

The GPI operator thus performs two tasks simultaneously. First GPI computes a field
of shortest-path distances to a source region. This distance is “stretched” proportional
to a scalar field density (representing e.g., crowd density slowing movements, hazards
increasing danger of movement), and all points whose values might be ambiguous (due
to the existence of more than one shortest path) are B. Second, GPI computes a path
integral of the scalar field integrand following the gradient of the distance field upward
away from the source, starting at the scalar value initial in the source region. The
function definition binds these together via a tuple and lexicographic minimization,
such that the value added to the line integral at each device is taken from a neighbor
on the (sole) minimal path to the source.

Importantly, just as with G in [Viroli et al. 2015a], the GPI operation subsumes a
number of useful and frequently used computations. For example, an eventually con-
sistent version of distance-to can be implemented as:

(def distance-to (source)
(GPI source 0 1 1))

GPI-calculus is Eventually Consistent. With these restrictions, well-written programs will
ensure eventual consistency by effectively excluding a minuscule (often empty) set of
devices from certain computations. Poorly written programs (e.g., (= (sqrt 2) (sqrt
2))) may contaminate large areas with B values, but will still converge—just not to a
particularly useful result.

Theorem 1 (Eventual Consistency of GPI-calculus) GPI-calculus programs are
eventually consistent for all environments e that are continuous on e−1(V− B).

The full proof of this theorem is given in Appendix A. In sketch form: we first con-
sider any set of operators that are eventually consistent and are eventually continuity-
preserving, in the sense that there is always a spatial section SM such that if environ-
ment e and inputs fi are continuous on e−1(V−B)∩T+(SM ) and f−1i (V−B)∩T+(SM ),
then their output fo is also continuous on f−1o (V−B)∩T+(S′M ). All finite compositions of
such operators can be shown by induction to have the same properties of eventual con-
sistency and eventual continuity-preservation. Each operator in GPI-calculus can then
be shown to be at least eventually consistent and eventually continuity-preserving, in
a lengthy but not particularly complicated set of reasoning, the most complex of which
is for GPI. Finally, we show that all GPI-calculus programs are equivalent to finite
compositions of operators, which implies that all such programs are eventually consis-
tent.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 00, Publication date: 20XX.



00:16 J. Beal et al.

Thus, if a program is evaluated in a “well-behaved” environment, its results are
predictable and resilient to scale and positioning of devices. Having proved this, in
the next section we explore the breadth of applications that can be addressed by GPI-
calculus and demonstrate its consistency properties empirically in simulation.

5. VALIDATION AND APPLICATIONS
We now validate the predictions of eventual consistency and demonstrate some of the
breadth of IoT applications that can be expressed to our sub-language of eventually
consistent programs. As the GPI operation is a restricted version of the G information
spreading operator from [Viroli et al. 2015a], GPI-calculus applications are those based
on information spreading and local computation. We present several such common self-
organization patterns, along with accompanying application scenarios in wireless sen-
sor networks and urban traffic steering. Simulations of these scenarios have a twofold
goal:

(1) comparing GPI-calculus algorithms with similar ones that lack eventual consis-
tency, in order to demonstrate the perils of fragility and our ability to overcome
these problems, and

(2) demonstrating the anticipated resilience of GPI-calculus to differences in devices
density over both space and time.

Together, these experiments confirm the consistency result and its value for construct-
ing coordination behaviors resilient to changes in network density and scale. Note that
we do not attempt to cover the breadth of possible alternatives: rather, these compar-
isons show the sorts of difficulties that can often arise if eventual consistency is left to
programmers rather than being guaranteed by the framework.

5.1. Distance-Based Patterns
As previously noted, distributed distance calculation can be implemented with a sim-
ple GPI call. Another common pattern is broadcast from a source, which can be defined:

(def broadcast (source value)
(GPI source value 1 0))

Here, GPI shifts the initial value outward by integrating 0 along the path, so that the
value remains unchanged, thus producing a broadcast (or more generally, a map from
each device to the nearest source device’s value).

These functions can then be composed into higher-level patterns. For example, a
channel, useful for tasks like corridor routing, can be implemented:

(def channel (a b w)
(< (+ (distance-to a) (distance-to b))

(+ w (broadcast a (distance-to b)))))

Here distance from source fields a and b creates a Boolean field holding true only in
those devices whose distance to a and b is less than “width” w greater than the shortest
path. Such higher-level patterns can themselves be further modulated and combined,
e.g., restricting a channel with if in order to circumvent an area considered to be an
obstacle:
(def channel-with-obstacle (a b w obstacle)

(if obstacle false (channel a b w)))

Expressing these programs in GPI-calculus ensures less fragility of the channel to
device position: a near-identical naive program using = instead of < produces frag-
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ile channels that can disconnect or re-route due to minuscule perturbations. In GPI-
calculus, however, this fragility is extinguished because = can never return true, only
false and B, rendering naive channel obviously unable to produce any sort of channel,
fragile or otherwise.

5.1.1. Application Scenario: Wireless Sensor Network. Consider a wireless sensor network
in which some devices must exchange a large amount of information, e.g., relaying
video to a mobile monitoring station. The set of devices to relay is identified using
channel-with-obstacle, balancing limited spreading of information (e.g., to save bat-
tery energy) with replication along the transmission path (e.g., to increase reliability),
and avoiding devices that do not wish to participate (e.g., due to low battery or faults).
A broadcast restricted to this channel with if can then relay data with replication to
prevent data loss, but much less resource consumption than unrestricted broadcast.

We confirm our GPI-calculus results using simulation with Alchemist [Pianini et al.
2013] and Protelis [Pianini et al. 2015]. We first compare channel-with-obstacle and
the naive non-GPI-calculus variant on nine logarithmically scaled densities, from 100
to 5000 devices, with ten runs per condition, distributing devices randomly. Devices
are connected with a unit disc network, using a range of 15% of environment width
at lowest density and reducing proportional to square root of density to ensure a con-
sistent expected number of neighbors. Devices run unsynchronized but with the same
clock speed, frequency rising inversely proportional to communication range to keep
information speed consistent.

Our second set of tests then investigates how the GPI-calculus version of the pro-
gram reacts to heterogeneity in space and time. To evaluate space heterogeneity, we
run channel-with-obstacle, ranging the overall number of devices within the same
range of values of the previous experiment, using four different network configura-
tions:

(1) devices spread uniformly randomly through the space;
(2) same as above, but with three randomly chosen high-density regions;
(3) devices spread uniformly randomly along the Y-axis and exponentially randomly

(λ = 0.25) along the X-axis;
(4) devices spread uniformly randomly in three vertical “bands” whose average density

was determined by the same λ = 0.25 exponential random function.

Figure 7 shows snapshots of channel-with-obstacle simulations executed on such
configurations: note how changes in density affect only the precision of the channel’s
boundaries.

For time heterogeneity, we run our experiments with 5000 devices scattered uni-
formly randomly in the space and perturb the overall number of active devices be-
tween 5000 and 1000 active devices using three different drivers: a square wave, a
sine wave, and a triangle wave. Due to the sometimes extreme differences in density,
we used a different connection rule for these experiments in order to prevent network
segmentation: we dynamically linked device d1 and d2 if both were active and either
one belonged to the set of the ten devices closest to the other. In this setup, we do not
attempt to keep information speed consistent, and simply run all devices unsynchro-
nized at 1 Hz frequency.

By the results in Section 4, it should be the case that for GPI-calculus device values
will self-stabilize to a fixed set of values, and that as the number of devices increases,
the values converged to will themselves converge as the network more closely approx-
imates continuous space. We test this by measuring a key application property, the
fraction of devices in the channel. Figure 8 shows that, as expected, the GPI-calculus
program converges with respect to both time and number of devices, confirming our
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(a) Uniform (b) Spots

(c) Exponential (d) Three Bands

Fig. 7. Simulation snapshots of channel-with-obstacle exemplifying the four different device distributions
used for the spatial heterogeneity tests. The obstacle is green, regions a and b are red and orange, and the
computed channel is blue.

predictions. The GPI-calculus version of the algorithm also proves to be significantly
resilient to heterogeneity in both spatial and temporal device distribution. The naive
channel, however, shows a low and decreasing fraction of participating devices: even
the minuscule imprecisions of floating point addition are enough to disturb the fragile
equality relation.

5.2. Context-Sensitive Distance
For a second application example, we begin by considering the fact that the effective
shortest path between a node and the source of a GPI is not necessarily the physically
shortest path. Rather, effective distance may be influenced by other properties of the
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(a) GPI vs. non-GPI convergence (b) Convergence vs. time
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Fig. 8. Simulation of a wireless sensor network scenario confirms our analytical results for GPI-calculus,
showing convergence with respect to both number of devices (a) and time (b). Different patterns of hetero-
geneity in space (c) and time (d) have a moderate impact on the result, but the differences decrease at higher
densities and over periods of relative stability. Number of devices and spatial heterogeneity show mean and
±1 standard deviation for, respectively, the GPI (blue) and non-GPI (red) versions, and for the GPI version in
the different spatial configurations. Time graphs show mean of GPI version only; a comparison with non-GPI
that includes ±1 standard deviation is available in Appendix B. In (b), colors indicate different number of
devices, shading from deep blue (100) to dark red (5000). In (d), different colors are associated to different
perturbing drivers (thin lines, measured as probability for a node to be enabled). Results are the average of
10 simulation runs.

Fig. 9. Context-sensitive distance computation navigating the streets of London: warmer colored devices
have a closer effective distance to the destination (black dots at bottom center). Dashed outlines are un-
favourable (blue) and favourable (red) areas for travel. An example path is shown (black line), originating
near Charing Cross (black dot in upper left).
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(a) GPI vs. non-GPI convergence (b) Convergence vs. time
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Fig. 10. Simulation of urban traffic steering scenario confirms the analytical results for GPI-calculus, show-
ing convergence with respect to both number of devices (a) and time (b); and resilience to spatial (c) and tem-
poral (d) heterogeneity. Number of devices and spatial heterogeneity show mean and ±1 standard deviation
for, respectively, the GPI (blue) and non-GPI (red) versions, and for the GPI version in the different spatial
configurations. Time graphs show mean of GPI version only; a comparison with non-GPI that includes ±1
standard deviation is available in Appendix B. In (b), colors indicate different number of devices, shading
from deep blue (100) to dark red (5000). In (d), different colors are associated to different perturbing drivers
(thin lines, measured as probability for a node to be enabled). Results are the average of 10 simulation runs.

environment, either negatively (e.g., obstacles, congestion, pollution, tolls) or positively
(e.g., safety, dedicated lanes, beauty). The density argument of GPI allows such factors
to be taken into consideration as a multiplicative “stretching” of the base physical dis-
tance metric. Assuming there are penalising areas (cons) and favourable areas (pros),
both expressed as scalar fields with values between 0 (least significant) and 1 (most
significant), then one form of context sensitive distance is:

(def contextual-distance (source pros cons)
(GPI source 0 (+ 1.1 (- cons pros))

(+ 1.1 (- cons pros))))

Since GPI accumulates values using a path-integral, the context-sensitive stretching
is guaranteed to be resilient to distribution changes. A naive alternate counting “pros”
and “cons” visited rather than integrating creates a density-sensitive distance func-
tion whose value could be radically changed by changes in device location or network
density.

5.2.1. Application Scenario: Urban Traffic Steering. Consider guiding pedestrian or vehicle
traffic in a complex urban environment. Devices are deployed along and around the
streets, some with environmental sensors (e.g, for crowding, traffic, pollution); other
parameters are drawn from distributed or cloud databases (e.g., for events, attractions,
comments on an area). From these, devices can compute contextual pro and con fields
for people navigating through the city, reflecting perceived distance toward a location
by taking path desirability into account. Figure 9 shows an example simulated in the
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center of London, in which context-sensitive distance chooses a more favored path over
alternatives that are shorter but less favored.

We validate the predictions of GPI-calculus in this scenario using the same simu-
lation environment as for the wireless sensor network scenario, except that devices
are distributed on a street map of London and the property measured is the average
contextual distance value. As expected, Figure 10 shows convergence with respect to
both time and number of devices for the GPI-calculus program. Similarly to the previ-
ous scenario, the GPI version is also resilient to heterogeneity in space and time, again
confirming our predictions. The naive context-sensitive distance measure, on the other
hand, does not stabilize but instead grows as the number of hops through modulated
space increases.

6. CONTRIBUTIONS
We have presented a sub-language of field calculus containing only programs resilient
against changes in the distribution (density, heterogeneity, topology) of devices in a
network. This is a step towards a more general framework for supporting open ecosys-
tems of pervasive wireless devices for the IoT, which need to provide safe and resilient
services despite running a shifting set of interacting services from many unrelated
software suppliers. If it is possible to implicitly ensure all programs are resilient and
composable, then it will greatly reduce the cost of providing reliable services in such
environments.

In future work, we aim to extend the breadth of the results in this paper. Most
importantly, the theory we present does not cover mobile devices. In practice, however,
the mechanisms used often perform well on mobile devices, so there appears to be good
prospect for extension. Similarly, the theory currently directly addresses only the limit
of approximation, but these properties tend to indicate that an algorithm also behaves
well in lower density networks and before it has finished converging (as illustrated
by our heterogeneity results), so it should be possible to identify properties directly
pertinent to lower density performance. Also, as we here focus only on eventuality of
consistency, future works will also devoted to study performance issues to guarantee
prompt reactiveness to classes of changes, either by creating alternative, optimized
versions of building blocks [Viroli et al. 2015a], or by meta-techniques for optimization
along the lines of [Pianini et al. 2016]. Finally, GPI only addresses one of the three key
self-stabilizing patterns identified in [Viroli et al. 2015a], and a clear area for extension
is to deal with additional “building block” algorithms, and complementarily to consider
how static analysis, testing, and model-checking techniques can be used to eliminate
program faults before runtime.

APPENDIX
A. EVENTUAL CONSISTENCY OF GPI-CALCULUS
We prove eventual consistency of GPI-calculus in three stages: First, we prove that any
finite composition of eventually consistent and continuity-preserving operators is also
eventually consistent and continuity-preserving. We then show that each operator in
GPI-calculus is individually at least eventually consistent and continuity-preserving.
Finally, we show that all GPI-calculus programs are finite compositions of operators,
which implies that all such programs are eventually consistent.

Let us begin with a formal definition of what we need from operators in terms of
preservation of continuity:

Definition 9 (Continuity-Preserving) A space-time operator o : e × fki → fo is
continuity-preserving if it is the case that when environment e and inputs fi are con-
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tinuous on e−1(V − B) and f−1i (V − B), then it is the case that the output fo is also
continuous on f−1o (V− B).

Intuitively, what this means is that the output is a collection of continuous regions,
“stitched together” on by regions of the boundary value B. Note that we can turn any
operator into a continuity-preserving operator simply by mapping every potential area
of discontinuity in the output to the boundary value B.

We may not, however, be able to guarantee continuity preservation immediately, but
only after some time for convergence:

Definition 10 (Eventually Continuity-Preserving) A space-time operator o : e ×
fki → fo is eventually continuity-preserving if there is always a spatial section SM such
that o is continuity-preserving on T+(SM ).

In addition to these two, we note that, by the definitions of space-time operators and
programs in Section 3, consistency and eventually consistency (Definitions 6 and 7) can
be extended to apply to operators simply by extending the approximability condition
for consistency to apply to inputs as well as the environment.

With these definitions in hand, we now begin our proof of the eventual consistency of
GPI-calculus by showing that sense operators, which merely access the environment,
are trivially both consistent and continuity-preserving:

Lemma 2 Built-in operator sense is consistent and continuity-preserving.

PROOF. The environment is assumed to be a field mapping to a tuple of values
at each point or to B, and sense outputs a field created by indexing into said tuples
by a literal integer, or returning B for points that are B in the environment. By the
definition of consistency (Definition 6), we are only concerned with cases in which the
environment is approximable, and a field of tuples cannot be approximable unless a
field of each of the elements is also approximable. Likewise, a field of tuples cannot be
continuous unless a field of each of the elements is also continuous. Thus, copying an
element out of the environment for all non-B values must result in an output field that
is also consistent and continuous on all non-B values.

We next show that eventual consistency and eventual continuity are both preserved
by composition:

Lemma 3 Any program defined as a finite composition of eventually consistent and
eventually continuity-preserving operators is also eventually consistent and eventually
continuity-preserving.

PROOF. Consider a well-defined program comprised of a finite sequence of operator
instances, meaning that every operator instance input is defined as an output from
some other operator instance and there are no cycles. Because the sequence is finite
and the program is well-defined, it must be the case that the operator instances can be
ordered, such that the ith operator instance depends only on the environment and the
output fields of prior operators in the sequence.

For the ith operator instance in this sequence, it is possible to construct an equiva-
lent program comprising only that operator instance, an environment ei containing its
inputs, and sense operator instances mapping the environment values to its inputs.
By Lemma 2, the sense operators are consistent and continuity-preserving, so the
ith operator instance has the input conditions for continuity preservation satisfied.
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Thus, we also have that this miniature program is eventually consistent and eventu-
ally continuity-preserving.

The output of the ith operator instance can then be added to the environment for
the i+1st operator instance, ensuring that if the preconditions are satisfied for the ith
operator instance, they will be satisfied for the i + 1st operator instance as well. The
base case of i = 1, of course, is true by assumption, since each operator is individually
eventually consistent and eventually continuity-preserving. Thus any finite composi-
tion of operators is eventually consistent and eventually continuity-preserving if these
properties hold for all of the individual operators.

Note that if the program were not guaranteed finite evaluation, then this result
would not hold: the eventual consistency of the ith instance evaluated would still hold,
but no i would be high enough to cover the entire sequence, and it would be possible to
construct sequences that do not converge.

We now move on to proving that all of the rest of the operators in GPI-calculus
are sufficiently consistent and continuity-preserving, beginning with the trivial case of
literals:

Lemma 4 Literals l are consistent and continuity-preserving.

PROOF. Trivially true, since the output field of a literal l is equal to l at every point
in its domain, and constant functions are continuous.

Lemma 5 Any built-in operator cf is consistent and continuity-preserving.

PROOF. Recall that cf is defined to be any strictly continuous mathematical func-
tion, extended to have output B if any input is B. The output of any cf operator at
any event m is affected only by the values of its inputs at m. cf is also continuous by
definition, and (by the semantics of field calculus) requires all inputs to have the same
domain. Thus, since the composition of continuous functions is continuous, when each
input fi is continuous on f−1i (V − B), it must be the case that the output fo is contin-
uous on

⋂
i f
−1
i (V− B). The complementary space,

⋃
i f
−1
i (B) covers only points where

at least one input has value B, and thus by the definition of cf, fo maps all events in
this space to B.

Only consistency remains to be shown. All ε-approximation sequences must approx-
imate fo on subspace f−1o (V − B) because it is continuous on this space. For the com-
plementary space

⋃
i f
−1
i (B), fo must also always be approximable because it holds the

constant value B on a finite union of subspaces of approximable fields.

Lemma 6 Any built-in operator df is consistent and continuity-preserving.

PROOF. Recall that df is defined to be any mathematical function from discrete
inputs to discrete outputs, extended to have output B if any input is B. By the se-
mantics of field calculus, its inputs are all required to have the same domain. By the
precondition that the input fields are continuous on all non-B values, yet have discrete
values, this means every input field consists of a union of open sets mapping to con-
stant values, plus a complementary space mapping to B. Since a finite intersection of
open sets is open, the intersections of these open sets is also a collection of open sets,
with a complementary space of all points where at least one input field maps to B.
Since the output of any df operator at any event m is affected only by the values of its
inputs at m, this means that each open set of constant-valued inputs maps to an open
set of constant-valued outputs, plus a complementary space mapping to B, satisfying
continuity-preservation.
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Consistency is shown the same way as in Lemma 5. All ε-approximation sequences
must approximate fo on subspace f−1o (V − B) because it is continuous on this space.
For the complementary space

⋃
i f
−1
i (B), fo must also always be approximable because

it holds the constant value B on a finite union of subspaces of approximable fields.

Lemma 7 Any built-in operator s is consistent and continuity-preserving.

PROOF. As with df in Lemma 6, if s is continuous on the non-boundary portions
of its first input f−11 (V − B), then it must consist of a union of open sets mapping to
constant values, plus a complementary space mapping to B. Recall also that by the
semantics of field calculus, all inputs of s are all required to have the same domain.
Since the output of any s operator at any event m is affected only by the values of its
inputs at m, this means that the output for each such open set must obtain its values
from an open set of some other input field fi, where i > 1. Since fi must be continuous
on f−1i (V − B), so must its intersection with an open set. Every other point outside of
this set must be mapped to B, either due to having B in the first input or else having
B in the selected input, thus satisfying continuity-preservation.

Consistency is shown the same way as in Lemma 5. All ε-approximation sequences
must approximate fo on subspace f−1o (V − B) because it is continuous on this space.
For the complementary space f−1o (B), fo must also always be approximable because it
holds the constant value B on a finite intersection and union of subspaces of approx-
imable fields.

Lemma 8 Any built-in operator d is consistent and continuity-preserving.

PROOF. By definition, a d operator maps a collection of non-intersecting open inter-
vals from the reals to constant values. Let us designate this collection C, and members
of the collection c ∈ C.

Consider any point m ∈M . If f1(m) ∈ c for some c ∈ C, then the continuity precondi-
tion on f1 implies that there is also some ε such that f1(m′) ∈ c for every point m′ in an
ε-ball around m. This, in turn, implies that fo is also continuous at that point, because
every point in the ε-ball will map to the same constant value. Complementarily, any
point m such that f1(m) /∈ C maps to B in fo and is excluded from requirement for
continuity. Thus, continuity-preservation is satisfied.

For every c ∈ C, all ε-approximation sequences must approximate fo on subspace
f−11 (c) because the continuity precondition on f1 implies that f−11 (c) is an open set,
and fo has a constant value on that space. Consistency thus holds for fo for the union
of such subspace, subspace f−11 (C). Likewise, by the precondition of approximability
on f1, consistency holds for subspace f−11 (B). This leaves only subspace field−11 (R −
C), which all map to B, and since it is constant-valued and the complement of an
approximable subspace, consistency is satisfied overall.

Lemma 9 Branch operator if is consistent and continuity-preserving.

PROOF. The if operator is equivalent to an s built-in except that its branch expres-
sions are evaluated with respect to the subspaces f−11 (true) and f−11 (false) respectively
(i.e., the domain of the evaluation environment is reduced). Since these are open sub-
spaces of the environment’s domain M , the approximability and continuity properties
of e are not affected by the domain reduction. Thus, if the branch expressions would
have conformed with the preconditions for M they will also conform with the precon-
ditions for the branch subspaces. The output field is then assembled piecewise identi-
cally to an s operation, and is consistent and continuity-preserving on f−1o (V − B) by
the same reasoning.
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Lemma 10 Function call operator f is eventually consistent and eventually continuity-
preserving.

PROOF. Consider a function definition f; either f contains other function calls or it
does not. If it does not, then evaluating f is equivalent to evaluating a composition of
operators satisfying Lemma 3 (adjoining the function arguments to the environment
and substituting sense functions for variable references). Thus the desired consistency
and continuity properties hold.

If f does contain function calls, then the properties hold if they hold for all of the
function calls within f (meaning that once again Lemma 3 can apply). Since GPI-
calculus does not allow recursion, it must be the case that these dependencies between
function definitions can be arranged in a finite directed acyclic graph. The nodes of
such a graph may then be ordered, such that each subsequent node only depends on
nodes before it in the order. Since the set is finite, there must be at least one node
that has no dependencies and thus forms a base case for induction showing that the
properties hold for all function calls.

Lemma 11 Operator GPI is eventually consistent and eventually continuity-preserving.

PROOF. Following the semantics of field calculus to interpret the GPI algorithm
given in Section 3 of the main text, the first element of the tuple computed in
the rep statement implements a computation of distance via the triangle inequality
(nbr-range is a metric, and a metric multiplied by a continuous positive scalar func-
tion is still a metric).

Thus, if there is a spatial section SM such that the values of all of the inputs do
not change at any device on T+(SM ), then since we assume that manifolds have fi-
nite diameter, it must be the case that all the distance estimates (first values of the
distance-integral tuple) eventually converge to a continuous field of distance esti-
mates. The values of the integral are co-computed with the values of the distance esti-
mates, so they too will stop changing once the inputs have stopped changing. Thus it
must be possible to choose a spatial section S′M on which values of distance-integral
do not change at any device.

Note also that due to the use of min-hood’ in computing the triangle inequality, any
point in the field of distances with more than one shortest path leading to it will be re-
placed by a B. This eliminates only a set of measure zero: because the distance function
is continuous, its gradient cannot be discontinuous on a space of more than measure
zero. The set eliminated is, however, precisely the set of points for which the gradient
of the distance field is not continuous.

This is important because this is also the set of points on which the integral calcu-
lated in the second element of the distance-integral tuple might not be continuous.
Consider, for example, the case shown in Figure 11, in which a hole causes there to be
two very different shortest paths to a point. The integrals computed along such paths
may be very different indeed, necessarily creating a discontinuity in the value of the
integral and hence the output of GPI. This type of problem can also come from other
sources besides topological complexity: similar patterns (and failures) can be caused
by if statements, distortions in the distance measure, or the shape of the source—
anything that can cause a discontinuity in the gradient.

Since min-hood’ ensures that such points are B, however, they are eliminated from
the region on which we must establish continuity. If we instead consider any m with
precisely one shortest path to the source region, then because both integrand and the
gradient of the computed distance field are continuous on this path, it must be the
case that for any given ε, there must be a δ such that the open set of events within

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 00, Publication date: 20XX.



00:26 J. Beal et al.

!"#$%&'

!"!#"

Fig. 11. The field of path integral values created by GPI can be discontinuous at points reached by two
different shortest paths, as in this example where the left path around the hole goes through a region where
the integrand is much higher than on the right path, resulting in discontinuity between a value of 10 from
the left and 1 from the right.

distance δ have integral values that are less than ε different, and thus the field of
integrals output by GPI is continuous on f−1o (V−B)∩T+(SM ). Because it is continuous
on this space, it must also be approximable; the complementary space of B values
must also be approximable, as it is a union of the B values of the inputs (which must
be approximable) plus the measure zero set of B events added from computation of the
distance function.

Theorem 1 (Eventual Consistency of GPI-calculus) GPI-calculus programs are
eventually consistent for all environments e that are continuous on e−1(V− B).

PROOF. By Lemmas 2 and 4–11, we know that every operator in GPI-calculus is
eventually consistent and eventually continuity-preserving. Because recursion is pro-
hibited, it must be the case that the number of operators evaluated in the evaluation
of a GPI-calculus program must be finite for any given ε-approximation. Furthermore,
since if is the only method of branching evaluations, it must thus be the case that in
any approximation sequence there is some i, after which no εj>i-approximation eval-
uates an operator instance that is not also evaluated in some prior ε-approximation,
considering any instance in which an operator instance is not evaluated to be an eval-
uation with null domain.

Given the precondition of an environment continuous on e−1(V−B), we thus satisfy
the conditions of Lemma 3 and have that any GPI-calculus program must be eventu-
ally consistent.

B. ADDITIONAL DETAILS ON RESILIENCE TO HETEROGENEITY RESULTS
This supplementary section presents further details on the application results pre-
sented in Section 5. In particular, we show a detailed comparison between the behavior
of the GPI-calculus and non-GPI-calculus versions of the algorithms for the space and
time heterogeneity experiments, along with variation information elided from tempo-
ral heterogeneity graphs.
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Fig. 12. Additional details of experimental data on wireless sensor network scenario confirming our pre-
dictions for GPI-calculus. (a) compares GPI performance of Figure 8(c) with the non-GPI version (triangles).
(b,c,d) compare GPI performance of Figure 8(d) (blue) with the non-GPI version (red) for each of the three
density driver waves (black). All graphs show mean and ±1 standard deviation for both GPI and non-GPI
versions. As in the other tests in Figure 8, the non-GPI is disrupted by the fragility of floating point equality
operations in every experiment. Results are the average of 10 simulation runs.

B.1. Distance-Based Patterns in a Wireless Sensor Network
Figure 12 shows additional result details for the distance-based pattern in a wireless
sensor network, conforming with those presented in Section 5. The GPI-calculus algo-
rithm stabilizes regardless the exact distribution of devices in spaces. The differences
between the configurations that can be seen in Figure 12(a) are due to the chosen met-
ric: since the channel has a precise location in space, configurations where more nodes
are located in such area (see e.g., Figure 7(b)) may return a higher probability value,
though in both cases the pattern has stabilized correctly. The GPI-calculus version of
the algorithm is also resilient to dynamic changes in device density. For any tested
driver, after a transient, the algorithm recovers to the expected values. The square
wave causes the widest shift from the expected value immediately after many new
devices join the system, but this effect is quickly mitigated. In all cases, however, the
non-GPI version is disrupted by the fragility of floating point equality operations and
fails to reliably build a connection between source and destination, as reflected in the
extremely low P (channel) values.

B.2. Context-Sensitive Distance in Urban Traffic Steering
Figure 13 shows additional result details for the context-sensitive distance in an ur-
ban traffic steering scenario, conforming with those presented in Section 5. The GPI-
calculus version of the algorithm is extremely stable when compared to the naive
non-GPI alternative, which exhibits behavior that is extremely erratic and sensitive
to changes in density and distribution of devices both in space and time if compared to
the GPI-calculus version. The variation is so high, in fact, that we have chosen to use
logarithmic plots in Figure 13 in order to allow changes to be visible across the whole
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Fig. 13. Additional details of experimental data on urban traffic steering scenario confirming our predic-
tions for GPI-calculus. (a) compares GPI performance of Figure 10(c) with the non-GPI version (triangles).
(b,c,d) compare GPI performance of Figure 10(d) (blue) with the non-GPI version (red) for each of the three
density driver waves (black). All graphs show mean and ±1 standard deviation for GPI and non-GPI ver-
sions. As in the other tests in Figure 10, the non-GPI version is strongly affected by the number of devices
populating the scenario, and also fails to effectively stabilize. Results are the average of 10 simulation runs.

scale of behaviors. As can be readily seen, the fluctuations in time of the values of the
GPI-calculus version of the algorithm, that can be observed in Figure 10, are dwarfed
by the wider changes of the non-GPI naive alternative.
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